linux/include/linux/memcontrol.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/* memcontrol.h - Memory Controller
   3 *
   4 * Copyright IBM Corporation, 2007
   5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   6 *
   7 * Copyright 2007 OpenVZ SWsoft Inc
   8 * Author: Pavel Emelianov <xemul@openvz.org>
   9 */
  10
  11#ifndef _LINUX_MEMCONTROL_H
  12#define _LINUX_MEMCONTROL_H
  13#include <linux/cgroup.h>
  14#include <linux/vm_event_item.h>
  15#include <linux/hardirq.h>
  16#include <linux/jump_label.h>
  17#include <linux/page_counter.h>
  18#include <linux/vmpressure.h>
  19#include <linux/eventfd.h>
  20#include <linux/mm.h>
  21#include <linux/vmstat.h>
  22#include <linux/writeback.h>
  23#include <linux/page-flags.h>
  24
  25struct mem_cgroup;
  26struct obj_cgroup;
  27struct page;
  28struct mm_struct;
  29struct kmem_cache;
  30
  31/* Cgroup-specific page state, on top of universal node page state */
  32enum memcg_stat_item {
  33        MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
  34        MEMCG_SOCK,
  35        MEMCG_PERCPU_B,
  36        MEMCG_NR_STAT,
  37};
  38
  39enum memcg_memory_event {
  40        MEMCG_LOW,
  41        MEMCG_HIGH,
  42        MEMCG_MAX,
  43        MEMCG_OOM,
  44        MEMCG_OOM_KILL,
  45        MEMCG_SWAP_HIGH,
  46        MEMCG_SWAP_MAX,
  47        MEMCG_SWAP_FAIL,
  48        MEMCG_NR_MEMORY_EVENTS,
  49};
  50
  51struct mem_cgroup_reclaim_cookie {
  52        pg_data_t *pgdat;
  53        unsigned int generation;
  54};
  55
  56#ifdef CONFIG_MEMCG
  57
  58#define MEM_CGROUP_ID_SHIFT     16
  59#define MEM_CGROUP_ID_MAX       USHRT_MAX
  60
  61struct mem_cgroup_id {
  62        int id;
  63        refcount_t ref;
  64};
  65
  66/*
  67 * Per memcg event counter is incremented at every pagein/pageout. With THP,
  68 * it will be incremented by the number of pages. This counter is used
  69 * to trigger some periodic events. This is straightforward and better
  70 * than using jiffies etc. to handle periodic memcg event.
  71 */
  72enum mem_cgroup_events_target {
  73        MEM_CGROUP_TARGET_THRESH,
  74        MEM_CGROUP_TARGET_SOFTLIMIT,
  75        MEM_CGROUP_NTARGETS,
  76};
  77
  78struct memcg_vmstats_percpu {
  79        long stat[MEMCG_NR_STAT];
  80        unsigned long events[NR_VM_EVENT_ITEMS];
  81        unsigned long nr_page_events;
  82        unsigned long targets[MEM_CGROUP_NTARGETS];
  83};
  84
  85struct mem_cgroup_reclaim_iter {
  86        struct mem_cgroup *position;
  87        /* scan generation, increased every round-trip */
  88        unsigned int generation;
  89};
  90
  91struct lruvec_stat {
  92        long count[NR_VM_NODE_STAT_ITEMS];
  93};
  94
  95struct batched_lruvec_stat {
  96        s32 count[NR_VM_NODE_STAT_ITEMS];
  97};
  98
  99/*
 100 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
 101 * which have elements charged to this memcg.
 102 */
 103struct memcg_shrinker_map {
 104        struct rcu_head rcu;
 105        unsigned long map[];
 106};
 107
 108/*
 109 * per-node information in memory controller.
 110 */
 111struct mem_cgroup_per_node {
 112        struct lruvec           lruvec;
 113
 114        /*
 115         * Legacy local VM stats. This should be struct lruvec_stat and
 116         * cannot be optimized to struct batched_lruvec_stat. Because
 117         * the threshold of the lruvec_stat_cpu can be as big as
 118         * MEMCG_CHARGE_BATCH * PAGE_SIZE. It can fit into s32. But this
 119         * filed has no upper limit.
 120         */
 121        struct lruvec_stat __percpu *lruvec_stat_local;
 122
 123        /* Subtree VM stats (batched updates) */
 124        struct batched_lruvec_stat __percpu *lruvec_stat_cpu;
 125        atomic_long_t           lruvec_stat[NR_VM_NODE_STAT_ITEMS];
 126
 127        unsigned long           lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
 128
 129        struct mem_cgroup_reclaim_iter  iter;
 130
 131        struct memcg_shrinker_map __rcu *shrinker_map;
 132
 133        struct rb_node          tree_node;      /* RB tree node */
 134        unsigned long           usage_in_excess;/* Set to the value by which */
 135                                                /* the soft limit is exceeded*/
 136        bool                    on_tree;
 137        struct mem_cgroup       *memcg;         /* Back pointer, we cannot */
 138                                                /* use container_of        */
 139};
 140
 141struct mem_cgroup_threshold {
 142        struct eventfd_ctx *eventfd;
 143        unsigned long threshold;
 144};
 145
 146/* For threshold */
 147struct mem_cgroup_threshold_ary {
 148        /* An array index points to threshold just below or equal to usage. */
 149        int current_threshold;
 150        /* Size of entries[] */
 151        unsigned int size;
 152        /* Array of thresholds */
 153        struct mem_cgroup_threshold entries[];
 154};
 155
 156struct mem_cgroup_thresholds {
 157        /* Primary thresholds array */
 158        struct mem_cgroup_threshold_ary *primary;
 159        /*
 160         * Spare threshold array.
 161         * This is needed to make mem_cgroup_unregister_event() "never fail".
 162         * It must be able to store at least primary->size - 1 entries.
 163         */
 164        struct mem_cgroup_threshold_ary *spare;
 165};
 166
 167enum memcg_kmem_state {
 168        KMEM_NONE,
 169        KMEM_ALLOCATED,
 170        KMEM_ONLINE,
 171};
 172
 173#if defined(CONFIG_SMP)
 174struct memcg_padding {
 175        char x[0];
 176} ____cacheline_internodealigned_in_smp;
 177#define MEMCG_PADDING(name)      struct memcg_padding name;
 178#else
 179#define MEMCG_PADDING(name)
 180#endif
 181
 182/*
 183 * Remember four most recent foreign writebacks with dirty pages in this
 184 * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
 185 * one in a given round, we're likely to catch it later if it keeps
 186 * foreign-dirtying, so a fairly low count should be enough.
 187 *
 188 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
 189 */
 190#define MEMCG_CGWB_FRN_CNT      4
 191
 192struct memcg_cgwb_frn {
 193        u64 bdi_id;                     /* bdi->id of the foreign inode */
 194        int memcg_id;                   /* memcg->css.id of foreign inode */
 195        u64 at;                         /* jiffies_64 at the time of dirtying */
 196        struct wb_completion done;      /* tracks in-flight foreign writebacks */
 197};
 198
 199/*
 200 * Bucket for arbitrarily byte-sized objects charged to a memory
 201 * cgroup. The bucket can be reparented in one piece when the cgroup
 202 * is destroyed, without having to round up the individual references
 203 * of all live memory objects in the wild.
 204 */
 205struct obj_cgroup {
 206        struct percpu_ref refcnt;
 207        struct mem_cgroup *memcg;
 208        atomic_t nr_charged_bytes;
 209        union {
 210                struct list_head list;
 211                struct rcu_head rcu;
 212        };
 213};
 214
 215/*
 216 * The memory controller data structure. The memory controller controls both
 217 * page cache and RSS per cgroup. We would eventually like to provide
 218 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 219 * to help the administrator determine what knobs to tune.
 220 */
 221struct mem_cgroup {
 222        struct cgroup_subsys_state css;
 223
 224        /* Private memcg ID. Used to ID objects that outlive the cgroup */
 225        struct mem_cgroup_id id;
 226
 227        /* Accounted resources */
 228        struct page_counter memory;             /* Both v1 & v2 */
 229
 230        union {
 231                struct page_counter swap;       /* v2 only */
 232                struct page_counter memsw;      /* v1 only */
 233        };
 234
 235        /* Legacy consumer-oriented counters */
 236        struct page_counter kmem;               /* v1 only */
 237        struct page_counter tcpmem;             /* v1 only */
 238
 239        /* Range enforcement for interrupt charges */
 240        struct work_struct high_work;
 241
 242        unsigned long soft_limit;
 243
 244        /* vmpressure notifications */
 245        struct vmpressure vmpressure;
 246
 247        /*
 248         * Should the OOM killer kill all belonging tasks, had it kill one?
 249         */
 250        bool oom_group;
 251
 252        /* protected by memcg_oom_lock */
 253        bool            oom_lock;
 254        int             under_oom;
 255
 256        int     swappiness;
 257        /* OOM-Killer disable */
 258        int             oom_kill_disable;
 259
 260        /* memory.events and memory.events.local */
 261        struct cgroup_file events_file;
 262        struct cgroup_file events_local_file;
 263
 264        /* handle for "memory.swap.events" */
 265        struct cgroup_file swap_events_file;
 266
 267        /* protect arrays of thresholds */
 268        struct mutex thresholds_lock;
 269
 270        /* thresholds for memory usage. RCU-protected */
 271        struct mem_cgroup_thresholds thresholds;
 272
 273        /* thresholds for mem+swap usage. RCU-protected */
 274        struct mem_cgroup_thresholds memsw_thresholds;
 275
 276        /* For oom notifier event fd */
 277        struct list_head oom_notify;
 278
 279        /*
 280         * Should we move charges of a task when a task is moved into this
 281         * mem_cgroup ? And what type of charges should we move ?
 282         */
 283        unsigned long move_charge_at_immigrate;
 284        /* taken only while moving_account > 0 */
 285        spinlock_t              move_lock;
 286        unsigned long           move_lock_flags;
 287
 288        MEMCG_PADDING(_pad1_);
 289
 290        atomic_long_t           vmstats[MEMCG_NR_STAT];
 291        atomic_long_t           vmevents[NR_VM_EVENT_ITEMS];
 292
 293        /* memory.events */
 294        atomic_long_t           memory_events[MEMCG_NR_MEMORY_EVENTS];
 295        atomic_long_t           memory_events_local[MEMCG_NR_MEMORY_EVENTS];
 296
 297        unsigned long           socket_pressure;
 298
 299        /* Legacy tcp memory accounting */
 300        bool                    tcpmem_active;
 301        int                     tcpmem_pressure;
 302
 303#ifdef CONFIG_MEMCG_KMEM
 304        int kmemcg_id;
 305        enum memcg_kmem_state kmem_state;
 306        struct obj_cgroup __rcu *objcg;
 307        struct list_head objcg_list; /* list of inherited objcgs */
 308#endif
 309
 310        MEMCG_PADDING(_pad2_);
 311
 312        /*
 313         * set > 0 if pages under this cgroup are moving to other cgroup.
 314         */
 315        atomic_t                moving_account;
 316        struct task_struct      *move_lock_task;
 317
 318        /* Legacy local VM stats and events */
 319        struct memcg_vmstats_percpu __percpu *vmstats_local;
 320
 321        /* Subtree VM stats and events (batched updates) */
 322        struct memcg_vmstats_percpu __percpu *vmstats_percpu;
 323
 324#ifdef CONFIG_CGROUP_WRITEBACK
 325        struct list_head cgwb_list;
 326        struct wb_domain cgwb_domain;
 327        struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
 328#endif
 329
 330        /* List of events which userspace want to receive */
 331        struct list_head event_list;
 332        spinlock_t event_list_lock;
 333
 334#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 335        struct deferred_split deferred_split_queue;
 336#endif
 337
 338        struct mem_cgroup_per_node *nodeinfo[0];
 339        /* WARNING: nodeinfo must be the last member here */
 340};
 341
 342/*
 343 * size of first charge trial. "32" comes from vmscan.c's magic value.
 344 * TODO: maybe necessary to use big numbers in big irons.
 345 */
 346#define MEMCG_CHARGE_BATCH 32U
 347
 348extern struct mem_cgroup *root_mem_cgroup;
 349
 350enum page_memcg_data_flags {
 351        /* page->memcg_data is a pointer to an objcgs vector */
 352        MEMCG_DATA_OBJCGS = (1UL << 0),
 353        /* page has been accounted as a non-slab kernel page */
 354        MEMCG_DATA_KMEM = (1UL << 1),
 355        /* the next bit after the last actual flag */
 356        __NR_MEMCG_DATA_FLAGS  = (1UL << 2),
 357};
 358
 359#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
 360
 361/*
 362 * page_memcg - get the memory cgroup associated with a page
 363 * @page: a pointer to the page struct
 364 *
 365 * Returns a pointer to the memory cgroup associated with the page,
 366 * or NULL. This function assumes that the page is known to have a
 367 * proper memory cgroup pointer. It's not safe to call this function
 368 * against some type of pages, e.g. slab pages or ex-slab pages.
 369 *
 370 * Any of the following ensures page and memcg binding stability:
 371 * - the page lock
 372 * - LRU isolation
 373 * - lock_page_memcg()
 374 * - exclusive reference
 375 */
 376static inline struct mem_cgroup *page_memcg(struct page *page)
 377{
 378        unsigned long memcg_data = page->memcg_data;
 379
 380        VM_BUG_ON_PAGE(PageSlab(page), page);
 381        VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
 382
 383        return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 384}
 385
 386/*
 387 * page_memcg_rcu - locklessly get the memory cgroup associated with a page
 388 * @page: a pointer to the page struct
 389 *
 390 * Returns a pointer to the memory cgroup associated with the page,
 391 * or NULL. This function assumes that the page is known to have a
 392 * proper memory cgroup pointer. It's not safe to call this function
 393 * against some type of pages, e.g. slab pages or ex-slab pages.
 394 */
 395static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
 396{
 397        VM_BUG_ON_PAGE(PageSlab(page), page);
 398        WARN_ON_ONCE(!rcu_read_lock_held());
 399
 400        return (struct mem_cgroup *)(READ_ONCE(page->memcg_data) &
 401                                     ~MEMCG_DATA_FLAGS_MASK);
 402}
 403
 404/*
 405 * page_memcg_check - get the memory cgroup associated with a page
 406 * @page: a pointer to the page struct
 407 *
 408 * Returns a pointer to the memory cgroup associated with the page,
 409 * or NULL. This function unlike page_memcg() can take any  page
 410 * as an argument. It has to be used in cases when it's not known if a page
 411 * has an associated memory cgroup pointer or an object cgroups vector.
 412 *
 413 * Any of the following ensures page and memcg binding stability:
 414 * - the page lock
 415 * - LRU isolation
 416 * - lock_page_memcg()
 417 * - exclusive reference
 418 */
 419static inline struct mem_cgroup *page_memcg_check(struct page *page)
 420{
 421        /*
 422         * Because page->memcg_data might be changed asynchronously
 423         * for slab pages, READ_ONCE() should be used here.
 424         */
 425        unsigned long memcg_data = READ_ONCE(page->memcg_data);
 426
 427        if (memcg_data & MEMCG_DATA_OBJCGS)
 428                return NULL;
 429
 430        return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 431}
 432
 433/*
 434 * PageMemcgKmem - check if the page has MemcgKmem flag set
 435 * @page: a pointer to the page struct
 436 *
 437 * Checks if the page has MemcgKmem flag set. The caller must ensure that
 438 * the page has an associated memory cgroup. It's not safe to call this function
 439 * against some types of pages, e.g. slab pages.
 440 */
 441static inline bool PageMemcgKmem(struct page *page)
 442{
 443        VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page);
 444        return page->memcg_data & MEMCG_DATA_KMEM;
 445}
 446
 447#ifdef CONFIG_MEMCG_KMEM
 448/*
 449 * page_objcgs - get the object cgroups vector associated with a page
 450 * @page: a pointer to the page struct
 451 *
 452 * Returns a pointer to the object cgroups vector associated with the page,
 453 * or NULL. This function assumes that the page is known to have an
 454 * associated object cgroups vector. It's not safe to call this function
 455 * against pages, which might have an associated memory cgroup: e.g.
 456 * kernel stack pages.
 457 */
 458static inline struct obj_cgroup **page_objcgs(struct page *page)
 459{
 460        unsigned long memcg_data = READ_ONCE(page->memcg_data);
 461
 462        VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
 463        VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
 464
 465        return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 466}
 467
 468/*
 469 * page_objcgs_check - get the object cgroups vector associated with a page
 470 * @page: a pointer to the page struct
 471 *
 472 * Returns a pointer to the object cgroups vector associated with the page,
 473 * or NULL. This function is safe to use if the page can be directly associated
 474 * with a memory cgroup.
 475 */
 476static inline struct obj_cgroup **page_objcgs_check(struct page *page)
 477{
 478        unsigned long memcg_data = READ_ONCE(page->memcg_data);
 479
 480        if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
 481                return NULL;
 482
 483        VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
 484
 485        return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
 486}
 487
 488#else
 489static inline struct obj_cgroup **page_objcgs(struct page *page)
 490{
 491        return NULL;
 492}
 493
 494static inline struct obj_cgroup **page_objcgs_check(struct page *page)
 495{
 496        return NULL;
 497}
 498#endif
 499
 500static __always_inline bool memcg_stat_item_in_bytes(int idx)
 501{
 502        if (idx == MEMCG_PERCPU_B)
 503                return true;
 504        return vmstat_item_in_bytes(idx);
 505}
 506
 507static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
 508{
 509        return (memcg == root_mem_cgroup);
 510}
 511
 512static inline bool mem_cgroup_disabled(void)
 513{
 514        return !cgroup_subsys_enabled(memory_cgrp_subsys);
 515}
 516
 517static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
 518                                                  struct mem_cgroup *memcg,
 519                                                  bool in_low_reclaim)
 520{
 521        if (mem_cgroup_disabled())
 522                return 0;
 523
 524        /*
 525         * There is no reclaim protection applied to a targeted reclaim.
 526         * We are special casing this specific case here because
 527         * mem_cgroup_protected calculation is not robust enough to keep
 528         * the protection invariant for calculated effective values for
 529         * parallel reclaimers with different reclaim target. This is
 530         * especially a problem for tail memcgs (as they have pages on LRU)
 531         * which would want to have effective values 0 for targeted reclaim
 532         * but a different value for external reclaim.
 533         *
 534         * Example
 535         * Let's have global and A's reclaim in parallel:
 536         *  |
 537         *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
 538         *  |\
 539         *  | C (low = 1G, usage = 2.5G)
 540         *  B (low = 1G, usage = 0.5G)
 541         *
 542         * For the global reclaim
 543         * A.elow = A.low
 544         * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
 545         * C.elow = min(C.usage, C.low)
 546         *
 547         * With the effective values resetting we have A reclaim
 548         * A.elow = 0
 549         * B.elow = B.low
 550         * C.elow = C.low
 551         *
 552         * If the global reclaim races with A's reclaim then
 553         * B.elow = C.elow = 0 because children_low_usage > A.elow)
 554         * is possible and reclaiming B would be violating the protection.
 555         *
 556         */
 557        if (root == memcg)
 558                return 0;
 559
 560        if (in_low_reclaim)
 561                return READ_ONCE(memcg->memory.emin);
 562
 563        return max(READ_ONCE(memcg->memory.emin),
 564                   READ_ONCE(memcg->memory.elow));
 565}
 566
 567void mem_cgroup_calculate_protection(struct mem_cgroup *root,
 568                                     struct mem_cgroup *memcg);
 569
 570static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
 571{
 572        /*
 573         * The root memcg doesn't account charges, and doesn't support
 574         * protection.
 575         */
 576        return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
 577
 578}
 579
 580static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
 581{
 582        if (!mem_cgroup_supports_protection(memcg))
 583                return false;
 584
 585        return READ_ONCE(memcg->memory.elow) >=
 586                page_counter_read(&memcg->memory);
 587}
 588
 589static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
 590{
 591        if (!mem_cgroup_supports_protection(memcg))
 592                return false;
 593
 594        return READ_ONCE(memcg->memory.emin) >=
 595                page_counter_read(&memcg->memory);
 596}
 597
 598int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
 599
 600void mem_cgroup_uncharge(struct page *page);
 601void mem_cgroup_uncharge_list(struct list_head *page_list);
 602
 603void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
 604
 605static struct mem_cgroup_per_node *
 606mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
 607{
 608        return memcg->nodeinfo[nid];
 609}
 610
 611/**
 612 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
 613 * @memcg: memcg of the wanted lruvec
 614 * @pgdat: pglist_data
 615 *
 616 * Returns the lru list vector holding pages for a given @memcg &
 617 * @pgdat combination. This can be the node lruvec, if the memory
 618 * controller is disabled.
 619 */
 620static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
 621                                               struct pglist_data *pgdat)
 622{
 623        struct mem_cgroup_per_node *mz;
 624        struct lruvec *lruvec;
 625
 626        if (mem_cgroup_disabled()) {
 627                lruvec = &pgdat->__lruvec;
 628                goto out;
 629        }
 630
 631        if (!memcg)
 632                memcg = root_mem_cgroup;
 633
 634        mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 635        lruvec = &mz->lruvec;
 636out:
 637        /*
 638         * Since a node can be onlined after the mem_cgroup was created,
 639         * we have to be prepared to initialize lruvec->pgdat here;
 640         * and if offlined then reonlined, we need to reinitialize it.
 641         */
 642        if (unlikely(lruvec->pgdat != pgdat))
 643                lruvec->pgdat = pgdat;
 644        return lruvec;
 645}
 646
 647/**
 648 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
 649 * @page: the page
 650 * @pgdat: pgdat of the page
 651 *
 652 * This function relies on page->mem_cgroup being stable.
 653 */
 654static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
 655                                                struct pglist_data *pgdat)
 656{
 657        struct mem_cgroup *memcg = page_memcg(page);
 658
 659        VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page);
 660        return mem_cgroup_lruvec(memcg, pgdat);
 661}
 662
 663static inline bool lruvec_holds_page_lru_lock(struct page *page,
 664                                              struct lruvec *lruvec)
 665{
 666        pg_data_t *pgdat = page_pgdat(page);
 667        const struct mem_cgroup *memcg;
 668        struct mem_cgroup_per_node *mz;
 669
 670        if (mem_cgroup_disabled())
 671                return lruvec == &pgdat->__lruvec;
 672
 673        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 674        memcg = page_memcg(page) ? : root_mem_cgroup;
 675
 676        return lruvec->pgdat == pgdat && mz->memcg == memcg;
 677}
 678
 679struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
 680
 681struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
 682
 683struct lruvec *lock_page_lruvec(struct page *page);
 684struct lruvec *lock_page_lruvec_irq(struct page *page);
 685struct lruvec *lock_page_lruvec_irqsave(struct page *page,
 686                                                unsigned long *flags);
 687
 688#ifdef CONFIG_DEBUG_VM
 689void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page);
 690#else
 691static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
 692{
 693}
 694#endif
 695
 696static inline
 697struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
 698        return css ? container_of(css, struct mem_cgroup, css) : NULL;
 699}
 700
 701static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
 702{
 703        return percpu_ref_tryget(&objcg->refcnt);
 704}
 705
 706static inline void obj_cgroup_get(struct obj_cgroup *objcg)
 707{
 708        percpu_ref_get(&objcg->refcnt);
 709}
 710
 711static inline void obj_cgroup_put(struct obj_cgroup *objcg)
 712{
 713        percpu_ref_put(&objcg->refcnt);
 714}
 715
 716/*
 717 * After the initialization objcg->memcg is always pointing at
 718 * a valid memcg, but can be atomically swapped to the parent memcg.
 719 *
 720 * The caller must ensure that the returned memcg won't be released:
 721 * e.g. acquire the rcu_read_lock or css_set_lock.
 722 */
 723static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
 724{
 725        return READ_ONCE(objcg->memcg);
 726}
 727
 728static inline void mem_cgroup_put(struct mem_cgroup *memcg)
 729{
 730        if (memcg)
 731                css_put(&memcg->css);
 732}
 733
 734#define mem_cgroup_from_counter(counter, member)        \
 735        container_of(counter, struct mem_cgroup, member)
 736
 737struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
 738                                   struct mem_cgroup *,
 739                                   struct mem_cgroup_reclaim_cookie *);
 740void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
 741int mem_cgroup_scan_tasks(struct mem_cgroup *,
 742                          int (*)(struct task_struct *, void *), void *);
 743
 744static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
 745{
 746        if (mem_cgroup_disabled())
 747                return 0;
 748
 749        return memcg->id.id;
 750}
 751struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
 752
 753static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
 754{
 755        return mem_cgroup_from_css(seq_css(m));
 756}
 757
 758static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
 759{
 760        struct mem_cgroup_per_node *mz;
 761
 762        if (mem_cgroup_disabled())
 763                return NULL;
 764
 765        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 766        return mz->memcg;
 767}
 768
 769/**
 770 * parent_mem_cgroup - find the accounting parent of a memcg
 771 * @memcg: memcg whose parent to find
 772 *
 773 * Returns the parent memcg, or NULL if this is the root or the memory
 774 * controller is in legacy no-hierarchy mode.
 775 */
 776static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
 777{
 778        if (!memcg->memory.parent)
 779                return NULL;
 780        return mem_cgroup_from_counter(memcg->memory.parent, memory);
 781}
 782
 783static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
 784                              struct mem_cgroup *root)
 785{
 786        if (root == memcg)
 787                return true;
 788        return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
 789}
 790
 791static inline bool mm_match_cgroup(struct mm_struct *mm,
 792                                   struct mem_cgroup *memcg)
 793{
 794        struct mem_cgroup *task_memcg;
 795        bool match = false;
 796
 797        rcu_read_lock();
 798        task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 799        if (task_memcg)
 800                match = mem_cgroup_is_descendant(task_memcg, memcg);
 801        rcu_read_unlock();
 802        return match;
 803}
 804
 805struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
 806ino_t page_cgroup_ino(struct page *page);
 807
 808static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
 809{
 810        if (mem_cgroup_disabled())
 811                return true;
 812        return !!(memcg->css.flags & CSS_ONLINE);
 813}
 814
 815/*
 816 * For memory reclaim.
 817 */
 818int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
 819
 820void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
 821                int zid, int nr_pages);
 822
 823static inline
 824unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
 825                enum lru_list lru, int zone_idx)
 826{
 827        struct mem_cgroup_per_node *mz;
 828
 829        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 830        return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
 831}
 832
 833void mem_cgroup_handle_over_high(void);
 834
 835unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
 836
 837unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
 838
 839void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
 840                                struct task_struct *p);
 841
 842void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
 843
 844static inline void mem_cgroup_enter_user_fault(void)
 845{
 846        WARN_ON(current->in_user_fault);
 847        current->in_user_fault = 1;
 848}
 849
 850static inline void mem_cgroup_exit_user_fault(void)
 851{
 852        WARN_ON(!current->in_user_fault);
 853        current->in_user_fault = 0;
 854}
 855
 856static inline bool task_in_memcg_oom(struct task_struct *p)
 857{
 858        return p->memcg_in_oom;
 859}
 860
 861bool mem_cgroup_oom_synchronize(bool wait);
 862struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
 863                                            struct mem_cgroup *oom_domain);
 864void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
 865
 866#ifdef CONFIG_MEMCG_SWAP
 867extern bool cgroup_memory_noswap;
 868#endif
 869
 870struct mem_cgroup *lock_page_memcg(struct page *page);
 871void __unlock_page_memcg(struct mem_cgroup *memcg);
 872void unlock_page_memcg(struct page *page);
 873
 874/*
 875 * idx can be of type enum memcg_stat_item or node_stat_item.
 876 * Keep in sync with memcg_exact_page_state().
 877 */
 878static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
 879{
 880        long x = atomic_long_read(&memcg->vmstats[idx]);
 881#ifdef CONFIG_SMP
 882        if (x < 0)
 883                x = 0;
 884#endif
 885        return x;
 886}
 887
 888/*
 889 * idx can be of type enum memcg_stat_item or node_stat_item.
 890 * Keep in sync with memcg_exact_page_state().
 891 */
 892static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
 893                                                   int idx)
 894{
 895        long x = 0;
 896        int cpu;
 897
 898        for_each_possible_cpu(cpu)
 899                x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
 900#ifdef CONFIG_SMP
 901        if (x < 0)
 902                x = 0;
 903#endif
 904        return x;
 905}
 906
 907void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
 908
 909/* idx can be of type enum memcg_stat_item or node_stat_item */
 910static inline void mod_memcg_state(struct mem_cgroup *memcg,
 911                                   int idx, int val)
 912{
 913        unsigned long flags;
 914
 915        local_irq_save(flags);
 916        __mod_memcg_state(memcg, idx, val);
 917        local_irq_restore(flags);
 918}
 919
 920static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
 921                                              enum node_stat_item idx)
 922{
 923        struct mem_cgroup_per_node *pn;
 924        long x;
 925
 926        if (mem_cgroup_disabled())
 927                return node_page_state(lruvec_pgdat(lruvec), idx);
 928
 929        pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 930        x = atomic_long_read(&pn->lruvec_stat[idx]);
 931#ifdef CONFIG_SMP
 932        if (x < 0)
 933                x = 0;
 934#endif
 935        return x;
 936}
 937
 938static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
 939                                                    enum node_stat_item idx)
 940{
 941        struct mem_cgroup_per_node *pn;
 942        long x = 0;
 943        int cpu;
 944
 945        if (mem_cgroup_disabled())
 946                return node_page_state(lruvec_pgdat(lruvec), idx);
 947
 948        pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 949        for_each_possible_cpu(cpu)
 950                x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
 951#ifdef CONFIG_SMP
 952        if (x < 0)
 953                x = 0;
 954#endif
 955        return x;
 956}
 957
 958void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 959                              int val);
 960void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
 961
 962static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
 963                                         int val)
 964{
 965        unsigned long flags;
 966
 967        local_irq_save(flags);
 968        __mod_lruvec_kmem_state(p, idx, val);
 969        local_irq_restore(flags);
 970}
 971
 972static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
 973                                          enum node_stat_item idx, int val)
 974{
 975        unsigned long flags;
 976
 977        local_irq_save(flags);
 978        __mod_memcg_lruvec_state(lruvec, idx, val);
 979        local_irq_restore(flags);
 980}
 981
 982unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
 983                                                gfp_t gfp_mask,
 984                                                unsigned long *total_scanned);
 985
 986void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
 987                          unsigned long count);
 988
 989static inline void count_memcg_events(struct mem_cgroup *memcg,
 990                                      enum vm_event_item idx,
 991                                      unsigned long count)
 992{
 993        unsigned long flags;
 994
 995        local_irq_save(flags);
 996        __count_memcg_events(memcg, idx, count);
 997        local_irq_restore(flags);
 998}
 999
1000static inline void count_memcg_page_event(struct page *page,
1001                                          enum vm_event_item idx)
1002{
1003        struct mem_cgroup *memcg = page_memcg(page);
1004
1005        if (memcg)
1006                count_memcg_events(memcg, idx, 1);
1007}
1008
1009static inline void count_memcg_event_mm(struct mm_struct *mm,
1010                                        enum vm_event_item idx)
1011{
1012        struct mem_cgroup *memcg;
1013
1014        if (mem_cgroup_disabled())
1015                return;
1016
1017        rcu_read_lock();
1018        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1019        if (likely(memcg))
1020                count_memcg_events(memcg, idx, 1);
1021        rcu_read_unlock();
1022}
1023
1024static inline void memcg_memory_event(struct mem_cgroup *memcg,
1025                                      enum memcg_memory_event event)
1026{
1027        bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1028                          event == MEMCG_SWAP_FAIL;
1029
1030        atomic_long_inc(&memcg->memory_events_local[event]);
1031        if (!swap_event)
1032                cgroup_file_notify(&memcg->events_local_file);
1033
1034        do {
1035                atomic_long_inc(&memcg->memory_events[event]);
1036                if (swap_event)
1037                        cgroup_file_notify(&memcg->swap_events_file);
1038                else
1039                        cgroup_file_notify(&memcg->events_file);
1040
1041                if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1042                        break;
1043                if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1044                        break;
1045        } while ((memcg = parent_mem_cgroup(memcg)) &&
1046                 !mem_cgroup_is_root(memcg));
1047}
1048
1049static inline void memcg_memory_event_mm(struct mm_struct *mm,
1050                                         enum memcg_memory_event event)
1051{
1052        struct mem_cgroup *memcg;
1053
1054        if (mem_cgroup_disabled())
1055                return;
1056
1057        rcu_read_lock();
1058        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1059        if (likely(memcg))
1060                memcg_memory_event(memcg, event);
1061        rcu_read_unlock();
1062}
1063
1064void split_page_memcg(struct page *head, unsigned int nr);
1065
1066#else /* CONFIG_MEMCG */
1067
1068#define MEM_CGROUP_ID_SHIFT     0
1069#define MEM_CGROUP_ID_MAX       0
1070
1071struct mem_cgroup;
1072
1073static inline struct mem_cgroup *page_memcg(struct page *page)
1074{
1075        return NULL;
1076}
1077
1078static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1079{
1080        WARN_ON_ONCE(!rcu_read_lock_held());
1081        return NULL;
1082}
1083
1084static inline struct mem_cgroup *page_memcg_check(struct page *page)
1085{
1086        return NULL;
1087}
1088
1089static inline bool PageMemcgKmem(struct page *page)
1090{
1091        return false;
1092}
1093
1094static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1095{
1096        return true;
1097}
1098
1099static inline bool mem_cgroup_disabled(void)
1100{
1101        return true;
1102}
1103
1104static inline void memcg_memory_event(struct mem_cgroup *memcg,
1105                                      enum memcg_memory_event event)
1106{
1107}
1108
1109static inline void memcg_memory_event_mm(struct mm_struct *mm,
1110                                         enum memcg_memory_event event)
1111{
1112}
1113
1114static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
1115                                                  struct mem_cgroup *memcg,
1116                                                  bool in_low_reclaim)
1117{
1118        return 0;
1119}
1120
1121static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1122                                                   struct mem_cgroup *memcg)
1123{
1124}
1125
1126static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1127{
1128        return false;
1129}
1130
1131static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1132{
1133        return false;
1134}
1135
1136static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
1137                                    gfp_t gfp_mask)
1138{
1139        return 0;
1140}
1141
1142static inline void mem_cgroup_uncharge(struct page *page)
1143{
1144}
1145
1146static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1147{
1148}
1149
1150static inline void mem_cgroup_migrate(struct page *old, struct page *new)
1151{
1152}
1153
1154static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1155                                               struct pglist_data *pgdat)
1156{
1157        return &pgdat->__lruvec;
1158}
1159
1160static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
1161                                                    struct pglist_data *pgdat)
1162{
1163        return &pgdat->__lruvec;
1164}
1165
1166static inline bool lruvec_holds_page_lru_lock(struct page *page,
1167                                              struct lruvec *lruvec)
1168{
1169        pg_data_t *pgdat = page_pgdat(page);
1170
1171        return lruvec == &pgdat->__lruvec;
1172}
1173
1174static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1175{
1176        return NULL;
1177}
1178
1179static inline bool mm_match_cgroup(struct mm_struct *mm,
1180                struct mem_cgroup *memcg)
1181{
1182        return true;
1183}
1184
1185static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1186{
1187        return NULL;
1188}
1189
1190static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1191{
1192}
1193
1194static inline struct lruvec *lock_page_lruvec(struct page *page)
1195{
1196        struct pglist_data *pgdat = page_pgdat(page);
1197
1198        spin_lock(&pgdat->__lruvec.lru_lock);
1199        return &pgdat->__lruvec;
1200}
1201
1202static inline struct lruvec *lock_page_lruvec_irq(struct page *page)
1203{
1204        struct pglist_data *pgdat = page_pgdat(page);
1205
1206        spin_lock_irq(&pgdat->__lruvec.lru_lock);
1207        return &pgdat->__lruvec;
1208}
1209
1210static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page,
1211                unsigned long *flagsp)
1212{
1213        struct pglist_data *pgdat = page_pgdat(page);
1214
1215        spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1216        return &pgdat->__lruvec;
1217}
1218
1219static inline struct mem_cgroup *
1220mem_cgroup_iter(struct mem_cgroup *root,
1221                struct mem_cgroup *prev,
1222                struct mem_cgroup_reclaim_cookie *reclaim)
1223{
1224        return NULL;
1225}
1226
1227static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1228                                         struct mem_cgroup *prev)
1229{
1230}
1231
1232static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1233                int (*fn)(struct task_struct *, void *), void *arg)
1234{
1235        return 0;
1236}
1237
1238static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1239{
1240        return 0;
1241}
1242
1243static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1244{
1245        WARN_ON_ONCE(id);
1246        /* XXX: This should always return root_mem_cgroup */
1247        return NULL;
1248}
1249
1250static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1251{
1252        return NULL;
1253}
1254
1255static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1256{
1257        return NULL;
1258}
1259
1260static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1261{
1262        return true;
1263}
1264
1265static inline
1266unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1267                enum lru_list lru, int zone_idx)
1268{
1269        return 0;
1270}
1271
1272static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1273{
1274        return 0;
1275}
1276
1277static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1278{
1279        return 0;
1280}
1281
1282static inline void
1283mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1284{
1285}
1286
1287static inline void
1288mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1289{
1290}
1291
1292static inline struct mem_cgroup *lock_page_memcg(struct page *page)
1293{
1294        return NULL;
1295}
1296
1297static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
1298{
1299}
1300
1301static inline void unlock_page_memcg(struct page *page)
1302{
1303}
1304
1305static inline void mem_cgroup_handle_over_high(void)
1306{
1307}
1308
1309static inline void mem_cgroup_enter_user_fault(void)
1310{
1311}
1312
1313static inline void mem_cgroup_exit_user_fault(void)
1314{
1315}
1316
1317static inline bool task_in_memcg_oom(struct task_struct *p)
1318{
1319        return false;
1320}
1321
1322static inline bool mem_cgroup_oom_synchronize(bool wait)
1323{
1324        return false;
1325}
1326
1327static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1328        struct task_struct *victim, struct mem_cgroup *oom_domain)
1329{
1330        return NULL;
1331}
1332
1333static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1334{
1335}
1336
1337static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1338{
1339        return 0;
1340}
1341
1342static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1343                                                   int idx)
1344{
1345        return 0;
1346}
1347
1348static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1349                                     int idx,
1350                                     int nr)
1351{
1352}
1353
1354static inline void mod_memcg_state(struct mem_cgroup *memcg,
1355                                   int idx,
1356                                   int nr)
1357{
1358}
1359
1360static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1361                                              enum node_stat_item idx)
1362{
1363        return node_page_state(lruvec_pgdat(lruvec), idx);
1364}
1365
1366static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1367                                                    enum node_stat_item idx)
1368{
1369        return node_page_state(lruvec_pgdat(lruvec), idx);
1370}
1371
1372static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1373                                            enum node_stat_item idx, int val)
1374{
1375}
1376
1377static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1378                                           int val)
1379{
1380        struct page *page = virt_to_head_page(p);
1381
1382        __mod_node_page_state(page_pgdat(page), idx, val);
1383}
1384
1385static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1386                                         int val)
1387{
1388        struct page *page = virt_to_head_page(p);
1389
1390        mod_node_page_state(page_pgdat(page), idx, val);
1391}
1392
1393static inline
1394unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1395                                            gfp_t gfp_mask,
1396                                            unsigned long *total_scanned)
1397{
1398        return 0;
1399}
1400
1401static inline void split_page_memcg(struct page *head, unsigned int nr)
1402{
1403}
1404
1405static inline void count_memcg_events(struct mem_cgroup *memcg,
1406                                      enum vm_event_item idx,
1407                                      unsigned long count)
1408{
1409}
1410
1411static inline void __count_memcg_events(struct mem_cgroup *memcg,
1412                                        enum vm_event_item idx,
1413                                        unsigned long count)
1414{
1415}
1416
1417static inline void count_memcg_page_event(struct page *page,
1418                                          int idx)
1419{
1420}
1421
1422static inline
1423void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1424{
1425}
1426
1427static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1428{
1429}
1430#endif /* CONFIG_MEMCG */
1431
1432static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1433{
1434        __mod_lruvec_kmem_state(p, idx, 1);
1435}
1436
1437static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1438{
1439        __mod_lruvec_kmem_state(p, idx, -1);
1440}
1441
1442static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1443{
1444        struct mem_cgroup *memcg;
1445
1446        memcg = lruvec_memcg(lruvec);
1447        if (!memcg)
1448                return NULL;
1449        memcg = parent_mem_cgroup(memcg);
1450        if (!memcg)
1451                return NULL;
1452        return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1453}
1454
1455static inline void unlock_page_lruvec(struct lruvec *lruvec)
1456{
1457        spin_unlock(&lruvec->lru_lock);
1458}
1459
1460static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1461{
1462        spin_unlock_irq(&lruvec->lru_lock);
1463}
1464
1465static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1466                unsigned long flags)
1467{
1468        spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1469}
1470
1471/* Don't lock again iff page's lruvec locked */
1472static inline struct lruvec *relock_page_lruvec_irq(struct page *page,
1473                struct lruvec *locked_lruvec)
1474{
1475        if (locked_lruvec) {
1476                if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1477                        return locked_lruvec;
1478
1479                unlock_page_lruvec_irq(locked_lruvec);
1480        }
1481
1482        return lock_page_lruvec_irq(page);
1483}
1484
1485/* Don't lock again iff page's lruvec locked */
1486static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page,
1487                struct lruvec *locked_lruvec, unsigned long *flags)
1488{
1489        if (locked_lruvec) {
1490                if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1491                        return locked_lruvec;
1492
1493                unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1494        }
1495
1496        return lock_page_lruvec_irqsave(page, flags);
1497}
1498
1499#ifdef CONFIG_CGROUP_WRITEBACK
1500
1501struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1502void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1503                         unsigned long *pheadroom, unsigned long *pdirty,
1504                         unsigned long *pwriteback);
1505
1506void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1507                                             struct bdi_writeback *wb);
1508
1509static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1510                                                  struct bdi_writeback *wb)
1511{
1512        if (mem_cgroup_disabled())
1513                return;
1514
1515        if (unlikely(&page_memcg(page)->css != wb->memcg_css))
1516                mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1517}
1518
1519void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1520
1521#else   /* CONFIG_CGROUP_WRITEBACK */
1522
1523static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1524{
1525        return NULL;
1526}
1527
1528static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1529                                       unsigned long *pfilepages,
1530                                       unsigned long *pheadroom,
1531                                       unsigned long *pdirty,
1532                                       unsigned long *pwriteback)
1533{
1534}
1535
1536static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1537                                                  struct bdi_writeback *wb)
1538{
1539}
1540
1541static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1542{
1543}
1544
1545#endif  /* CONFIG_CGROUP_WRITEBACK */
1546
1547struct sock;
1548bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1549void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1550#ifdef CONFIG_MEMCG
1551extern struct static_key_false memcg_sockets_enabled_key;
1552#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1553void mem_cgroup_sk_alloc(struct sock *sk);
1554void mem_cgroup_sk_free(struct sock *sk);
1555static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1556{
1557        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1558                return true;
1559        do {
1560                if (time_before(jiffies, memcg->socket_pressure))
1561                        return true;
1562        } while ((memcg = parent_mem_cgroup(memcg)));
1563        return false;
1564}
1565
1566extern int memcg_expand_shrinker_maps(int new_id);
1567
1568extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1569                                   int nid, int shrinker_id);
1570#else
1571#define mem_cgroup_sockets_enabled 0
1572static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1573static inline void mem_cgroup_sk_free(struct sock *sk) { };
1574static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1575{
1576        return false;
1577}
1578
1579static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1580                                          int nid, int shrinker_id)
1581{
1582}
1583#endif
1584
1585#ifdef CONFIG_MEMCG_KMEM
1586int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1587void __memcg_kmem_uncharge_page(struct page *page, int order);
1588
1589struct obj_cgroup *get_obj_cgroup_from_current(void);
1590
1591int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1592void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1593
1594extern struct static_key_false memcg_kmem_enabled_key;
1595
1596extern int memcg_nr_cache_ids;
1597void memcg_get_cache_ids(void);
1598void memcg_put_cache_ids(void);
1599
1600/*
1601 * Helper macro to loop through all memcg-specific caches. Callers must still
1602 * check if the cache is valid (it is either valid or NULL).
1603 * the slab_mutex must be held when looping through those caches
1604 */
1605#define for_each_memcg_cache_index(_idx)        \
1606        for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1607
1608static inline bool memcg_kmem_enabled(void)
1609{
1610        return static_branch_likely(&memcg_kmem_enabled_key);
1611}
1612
1613static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1614                                         int order)
1615{
1616        if (memcg_kmem_enabled())
1617                return __memcg_kmem_charge_page(page, gfp, order);
1618        return 0;
1619}
1620
1621static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1622{
1623        if (memcg_kmem_enabled())
1624                __memcg_kmem_uncharge_page(page, order);
1625}
1626
1627/*
1628 * A helper for accessing memcg's kmem_id, used for getting
1629 * corresponding LRU lists.
1630 */
1631static inline int memcg_cache_id(struct mem_cgroup *memcg)
1632{
1633        return memcg ? memcg->kmemcg_id : -1;
1634}
1635
1636struct mem_cgroup *mem_cgroup_from_obj(void *p);
1637
1638#else
1639
1640static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1641                                         int order)
1642{
1643        return 0;
1644}
1645
1646static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1647{
1648}
1649
1650static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1651                                           int order)
1652{
1653        return 0;
1654}
1655
1656static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1657{
1658}
1659
1660#define for_each_memcg_cache_index(_idx)        \
1661        for (; NULL; )
1662
1663static inline bool memcg_kmem_enabled(void)
1664{
1665        return false;
1666}
1667
1668static inline int memcg_cache_id(struct mem_cgroup *memcg)
1669{
1670        return -1;
1671}
1672
1673static inline void memcg_get_cache_ids(void)
1674{
1675}
1676
1677static inline void memcg_put_cache_ids(void)
1678{
1679}
1680
1681static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1682{
1683       return NULL;
1684}
1685
1686#endif /* CONFIG_MEMCG_KMEM */
1687
1688#endif /* _LINUX_MEMCONTROL_H */
1689