linux/fs/xfs/xfs_reflink.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (C) 2016 Oracle.  All Rights Reserved.
   4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_mount.h"
  13#include "xfs_defer.h"
  14#include "xfs_inode.h"
  15#include "xfs_trans.h"
  16#include "xfs_bmap.h"
  17#include "xfs_bmap_util.h"
  18#include "xfs_trace.h"
  19#include "xfs_icache.h"
  20#include "xfs_btree.h"
  21#include "xfs_refcount_btree.h"
  22#include "xfs_refcount.h"
  23#include "xfs_bmap_btree.h"
  24#include "xfs_trans_space.h"
  25#include "xfs_bit.h"
  26#include "xfs_alloc.h"
  27#include "xfs_quota.h"
  28#include "xfs_reflink.h"
  29#include "xfs_iomap.h"
  30#include "xfs_sb.h"
  31#include "xfs_ag_resv.h"
  32
  33/*
  34 * Copy on Write of Shared Blocks
  35 *
  36 * XFS must preserve "the usual" file semantics even when two files share
  37 * the same physical blocks.  This means that a write to one file must not
  38 * alter the blocks in a different file; the way that we'll do that is
  39 * through the use of a copy-on-write mechanism.  At a high level, that
  40 * means that when we want to write to a shared block, we allocate a new
  41 * block, write the data to the new block, and if that succeeds we map the
  42 * new block into the file.
  43 *
  44 * XFS provides a "delayed allocation" mechanism that defers the allocation
  45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
  46 * possible.  This reduces fragmentation by enabling the filesystem to ask
  47 * for bigger chunks less often, which is exactly what we want for CoW.
  48 *
  49 * The delalloc mechanism begins when the kernel wants to make a block
  50 * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
  51 * create a delalloc mapping, which is a regular in-core extent, but without
  52 * a real startblock.  (For delalloc mappings, the startblock encodes both
  53 * a flag that this is a delalloc mapping, and a worst-case estimate of how
  54 * many blocks might be required to put the mapping into the BMBT.)  delalloc
  55 * mappings are a reservation against the free space in the filesystem;
  56 * adjacent mappings can also be combined into fewer larger mappings.
  57 *
  58 * As an optimization, the CoW extent size hint (cowextsz) creates
  59 * outsized aligned delalloc reservations in the hope of landing out of
  60 * order nearby CoW writes in a single extent on disk, thereby reducing
  61 * fragmentation and improving future performance.
  62 *
  63 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
  64 * C: ------DDDDDDD--------- (CoW fork)
  65 *
  66 * When dirty pages are being written out (typically in writepage), the
  67 * delalloc reservations are converted into unwritten mappings by
  68 * allocating blocks and replacing the delalloc mapping with real ones.
  69 * A delalloc mapping can be replaced by several unwritten ones if the
  70 * free space is fragmented.
  71 *
  72 * D: --RRRRRRSSSRRRRRRRR---
  73 * C: ------UUUUUUU---------
  74 *
  75 * We want to adapt the delalloc mechanism for copy-on-write, since the
  76 * write paths are similar.  The first two steps (creating the reservation
  77 * and allocating the blocks) are exactly the same as delalloc except that
  78 * the mappings must be stored in a separate CoW fork because we do not want
  79 * to disturb the mapping in the data fork until we're sure that the write
  80 * succeeded.  IO completion in this case is the process of removing the old
  81 * mapping from the data fork and moving the new mapping from the CoW fork to
  82 * the data fork.  This will be discussed shortly.
  83 *
  84 * For now, unaligned directio writes will be bounced back to the page cache.
  85 * Block-aligned directio writes will use the same mechanism as buffered
  86 * writes.
  87 *
  88 * Just prior to submitting the actual disk write requests, we convert
  89 * the extents representing the range of the file actually being written
  90 * (as opposed to extra pieces created for the cowextsize hint) to real
  91 * extents.  This will become important in the next step:
  92 *
  93 * D: --RRRRRRSSSRRRRRRRR---
  94 * C: ------UUrrUUU---------
  95 *
  96 * CoW remapping must be done after the data block write completes,
  97 * because we don't want to destroy the old data fork map until we're sure
  98 * the new block has been written.  Since the new mappings are kept in a
  99 * separate fork, we can simply iterate these mappings to find the ones
 100 * that cover the file blocks that we just CoW'd.  For each extent, simply
 101 * unmap the corresponding range in the data fork, map the new range into
 102 * the data fork, and remove the extent from the CoW fork.  Because of
 103 * the presence of the cowextsize hint, however, we must be careful
 104 * only to remap the blocks that we've actually written out --  we must
 105 * never remap delalloc reservations nor CoW staging blocks that have
 106 * yet to be written.  This corresponds exactly to the real extents in
 107 * the CoW fork:
 108 *
 109 * D: --RRRRRRrrSRRRRRRRR---
 110 * C: ------UU--UUU---------
 111 *
 112 * Since the remapping operation can be applied to an arbitrary file
 113 * range, we record the need for the remap step as a flag in the ioend
 114 * instead of declaring a new IO type.  This is required for direct io
 115 * because we only have ioend for the whole dio, and we have to be able to
 116 * remember the presence of unwritten blocks and CoW blocks with a single
 117 * ioend structure.  Better yet, the more ground we can cover with one
 118 * ioend, the better.
 119 */
 120
 121/*
 122 * Given an AG extent, find the lowest-numbered run of shared blocks
 123 * within that range and return the range in fbno/flen.  If
 124 * find_end_of_shared is true, return the longest contiguous extent of
 125 * shared blocks.  If there are no shared extents, fbno and flen will
 126 * be set to NULLAGBLOCK and 0, respectively.
 127 */
 128int
 129xfs_reflink_find_shared(
 130        struct xfs_mount        *mp,
 131        struct xfs_trans        *tp,
 132        xfs_agnumber_t          agno,
 133        xfs_agblock_t           agbno,
 134        xfs_extlen_t            aglen,
 135        xfs_agblock_t           *fbno,
 136        xfs_extlen_t            *flen,
 137        bool                    find_end_of_shared)
 138{
 139        struct xfs_buf          *agbp;
 140        struct xfs_btree_cur    *cur;
 141        int                     error;
 142
 143        error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
 144        if (error)
 145                return error;
 146
 147        cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
 148
 149        error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
 150                        find_end_of_shared);
 151
 152        xfs_btree_del_cursor(cur, error);
 153
 154        xfs_trans_brelse(tp, agbp);
 155        return error;
 156}
 157
 158/*
 159 * Trim the mapping to the next block where there's a change in the
 160 * shared/unshared status.  More specifically, this means that we
 161 * find the lowest-numbered extent of shared blocks that coincides with
 162 * the given block mapping.  If the shared extent overlaps the start of
 163 * the mapping, trim the mapping to the end of the shared extent.  If
 164 * the shared region intersects the mapping, trim the mapping to the
 165 * start of the shared extent.  If there are no shared regions that
 166 * overlap, just return the original extent.
 167 */
 168int
 169xfs_reflink_trim_around_shared(
 170        struct xfs_inode        *ip,
 171        struct xfs_bmbt_irec    *irec,
 172        bool                    *shared)
 173{
 174        xfs_agnumber_t          agno;
 175        xfs_agblock_t           agbno;
 176        xfs_extlen_t            aglen;
 177        xfs_agblock_t           fbno;
 178        xfs_extlen_t            flen;
 179        int                     error = 0;
 180
 181        /* Holes, unwritten, and delalloc extents cannot be shared */
 182        if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) {
 183                *shared = false;
 184                return 0;
 185        }
 186
 187        trace_xfs_reflink_trim_around_shared(ip, irec);
 188
 189        agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
 190        agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
 191        aglen = irec->br_blockcount;
 192
 193        error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
 194                        aglen, &fbno, &flen, true);
 195        if (error)
 196                return error;
 197
 198        *shared = false;
 199        if (fbno == NULLAGBLOCK) {
 200                /* No shared blocks at all. */
 201                return 0;
 202        } else if (fbno == agbno) {
 203                /*
 204                 * The start of this extent is shared.  Truncate the
 205                 * mapping at the end of the shared region so that a
 206                 * subsequent iteration starts at the start of the
 207                 * unshared region.
 208                 */
 209                irec->br_blockcount = flen;
 210                *shared = true;
 211                return 0;
 212        } else {
 213                /*
 214                 * There's a shared extent midway through this extent.
 215                 * Truncate the mapping at the start of the shared
 216                 * extent so that a subsequent iteration starts at the
 217                 * start of the shared region.
 218                 */
 219                irec->br_blockcount = fbno - agbno;
 220                return 0;
 221        }
 222}
 223
 224int
 225xfs_bmap_trim_cow(
 226        struct xfs_inode        *ip,
 227        struct xfs_bmbt_irec    *imap,
 228        bool                    *shared)
 229{
 230        /* We can't update any real extents in always COW mode. */
 231        if (xfs_is_always_cow_inode(ip) &&
 232            !isnullstartblock(imap->br_startblock)) {
 233                *shared = true;
 234                return 0;
 235        }
 236
 237        /* Trim the mapping to the nearest shared extent boundary. */
 238        return xfs_reflink_trim_around_shared(ip, imap, shared);
 239}
 240
 241static int
 242xfs_reflink_convert_cow_locked(
 243        struct xfs_inode        *ip,
 244        xfs_fileoff_t           offset_fsb,
 245        xfs_filblks_t           count_fsb)
 246{
 247        struct xfs_iext_cursor  icur;
 248        struct xfs_bmbt_irec    got;
 249        struct xfs_btree_cur    *dummy_cur = NULL;
 250        int                     dummy_logflags;
 251        int                     error = 0;
 252
 253        if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
 254                return 0;
 255
 256        do {
 257                if (got.br_startoff >= offset_fsb + count_fsb)
 258                        break;
 259                if (got.br_state == XFS_EXT_NORM)
 260                        continue;
 261                if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
 262                        return -EIO;
 263
 264                xfs_trim_extent(&got, offset_fsb, count_fsb);
 265                if (!got.br_blockcount)
 266                        continue;
 267
 268                got.br_state = XFS_EXT_NORM;
 269                error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
 270                                XFS_COW_FORK, &icur, &dummy_cur, &got,
 271                                &dummy_logflags);
 272                if (error)
 273                        return error;
 274        } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
 275
 276        return error;
 277}
 278
 279/* Convert all of the unwritten CoW extents in a file's range to real ones. */
 280int
 281xfs_reflink_convert_cow(
 282        struct xfs_inode        *ip,
 283        xfs_off_t               offset,
 284        xfs_off_t               count)
 285{
 286        struct xfs_mount        *mp = ip->i_mount;
 287        xfs_fileoff_t           offset_fsb = XFS_B_TO_FSBT(mp, offset);
 288        xfs_fileoff_t           end_fsb = XFS_B_TO_FSB(mp, offset + count);
 289        xfs_filblks_t           count_fsb = end_fsb - offset_fsb;
 290        int                     error;
 291
 292        ASSERT(count != 0);
 293
 294        xfs_ilock(ip, XFS_ILOCK_EXCL);
 295        error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
 296        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 297        return error;
 298}
 299
 300/*
 301 * Find the extent that maps the given range in the COW fork. Even if the extent
 302 * is not shared we might have a preallocation for it in the COW fork. If so we
 303 * use it that rather than trigger a new allocation.
 304 */
 305static int
 306xfs_find_trim_cow_extent(
 307        struct xfs_inode        *ip,
 308        struct xfs_bmbt_irec    *imap,
 309        struct xfs_bmbt_irec    *cmap,
 310        bool                    *shared,
 311        bool                    *found)
 312{
 313        xfs_fileoff_t           offset_fsb = imap->br_startoff;
 314        xfs_filblks_t           count_fsb = imap->br_blockcount;
 315        struct xfs_iext_cursor  icur;
 316
 317        *found = false;
 318
 319        /*
 320         * If we don't find an overlapping extent, trim the range we need to
 321         * allocate to fit the hole we found.
 322         */
 323        if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
 324                cmap->br_startoff = offset_fsb + count_fsb;
 325        if (cmap->br_startoff > offset_fsb) {
 326                xfs_trim_extent(imap, imap->br_startoff,
 327                                cmap->br_startoff - imap->br_startoff);
 328                return xfs_bmap_trim_cow(ip, imap, shared);
 329        }
 330
 331        *shared = true;
 332        if (isnullstartblock(cmap->br_startblock)) {
 333                xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
 334                return 0;
 335        }
 336
 337        /* real extent found - no need to allocate */
 338        xfs_trim_extent(cmap, offset_fsb, count_fsb);
 339        *found = true;
 340        return 0;
 341}
 342
 343/* Allocate all CoW reservations covering a range of blocks in a file. */
 344int
 345xfs_reflink_allocate_cow(
 346        struct xfs_inode        *ip,
 347        struct xfs_bmbt_irec    *imap,
 348        struct xfs_bmbt_irec    *cmap,
 349        bool                    *shared,
 350        uint                    *lockmode,
 351        bool                    convert_now)
 352{
 353        struct xfs_mount        *mp = ip->i_mount;
 354        xfs_fileoff_t           offset_fsb = imap->br_startoff;
 355        xfs_filblks_t           count_fsb = imap->br_blockcount;
 356        struct xfs_trans        *tp;
 357        int                     nimaps, error = 0;
 358        bool                    found;
 359        xfs_filblks_t           resaligned;
 360        xfs_extlen_t            resblks = 0;
 361
 362        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 363        if (!ip->i_cowfp) {
 364                ASSERT(!xfs_is_reflink_inode(ip));
 365                xfs_ifork_init_cow(ip);
 366        }
 367
 368        error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
 369        if (error || !*shared)
 370                return error;
 371        if (found)
 372                goto convert;
 373
 374        resaligned = xfs_aligned_fsb_count(imap->br_startoff,
 375                imap->br_blockcount, xfs_get_cowextsz_hint(ip));
 376        resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
 377
 378        xfs_iunlock(ip, *lockmode);
 379        *lockmode = 0;
 380
 381        error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
 382                        false, &tp);
 383        if (error)
 384                return error;
 385
 386        *lockmode = XFS_ILOCK_EXCL;
 387
 388        /*
 389         * Check for an overlapping extent again now that we dropped the ilock.
 390         */
 391        error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
 392        if (error || !*shared)
 393                goto out_trans_cancel;
 394        if (found) {
 395                xfs_trans_cancel(tp);
 396                goto convert;
 397        }
 398
 399        /* Allocate the entire reservation as unwritten blocks. */
 400        nimaps = 1;
 401        error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
 402                        XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
 403                        &nimaps);
 404        if (error)
 405                goto out_trans_cancel;
 406
 407        xfs_inode_set_cowblocks_tag(ip);
 408        error = xfs_trans_commit(tp);
 409        if (error)
 410                return error;
 411
 412        /*
 413         * Allocation succeeded but the requested range was not even partially
 414         * satisfied?  Bail out!
 415         */
 416        if (nimaps == 0)
 417                return -ENOSPC;
 418convert:
 419        xfs_trim_extent(cmap, offset_fsb, count_fsb);
 420        /*
 421         * COW fork extents are supposed to remain unwritten until we're ready
 422         * to initiate a disk write.  For direct I/O we are going to write the
 423         * data and need the conversion, but for buffered writes we're done.
 424         */
 425        if (!convert_now || cmap->br_state == XFS_EXT_NORM)
 426                return 0;
 427        trace_xfs_reflink_convert_cow(ip, cmap);
 428        return xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
 429
 430out_trans_cancel:
 431        xfs_trans_cancel(tp);
 432        return error;
 433}
 434
 435/*
 436 * Cancel CoW reservations for some block range of an inode.
 437 *
 438 * If cancel_real is true this function cancels all COW fork extents for the
 439 * inode; if cancel_real is false, real extents are not cleared.
 440 *
 441 * Caller must have already joined the inode to the current transaction. The
 442 * inode will be joined to the transaction returned to the caller.
 443 */
 444int
 445xfs_reflink_cancel_cow_blocks(
 446        struct xfs_inode                *ip,
 447        struct xfs_trans                **tpp,
 448        xfs_fileoff_t                   offset_fsb,
 449        xfs_fileoff_t                   end_fsb,
 450        bool                            cancel_real)
 451{
 452        struct xfs_ifork                *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
 453        struct xfs_bmbt_irec            got, del;
 454        struct xfs_iext_cursor          icur;
 455        int                             error = 0;
 456
 457        if (!xfs_inode_has_cow_data(ip))
 458                return 0;
 459        if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
 460                return 0;
 461
 462        /* Walk backwards until we're out of the I/O range... */
 463        while (got.br_startoff + got.br_blockcount > offset_fsb) {
 464                del = got;
 465                xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
 466
 467                /* Extent delete may have bumped ext forward */
 468                if (!del.br_blockcount) {
 469                        xfs_iext_prev(ifp, &icur);
 470                        goto next_extent;
 471                }
 472
 473                trace_xfs_reflink_cancel_cow(ip, &del);
 474
 475                if (isnullstartblock(del.br_startblock)) {
 476                        error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
 477                                        &icur, &got, &del);
 478                        if (error)
 479                                break;
 480                } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
 481                        ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
 482
 483                        /* Free the CoW orphan record. */
 484                        xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
 485                                        del.br_blockcount);
 486
 487                        xfs_bmap_add_free(*tpp, del.br_startblock,
 488                                          del.br_blockcount, NULL);
 489
 490                        /* Roll the transaction */
 491                        error = xfs_defer_finish(tpp);
 492                        if (error)
 493                                break;
 494
 495                        /* Remove the mapping from the CoW fork. */
 496                        xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
 497
 498                        /* Remove the quota reservation */
 499                        error = xfs_quota_unreserve_blkres(ip,
 500                                        del.br_blockcount);
 501                        if (error)
 502                                break;
 503                } else {
 504                        /* Didn't do anything, push cursor back. */
 505                        xfs_iext_prev(ifp, &icur);
 506                }
 507next_extent:
 508                if (!xfs_iext_get_extent(ifp, &icur, &got))
 509                        break;
 510        }
 511
 512        /* clear tag if cow fork is emptied */
 513        if (!ifp->if_bytes)
 514                xfs_inode_clear_cowblocks_tag(ip);
 515        return error;
 516}
 517
 518/*
 519 * Cancel CoW reservations for some byte range of an inode.
 520 *
 521 * If cancel_real is true this function cancels all COW fork extents for the
 522 * inode; if cancel_real is false, real extents are not cleared.
 523 */
 524int
 525xfs_reflink_cancel_cow_range(
 526        struct xfs_inode        *ip,
 527        xfs_off_t               offset,
 528        xfs_off_t               count,
 529        bool                    cancel_real)
 530{
 531        struct xfs_trans        *tp;
 532        xfs_fileoff_t           offset_fsb;
 533        xfs_fileoff_t           end_fsb;
 534        int                     error;
 535
 536        trace_xfs_reflink_cancel_cow_range(ip, offset, count);
 537        ASSERT(ip->i_cowfp);
 538
 539        offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 540        if (count == NULLFILEOFF)
 541                end_fsb = NULLFILEOFF;
 542        else
 543                end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
 544
 545        /* Start a rolling transaction to remove the mappings */
 546        error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
 547                        0, 0, 0, &tp);
 548        if (error)
 549                goto out;
 550
 551        xfs_ilock(ip, XFS_ILOCK_EXCL);
 552        xfs_trans_ijoin(tp, ip, 0);
 553
 554        /* Scrape out the old CoW reservations */
 555        error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
 556                        cancel_real);
 557        if (error)
 558                goto out_cancel;
 559
 560        error = xfs_trans_commit(tp);
 561
 562        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 563        return error;
 564
 565out_cancel:
 566        xfs_trans_cancel(tp);
 567        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 568out:
 569        trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
 570        return error;
 571}
 572
 573/*
 574 * Remap part of the CoW fork into the data fork.
 575 *
 576 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
 577 * into the data fork; this function will remap what it can (at the end of the
 578 * range) and update @end_fsb appropriately.  Each remap gets its own
 579 * transaction because we can end up merging and splitting bmbt blocks for
 580 * every remap operation and we'd like to keep the block reservation
 581 * requirements as low as possible.
 582 */
 583STATIC int
 584xfs_reflink_end_cow_extent(
 585        struct xfs_inode        *ip,
 586        xfs_fileoff_t           offset_fsb,
 587        xfs_fileoff_t           *end_fsb)
 588{
 589        struct xfs_bmbt_irec    got, del;
 590        struct xfs_iext_cursor  icur;
 591        struct xfs_mount        *mp = ip->i_mount;
 592        struct xfs_trans        *tp;
 593        struct xfs_ifork        *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
 594        xfs_filblks_t           rlen;
 595        unsigned int            resblks;
 596        int                     error;
 597
 598        /* No COW extents?  That's easy! */
 599        if (ifp->if_bytes == 0) {
 600                *end_fsb = offset_fsb;
 601                return 0;
 602        }
 603
 604        resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
 605        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
 606                        XFS_TRANS_RESERVE, &tp);
 607        if (error)
 608                return error;
 609
 610        /*
 611         * Lock the inode.  We have to ijoin without automatic unlock because
 612         * the lead transaction is the refcountbt record deletion; the data
 613         * fork update follows as a deferred log item.
 614         */
 615        xfs_ilock(ip, XFS_ILOCK_EXCL);
 616        xfs_trans_ijoin(tp, ip, 0);
 617
 618        error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
 619                        XFS_IEXT_REFLINK_END_COW_CNT);
 620        if (error)
 621                goto out_cancel;
 622
 623        /*
 624         * In case of racing, overlapping AIO writes no COW extents might be
 625         * left by the time I/O completes for the loser of the race.  In that
 626         * case we are done.
 627         */
 628        if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
 629            got.br_startoff + got.br_blockcount <= offset_fsb) {
 630                *end_fsb = offset_fsb;
 631                goto out_cancel;
 632        }
 633
 634        /*
 635         * Structure copy @got into @del, then trim @del to the range that we
 636         * were asked to remap.  We preserve @got for the eventual CoW fork
 637         * deletion; from now on @del represents the mapping that we're
 638         * actually remapping.
 639         */
 640        del = got;
 641        xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
 642
 643        ASSERT(del.br_blockcount > 0);
 644
 645        /*
 646         * Only remap real extents that contain data.  With AIO, speculative
 647         * preallocations can leak into the range we are called upon, and we
 648         * need to skip them.
 649         */
 650        if (!xfs_bmap_is_written_extent(&got)) {
 651                *end_fsb = del.br_startoff;
 652                goto out_cancel;
 653        }
 654
 655        /* Unmap the old blocks in the data fork. */
 656        rlen = del.br_blockcount;
 657        error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
 658        if (error)
 659                goto out_cancel;
 660
 661        /* Trim the extent to whatever got unmapped. */
 662        xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
 663        trace_xfs_reflink_cow_remap(ip, &del);
 664
 665        /* Free the CoW orphan record. */
 666        xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
 667
 668        /* Map the new blocks into the data fork. */
 669        xfs_bmap_map_extent(tp, ip, &del);
 670
 671        /* Charge this new data fork mapping to the on-disk quota. */
 672        xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
 673                        (long)del.br_blockcount);
 674
 675        /* Remove the mapping from the CoW fork. */
 676        xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
 677
 678        error = xfs_trans_commit(tp);
 679        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 680        if (error)
 681                return error;
 682
 683        /* Update the caller about how much progress we made. */
 684        *end_fsb = del.br_startoff;
 685        return 0;
 686
 687out_cancel:
 688        xfs_trans_cancel(tp);
 689        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 690        return error;
 691}
 692
 693/*
 694 * Remap parts of a file's data fork after a successful CoW.
 695 */
 696int
 697xfs_reflink_end_cow(
 698        struct xfs_inode                *ip,
 699        xfs_off_t                       offset,
 700        xfs_off_t                       count)
 701{
 702        xfs_fileoff_t                   offset_fsb;
 703        xfs_fileoff_t                   end_fsb;
 704        int                             error = 0;
 705
 706        trace_xfs_reflink_end_cow(ip, offset, count);
 707
 708        offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 709        end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
 710
 711        /*
 712         * Walk backwards until we're out of the I/O range.  The loop function
 713         * repeatedly cycles the ILOCK to allocate one transaction per remapped
 714         * extent.
 715         *
 716         * If we're being called by writeback then the pages will still
 717         * have PageWriteback set, which prevents races with reflink remapping
 718         * and truncate.  Reflink remapping prevents races with writeback by
 719         * taking the iolock and mmaplock before flushing the pages and
 720         * remapping, which means there won't be any further writeback or page
 721         * cache dirtying until the reflink completes.
 722         *
 723         * We should never have two threads issuing writeback for the same file
 724         * region.  There are also have post-eof checks in the writeback
 725         * preparation code so that we don't bother writing out pages that are
 726         * about to be truncated.
 727         *
 728         * If we're being called as part of directio write completion, the dio
 729         * count is still elevated, which reflink and truncate will wait for.
 730         * Reflink remapping takes the iolock and mmaplock and waits for
 731         * pending dio to finish, which should prevent any directio until the
 732         * remap completes.  Multiple concurrent directio writes to the same
 733         * region are handled by end_cow processing only occurring for the
 734         * threads which succeed; the outcome of multiple overlapping direct
 735         * writes is not well defined anyway.
 736         *
 737         * It's possible that a buffered write and a direct write could collide
 738         * here (the buffered write stumbles in after the dio flushes and
 739         * invalidates the page cache and immediately queues writeback), but we
 740         * have never supported this 100%.  If either disk write succeeds the
 741         * blocks will be remapped.
 742         */
 743        while (end_fsb > offset_fsb && !error)
 744                error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);
 745
 746        if (error)
 747                trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
 748        return error;
 749}
 750
 751/*
 752 * Free leftover CoW reservations that didn't get cleaned out.
 753 */
 754int
 755xfs_reflink_recover_cow(
 756        struct xfs_mount        *mp)
 757{
 758        xfs_agnumber_t          agno;
 759        int                     error = 0;
 760
 761        if (!xfs_sb_version_hasreflink(&mp->m_sb))
 762                return 0;
 763
 764        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 765                error = xfs_refcount_recover_cow_leftovers(mp, agno);
 766                if (error)
 767                        break;
 768        }
 769
 770        return error;
 771}
 772
 773/*
 774 * Reflinking (Block) Ranges of Two Files Together
 775 *
 776 * First, ensure that the reflink flag is set on both inodes.  The flag is an
 777 * optimization to avoid unnecessary refcount btree lookups in the write path.
 778 *
 779 * Now we can iteratively remap the range of extents (and holes) in src to the
 780 * corresponding ranges in dest.  Let drange and srange denote the ranges of
 781 * logical blocks in dest and src touched by the reflink operation.
 782 *
 783 * While the length of drange is greater than zero,
 784 *    - Read src's bmbt at the start of srange ("imap")
 785 *    - If imap doesn't exist, make imap appear to start at the end of srange
 786 *      with zero length.
 787 *    - If imap starts before srange, advance imap to start at srange.
 788 *    - If imap goes beyond srange, truncate imap to end at the end of srange.
 789 *    - Punch (imap start - srange start + imap len) blocks from dest at
 790 *      offset (drange start).
 791 *    - If imap points to a real range of pblks,
 792 *         > Increase the refcount of the imap's pblks
 793 *         > Map imap's pblks into dest at the offset
 794 *           (drange start + imap start - srange start)
 795 *    - Advance drange and srange by (imap start - srange start + imap len)
 796 *
 797 * Finally, if the reflink made dest longer, update both the in-core and
 798 * on-disk file sizes.
 799 *
 800 * ASCII Art Demonstration:
 801 *
 802 * Let's say we want to reflink this source file:
 803 *
 804 * ----SSSSSSS-SSSSS----SSSSSS (src file)
 805 *   <-------------------->
 806 *
 807 * into this destination file:
 808 *
 809 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
 810 *        <-------------------->
 811 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
 812 * Observe that the range has different logical offsets in either file.
 813 *
 814 * Consider that the first extent in the source file doesn't line up with our
 815 * reflink range.  Unmapping  and remapping are separate operations, so we can
 816 * unmap more blocks from the destination file than we remap.
 817 *
 818 * ----SSSSSSS-SSSSS----SSSSSS
 819 *   <------->
 820 * --DDDDD---------DDDDD--DDD
 821 *        <------->
 822 *
 823 * Now remap the source extent into the destination file:
 824 *
 825 * ----SSSSSSS-SSSSS----SSSSSS
 826 *   <------->
 827 * --DDDDD--SSSSSSSDDDDD--DDD
 828 *        <------->
 829 *
 830 * Do likewise with the second hole and extent in our range.  Holes in the
 831 * unmap range don't affect our operation.
 832 *
 833 * ----SSSSSSS-SSSSS----SSSSSS
 834 *            <---->
 835 * --DDDDD--SSSSSSS-SSSSS-DDD
 836 *                 <---->
 837 *
 838 * Finally, unmap and remap part of the third extent.  This will increase the
 839 * size of the destination file.
 840 *
 841 * ----SSSSSSS-SSSSS----SSSSSS
 842 *                  <----->
 843 * --DDDDD--SSSSSSS-SSSSS----SSS
 844 *                       <----->
 845 *
 846 * Once we update the destination file's i_size, we're done.
 847 */
 848
 849/*
 850 * Ensure the reflink bit is set in both inodes.
 851 */
 852STATIC int
 853xfs_reflink_set_inode_flag(
 854        struct xfs_inode        *src,
 855        struct xfs_inode        *dest)
 856{
 857        struct xfs_mount        *mp = src->i_mount;
 858        int                     error;
 859        struct xfs_trans        *tp;
 860
 861        if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
 862                return 0;
 863
 864        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
 865        if (error)
 866                goto out_error;
 867
 868        /* Lock both files against IO */
 869        if (src->i_ino == dest->i_ino)
 870                xfs_ilock(src, XFS_ILOCK_EXCL);
 871        else
 872                xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
 873
 874        if (!xfs_is_reflink_inode(src)) {
 875                trace_xfs_reflink_set_inode_flag(src);
 876                xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
 877                src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
 878                xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
 879                xfs_ifork_init_cow(src);
 880        } else
 881                xfs_iunlock(src, XFS_ILOCK_EXCL);
 882
 883        if (src->i_ino == dest->i_ino)
 884                goto commit_flags;
 885
 886        if (!xfs_is_reflink_inode(dest)) {
 887                trace_xfs_reflink_set_inode_flag(dest);
 888                xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
 889                dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
 890                xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
 891                xfs_ifork_init_cow(dest);
 892        } else
 893                xfs_iunlock(dest, XFS_ILOCK_EXCL);
 894
 895commit_flags:
 896        error = xfs_trans_commit(tp);
 897        if (error)
 898                goto out_error;
 899        return error;
 900
 901out_error:
 902        trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
 903        return error;
 904}
 905
 906/*
 907 * Update destination inode size & cowextsize hint, if necessary.
 908 */
 909int
 910xfs_reflink_update_dest(
 911        struct xfs_inode        *dest,
 912        xfs_off_t               newlen,
 913        xfs_extlen_t            cowextsize,
 914        unsigned int            remap_flags)
 915{
 916        struct xfs_mount        *mp = dest->i_mount;
 917        struct xfs_trans        *tp;
 918        int                     error;
 919
 920        if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
 921                return 0;
 922
 923        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
 924        if (error)
 925                goto out_error;
 926
 927        xfs_ilock(dest, XFS_ILOCK_EXCL);
 928        xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
 929
 930        if (newlen > i_size_read(VFS_I(dest))) {
 931                trace_xfs_reflink_update_inode_size(dest, newlen);
 932                i_size_write(VFS_I(dest), newlen);
 933                dest->i_d.di_size = newlen;
 934        }
 935
 936        if (cowextsize) {
 937                dest->i_d.di_cowextsize = cowextsize;
 938                dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
 939        }
 940
 941        xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
 942
 943        error = xfs_trans_commit(tp);
 944        if (error)
 945                goto out_error;
 946        return error;
 947
 948out_error:
 949        trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
 950        return error;
 951}
 952
 953/*
 954 * Do we have enough reserve in this AG to handle a reflink?  The refcount
 955 * btree already reserved all the space it needs, but the rmap btree can grow
 956 * infinitely, so we won't allow more reflinks when the AG is down to the
 957 * btree reserves.
 958 */
 959static int
 960xfs_reflink_ag_has_free_space(
 961        struct xfs_mount        *mp,
 962        xfs_agnumber_t          agno)
 963{
 964        struct xfs_perag        *pag;
 965        int                     error = 0;
 966
 967        if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
 968                return 0;
 969
 970        pag = xfs_perag_get(mp, agno);
 971        if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
 972            xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
 973                error = -ENOSPC;
 974        xfs_perag_put(pag);
 975        return error;
 976}
 977
 978/*
 979 * Remap the given extent into the file.  The dmap blockcount will be set to
 980 * the number of blocks that were actually remapped.
 981 */
 982STATIC int
 983xfs_reflink_remap_extent(
 984        struct xfs_inode        *ip,
 985        struct xfs_bmbt_irec    *dmap,
 986        xfs_off_t               new_isize)
 987{
 988        struct xfs_bmbt_irec    smap;
 989        struct xfs_mount        *mp = ip->i_mount;
 990        struct xfs_trans        *tp;
 991        xfs_off_t               newlen;
 992        int64_t                 qdelta = 0;
 993        unsigned int            resblks;
 994        bool                    quota_reserved = true;
 995        bool                    smap_real;
 996        bool                    dmap_written = xfs_bmap_is_written_extent(dmap);
 997        int                     iext_delta = 0;
 998        int                     nimaps;
 999        int                     error;
1000
1001        /*
1002         * Start a rolling transaction to switch the mappings.
1003         *
1004         * Adding a written extent to the extent map can cause a bmbt split,
1005         * and removing a mapped extent from the extent can cause a bmbt split.
1006         * The two operations cannot both cause a split since they operate on
1007         * the same index in the bmap btree, so we only need a reservation for
1008         * one bmbt split if either thing is happening.  However, we haven't
1009         * locked the inode yet, so we reserve assuming this is the case.
1010         *
1011         * The first allocation call tries to reserve enough space to handle
1012         * mapping dmap into a sparse part of the file plus the bmbt split.  We
1013         * haven't locked the inode or read the existing mapping yet, so we do
1014         * not know for sure that we need the space.  This should succeed most
1015         * of the time.
1016         *
1017         * If the first attempt fails, try again but reserving only enough
1018         * space to handle a bmbt split.  This is the hard minimum requirement,
1019         * and we revisit quota reservations later when we know more about what
1020         * we're remapping.
1021         */
1022        resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1023        error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1024                        resblks + dmap->br_blockcount, 0, false, &tp);
1025        if (error == -EDQUOT || error == -ENOSPC) {
1026                quota_reserved = false;
1027                error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1028                                resblks, 0, false, &tp);
1029        }
1030        if (error)
1031                goto out;
1032
1033        /*
1034         * Read what's currently mapped in the destination file into smap.
1035         * If smap isn't a hole, we will have to remove it before we can add
1036         * dmap to the destination file.
1037         */
1038        nimaps = 1;
1039        error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount,
1040                        &smap, &nimaps, 0);
1041        if (error)
1042                goto out_cancel;
1043        ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff);
1044        smap_real = xfs_bmap_is_real_extent(&smap);
1045
1046        /*
1047         * We can only remap as many blocks as the smaller of the two extent
1048         * maps, because we can only remap one extent at a time.
1049         */
1050        dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount);
1051        ASSERT(dmap->br_blockcount == smap.br_blockcount);
1052
1053        trace_xfs_reflink_remap_extent_dest(ip, &smap);
1054
1055        /*
1056         * Two extents mapped to the same physical block must not have
1057         * different states; that's filesystem corruption.  Move on to the next
1058         * extent if they're both holes or both the same physical extent.
1059         */
1060        if (dmap->br_startblock == smap.br_startblock) {
1061                if (dmap->br_state != smap.br_state)
1062                        error = -EFSCORRUPTED;
1063                goto out_cancel;
1064        }
1065
1066        /* If both extents are unwritten, leave them alone. */
1067        if (dmap->br_state == XFS_EXT_UNWRITTEN &&
1068            smap.br_state == XFS_EXT_UNWRITTEN)
1069                goto out_cancel;
1070
1071        /* No reflinking if the AG of the dest mapping is low on space. */
1072        if (dmap_written) {
1073                error = xfs_reflink_ag_has_free_space(mp,
1074                                XFS_FSB_TO_AGNO(mp, dmap->br_startblock));
1075                if (error)
1076                        goto out_cancel;
1077        }
1078
1079        /*
1080         * Increase quota reservation if we think the quota block counter for
1081         * this file could increase.
1082         *
1083         * If we are mapping a written extent into the file, we need to have
1084         * enough quota block count reservation to handle the blocks in that
1085         * extent.  We log only the delta to the quota block counts, so if the
1086         * extent we're unmapping also has blocks allocated to it, we don't
1087         * need a quota reservation for the extent itself.
1088         *
1089         * Note that if we're replacing a delalloc reservation with a written
1090         * extent, we have to take the full quota reservation because removing
1091         * the delalloc reservation gives the block count back to the quota
1092         * count.  This is suboptimal, but the VFS flushed the dest range
1093         * before we started.  That should have removed all the delalloc
1094         * reservations, but we code defensively.
1095         *
1096         * xfs_trans_alloc_inode above already tried to grab an even larger
1097         * quota reservation, and kicked off a blockgc scan if it couldn't.
1098         * If we can't get a potentially smaller quota reservation now, we're
1099         * done.
1100         */
1101        if (!quota_reserved && !smap_real && dmap_written) {
1102                error = xfs_trans_reserve_quota_nblks(tp, ip,
1103                                dmap->br_blockcount, 0, false);
1104                if (error)
1105                        goto out_cancel;
1106        }
1107
1108        if (smap_real)
1109                ++iext_delta;
1110
1111        if (dmap_written)
1112                ++iext_delta;
1113
1114        error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta);
1115        if (error)
1116                goto out_cancel;
1117
1118        if (smap_real) {
1119                /*
1120                 * If the extent we're unmapping is backed by storage (written
1121                 * or not), unmap the extent and drop its refcount.
1122                 */
1123                xfs_bmap_unmap_extent(tp, ip, &smap);
1124                xfs_refcount_decrease_extent(tp, &smap);
1125                qdelta -= smap.br_blockcount;
1126        } else if (smap.br_startblock == DELAYSTARTBLOCK) {
1127                xfs_filblks_t   len = smap.br_blockcount;
1128
1129                /*
1130                 * If the extent we're unmapping is a delalloc reservation,
1131                 * we can use the regular bunmapi function to release the
1132                 * incore state.  Dropping the delalloc reservation takes care
1133                 * of the quota reservation for us.
1134                 */
1135                error = __xfs_bunmapi(NULL, ip, smap.br_startoff, &len, 0, 1);
1136                if (error)
1137                        goto out_cancel;
1138                ASSERT(len == 0);
1139        }
1140
1141        /*
1142         * If the extent we're sharing is backed by written storage, increase
1143         * its refcount and map it into the file.
1144         */
1145        if (dmap_written) {
1146                xfs_refcount_increase_extent(tp, dmap);
1147                xfs_bmap_map_extent(tp, ip, dmap);
1148                qdelta += dmap->br_blockcount;
1149        }
1150
1151        xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta);
1152
1153        /* Update dest isize if needed. */
1154        newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount);
1155        newlen = min_t(xfs_off_t, newlen, new_isize);
1156        if (newlen > i_size_read(VFS_I(ip))) {
1157                trace_xfs_reflink_update_inode_size(ip, newlen);
1158                i_size_write(VFS_I(ip), newlen);
1159                ip->i_d.di_size = newlen;
1160                xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1161        }
1162
1163        /* Commit everything and unlock. */
1164        error = xfs_trans_commit(tp);
1165        goto out_unlock;
1166
1167out_cancel:
1168        xfs_trans_cancel(tp);
1169out_unlock:
1170        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1171out:
1172        if (error)
1173                trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1174        return error;
1175}
1176
1177/* Remap a range of one file to the other. */
1178int
1179xfs_reflink_remap_blocks(
1180        struct xfs_inode        *src,
1181        loff_t                  pos_in,
1182        struct xfs_inode        *dest,
1183        loff_t                  pos_out,
1184        loff_t                  remap_len,
1185        loff_t                  *remapped)
1186{
1187        struct xfs_bmbt_irec    imap;
1188        struct xfs_mount        *mp = src->i_mount;
1189        xfs_fileoff_t           srcoff = XFS_B_TO_FSBT(mp, pos_in);
1190        xfs_fileoff_t           destoff = XFS_B_TO_FSBT(mp, pos_out);
1191        xfs_filblks_t           len;
1192        xfs_filblks_t           remapped_len = 0;
1193        xfs_off_t               new_isize = pos_out + remap_len;
1194        int                     nimaps;
1195        int                     error = 0;
1196
1197        len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len),
1198                        XFS_MAX_FILEOFF);
1199
1200        trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff);
1201
1202        while (len > 0) {
1203                unsigned int    lock_mode;
1204
1205                /* Read extent from the source file */
1206                nimaps = 1;
1207                lock_mode = xfs_ilock_data_map_shared(src);
1208                error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1209                xfs_iunlock(src, lock_mode);
1210                if (error)
1211                        break;
1212                /*
1213                 * The caller supposedly flushed all dirty pages in the source
1214                 * file range, which means that writeback should have allocated
1215                 * or deleted all delalloc reservations in that range.  If we
1216                 * find one, that's a good sign that something is seriously
1217                 * wrong here.
1218                 */
1219                ASSERT(nimaps == 1 && imap.br_startoff == srcoff);
1220                if (imap.br_startblock == DELAYSTARTBLOCK) {
1221                        ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1222                        error = -EFSCORRUPTED;
1223                        break;
1224                }
1225
1226                trace_xfs_reflink_remap_extent_src(src, &imap);
1227
1228                /* Remap into the destination file at the given offset. */
1229                imap.br_startoff = destoff;
1230                error = xfs_reflink_remap_extent(dest, &imap, new_isize);
1231                if (error)
1232                        break;
1233
1234                if (fatal_signal_pending(current)) {
1235                        error = -EINTR;
1236                        break;
1237                }
1238
1239                /* Advance drange/srange */
1240                srcoff += imap.br_blockcount;
1241                destoff += imap.br_blockcount;
1242                len -= imap.br_blockcount;
1243                remapped_len += imap.br_blockcount;
1244        }
1245
1246        if (error)
1247                trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1248        *remapped = min_t(loff_t, remap_len,
1249                          XFS_FSB_TO_B(src->i_mount, remapped_len));
1250        return error;
1251}
1252
1253/*
1254 * If we're reflinking to a point past the destination file's EOF, we must
1255 * zero any speculative post-EOF preallocations that sit between the old EOF
1256 * and the destination file offset.
1257 */
1258static int
1259xfs_reflink_zero_posteof(
1260        struct xfs_inode        *ip,
1261        loff_t                  pos)
1262{
1263        loff_t                  isize = i_size_read(VFS_I(ip));
1264
1265        if (pos <= isize)
1266                return 0;
1267
1268        trace_xfs_zero_eof(ip, isize, pos - isize);
1269        return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1270                        &xfs_buffered_write_iomap_ops);
1271}
1272
1273/*
1274 * Prepare two files for range cloning.  Upon a successful return both inodes
1275 * will have the iolock and mmaplock held, the page cache of the out file will
1276 * be truncated, and any leases on the out file will have been broken.  This
1277 * function borrows heavily from xfs_file_aio_write_checks.
1278 *
1279 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1280 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1281 * EOF block in the source dedupe range because it's not a complete block match,
1282 * hence can introduce a corruption into the file that has it's block replaced.
1283 *
1284 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1285 * "block aligned" for the purposes of cloning entire files.  However, if the
1286 * source file range includes the EOF block and it lands within the existing EOF
1287 * of the destination file, then we can expose stale data from beyond the source
1288 * file EOF in the destination file.
1289 *
1290 * XFS doesn't support partial block sharing, so in both cases we have check
1291 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1292 * down to the previous whole block and ignore the partial EOF block. While this
1293 * means we can't dedupe the last block of a file, this is an acceptible
1294 * tradeoff for simplicity on implementation.
1295 *
1296 * For cloning, we want to share the partial EOF block if it is also the new EOF
1297 * block of the destination file. If the partial EOF block lies inside the
1298 * existing destination EOF, then we have to abort the clone to avoid exposing
1299 * stale data in the destination file. Hence we reject these clone attempts with
1300 * -EINVAL in this case.
1301 */
1302int
1303xfs_reflink_remap_prep(
1304        struct file             *file_in,
1305        loff_t                  pos_in,
1306        struct file             *file_out,
1307        loff_t                  pos_out,
1308        loff_t                  *len,
1309        unsigned int            remap_flags)
1310{
1311        struct inode            *inode_in = file_inode(file_in);
1312        struct xfs_inode        *src = XFS_I(inode_in);
1313        struct inode            *inode_out = file_inode(file_out);
1314        struct xfs_inode        *dest = XFS_I(inode_out);
1315        int                     ret;
1316
1317        /* Lock both files against IO */
1318        ret = xfs_ilock2_io_mmap(src, dest);
1319        if (ret)
1320                return ret;
1321
1322        /* Check file eligibility and prepare for block sharing. */
1323        ret = -EINVAL;
1324        /* Don't reflink realtime inodes */
1325        if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1326                goto out_unlock;
1327
1328        /* Don't share DAX file data for now. */
1329        if (IS_DAX(inode_in) || IS_DAX(inode_out))
1330                goto out_unlock;
1331
1332        ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1333                        len, remap_flags);
1334        if (ret || *len == 0)
1335                goto out_unlock;
1336
1337        /* Attach dquots to dest inode before changing block map */
1338        ret = xfs_qm_dqattach(dest);
1339        if (ret)
1340                goto out_unlock;
1341
1342        /*
1343         * Zero existing post-eof speculative preallocations in the destination
1344         * file.
1345         */
1346        ret = xfs_reflink_zero_posteof(dest, pos_out);
1347        if (ret)
1348                goto out_unlock;
1349
1350        /* Set flags and remap blocks. */
1351        ret = xfs_reflink_set_inode_flag(src, dest);
1352        if (ret)
1353                goto out_unlock;
1354
1355        /*
1356         * If pos_out > EOF, we may have dirtied blocks between EOF and
1357         * pos_out. In that case, we need to extend the flush and unmap to cover
1358         * from EOF to the end of the copy length.
1359         */
1360        if (pos_out > XFS_ISIZE(dest)) {
1361                loff_t  flen = *len + (pos_out - XFS_ISIZE(dest));
1362                ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1363        } else {
1364                ret = xfs_flush_unmap_range(dest, pos_out, *len);
1365        }
1366        if (ret)
1367                goto out_unlock;
1368
1369        return 0;
1370out_unlock:
1371        xfs_iunlock2_io_mmap(src, dest);
1372        return ret;
1373}
1374
1375/* Does this inode need the reflink flag? */
1376int
1377xfs_reflink_inode_has_shared_extents(
1378        struct xfs_trans                *tp,
1379        struct xfs_inode                *ip,
1380        bool                            *has_shared)
1381{
1382        struct xfs_bmbt_irec            got;
1383        struct xfs_mount                *mp = ip->i_mount;
1384        struct xfs_ifork                *ifp;
1385        xfs_agnumber_t                  agno;
1386        xfs_agblock_t                   agbno;
1387        xfs_extlen_t                    aglen;
1388        xfs_agblock_t                   rbno;
1389        xfs_extlen_t                    rlen;
1390        struct xfs_iext_cursor          icur;
1391        bool                            found;
1392        int                             error;
1393
1394        ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1395        if (!(ifp->if_flags & XFS_IFEXTENTS)) {
1396                error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1397                if (error)
1398                        return error;
1399        }
1400
1401        *has_shared = false;
1402        found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1403        while (found) {
1404                if (isnullstartblock(got.br_startblock) ||
1405                    got.br_state != XFS_EXT_NORM)
1406                        goto next;
1407                agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1408                agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1409                aglen = got.br_blockcount;
1410
1411                error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1412                                &rbno, &rlen, false);
1413                if (error)
1414                        return error;
1415                /* Is there still a shared block here? */
1416                if (rbno != NULLAGBLOCK) {
1417                        *has_shared = true;
1418                        return 0;
1419                }
1420next:
1421                found = xfs_iext_next_extent(ifp, &icur, &got);
1422        }
1423
1424        return 0;
1425}
1426
1427/*
1428 * Clear the inode reflink flag if there are no shared extents.
1429 *
1430 * The caller is responsible for joining the inode to the transaction passed in.
1431 * The inode will be joined to the transaction that is returned to the caller.
1432 */
1433int
1434xfs_reflink_clear_inode_flag(
1435        struct xfs_inode        *ip,
1436        struct xfs_trans        **tpp)
1437{
1438        bool                    needs_flag;
1439        int                     error = 0;
1440
1441        ASSERT(xfs_is_reflink_inode(ip));
1442
1443        error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1444        if (error || needs_flag)
1445                return error;
1446
1447        /*
1448         * We didn't find any shared blocks so turn off the reflink flag.
1449         * First, get rid of any leftover CoW mappings.
1450         */
1451        error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1452                        true);
1453        if (error)
1454                return error;
1455
1456        /* Clear the inode flag. */
1457        trace_xfs_reflink_unset_inode_flag(ip);
1458        ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1459        xfs_inode_clear_cowblocks_tag(ip);
1460        xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1461
1462        return error;
1463}
1464
1465/*
1466 * Clear the inode reflink flag if there are no shared extents and the size
1467 * hasn't changed.
1468 */
1469STATIC int
1470xfs_reflink_try_clear_inode_flag(
1471        struct xfs_inode        *ip)
1472{
1473        struct xfs_mount        *mp = ip->i_mount;
1474        struct xfs_trans        *tp;
1475        int                     error = 0;
1476
1477        /* Start a rolling transaction to remove the mappings */
1478        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1479        if (error)
1480                return error;
1481
1482        xfs_ilock(ip, XFS_ILOCK_EXCL);
1483        xfs_trans_ijoin(tp, ip, 0);
1484
1485        error = xfs_reflink_clear_inode_flag(ip, &tp);
1486        if (error)
1487                goto cancel;
1488
1489        error = xfs_trans_commit(tp);
1490        if (error)
1491                goto out;
1492
1493        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1494        return 0;
1495cancel:
1496        xfs_trans_cancel(tp);
1497out:
1498        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1499        return error;
1500}
1501
1502/*
1503 * Pre-COW all shared blocks within a given byte range of a file and turn off
1504 * the reflink flag if we unshare all of the file's blocks.
1505 */
1506int
1507xfs_reflink_unshare(
1508        struct xfs_inode        *ip,
1509        xfs_off_t               offset,
1510        xfs_off_t               len)
1511{
1512        struct inode            *inode = VFS_I(ip);
1513        int                     error;
1514
1515        if (!xfs_is_reflink_inode(ip))
1516                return 0;
1517
1518        trace_xfs_reflink_unshare(ip, offset, len);
1519
1520        inode_dio_wait(inode);
1521
1522        error = iomap_file_unshare(inode, offset, len,
1523                        &xfs_buffered_write_iomap_ops);
1524        if (error)
1525                goto out;
1526
1527        error = filemap_write_and_wait_range(inode->i_mapping, offset, len);
1528        if (error)
1529                goto out;
1530
1531        /* Turn off the reflink flag if possible. */
1532        error = xfs_reflink_try_clear_inode_flag(ip);
1533        if (error)
1534                goto out;
1535        return 0;
1536
1537out:
1538        trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1539        return error;
1540}
1541