linux/fs/xfs/xfs_buf.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include <linux/backing-dev.h>
   8
   9#include "xfs_shared.h"
  10#include "xfs_format.h"
  11#include "xfs_log_format.h"
  12#include "xfs_trans_resv.h"
  13#include "xfs_sb.h"
  14#include "xfs_mount.h"
  15#include "xfs_trace.h"
  16#include "xfs_log.h"
  17#include "xfs_log_recover.h"
  18#include "xfs_trans.h"
  19#include "xfs_buf_item.h"
  20#include "xfs_errortag.h"
  21#include "xfs_error.h"
  22
  23static kmem_zone_t *xfs_buf_zone;
  24
  25#define xb_to_gfp(flags) \
  26        ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
  27
  28/*
  29 * Locking orders
  30 *
  31 * xfs_buf_ioacct_inc:
  32 * xfs_buf_ioacct_dec:
  33 *      b_sema (caller holds)
  34 *        b_lock
  35 *
  36 * xfs_buf_stale:
  37 *      b_sema (caller holds)
  38 *        b_lock
  39 *          lru_lock
  40 *
  41 * xfs_buf_rele:
  42 *      b_lock
  43 *        pag_buf_lock
  44 *          lru_lock
  45 *
  46 * xfs_buftarg_drain_rele
  47 *      lru_lock
  48 *        b_lock (trylock due to inversion)
  49 *
  50 * xfs_buftarg_isolate
  51 *      lru_lock
  52 *        b_lock (trylock due to inversion)
  53 */
  54
  55static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
  56
  57static inline int
  58xfs_buf_submit(
  59        struct xfs_buf          *bp)
  60{
  61        return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
  62}
  63
  64static inline int
  65xfs_buf_is_vmapped(
  66        struct xfs_buf  *bp)
  67{
  68        /*
  69         * Return true if the buffer is vmapped.
  70         *
  71         * b_addr is null if the buffer is not mapped, but the code is clever
  72         * enough to know it doesn't have to map a single page, so the check has
  73         * to be both for b_addr and bp->b_page_count > 1.
  74         */
  75        return bp->b_addr && bp->b_page_count > 1;
  76}
  77
  78static inline int
  79xfs_buf_vmap_len(
  80        struct xfs_buf  *bp)
  81{
  82        return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
  83}
  84
  85/*
  86 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
  87 * this buffer. The count is incremented once per buffer (per hold cycle)
  88 * because the corresponding decrement is deferred to buffer release. Buffers
  89 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
  90 * tracking adds unnecessary overhead. This is used for sychronization purposes
  91 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
  92 * in-flight buffers.
  93 *
  94 * Buffers that are never released (e.g., superblock, iclog buffers) must set
  95 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
  96 * never reaches zero and unmount hangs indefinitely.
  97 */
  98static inline void
  99xfs_buf_ioacct_inc(
 100        struct xfs_buf  *bp)
 101{
 102        if (bp->b_flags & XBF_NO_IOACCT)
 103                return;
 104
 105        ASSERT(bp->b_flags & XBF_ASYNC);
 106        spin_lock(&bp->b_lock);
 107        if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
 108                bp->b_state |= XFS_BSTATE_IN_FLIGHT;
 109                percpu_counter_inc(&bp->b_target->bt_io_count);
 110        }
 111        spin_unlock(&bp->b_lock);
 112}
 113
 114/*
 115 * Clear the in-flight state on a buffer about to be released to the LRU or
 116 * freed and unaccount from the buftarg.
 117 */
 118static inline void
 119__xfs_buf_ioacct_dec(
 120        struct xfs_buf  *bp)
 121{
 122        lockdep_assert_held(&bp->b_lock);
 123
 124        if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
 125                bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
 126                percpu_counter_dec(&bp->b_target->bt_io_count);
 127        }
 128}
 129
 130static inline void
 131xfs_buf_ioacct_dec(
 132        struct xfs_buf  *bp)
 133{
 134        spin_lock(&bp->b_lock);
 135        __xfs_buf_ioacct_dec(bp);
 136        spin_unlock(&bp->b_lock);
 137}
 138
 139/*
 140 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
 141 * b_lru_ref count so that the buffer is freed immediately when the buffer
 142 * reference count falls to zero. If the buffer is already on the LRU, we need
 143 * to remove the reference that LRU holds on the buffer.
 144 *
 145 * This prevents build-up of stale buffers on the LRU.
 146 */
 147void
 148xfs_buf_stale(
 149        struct xfs_buf  *bp)
 150{
 151        ASSERT(xfs_buf_islocked(bp));
 152
 153        bp->b_flags |= XBF_STALE;
 154
 155        /*
 156         * Clear the delwri status so that a delwri queue walker will not
 157         * flush this buffer to disk now that it is stale. The delwri queue has
 158         * a reference to the buffer, so this is safe to do.
 159         */
 160        bp->b_flags &= ~_XBF_DELWRI_Q;
 161
 162        /*
 163         * Once the buffer is marked stale and unlocked, a subsequent lookup
 164         * could reset b_flags. There is no guarantee that the buffer is
 165         * unaccounted (released to LRU) before that occurs. Drop in-flight
 166         * status now to preserve accounting consistency.
 167         */
 168        spin_lock(&bp->b_lock);
 169        __xfs_buf_ioacct_dec(bp);
 170
 171        atomic_set(&bp->b_lru_ref, 0);
 172        if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
 173            (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
 174                atomic_dec(&bp->b_hold);
 175
 176        ASSERT(atomic_read(&bp->b_hold) >= 1);
 177        spin_unlock(&bp->b_lock);
 178}
 179
 180static int
 181xfs_buf_get_maps(
 182        struct xfs_buf          *bp,
 183        int                     map_count)
 184{
 185        ASSERT(bp->b_maps == NULL);
 186        bp->b_map_count = map_count;
 187
 188        if (map_count == 1) {
 189                bp->b_maps = &bp->__b_map;
 190                return 0;
 191        }
 192
 193        bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
 194                                KM_NOFS);
 195        if (!bp->b_maps)
 196                return -ENOMEM;
 197        return 0;
 198}
 199
 200/*
 201 *      Frees b_pages if it was allocated.
 202 */
 203static void
 204xfs_buf_free_maps(
 205        struct xfs_buf  *bp)
 206{
 207        if (bp->b_maps != &bp->__b_map) {
 208                kmem_free(bp->b_maps);
 209                bp->b_maps = NULL;
 210        }
 211}
 212
 213static int
 214_xfs_buf_alloc(
 215        struct xfs_buftarg      *target,
 216        struct xfs_buf_map      *map,
 217        int                     nmaps,
 218        xfs_buf_flags_t         flags,
 219        struct xfs_buf          **bpp)
 220{
 221        struct xfs_buf          *bp;
 222        int                     error;
 223        int                     i;
 224
 225        *bpp = NULL;
 226        bp = kmem_cache_zalloc(xfs_buf_zone, GFP_NOFS | __GFP_NOFAIL);
 227
 228        /*
 229         * We don't want certain flags to appear in b_flags unless they are
 230         * specifically set by later operations on the buffer.
 231         */
 232        flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
 233
 234        atomic_set(&bp->b_hold, 1);
 235        atomic_set(&bp->b_lru_ref, 1);
 236        init_completion(&bp->b_iowait);
 237        INIT_LIST_HEAD(&bp->b_lru);
 238        INIT_LIST_HEAD(&bp->b_list);
 239        INIT_LIST_HEAD(&bp->b_li_list);
 240        sema_init(&bp->b_sema, 0); /* held, no waiters */
 241        spin_lock_init(&bp->b_lock);
 242        bp->b_target = target;
 243        bp->b_mount = target->bt_mount;
 244        bp->b_flags = flags;
 245
 246        /*
 247         * Set length and io_length to the same value initially.
 248         * I/O routines should use io_length, which will be the same in
 249         * most cases but may be reset (e.g. XFS recovery).
 250         */
 251        error = xfs_buf_get_maps(bp, nmaps);
 252        if (error)  {
 253                kmem_cache_free(xfs_buf_zone, bp);
 254                return error;
 255        }
 256
 257        bp->b_bn = map[0].bm_bn;
 258        bp->b_length = 0;
 259        for (i = 0; i < nmaps; i++) {
 260                bp->b_maps[i].bm_bn = map[i].bm_bn;
 261                bp->b_maps[i].bm_len = map[i].bm_len;
 262                bp->b_length += map[i].bm_len;
 263        }
 264
 265        atomic_set(&bp->b_pin_count, 0);
 266        init_waitqueue_head(&bp->b_waiters);
 267
 268        XFS_STATS_INC(bp->b_mount, xb_create);
 269        trace_xfs_buf_init(bp, _RET_IP_);
 270
 271        *bpp = bp;
 272        return 0;
 273}
 274
 275/*
 276 *      Allocate a page array capable of holding a specified number
 277 *      of pages, and point the page buf at it.
 278 */
 279STATIC int
 280_xfs_buf_get_pages(
 281        struct xfs_buf          *bp,
 282        int                     page_count)
 283{
 284        /* Make sure that we have a page list */
 285        if (bp->b_pages == NULL) {
 286                bp->b_page_count = page_count;
 287                if (page_count <= XB_PAGES) {
 288                        bp->b_pages = bp->b_page_array;
 289                } else {
 290                        bp->b_pages = kmem_alloc(sizeof(struct page *) *
 291                                                 page_count, KM_NOFS);
 292                        if (bp->b_pages == NULL)
 293                                return -ENOMEM;
 294                }
 295                memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
 296        }
 297        return 0;
 298}
 299
 300/*
 301 *      Frees b_pages if it was allocated.
 302 */
 303STATIC void
 304_xfs_buf_free_pages(
 305        struct xfs_buf  *bp)
 306{
 307        if (bp->b_pages != bp->b_page_array) {
 308                kmem_free(bp->b_pages);
 309                bp->b_pages = NULL;
 310        }
 311}
 312
 313/*
 314 *      Releases the specified buffer.
 315 *
 316 *      The modification state of any associated pages is left unchanged.
 317 *      The buffer must not be on any hash - use xfs_buf_rele instead for
 318 *      hashed and refcounted buffers
 319 */
 320static void
 321xfs_buf_free(
 322        struct xfs_buf          *bp)
 323{
 324        trace_xfs_buf_free(bp, _RET_IP_);
 325
 326        ASSERT(list_empty(&bp->b_lru));
 327
 328        if (bp->b_flags & _XBF_PAGES) {
 329                uint            i;
 330
 331                if (xfs_buf_is_vmapped(bp))
 332                        vm_unmap_ram(bp->b_addr - bp->b_offset,
 333                                        bp->b_page_count);
 334
 335                for (i = 0; i < bp->b_page_count; i++) {
 336                        struct page     *page = bp->b_pages[i];
 337
 338                        __free_page(page);
 339                }
 340                if (current->reclaim_state)
 341                        current->reclaim_state->reclaimed_slab +=
 342                                                        bp->b_page_count;
 343        } else if (bp->b_flags & _XBF_KMEM)
 344                kmem_free(bp->b_addr);
 345        _xfs_buf_free_pages(bp);
 346        xfs_buf_free_maps(bp);
 347        kmem_cache_free(xfs_buf_zone, bp);
 348}
 349
 350/*
 351 * Allocates all the pages for buffer in question and builds it's page list.
 352 */
 353STATIC int
 354xfs_buf_allocate_memory(
 355        struct xfs_buf          *bp,
 356        uint                    flags)
 357{
 358        size_t                  size;
 359        size_t                  nbytes, offset;
 360        gfp_t                   gfp_mask = xb_to_gfp(flags);
 361        unsigned short          page_count, i;
 362        xfs_off_t               start, end;
 363        int                     error;
 364        xfs_km_flags_t          kmflag_mask = 0;
 365
 366        /*
 367         * assure zeroed buffer for non-read cases.
 368         */
 369        if (!(flags & XBF_READ)) {
 370                kmflag_mask |= KM_ZERO;
 371                gfp_mask |= __GFP_ZERO;
 372        }
 373
 374        /*
 375         * for buffers that are contained within a single page, just allocate
 376         * the memory from the heap - there's no need for the complexity of
 377         * page arrays to keep allocation down to order 0.
 378         */
 379        size = BBTOB(bp->b_length);
 380        if (size < PAGE_SIZE) {
 381                int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
 382                bp->b_addr = kmem_alloc_io(size, align_mask,
 383                                           KM_NOFS | kmflag_mask);
 384                if (!bp->b_addr) {
 385                        /* low memory - use alloc_page loop instead */
 386                        goto use_alloc_page;
 387                }
 388
 389                if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
 390                    ((unsigned long)bp->b_addr & PAGE_MASK)) {
 391                        /* b_addr spans two pages - use alloc_page instead */
 392                        kmem_free(bp->b_addr);
 393                        bp->b_addr = NULL;
 394                        goto use_alloc_page;
 395                }
 396                bp->b_offset = offset_in_page(bp->b_addr);
 397                bp->b_pages = bp->b_page_array;
 398                bp->b_pages[0] = kmem_to_page(bp->b_addr);
 399                bp->b_page_count = 1;
 400                bp->b_flags |= _XBF_KMEM;
 401                return 0;
 402        }
 403
 404use_alloc_page:
 405        start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
 406        end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
 407                                                                >> PAGE_SHIFT;
 408        page_count = end - start;
 409        error = _xfs_buf_get_pages(bp, page_count);
 410        if (unlikely(error))
 411                return error;
 412
 413        offset = bp->b_offset;
 414        bp->b_flags |= _XBF_PAGES;
 415
 416        for (i = 0; i < bp->b_page_count; i++) {
 417                struct page     *page;
 418                uint            retries = 0;
 419retry:
 420                page = alloc_page(gfp_mask);
 421                if (unlikely(page == NULL)) {
 422                        if (flags & XBF_READ_AHEAD) {
 423                                bp->b_page_count = i;
 424                                error = -ENOMEM;
 425                                goto out_free_pages;
 426                        }
 427
 428                        /*
 429                         * This could deadlock.
 430                         *
 431                         * But until all the XFS lowlevel code is revamped to
 432                         * handle buffer allocation failures we can't do much.
 433                         */
 434                        if (!(++retries % 100))
 435                                xfs_err(NULL,
 436                "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
 437                                        current->comm, current->pid,
 438                                        __func__, gfp_mask);
 439
 440                        XFS_STATS_INC(bp->b_mount, xb_page_retries);
 441                        congestion_wait(BLK_RW_ASYNC, HZ/50);
 442                        goto retry;
 443                }
 444
 445                XFS_STATS_INC(bp->b_mount, xb_page_found);
 446
 447                nbytes = min_t(size_t, size, PAGE_SIZE - offset);
 448                size -= nbytes;
 449                bp->b_pages[i] = page;
 450                offset = 0;
 451        }
 452        return 0;
 453
 454out_free_pages:
 455        for (i = 0; i < bp->b_page_count; i++)
 456                __free_page(bp->b_pages[i]);
 457        bp->b_flags &= ~_XBF_PAGES;
 458        return error;
 459}
 460
 461/*
 462 *      Map buffer into kernel address-space if necessary.
 463 */
 464STATIC int
 465_xfs_buf_map_pages(
 466        struct xfs_buf          *bp,
 467        uint                    flags)
 468{
 469        ASSERT(bp->b_flags & _XBF_PAGES);
 470        if (bp->b_page_count == 1) {
 471                /* A single page buffer is always mappable */
 472                bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
 473        } else if (flags & XBF_UNMAPPED) {
 474                bp->b_addr = NULL;
 475        } else {
 476                int retried = 0;
 477                unsigned nofs_flag;
 478
 479                /*
 480                 * vm_map_ram() will allocate auxiliary structures (e.g.
 481                 * pagetables) with GFP_KERNEL, yet we are likely to be under
 482                 * GFP_NOFS context here. Hence we need to tell memory reclaim
 483                 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
 484                 * memory reclaim re-entering the filesystem here and
 485                 * potentially deadlocking.
 486                 */
 487                nofs_flag = memalloc_nofs_save();
 488                do {
 489                        bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
 490                                                -1);
 491                        if (bp->b_addr)
 492                                break;
 493                        vm_unmap_aliases();
 494                } while (retried++ <= 1);
 495                memalloc_nofs_restore(nofs_flag);
 496
 497                if (!bp->b_addr)
 498                        return -ENOMEM;
 499                bp->b_addr += bp->b_offset;
 500        }
 501
 502        return 0;
 503}
 504
 505/*
 506 *      Finding and Reading Buffers
 507 */
 508static int
 509_xfs_buf_obj_cmp(
 510        struct rhashtable_compare_arg   *arg,
 511        const void                      *obj)
 512{
 513        const struct xfs_buf_map        *map = arg->key;
 514        const struct xfs_buf            *bp = obj;
 515
 516        /*
 517         * The key hashing in the lookup path depends on the key being the
 518         * first element of the compare_arg, make sure to assert this.
 519         */
 520        BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
 521
 522        if (bp->b_bn != map->bm_bn)
 523                return 1;
 524
 525        if (unlikely(bp->b_length != map->bm_len)) {
 526                /*
 527                 * found a block number match. If the range doesn't
 528                 * match, the only way this is allowed is if the buffer
 529                 * in the cache is stale and the transaction that made
 530                 * it stale has not yet committed. i.e. we are
 531                 * reallocating a busy extent. Skip this buffer and
 532                 * continue searching for an exact match.
 533                 */
 534                ASSERT(bp->b_flags & XBF_STALE);
 535                return 1;
 536        }
 537        return 0;
 538}
 539
 540static const struct rhashtable_params xfs_buf_hash_params = {
 541        .min_size               = 32,   /* empty AGs have minimal footprint */
 542        .nelem_hint             = 16,
 543        .key_len                = sizeof(xfs_daddr_t),
 544        .key_offset             = offsetof(struct xfs_buf, b_bn),
 545        .head_offset            = offsetof(struct xfs_buf, b_rhash_head),
 546        .automatic_shrinking    = true,
 547        .obj_cmpfn              = _xfs_buf_obj_cmp,
 548};
 549
 550int
 551xfs_buf_hash_init(
 552        struct xfs_perag        *pag)
 553{
 554        spin_lock_init(&pag->pag_buf_lock);
 555        return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
 556}
 557
 558void
 559xfs_buf_hash_destroy(
 560        struct xfs_perag        *pag)
 561{
 562        rhashtable_destroy(&pag->pag_buf_hash);
 563}
 564
 565/*
 566 * Look up a buffer in the buffer cache and return it referenced and locked
 567 * in @found_bp.
 568 *
 569 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
 570 * cache.
 571 *
 572 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
 573 * -EAGAIN if we fail to lock it.
 574 *
 575 * Return values are:
 576 *      -EFSCORRUPTED if have been supplied with an invalid address
 577 *      -EAGAIN on trylock failure
 578 *      -ENOENT if we fail to find a match and @new_bp was NULL
 579 *      0, with @found_bp:
 580 *              - @new_bp if we inserted it into the cache
 581 *              - the buffer we found and locked.
 582 */
 583static int
 584xfs_buf_find(
 585        struct xfs_buftarg      *btp,
 586        struct xfs_buf_map      *map,
 587        int                     nmaps,
 588        xfs_buf_flags_t         flags,
 589        struct xfs_buf          *new_bp,
 590        struct xfs_buf          **found_bp)
 591{
 592        struct xfs_perag        *pag;
 593        struct xfs_buf          *bp;
 594        struct xfs_buf_map      cmap = { .bm_bn = map[0].bm_bn };
 595        xfs_daddr_t             eofs;
 596        int                     i;
 597
 598        *found_bp = NULL;
 599
 600        for (i = 0; i < nmaps; i++)
 601                cmap.bm_len += map[i].bm_len;
 602
 603        /* Check for IOs smaller than the sector size / not sector aligned */
 604        ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
 605        ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
 606
 607        /*
 608         * Corrupted block numbers can get through to here, unfortunately, so we
 609         * have to check that the buffer falls within the filesystem bounds.
 610         */
 611        eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
 612        if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
 613                xfs_alert(btp->bt_mount,
 614                          "%s: daddr 0x%llx out of range, EOFS 0x%llx",
 615                          __func__, cmap.bm_bn, eofs);
 616                WARN_ON(1);
 617                return -EFSCORRUPTED;
 618        }
 619
 620        pag = xfs_perag_get(btp->bt_mount,
 621                            xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
 622
 623        spin_lock(&pag->pag_buf_lock);
 624        bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
 625                                    xfs_buf_hash_params);
 626        if (bp) {
 627                atomic_inc(&bp->b_hold);
 628                goto found;
 629        }
 630
 631        /* No match found */
 632        if (!new_bp) {
 633                XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
 634                spin_unlock(&pag->pag_buf_lock);
 635                xfs_perag_put(pag);
 636                return -ENOENT;
 637        }
 638
 639        /* the buffer keeps the perag reference until it is freed */
 640        new_bp->b_pag = pag;
 641        rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
 642                               xfs_buf_hash_params);
 643        spin_unlock(&pag->pag_buf_lock);
 644        *found_bp = new_bp;
 645        return 0;
 646
 647found:
 648        spin_unlock(&pag->pag_buf_lock);
 649        xfs_perag_put(pag);
 650
 651        if (!xfs_buf_trylock(bp)) {
 652                if (flags & XBF_TRYLOCK) {
 653                        xfs_buf_rele(bp);
 654                        XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
 655                        return -EAGAIN;
 656                }
 657                xfs_buf_lock(bp);
 658                XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
 659        }
 660
 661        /*
 662         * if the buffer is stale, clear all the external state associated with
 663         * it. We need to keep flags such as how we allocated the buffer memory
 664         * intact here.
 665         */
 666        if (bp->b_flags & XBF_STALE) {
 667                ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
 668                bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
 669                bp->b_ops = NULL;
 670        }
 671
 672        trace_xfs_buf_find(bp, flags, _RET_IP_);
 673        XFS_STATS_INC(btp->bt_mount, xb_get_locked);
 674        *found_bp = bp;
 675        return 0;
 676}
 677
 678struct xfs_buf *
 679xfs_buf_incore(
 680        struct xfs_buftarg      *target,
 681        xfs_daddr_t             blkno,
 682        size_t                  numblks,
 683        xfs_buf_flags_t         flags)
 684{
 685        struct xfs_buf          *bp;
 686        int                     error;
 687        DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
 688
 689        error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
 690        if (error)
 691                return NULL;
 692        return bp;
 693}
 694
 695/*
 696 * Assembles a buffer covering the specified range. The code is optimised for
 697 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
 698 * more hits than misses.
 699 */
 700int
 701xfs_buf_get_map(
 702        struct xfs_buftarg      *target,
 703        struct xfs_buf_map      *map,
 704        int                     nmaps,
 705        xfs_buf_flags_t         flags,
 706        struct xfs_buf          **bpp)
 707{
 708        struct xfs_buf          *bp;
 709        struct xfs_buf          *new_bp;
 710        int                     error = 0;
 711
 712        *bpp = NULL;
 713        error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
 714        if (!error)
 715                goto found;
 716        if (error != -ENOENT)
 717                return error;
 718
 719        error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
 720        if (error)
 721                return error;
 722
 723        error = xfs_buf_allocate_memory(new_bp, flags);
 724        if (error) {
 725                xfs_buf_free(new_bp);
 726                return error;
 727        }
 728
 729        error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
 730        if (error) {
 731                xfs_buf_free(new_bp);
 732                return error;
 733        }
 734
 735        if (bp != new_bp)
 736                xfs_buf_free(new_bp);
 737
 738found:
 739        if (!bp->b_addr) {
 740                error = _xfs_buf_map_pages(bp, flags);
 741                if (unlikely(error)) {
 742                        xfs_warn_ratelimited(target->bt_mount,
 743                                "%s: failed to map %u pages", __func__,
 744                                bp->b_page_count);
 745                        xfs_buf_relse(bp);
 746                        return error;
 747                }
 748        }
 749
 750        /*
 751         * Clear b_error if this is a lookup from a caller that doesn't expect
 752         * valid data to be found in the buffer.
 753         */
 754        if (!(flags & XBF_READ))
 755                xfs_buf_ioerror(bp, 0);
 756
 757        XFS_STATS_INC(target->bt_mount, xb_get);
 758        trace_xfs_buf_get(bp, flags, _RET_IP_);
 759        *bpp = bp;
 760        return 0;
 761}
 762
 763int
 764_xfs_buf_read(
 765        struct xfs_buf          *bp,
 766        xfs_buf_flags_t         flags)
 767{
 768        ASSERT(!(flags & XBF_WRITE));
 769        ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
 770
 771        bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
 772        bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
 773
 774        return xfs_buf_submit(bp);
 775}
 776
 777/*
 778 * Reverify a buffer found in cache without an attached ->b_ops.
 779 *
 780 * If the caller passed an ops structure and the buffer doesn't have ops
 781 * assigned, set the ops and use it to verify the contents. If verification
 782 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
 783 * already in XBF_DONE state on entry.
 784 *
 785 * Under normal operations, every in-core buffer is verified on read I/O
 786 * completion. There are two scenarios that can lead to in-core buffers without
 787 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
 788 * filesystem, though these buffers are purged at the end of recovery. The
 789 * other is online repair, which intentionally reads with a NULL buffer ops to
 790 * run several verifiers across an in-core buffer in order to establish buffer
 791 * type.  If repair can't establish that, the buffer will be left in memory
 792 * with NULL buffer ops.
 793 */
 794int
 795xfs_buf_reverify(
 796        struct xfs_buf          *bp,
 797        const struct xfs_buf_ops *ops)
 798{
 799        ASSERT(bp->b_flags & XBF_DONE);
 800        ASSERT(bp->b_error == 0);
 801
 802        if (!ops || bp->b_ops)
 803                return 0;
 804
 805        bp->b_ops = ops;
 806        bp->b_ops->verify_read(bp);
 807        if (bp->b_error)
 808                bp->b_flags &= ~XBF_DONE;
 809        return bp->b_error;
 810}
 811
 812int
 813xfs_buf_read_map(
 814        struct xfs_buftarg      *target,
 815        struct xfs_buf_map      *map,
 816        int                     nmaps,
 817        xfs_buf_flags_t         flags,
 818        struct xfs_buf          **bpp,
 819        const struct xfs_buf_ops *ops,
 820        xfs_failaddr_t          fa)
 821{
 822        struct xfs_buf          *bp;
 823        int                     error;
 824
 825        flags |= XBF_READ;
 826        *bpp = NULL;
 827
 828        error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
 829        if (error)
 830                return error;
 831
 832        trace_xfs_buf_read(bp, flags, _RET_IP_);
 833
 834        if (!(bp->b_flags & XBF_DONE)) {
 835                /* Initiate the buffer read and wait. */
 836                XFS_STATS_INC(target->bt_mount, xb_get_read);
 837                bp->b_ops = ops;
 838                error = _xfs_buf_read(bp, flags);
 839
 840                /* Readahead iodone already dropped the buffer, so exit. */
 841                if (flags & XBF_ASYNC)
 842                        return 0;
 843        } else {
 844                /* Buffer already read; all we need to do is check it. */
 845                error = xfs_buf_reverify(bp, ops);
 846
 847                /* Readahead already finished; drop the buffer and exit. */
 848                if (flags & XBF_ASYNC) {
 849                        xfs_buf_relse(bp);
 850                        return 0;
 851                }
 852
 853                /* We do not want read in the flags */
 854                bp->b_flags &= ~XBF_READ;
 855                ASSERT(bp->b_ops != NULL || ops == NULL);
 856        }
 857
 858        /*
 859         * If we've had a read error, then the contents of the buffer are
 860         * invalid and should not be used. To ensure that a followup read tries
 861         * to pull the buffer from disk again, we clear the XBF_DONE flag and
 862         * mark the buffer stale. This ensures that anyone who has a current
 863         * reference to the buffer will interpret it's contents correctly and
 864         * future cache lookups will also treat it as an empty, uninitialised
 865         * buffer.
 866         */
 867        if (error) {
 868                if (!XFS_FORCED_SHUTDOWN(target->bt_mount))
 869                        xfs_buf_ioerror_alert(bp, fa);
 870
 871                bp->b_flags &= ~XBF_DONE;
 872                xfs_buf_stale(bp);
 873                xfs_buf_relse(bp);
 874
 875                /* bad CRC means corrupted metadata */
 876                if (error == -EFSBADCRC)
 877                        error = -EFSCORRUPTED;
 878                return error;
 879        }
 880
 881        *bpp = bp;
 882        return 0;
 883}
 884
 885/*
 886 *      If we are not low on memory then do the readahead in a deadlock
 887 *      safe manner.
 888 */
 889void
 890xfs_buf_readahead_map(
 891        struct xfs_buftarg      *target,
 892        struct xfs_buf_map      *map,
 893        int                     nmaps,
 894        const struct xfs_buf_ops *ops)
 895{
 896        struct xfs_buf          *bp;
 897
 898        if (bdi_read_congested(target->bt_bdev->bd_bdi))
 899                return;
 900
 901        xfs_buf_read_map(target, map, nmaps,
 902                     XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
 903                     __this_address);
 904}
 905
 906/*
 907 * Read an uncached buffer from disk. Allocates and returns a locked
 908 * buffer containing the disk contents or nothing.
 909 */
 910int
 911xfs_buf_read_uncached(
 912        struct xfs_buftarg      *target,
 913        xfs_daddr_t             daddr,
 914        size_t                  numblks,
 915        int                     flags,
 916        struct xfs_buf          **bpp,
 917        const struct xfs_buf_ops *ops)
 918{
 919        struct xfs_buf          *bp;
 920        int                     error;
 921
 922        *bpp = NULL;
 923
 924        error = xfs_buf_get_uncached(target, numblks, flags, &bp);
 925        if (error)
 926                return error;
 927
 928        /* set up the buffer for a read IO */
 929        ASSERT(bp->b_map_count == 1);
 930        bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
 931        bp->b_maps[0].bm_bn = daddr;
 932        bp->b_flags |= XBF_READ;
 933        bp->b_ops = ops;
 934
 935        xfs_buf_submit(bp);
 936        if (bp->b_error) {
 937                error = bp->b_error;
 938                xfs_buf_relse(bp);
 939                return error;
 940        }
 941
 942        *bpp = bp;
 943        return 0;
 944}
 945
 946int
 947xfs_buf_get_uncached(
 948        struct xfs_buftarg      *target,
 949        size_t                  numblks,
 950        int                     flags,
 951        struct xfs_buf          **bpp)
 952{
 953        unsigned long           page_count;
 954        int                     error, i;
 955        struct xfs_buf          *bp;
 956        DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
 957
 958        *bpp = NULL;
 959
 960        /* flags might contain irrelevant bits, pass only what we care about */
 961        error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
 962        if (error)
 963                goto fail;
 964
 965        page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
 966        error = _xfs_buf_get_pages(bp, page_count);
 967        if (error)
 968                goto fail_free_buf;
 969
 970        for (i = 0; i < page_count; i++) {
 971                bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
 972                if (!bp->b_pages[i]) {
 973                        error = -ENOMEM;
 974                        goto fail_free_mem;
 975                }
 976        }
 977        bp->b_flags |= _XBF_PAGES;
 978
 979        error = _xfs_buf_map_pages(bp, 0);
 980        if (unlikely(error)) {
 981                xfs_warn(target->bt_mount,
 982                        "%s: failed to map pages", __func__);
 983                goto fail_free_mem;
 984        }
 985
 986        trace_xfs_buf_get_uncached(bp, _RET_IP_);
 987        *bpp = bp;
 988        return 0;
 989
 990 fail_free_mem:
 991        while (--i >= 0)
 992                __free_page(bp->b_pages[i]);
 993        _xfs_buf_free_pages(bp);
 994 fail_free_buf:
 995        xfs_buf_free_maps(bp);
 996        kmem_cache_free(xfs_buf_zone, bp);
 997 fail:
 998        return error;
 999}
1000
1001/*
1002 *      Increment reference count on buffer, to hold the buffer concurrently
1003 *      with another thread which may release (free) the buffer asynchronously.
1004 *      Must hold the buffer already to call this function.
1005 */
1006void
1007xfs_buf_hold(
1008        struct xfs_buf          *bp)
1009{
1010        trace_xfs_buf_hold(bp, _RET_IP_);
1011        atomic_inc(&bp->b_hold);
1012}
1013
1014/*
1015 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1016 * placed on LRU or freed (depending on b_lru_ref).
1017 */
1018void
1019xfs_buf_rele(
1020        struct xfs_buf          *bp)
1021{
1022        struct xfs_perag        *pag = bp->b_pag;
1023        bool                    release;
1024        bool                    freebuf = false;
1025
1026        trace_xfs_buf_rele(bp, _RET_IP_);
1027
1028        if (!pag) {
1029                ASSERT(list_empty(&bp->b_lru));
1030                if (atomic_dec_and_test(&bp->b_hold)) {
1031                        xfs_buf_ioacct_dec(bp);
1032                        xfs_buf_free(bp);
1033                }
1034                return;
1035        }
1036
1037        ASSERT(atomic_read(&bp->b_hold) > 0);
1038
1039        /*
1040         * We grab the b_lock here first to serialise racing xfs_buf_rele()
1041         * calls. The pag_buf_lock being taken on the last reference only
1042         * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1043         * to last reference we drop here is not serialised against the last
1044         * reference until we take bp->b_lock. Hence if we don't grab b_lock
1045         * first, the last "release" reference can win the race to the lock and
1046         * free the buffer before the second-to-last reference is processed,
1047         * leading to a use-after-free scenario.
1048         */
1049        spin_lock(&bp->b_lock);
1050        release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1051        if (!release) {
1052                /*
1053                 * Drop the in-flight state if the buffer is already on the LRU
1054                 * and it holds the only reference. This is racy because we
1055                 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1056                 * ensures the decrement occurs only once per-buf.
1057                 */
1058                if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1059                        __xfs_buf_ioacct_dec(bp);
1060                goto out_unlock;
1061        }
1062
1063        /* the last reference has been dropped ... */
1064        __xfs_buf_ioacct_dec(bp);
1065        if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1066                /*
1067                 * If the buffer is added to the LRU take a new reference to the
1068                 * buffer for the LRU and clear the (now stale) dispose list
1069                 * state flag
1070                 */
1071                if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1072                        bp->b_state &= ~XFS_BSTATE_DISPOSE;
1073                        atomic_inc(&bp->b_hold);
1074                }
1075                spin_unlock(&pag->pag_buf_lock);
1076        } else {
1077                /*
1078                 * most of the time buffers will already be removed from the
1079                 * LRU, so optimise that case by checking for the
1080                 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1081                 * was on was the disposal list
1082                 */
1083                if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1084                        list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1085                } else {
1086                        ASSERT(list_empty(&bp->b_lru));
1087                }
1088
1089                ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1090                rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1091                                       xfs_buf_hash_params);
1092                spin_unlock(&pag->pag_buf_lock);
1093                xfs_perag_put(pag);
1094                freebuf = true;
1095        }
1096
1097out_unlock:
1098        spin_unlock(&bp->b_lock);
1099
1100        if (freebuf)
1101                xfs_buf_free(bp);
1102}
1103
1104
1105/*
1106 *      Lock a buffer object, if it is not already locked.
1107 *
1108 *      If we come across a stale, pinned, locked buffer, we know that we are
1109 *      being asked to lock a buffer that has been reallocated. Because it is
1110 *      pinned, we know that the log has not been pushed to disk and hence it
1111 *      will still be locked.  Rather than continuing to have trylock attempts
1112 *      fail until someone else pushes the log, push it ourselves before
1113 *      returning.  This means that the xfsaild will not get stuck trying
1114 *      to push on stale inode buffers.
1115 */
1116int
1117xfs_buf_trylock(
1118        struct xfs_buf          *bp)
1119{
1120        int                     locked;
1121
1122        locked = down_trylock(&bp->b_sema) == 0;
1123        if (locked)
1124                trace_xfs_buf_trylock(bp, _RET_IP_);
1125        else
1126                trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1127        return locked;
1128}
1129
1130/*
1131 *      Lock a buffer object.
1132 *
1133 *      If we come across a stale, pinned, locked buffer, we know that we
1134 *      are being asked to lock a buffer that has been reallocated. Because
1135 *      it is pinned, we know that the log has not been pushed to disk and
1136 *      hence it will still be locked. Rather than sleeping until someone
1137 *      else pushes the log, push it ourselves before trying to get the lock.
1138 */
1139void
1140xfs_buf_lock(
1141        struct xfs_buf          *bp)
1142{
1143        trace_xfs_buf_lock(bp, _RET_IP_);
1144
1145        if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1146                xfs_log_force(bp->b_mount, 0);
1147        down(&bp->b_sema);
1148
1149        trace_xfs_buf_lock_done(bp, _RET_IP_);
1150}
1151
1152void
1153xfs_buf_unlock(
1154        struct xfs_buf          *bp)
1155{
1156        ASSERT(xfs_buf_islocked(bp));
1157
1158        up(&bp->b_sema);
1159        trace_xfs_buf_unlock(bp, _RET_IP_);
1160}
1161
1162STATIC void
1163xfs_buf_wait_unpin(
1164        struct xfs_buf          *bp)
1165{
1166        DECLARE_WAITQUEUE       (wait, current);
1167
1168        if (atomic_read(&bp->b_pin_count) == 0)
1169                return;
1170
1171        add_wait_queue(&bp->b_waiters, &wait);
1172        for (;;) {
1173                set_current_state(TASK_UNINTERRUPTIBLE);
1174                if (atomic_read(&bp->b_pin_count) == 0)
1175                        break;
1176                io_schedule();
1177        }
1178        remove_wait_queue(&bp->b_waiters, &wait);
1179        set_current_state(TASK_RUNNING);
1180}
1181
1182static void
1183xfs_buf_ioerror_alert_ratelimited(
1184        struct xfs_buf          *bp)
1185{
1186        static unsigned long    lasttime;
1187        static struct xfs_buftarg *lasttarg;
1188
1189        if (bp->b_target != lasttarg ||
1190            time_after(jiffies, (lasttime + 5*HZ))) {
1191                lasttime = jiffies;
1192                xfs_buf_ioerror_alert(bp, __this_address);
1193        }
1194        lasttarg = bp->b_target;
1195}
1196
1197/*
1198 * Account for this latest trip around the retry handler, and decide if
1199 * we've failed enough times to constitute a permanent failure.
1200 */
1201static bool
1202xfs_buf_ioerror_permanent(
1203        struct xfs_buf          *bp,
1204        struct xfs_error_cfg    *cfg)
1205{
1206        struct xfs_mount        *mp = bp->b_mount;
1207
1208        if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1209            ++bp->b_retries > cfg->max_retries)
1210                return true;
1211        if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1212            time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1213                return true;
1214
1215        /* At unmount we may treat errors differently */
1216        if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1217                return true;
1218
1219        return false;
1220}
1221
1222/*
1223 * On a sync write or shutdown we just want to stale the buffer and let the
1224 * caller handle the error in bp->b_error appropriately.
1225 *
1226 * If the write was asynchronous then no one will be looking for the error.  If
1227 * this is the first failure of this type, clear the error state and write the
1228 * buffer out again. This means we always retry an async write failure at least
1229 * once, but we also need to set the buffer up to behave correctly now for
1230 * repeated failures.
1231 *
1232 * If we get repeated async write failures, then we take action according to the
1233 * error configuration we have been set up to use.
1234 *
1235 * Returns true if this function took care of error handling and the caller must
1236 * not touch the buffer again.  Return false if the caller should proceed with
1237 * normal I/O completion handling.
1238 */
1239static bool
1240xfs_buf_ioend_handle_error(
1241        struct xfs_buf          *bp)
1242{
1243        struct xfs_mount        *mp = bp->b_mount;
1244        struct xfs_error_cfg    *cfg;
1245
1246        /*
1247         * If we've already decided to shutdown the filesystem because of I/O
1248         * errors, there's no point in giving this a retry.
1249         */
1250        if (XFS_FORCED_SHUTDOWN(mp))
1251                goto out_stale;
1252
1253        xfs_buf_ioerror_alert_ratelimited(bp);
1254
1255        /*
1256         * We're not going to bother about retrying this during recovery.
1257         * One strike!
1258         */
1259        if (bp->b_flags & _XBF_LOGRECOVERY) {
1260                xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1261                return false;
1262        }
1263
1264        /*
1265         * Synchronous writes will have callers process the error.
1266         */
1267        if (!(bp->b_flags & XBF_ASYNC))
1268                goto out_stale;
1269
1270        trace_xfs_buf_iodone_async(bp, _RET_IP_);
1271
1272        cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1273        if (bp->b_last_error != bp->b_error ||
1274            !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1275                bp->b_last_error = bp->b_error;
1276                if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1277                    !bp->b_first_retry_time)
1278                        bp->b_first_retry_time = jiffies;
1279                goto resubmit;
1280        }
1281
1282        /*
1283         * Permanent error - we need to trigger a shutdown if we haven't already
1284         * to indicate that inconsistency will result from this action.
1285         */
1286        if (xfs_buf_ioerror_permanent(bp, cfg)) {
1287                xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1288                goto out_stale;
1289        }
1290
1291        /* Still considered a transient error. Caller will schedule retries. */
1292        if (bp->b_flags & _XBF_INODES)
1293                xfs_buf_inode_io_fail(bp);
1294        else if (bp->b_flags & _XBF_DQUOTS)
1295                xfs_buf_dquot_io_fail(bp);
1296        else
1297                ASSERT(list_empty(&bp->b_li_list));
1298        xfs_buf_ioerror(bp, 0);
1299        xfs_buf_relse(bp);
1300        return true;
1301
1302resubmit:
1303        xfs_buf_ioerror(bp, 0);
1304        bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1305        xfs_buf_submit(bp);
1306        return true;
1307out_stale:
1308        xfs_buf_stale(bp);
1309        bp->b_flags |= XBF_DONE;
1310        bp->b_flags &= ~XBF_WRITE;
1311        trace_xfs_buf_error_relse(bp, _RET_IP_);
1312        return false;
1313}
1314
1315static void
1316xfs_buf_ioend(
1317        struct xfs_buf  *bp)
1318{
1319        trace_xfs_buf_iodone(bp, _RET_IP_);
1320
1321        /*
1322         * Pull in IO completion errors now. We are guaranteed to be running
1323         * single threaded, so we don't need the lock to read b_io_error.
1324         */
1325        if (!bp->b_error && bp->b_io_error)
1326                xfs_buf_ioerror(bp, bp->b_io_error);
1327
1328        if (bp->b_flags & XBF_READ) {
1329                if (!bp->b_error && bp->b_ops)
1330                        bp->b_ops->verify_read(bp);
1331                if (!bp->b_error)
1332                        bp->b_flags |= XBF_DONE;
1333        } else {
1334                if (!bp->b_error) {
1335                        bp->b_flags &= ~XBF_WRITE_FAIL;
1336                        bp->b_flags |= XBF_DONE;
1337                }
1338
1339                if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1340                        return;
1341
1342                /* clear the retry state */
1343                bp->b_last_error = 0;
1344                bp->b_retries = 0;
1345                bp->b_first_retry_time = 0;
1346
1347                /*
1348                 * Note that for things like remote attribute buffers, there may
1349                 * not be a buffer log item here, so processing the buffer log
1350                 * item must remain optional.
1351                 */
1352                if (bp->b_log_item)
1353                        xfs_buf_item_done(bp);
1354
1355                if (bp->b_flags & _XBF_INODES)
1356                        xfs_buf_inode_iodone(bp);
1357                else if (bp->b_flags & _XBF_DQUOTS)
1358                        xfs_buf_dquot_iodone(bp);
1359
1360        }
1361
1362        bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1363                         _XBF_LOGRECOVERY);
1364
1365        if (bp->b_flags & XBF_ASYNC)
1366                xfs_buf_relse(bp);
1367        else
1368                complete(&bp->b_iowait);
1369}
1370
1371static void
1372xfs_buf_ioend_work(
1373        struct work_struct      *work)
1374{
1375        struct xfs_buf          *bp =
1376                container_of(work, struct xfs_buf, b_ioend_work);
1377
1378        xfs_buf_ioend(bp);
1379}
1380
1381static void
1382xfs_buf_ioend_async(
1383        struct xfs_buf  *bp)
1384{
1385        INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1386        queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1387}
1388
1389void
1390__xfs_buf_ioerror(
1391        struct xfs_buf          *bp,
1392        int                     error,
1393        xfs_failaddr_t          failaddr)
1394{
1395        ASSERT(error <= 0 && error >= -1000);
1396        bp->b_error = error;
1397        trace_xfs_buf_ioerror(bp, error, failaddr);
1398}
1399
1400void
1401xfs_buf_ioerror_alert(
1402        struct xfs_buf          *bp,
1403        xfs_failaddr_t          func)
1404{
1405        xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1406                "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1407                                  func, (uint64_t)XFS_BUF_ADDR(bp),
1408                                  bp->b_length, -bp->b_error);
1409}
1410
1411/*
1412 * To simulate an I/O failure, the buffer must be locked and held with at least
1413 * three references. The LRU reference is dropped by the stale call. The buf
1414 * item reference is dropped via ioend processing. The third reference is owned
1415 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1416 */
1417void
1418xfs_buf_ioend_fail(
1419        struct xfs_buf  *bp)
1420{
1421        bp->b_flags &= ~XBF_DONE;
1422        xfs_buf_stale(bp);
1423        xfs_buf_ioerror(bp, -EIO);
1424        xfs_buf_ioend(bp);
1425}
1426
1427int
1428xfs_bwrite(
1429        struct xfs_buf          *bp)
1430{
1431        int                     error;
1432
1433        ASSERT(xfs_buf_islocked(bp));
1434
1435        bp->b_flags |= XBF_WRITE;
1436        bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1437                         XBF_DONE);
1438
1439        error = xfs_buf_submit(bp);
1440        if (error)
1441                xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1442        return error;
1443}
1444
1445static void
1446xfs_buf_bio_end_io(
1447        struct bio              *bio)
1448{
1449        struct xfs_buf          *bp = (struct xfs_buf *)bio->bi_private;
1450
1451        if (!bio->bi_status &&
1452            (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1453            XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1454                bio->bi_status = BLK_STS_IOERR;
1455
1456        /*
1457         * don't overwrite existing errors - otherwise we can lose errors on
1458         * buffers that require multiple bios to complete.
1459         */
1460        if (bio->bi_status) {
1461                int error = blk_status_to_errno(bio->bi_status);
1462
1463                cmpxchg(&bp->b_io_error, 0, error);
1464        }
1465
1466        if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1467                invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1468
1469        if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1470                xfs_buf_ioend_async(bp);
1471        bio_put(bio);
1472}
1473
1474static void
1475xfs_buf_ioapply_map(
1476        struct xfs_buf  *bp,
1477        int             map,
1478        int             *buf_offset,
1479        int             *count,
1480        int             op)
1481{
1482        int             page_index;
1483        unsigned int    total_nr_pages = bp->b_page_count;
1484        int             nr_pages;
1485        struct bio      *bio;
1486        sector_t        sector =  bp->b_maps[map].bm_bn;
1487        int             size;
1488        int             offset;
1489
1490        /* skip the pages in the buffer before the start offset */
1491        page_index = 0;
1492        offset = *buf_offset;
1493        while (offset >= PAGE_SIZE) {
1494                page_index++;
1495                offset -= PAGE_SIZE;
1496        }
1497
1498        /*
1499         * Limit the IO size to the length of the current vector, and update the
1500         * remaining IO count for the next time around.
1501         */
1502        size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1503        *count -= size;
1504        *buf_offset += size;
1505
1506next_chunk:
1507        atomic_inc(&bp->b_io_remaining);
1508        nr_pages = bio_max_segs(total_nr_pages);
1509
1510        bio = bio_alloc(GFP_NOIO, nr_pages);
1511        bio_set_dev(bio, bp->b_target->bt_bdev);
1512        bio->bi_iter.bi_sector = sector;
1513        bio->bi_end_io = xfs_buf_bio_end_io;
1514        bio->bi_private = bp;
1515        bio->bi_opf = op;
1516
1517        for (; size && nr_pages; nr_pages--, page_index++) {
1518                int     rbytes, nbytes = PAGE_SIZE - offset;
1519
1520                if (nbytes > size)
1521                        nbytes = size;
1522
1523                rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1524                                      offset);
1525                if (rbytes < nbytes)
1526                        break;
1527
1528                offset = 0;
1529                sector += BTOBB(nbytes);
1530                size -= nbytes;
1531                total_nr_pages--;
1532        }
1533
1534        if (likely(bio->bi_iter.bi_size)) {
1535                if (xfs_buf_is_vmapped(bp)) {
1536                        flush_kernel_vmap_range(bp->b_addr,
1537                                                xfs_buf_vmap_len(bp));
1538                }
1539                submit_bio(bio);
1540                if (size)
1541                        goto next_chunk;
1542        } else {
1543                /*
1544                 * This is guaranteed not to be the last io reference count
1545                 * because the caller (xfs_buf_submit) holds a count itself.
1546                 */
1547                atomic_dec(&bp->b_io_remaining);
1548                xfs_buf_ioerror(bp, -EIO);
1549                bio_put(bio);
1550        }
1551
1552}
1553
1554STATIC void
1555_xfs_buf_ioapply(
1556        struct xfs_buf  *bp)
1557{
1558        struct blk_plug plug;
1559        int             op;
1560        int             offset;
1561        int             size;
1562        int             i;
1563
1564        /*
1565         * Make sure we capture only current IO errors rather than stale errors
1566         * left over from previous use of the buffer (e.g. failed readahead).
1567         */
1568        bp->b_error = 0;
1569
1570        if (bp->b_flags & XBF_WRITE) {
1571                op = REQ_OP_WRITE;
1572
1573                /*
1574                 * Run the write verifier callback function if it exists. If
1575                 * this function fails it will mark the buffer with an error and
1576                 * the IO should not be dispatched.
1577                 */
1578                if (bp->b_ops) {
1579                        bp->b_ops->verify_write(bp);
1580                        if (bp->b_error) {
1581                                xfs_force_shutdown(bp->b_mount,
1582                                                   SHUTDOWN_CORRUPT_INCORE);
1583                                return;
1584                        }
1585                } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1586                        struct xfs_mount *mp = bp->b_mount;
1587
1588                        /*
1589                         * non-crc filesystems don't attach verifiers during
1590                         * log recovery, so don't warn for such filesystems.
1591                         */
1592                        if (xfs_sb_version_hascrc(&mp->m_sb)) {
1593                                xfs_warn(mp,
1594                                        "%s: no buf ops on daddr 0x%llx len %d",
1595                                        __func__, bp->b_bn, bp->b_length);
1596                                xfs_hex_dump(bp->b_addr,
1597                                                XFS_CORRUPTION_DUMP_LEN);
1598                                dump_stack();
1599                        }
1600                }
1601        } else {
1602                op = REQ_OP_READ;
1603                if (bp->b_flags & XBF_READ_AHEAD)
1604                        op |= REQ_RAHEAD;
1605        }
1606
1607        /* we only use the buffer cache for meta-data */
1608        op |= REQ_META;
1609
1610        /*
1611         * Walk all the vectors issuing IO on them. Set up the initial offset
1612         * into the buffer and the desired IO size before we start -
1613         * _xfs_buf_ioapply_vec() will modify them appropriately for each
1614         * subsequent call.
1615         */
1616        offset = bp->b_offset;
1617        size = BBTOB(bp->b_length);
1618        blk_start_plug(&plug);
1619        for (i = 0; i < bp->b_map_count; i++) {
1620                xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1621                if (bp->b_error)
1622                        break;
1623                if (size <= 0)
1624                        break;  /* all done */
1625        }
1626        blk_finish_plug(&plug);
1627}
1628
1629/*
1630 * Wait for I/O completion of a sync buffer and return the I/O error code.
1631 */
1632static int
1633xfs_buf_iowait(
1634        struct xfs_buf  *bp)
1635{
1636        ASSERT(!(bp->b_flags & XBF_ASYNC));
1637
1638        trace_xfs_buf_iowait(bp, _RET_IP_);
1639        wait_for_completion(&bp->b_iowait);
1640        trace_xfs_buf_iowait_done(bp, _RET_IP_);
1641
1642        return bp->b_error;
1643}
1644
1645/*
1646 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1647 * the buffer lock ownership and the current reference to the IO. It is not
1648 * safe to reference the buffer after a call to this function unless the caller
1649 * holds an additional reference itself.
1650 */
1651static int
1652__xfs_buf_submit(
1653        struct xfs_buf  *bp,
1654        bool            wait)
1655{
1656        int             error = 0;
1657
1658        trace_xfs_buf_submit(bp, _RET_IP_);
1659
1660        ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1661
1662        /* on shutdown we stale and complete the buffer immediately */
1663        if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
1664                xfs_buf_ioend_fail(bp);
1665                return -EIO;
1666        }
1667
1668        /*
1669         * Grab a reference so the buffer does not go away underneath us. For
1670         * async buffers, I/O completion drops the callers reference, which
1671         * could occur before submission returns.
1672         */
1673        xfs_buf_hold(bp);
1674
1675        if (bp->b_flags & XBF_WRITE)
1676                xfs_buf_wait_unpin(bp);
1677
1678        /* clear the internal error state to avoid spurious errors */
1679        bp->b_io_error = 0;
1680
1681        /*
1682         * Set the count to 1 initially, this will stop an I/O completion
1683         * callout which happens before we have started all the I/O from calling
1684         * xfs_buf_ioend too early.
1685         */
1686        atomic_set(&bp->b_io_remaining, 1);
1687        if (bp->b_flags & XBF_ASYNC)
1688                xfs_buf_ioacct_inc(bp);
1689        _xfs_buf_ioapply(bp);
1690
1691        /*
1692         * If _xfs_buf_ioapply failed, we can get back here with only the IO
1693         * reference we took above. If we drop it to zero, run completion so
1694         * that we don't return to the caller with completion still pending.
1695         */
1696        if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1697                if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1698                        xfs_buf_ioend(bp);
1699                else
1700                        xfs_buf_ioend_async(bp);
1701        }
1702
1703        if (wait)
1704                error = xfs_buf_iowait(bp);
1705
1706        /*
1707         * Release the hold that keeps the buffer referenced for the entire
1708         * I/O. Note that if the buffer is async, it is not safe to reference
1709         * after this release.
1710         */
1711        xfs_buf_rele(bp);
1712        return error;
1713}
1714
1715void *
1716xfs_buf_offset(
1717        struct xfs_buf          *bp,
1718        size_t                  offset)
1719{
1720        struct page             *page;
1721
1722        if (bp->b_addr)
1723                return bp->b_addr + offset;
1724
1725        offset += bp->b_offset;
1726        page = bp->b_pages[offset >> PAGE_SHIFT];
1727        return page_address(page) + (offset & (PAGE_SIZE-1));
1728}
1729
1730void
1731xfs_buf_zero(
1732        struct xfs_buf          *bp,
1733        size_t                  boff,
1734        size_t                  bsize)
1735{
1736        size_t                  bend;
1737
1738        bend = boff + bsize;
1739        while (boff < bend) {
1740                struct page     *page;
1741                int             page_index, page_offset, csize;
1742
1743                page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1744                page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1745                page = bp->b_pages[page_index];
1746                csize = min_t(size_t, PAGE_SIZE - page_offset,
1747                                      BBTOB(bp->b_length) - boff);
1748
1749                ASSERT((csize + page_offset) <= PAGE_SIZE);
1750
1751                memset(page_address(page) + page_offset, 0, csize);
1752
1753                boff += csize;
1754        }
1755}
1756
1757/*
1758 * Log a message about and stale a buffer that a caller has decided is corrupt.
1759 *
1760 * This function should be called for the kinds of metadata corruption that
1761 * cannot be detect from a verifier, such as incorrect inter-block relationship
1762 * data.  Do /not/ call this function from a verifier function.
1763 *
1764 * The buffer must be XBF_DONE prior to the call.  Afterwards, the buffer will
1765 * be marked stale, but b_error will not be set.  The caller is responsible for
1766 * releasing the buffer or fixing it.
1767 */
1768void
1769__xfs_buf_mark_corrupt(
1770        struct xfs_buf          *bp,
1771        xfs_failaddr_t          fa)
1772{
1773        ASSERT(bp->b_flags & XBF_DONE);
1774
1775        xfs_buf_corruption_error(bp, fa);
1776        xfs_buf_stale(bp);
1777}
1778
1779/*
1780 *      Handling of buffer targets (buftargs).
1781 */
1782
1783/*
1784 * Wait for any bufs with callbacks that have been submitted but have not yet
1785 * returned. These buffers will have an elevated hold count, so wait on those
1786 * while freeing all the buffers only held by the LRU.
1787 */
1788static enum lru_status
1789xfs_buftarg_drain_rele(
1790        struct list_head        *item,
1791        struct list_lru_one     *lru,
1792        spinlock_t              *lru_lock,
1793        void                    *arg)
1794
1795{
1796        struct xfs_buf          *bp = container_of(item, struct xfs_buf, b_lru);
1797        struct list_head        *dispose = arg;
1798
1799        if (atomic_read(&bp->b_hold) > 1) {
1800                /* need to wait, so skip it this pass */
1801                trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1802                return LRU_SKIP;
1803        }
1804        if (!spin_trylock(&bp->b_lock))
1805                return LRU_SKIP;
1806
1807        /*
1808         * clear the LRU reference count so the buffer doesn't get
1809         * ignored in xfs_buf_rele().
1810         */
1811        atomic_set(&bp->b_lru_ref, 0);
1812        bp->b_state |= XFS_BSTATE_DISPOSE;
1813        list_lru_isolate_move(lru, item, dispose);
1814        spin_unlock(&bp->b_lock);
1815        return LRU_REMOVED;
1816}
1817
1818/*
1819 * Wait for outstanding I/O on the buftarg to complete.
1820 */
1821void
1822xfs_buftarg_wait(
1823        struct xfs_buftarg      *btp)
1824{
1825        /*
1826         * First wait on the buftarg I/O count for all in-flight buffers to be
1827         * released. This is critical as new buffers do not make the LRU until
1828         * they are released.
1829         *
1830         * Next, flush the buffer workqueue to ensure all completion processing
1831         * has finished. Just waiting on buffer locks is not sufficient for
1832         * async IO as the reference count held over IO is not released until
1833         * after the buffer lock is dropped. Hence we need to ensure here that
1834         * all reference counts have been dropped before we start walking the
1835         * LRU list.
1836         */
1837        while (percpu_counter_sum(&btp->bt_io_count))
1838                delay(100);
1839        flush_workqueue(btp->bt_mount->m_buf_workqueue);
1840}
1841
1842void
1843xfs_buftarg_drain(
1844        struct xfs_buftarg      *btp)
1845{
1846        LIST_HEAD(dispose);
1847        int                     loop = 0;
1848        bool                    write_fail = false;
1849
1850        xfs_buftarg_wait(btp);
1851
1852        /* loop until there is nothing left on the lru list. */
1853        while (list_lru_count(&btp->bt_lru)) {
1854                list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1855                              &dispose, LONG_MAX);
1856
1857                while (!list_empty(&dispose)) {
1858                        struct xfs_buf *bp;
1859                        bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1860                        list_del_init(&bp->b_lru);
1861                        if (bp->b_flags & XBF_WRITE_FAIL) {
1862                                write_fail = true;
1863                                xfs_buf_alert_ratelimited(bp,
1864                                        "XFS: Corruption Alert",
1865"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1866                                        (long long)bp->b_bn);
1867                        }
1868                        xfs_buf_rele(bp);
1869                }
1870                if (loop++ != 0)
1871                        delay(100);
1872        }
1873
1874        /*
1875         * If one or more failed buffers were freed, that means dirty metadata
1876         * was thrown away. This should only ever happen after I/O completion
1877         * handling has elevated I/O error(s) to permanent failures and shuts
1878         * down the fs.
1879         */
1880        if (write_fail) {
1881                ASSERT(XFS_FORCED_SHUTDOWN(btp->bt_mount));
1882                xfs_alert(btp->bt_mount,
1883              "Please run xfs_repair to determine the extent of the problem.");
1884        }
1885}
1886
1887static enum lru_status
1888xfs_buftarg_isolate(
1889        struct list_head        *item,
1890        struct list_lru_one     *lru,
1891        spinlock_t              *lru_lock,
1892        void                    *arg)
1893{
1894        struct xfs_buf          *bp = container_of(item, struct xfs_buf, b_lru);
1895        struct list_head        *dispose = arg;
1896
1897        /*
1898         * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1899         * If we fail to get the lock, just skip it.
1900         */
1901        if (!spin_trylock(&bp->b_lock))
1902                return LRU_SKIP;
1903        /*
1904         * Decrement the b_lru_ref count unless the value is already
1905         * zero. If the value is already zero, we need to reclaim the
1906         * buffer, otherwise it gets another trip through the LRU.
1907         */
1908        if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1909                spin_unlock(&bp->b_lock);
1910                return LRU_ROTATE;
1911        }
1912
1913        bp->b_state |= XFS_BSTATE_DISPOSE;
1914        list_lru_isolate_move(lru, item, dispose);
1915        spin_unlock(&bp->b_lock);
1916        return LRU_REMOVED;
1917}
1918
1919static unsigned long
1920xfs_buftarg_shrink_scan(
1921        struct shrinker         *shrink,
1922        struct shrink_control   *sc)
1923{
1924        struct xfs_buftarg      *btp = container_of(shrink,
1925                                        struct xfs_buftarg, bt_shrinker);
1926        LIST_HEAD(dispose);
1927        unsigned long           freed;
1928
1929        freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1930                                     xfs_buftarg_isolate, &dispose);
1931
1932        while (!list_empty(&dispose)) {
1933                struct xfs_buf *bp;
1934                bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1935                list_del_init(&bp->b_lru);
1936                xfs_buf_rele(bp);
1937        }
1938
1939        return freed;
1940}
1941
1942static unsigned long
1943xfs_buftarg_shrink_count(
1944        struct shrinker         *shrink,
1945        struct shrink_control   *sc)
1946{
1947        struct xfs_buftarg      *btp = container_of(shrink,
1948                                        struct xfs_buftarg, bt_shrinker);
1949        return list_lru_shrink_count(&btp->bt_lru, sc);
1950}
1951
1952void
1953xfs_free_buftarg(
1954        struct xfs_buftarg      *btp)
1955{
1956        unregister_shrinker(&btp->bt_shrinker);
1957        ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1958        percpu_counter_destroy(&btp->bt_io_count);
1959        list_lru_destroy(&btp->bt_lru);
1960
1961        xfs_blkdev_issue_flush(btp);
1962
1963        kmem_free(btp);
1964}
1965
1966int
1967xfs_setsize_buftarg(
1968        xfs_buftarg_t           *btp,
1969        unsigned int            sectorsize)
1970{
1971        /* Set up metadata sector size info */
1972        btp->bt_meta_sectorsize = sectorsize;
1973        btp->bt_meta_sectormask = sectorsize - 1;
1974
1975        if (set_blocksize(btp->bt_bdev, sectorsize)) {
1976                xfs_warn(btp->bt_mount,
1977                        "Cannot set_blocksize to %u on device %pg",
1978                        sectorsize, btp->bt_bdev);
1979                return -EINVAL;
1980        }
1981
1982        /* Set up device logical sector size mask */
1983        btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1984        btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1985
1986        return 0;
1987}
1988
1989/*
1990 * When allocating the initial buffer target we have not yet
1991 * read in the superblock, so don't know what sized sectors
1992 * are being used at this early stage.  Play safe.
1993 */
1994STATIC int
1995xfs_setsize_buftarg_early(
1996        xfs_buftarg_t           *btp,
1997        struct block_device     *bdev)
1998{
1999        return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
2000}
2001
2002xfs_buftarg_t *
2003xfs_alloc_buftarg(
2004        struct xfs_mount        *mp,
2005        struct block_device     *bdev,
2006        struct dax_device       *dax_dev)
2007{
2008        xfs_buftarg_t           *btp;
2009
2010        btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
2011
2012        btp->bt_mount = mp;
2013        btp->bt_dev =  bdev->bd_dev;
2014        btp->bt_bdev = bdev;
2015        btp->bt_daxdev = dax_dev;
2016
2017        /*
2018         * Buffer IO error rate limiting. Limit it to no more than 10 messages
2019         * per 30 seconds so as to not spam logs too much on repeated errors.
2020         */
2021        ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
2022                             DEFAULT_RATELIMIT_BURST);
2023
2024        if (xfs_setsize_buftarg_early(btp, bdev))
2025                goto error_free;
2026
2027        if (list_lru_init(&btp->bt_lru))
2028                goto error_free;
2029
2030        if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
2031                goto error_lru;
2032
2033        btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
2034        btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
2035        btp->bt_shrinker.seeks = DEFAULT_SEEKS;
2036        btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
2037        if (register_shrinker(&btp->bt_shrinker))
2038                goto error_pcpu;
2039        return btp;
2040
2041error_pcpu:
2042        percpu_counter_destroy(&btp->bt_io_count);
2043error_lru:
2044        list_lru_destroy(&btp->bt_lru);
2045error_free:
2046        kmem_free(btp);
2047        return NULL;
2048}
2049
2050/*
2051 * Cancel a delayed write list.
2052 *
2053 * Remove each buffer from the list, clear the delwri queue flag and drop the
2054 * associated buffer reference.
2055 */
2056void
2057xfs_buf_delwri_cancel(
2058        struct list_head        *list)
2059{
2060        struct xfs_buf          *bp;
2061
2062        while (!list_empty(list)) {
2063                bp = list_first_entry(list, struct xfs_buf, b_list);
2064
2065                xfs_buf_lock(bp);
2066                bp->b_flags &= ~_XBF_DELWRI_Q;
2067                list_del_init(&bp->b_list);
2068                xfs_buf_relse(bp);
2069        }
2070}
2071
2072/*
2073 * Add a buffer to the delayed write list.
2074 *
2075 * This queues a buffer for writeout if it hasn't already been.  Note that
2076 * neither this routine nor the buffer list submission functions perform
2077 * any internal synchronization.  It is expected that the lists are thread-local
2078 * to the callers.
2079 *
2080 * Returns true if we queued up the buffer, or false if it already had
2081 * been on the buffer list.
2082 */
2083bool
2084xfs_buf_delwri_queue(
2085        struct xfs_buf          *bp,
2086        struct list_head        *list)
2087{
2088        ASSERT(xfs_buf_islocked(bp));
2089        ASSERT(!(bp->b_flags & XBF_READ));
2090
2091        /*
2092         * If the buffer is already marked delwri it already is queued up
2093         * by someone else for imediate writeout.  Just ignore it in that
2094         * case.
2095         */
2096        if (bp->b_flags & _XBF_DELWRI_Q) {
2097                trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2098                return false;
2099        }
2100
2101        trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2102
2103        /*
2104         * If a buffer gets written out synchronously or marked stale while it
2105         * is on a delwri list we lazily remove it. To do this, the other party
2106         * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2107         * It remains referenced and on the list.  In a rare corner case it
2108         * might get readded to a delwri list after the synchronous writeout, in
2109         * which case we need just need to re-add the flag here.
2110         */
2111        bp->b_flags |= _XBF_DELWRI_Q;
2112        if (list_empty(&bp->b_list)) {
2113                atomic_inc(&bp->b_hold);
2114                list_add_tail(&bp->b_list, list);
2115        }
2116
2117        return true;
2118}
2119
2120/*
2121 * Compare function is more complex than it needs to be because
2122 * the return value is only 32 bits and we are doing comparisons
2123 * on 64 bit values
2124 */
2125static int
2126xfs_buf_cmp(
2127        void            *priv,
2128        struct list_head *a,
2129        struct list_head *b)
2130{
2131        struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
2132        struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
2133        xfs_daddr_t             diff;
2134
2135        diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2136        if (diff < 0)
2137                return -1;
2138        if (diff > 0)
2139                return 1;
2140        return 0;
2141}
2142
2143/*
2144 * Submit buffers for write. If wait_list is specified, the buffers are
2145 * submitted using sync I/O and placed on the wait list such that the caller can
2146 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2147 * at I/O completion time. In either case, buffers remain locked until I/O
2148 * completes and the buffer is released from the queue.
2149 */
2150static int
2151xfs_buf_delwri_submit_buffers(
2152        struct list_head        *buffer_list,
2153        struct list_head        *wait_list)
2154{
2155        struct xfs_buf          *bp, *n;
2156        int                     pinned = 0;
2157        struct blk_plug         plug;
2158
2159        list_sort(NULL, buffer_list, xfs_buf_cmp);
2160
2161        blk_start_plug(&plug);
2162        list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2163                if (!wait_list) {
2164                        if (xfs_buf_ispinned(bp)) {
2165                                pinned++;
2166                                continue;
2167                        }
2168                        if (!xfs_buf_trylock(bp))
2169                                continue;
2170                } else {
2171                        xfs_buf_lock(bp);
2172                }
2173
2174                /*
2175                 * Someone else might have written the buffer synchronously or
2176                 * marked it stale in the meantime.  In that case only the
2177                 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2178                 * reference and remove it from the list here.
2179                 */
2180                if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2181                        list_del_init(&bp->b_list);
2182                        xfs_buf_relse(bp);
2183                        continue;
2184                }
2185
2186                trace_xfs_buf_delwri_split(bp, _RET_IP_);
2187
2188                /*
2189                 * If we have a wait list, each buffer (and associated delwri
2190                 * queue reference) transfers to it and is submitted
2191                 * synchronously. Otherwise, drop the buffer from the delwri
2192                 * queue and submit async.
2193                 */
2194                bp->b_flags &= ~_XBF_DELWRI_Q;
2195                bp->b_flags |= XBF_WRITE;
2196                if (wait_list) {
2197                        bp->b_flags &= ~XBF_ASYNC;
2198                        list_move_tail(&bp->b_list, wait_list);
2199                } else {
2200                        bp->b_flags |= XBF_ASYNC;
2201                        list_del_init(&bp->b_list);
2202                }
2203                __xfs_buf_submit(bp, false);
2204        }
2205        blk_finish_plug(&plug);
2206
2207        return pinned;
2208}
2209
2210/*
2211 * Write out a buffer list asynchronously.
2212 *
2213 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2214 * out and not wait for I/O completion on any of the buffers.  This interface
2215 * is only safely useable for callers that can track I/O completion by higher
2216 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2217 * function.
2218 *
2219 * Note: this function will skip buffers it would block on, and in doing so
2220 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2221 * it is up to the caller to ensure that the buffer list is fully submitted or
2222 * cancelled appropriately when they are finished with the list. Failure to
2223 * cancel or resubmit the list until it is empty will result in leaked buffers
2224 * at unmount time.
2225 */
2226int
2227xfs_buf_delwri_submit_nowait(
2228        struct list_head        *buffer_list)
2229{
2230        return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2231}
2232
2233/*
2234 * Write out a buffer list synchronously.
2235 *
2236 * This will take the @buffer_list, write all buffers out and wait for I/O
2237 * completion on all of the buffers. @buffer_list is consumed by the function,
2238 * so callers must have some other way of tracking buffers if they require such
2239 * functionality.
2240 */
2241int
2242xfs_buf_delwri_submit(
2243        struct list_head        *buffer_list)
2244{
2245        LIST_HEAD               (wait_list);
2246        int                     error = 0, error2;
2247        struct xfs_buf          *bp;
2248
2249        xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2250
2251        /* Wait for IO to complete. */
2252        while (!list_empty(&wait_list)) {
2253                bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2254
2255                list_del_init(&bp->b_list);
2256
2257                /*
2258                 * Wait on the locked buffer, check for errors and unlock and
2259                 * release the delwri queue reference.
2260                 */
2261                error2 = xfs_buf_iowait(bp);
2262                xfs_buf_relse(bp);
2263                if (!error)
2264                        error = error2;
2265        }
2266
2267        return error;
2268}
2269
2270/*
2271 * Push a single buffer on a delwri queue.
2272 *
2273 * The purpose of this function is to submit a single buffer of a delwri queue
2274 * and return with the buffer still on the original queue. The waiting delwri
2275 * buffer submission infrastructure guarantees transfer of the delwri queue
2276 * buffer reference to a temporary wait list. We reuse this infrastructure to
2277 * transfer the buffer back to the original queue.
2278 *
2279 * Note the buffer transitions from the queued state, to the submitted and wait
2280 * listed state and back to the queued state during this call. The buffer
2281 * locking and queue management logic between _delwri_pushbuf() and
2282 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2283 * before returning.
2284 */
2285int
2286xfs_buf_delwri_pushbuf(
2287        struct xfs_buf          *bp,
2288        struct list_head        *buffer_list)
2289{
2290        LIST_HEAD               (submit_list);
2291        int                     error;
2292
2293        ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2294
2295        trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2296
2297        /*
2298         * Isolate the buffer to a new local list so we can submit it for I/O
2299         * independently from the rest of the original list.
2300         */
2301        xfs_buf_lock(bp);
2302        list_move(&bp->b_list, &submit_list);
2303        xfs_buf_unlock(bp);
2304
2305        /*
2306         * Delwri submission clears the DELWRI_Q buffer flag and returns with
2307         * the buffer on the wait list with the original reference. Rather than
2308         * bounce the buffer from a local wait list back to the original list
2309         * after I/O completion, reuse the original list as the wait list.
2310         */
2311        xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2312
2313        /*
2314         * The buffer is now locked, under I/O and wait listed on the original
2315         * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2316         * return with the buffer unlocked and on the original queue.
2317         */
2318        error = xfs_buf_iowait(bp);
2319        bp->b_flags |= _XBF_DELWRI_Q;
2320        xfs_buf_unlock(bp);
2321
2322        return error;
2323}
2324
2325int __init
2326xfs_buf_init(void)
2327{
2328        xfs_buf_zone = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2329                                         SLAB_HWCACHE_ALIGN |
2330                                         SLAB_RECLAIM_ACCOUNT |
2331                                         SLAB_MEM_SPREAD,
2332                                         NULL);
2333        if (!xfs_buf_zone)
2334                goto out;
2335
2336        return 0;
2337
2338 out:
2339        return -ENOMEM;
2340}
2341
2342void
2343xfs_buf_terminate(void)
2344{
2345        kmem_cache_destroy(xfs_buf_zone);
2346}
2347
2348void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2349{
2350        /*
2351         * Set the lru reference count to 0 based on the error injection tag.
2352         * This allows userspace to disrupt buffer caching for debug/testing
2353         * purposes.
2354         */
2355        if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2356                lru_ref = 0;
2357
2358        atomic_set(&bp->b_lru_ref, lru_ref);
2359}
2360
2361/*
2362 * Verify an on-disk magic value against the magic value specified in the
2363 * verifier structure. The verifier magic is in disk byte order so the caller is
2364 * expected to pass the value directly from disk.
2365 */
2366bool
2367xfs_verify_magic(
2368        struct xfs_buf          *bp,
2369        __be32                  dmagic)
2370{
2371        struct xfs_mount        *mp = bp->b_mount;
2372        int                     idx;
2373
2374        idx = xfs_sb_version_hascrc(&mp->m_sb);
2375        if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2376                return false;
2377        return dmagic == bp->b_ops->magic[idx];
2378}
2379/*
2380 * Verify an on-disk magic value against the magic value specified in the
2381 * verifier structure. The verifier magic is in disk byte order so the caller is
2382 * expected to pass the value directly from disk.
2383 */
2384bool
2385xfs_verify_magic16(
2386        struct xfs_buf          *bp,
2387        __be16                  dmagic)
2388{
2389        struct xfs_mount        *mp = bp->b_mount;
2390        int                     idx;
2391
2392        idx = xfs_sb_version_hascrc(&mp->m_sb);
2393        if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2394                return false;
2395        return dmagic == bp->b_ops->magic16[idx];
2396}
2397