linux/include/linux/mmzone.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MMZONE_H
   3#define _LINUX_MMZONE_H
   4
   5#ifndef __ASSEMBLY__
   6#ifndef __GENERATING_BOUNDS_H
   7
   8#include <linux/spinlock.h>
   9#include <linux/list.h>
  10#include <linux/wait.h>
  11#include <linux/bitops.h>
  12#include <linux/cache.h>
  13#include <linux/threads.h>
  14#include <linux/numa.h>
  15#include <linux/init.h>
  16#include <linux/seqlock.h>
  17#include <linux/nodemask.h>
  18#include <linux/pageblock-flags.h>
  19#include <linux/page-flags-layout.h>
  20#include <linux/atomic.h>
  21#include <linux/mm_types.h>
  22#include <linux/page-flags.h>
  23#include <asm/page.h>
  24
  25/* Free memory management - zoned buddy allocator.  */
  26#ifndef CONFIG_FORCE_MAX_ZONEORDER
  27#define MAX_ORDER 11
  28#else
  29#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  30#endif
  31#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  32
  33/*
  34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  35 * costly to service.  That is between allocation orders which should
  36 * coalesce naturally under reasonable reclaim pressure and those which
  37 * will not.
  38 */
  39#define PAGE_ALLOC_COSTLY_ORDER 3
  40
  41enum migratetype {
  42        MIGRATE_UNMOVABLE,
  43        MIGRATE_MOVABLE,
  44        MIGRATE_RECLAIMABLE,
  45        MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
  46        MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
  47#ifdef CONFIG_CMA
  48        /*
  49         * MIGRATE_CMA migration type is designed to mimic the way
  50         * ZONE_MOVABLE works.  Only movable pages can be allocated
  51         * from MIGRATE_CMA pageblocks and page allocator never
  52         * implicitly change migration type of MIGRATE_CMA pageblock.
  53         *
  54         * The way to use it is to change migratetype of a range of
  55         * pageblocks to MIGRATE_CMA which can be done by
  56         * __free_pageblock_cma() function.  What is important though
  57         * is that a range of pageblocks must be aligned to
  58         * MAX_ORDER_NR_PAGES should biggest page be bigger then
  59         * a single pageblock.
  60         */
  61        MIGRATE_CMA,
  62#endif
  63#ifdef CONFIG_MEMORY_ISOLATION
  64        MIGRATE_ISOLATE,        /* can't allocate from here */
  65#endif
  66        MIGRATE_TYPES
  67};
  68
  69/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
  70extern const char * const migratetype_names[MIGRATE_TYPES];
  71
  72#ifdef CONFIG_CMA
  73#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  74#  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
  75#else
  76#  define is_migrate_cma(migratetype) false
  77#  define is_migrate_cma_page(_page) false
  78#endif
  79
  80static inline bool is_migrate_movable(int mt)
  81{
  82        return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
  83}
  84
  85#define for_each_migratetype_order(order, type) \
  86        for (order = 0; order < MAX_ORDER; order++) \
  87                for (type = 0; type < MIGRATE_TYPES; type++)
  88
  89extern int page_group_by_mobility_disabled;
  90
  91#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
  92
  93#define get_pageblock_migratetype(page)                                 \
  94        get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
  95
  96struct free_area {
  97        struct list_head        free_list[MIGRATE_TYPES];
  98        unsigned long           nr_free;
  99};
 100
 101static inline struct page *get_page_from_free_area(struct free_area *area,
 102                                            int migratetype)
 103{
 104        return list_first_entry_or_null(&area->free_list[migratetype],
 105                                        struct page, lru);
 106}
 107
 108static inline bool free_area_empty(struct free_area *area, int migratetype)
 109{
 110        return list_empty(&area->free_list[migratetype]);
 111}
 112
 113struct pglist_data;
 114
 115/*
 116 * Add a wild amount of padding here to ensure datas fall into separate
 117 * cachelines.  There are very few zone structures in the machine, so space
 118 * consumption is not a concern here.
 119 */
 120#if defined(CONFIG_SMP)
 121struct zone_padding {
 122        char x[0];
 123} ____cacheline_internodealigned_in_smp;
 124#define ZONE_PADDING(name)      struct zone_padding name;
 125#else
 126#define ZONE_PADDING(name)
 127#endif
 128
 129#ifdef CONFIG_NUMA
 130enum numa_stat_item {
 131        NUMA_HIT,               /* allocated in intended node */
 132        NUMA_MISS,              /* allocated in non intended node */
 133        NUMA_FOREIGN,           /* was intended here, hit elsewhere */
 134        NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
 135        NUMA_LOCAL,             /* allocation from local node */
 136        NUMA_OTHER,             /* allocation from other node */
 137        NR_VM_NUMA_STAT_ITEMS
 138};
 139#else
 140#define NR_VM_NUMA_STAT_ITEMS 0
 141#endif
 142
 143enum zone_stat_item {
 144        /* First 128 byte cacheline (assuming 64 bit words) */
 145        NR_FREE_PAGES,
 146        NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
 147        NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
 148        NR_ZONE_ACTIVE_ANON,
 149        NR_ZONE_INACTIVE_FILE,
 150        NR_ZONE_ACTIVE_FILE,
 151        NR_ZONE_UNEVICTABLE,
 152        NR_ZONE_WRITE_PENDING,  /* Count of dirty, writeback and unstable pages */
 153        NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
 154        /* Second 128 byte cacheline */
 155        NR_BOUNCE,
 156#if IS_ENABLED(CONFIG_ZSMALLOC)
 157        NR_ZSPAGES,             /* allocated in zsmalloc */
 158#endif
 159        NR_FREE_CMA_PAGES,
 160        NR_VM_ZONE_STAT_ITEMS };
 161
 162enum node_stat_item {
 163        NR_LRU_BASE,
 164        NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
 165        NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
 166        NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
 167        NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
 168        NR_UNEVICTABLE,         /*  "     "     "   "       "         */
 169        NR_SLAB_RECLAIMABLE_B,
 170        NR_SLAB_UNRECLAIMABLE_B,
 171        NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
 172        NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
 173        WORKINGSET_NODES,
 174        WORKINGSET_REFAULT_BASE,
 175        WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
 176        WORKINGSET_REFAULT_FILE,
 177        WORKINGSET_ACTIVATE_BASE,
 178        WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
 179        WORKINGSET_ACTIVATE_FILE,
 180        WORKINGSET_RESTORE_BASE,
 181        WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
 182        WORKINGSET_RESTORE_FILE,
 183        WORKINGSET_NODERECLAIM,
 184        NR_ANON_MAPPED, /* Mapped anonymous pages */
 185        NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
 186                           only modified from process context */
 187        NR_FILE_PAGES,
 188        NR_FILE_DIRTY,
 189        NR_WRITEBACK,
 190        NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
 191        NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
 192        NR_SHMEM_THPS,
 193        NR_SHMEM_PMDMAPPED,
 194        NR_FILE_THPS,
 195        NR_FILE_PMDMAPPED,
 196        NR_ANON_THPS,
 197        NR_VMSCAN_WRITE,
 198        NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
 199        NR_DIRTIED,             /* page dirtyings since bootup */
 200        NR_WRITTEN,             /* page writings since bootup */
 201        NR_KERNEL_MISC_RECLAIMABLE,     /* reclaimable non-slab kernel pages */
 202        NR_FOLL_PIN_ACQUIRED,   /* via: pin_user_page(), gup flag: FOLL_PIN */
 203        NR_FOLL_PIN_RELEASED,   /* pages returned via unpin_user_page() */
 204        NR_KERNEL_STACK_KB,     /* measured in KiB */
 205#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
 206        NR_KERNEL_SCS_KB,       /* measured in KiB */
 207#endif
 208        NR_PAGETABLE,           /* used for pagetables */
 209#ifdef CONFIG_SWAP
 210        NR_SWAPCACHE,
 211#endif
 212        NR_VM_NODE_STAT_ITEMS
 213};
 214
 215/*
 216 * Returns true if the item should be printed in THPs (/proc/vmstat
 217 * currently prints number of anon, file and shmem THPs. But the item
 218 * is charged in pages).
 219 */
 220static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
 221{
 222        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
 223                return false;
 224
 225        return item == NR_ANON_THPS ||
 226               item == NR_FILE_THPS ||
 227               item == NR_SHMEM_THPS ||
 228               item == NR_SHMEM_PMDMAPPED ||
 229               item == NR_FILE_PMDMAPPED;
 230}
 231
 232/*
 233 * Returns true if the value is measured in bytes (most vmstat values are
 234 * measured in pages). This defines the API part, the internal representation
 235 * might be different.
 236 */
 237static __always_inline bool vmstat_item_in_bytes(int idx)
 238{
 239        /*
 240         * Global and per-node slab counters track slab pages.
 241         * It's expected that changes are multiples of PAGE_SIZE.
 242         * Internally values are stored in pages.
 243         *
 244         * Per-memcg and per-lruvec counters track memory, consumed
 245         * by individual slab objects. These counters are actually
 246         * byte-precise.
 247         */
 248        return (idx == NR_SLAB_RECLAIMABLE_B ||
 249                idx == NR_SLAB_UNRECLAIMABLE_B);
 250}
 251
 252/*
 253 * We do arithmetic on the LRU lists in various places in the code,
 254 * so it is important to keep the active lists LRU_ACTIVE higher in
 255 * the array than the corresponding inactive lists, and to keep
 256 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 257 *
 258 * This has to be kept in sync with the statistics in zone_stat_item
 259 * above and the descriptions in vmstat_text in mm/vmstat.c
 260 */
 261#define LRU_BASE 0
 262#define LRU_ACTIVE 1
 263#define LRU_FILE 2
 264
 265enum lru_list {
 266        LRU_INACTIVE_ANON = LRU_BASE,
 267        LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
 268        LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
 269        LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
 270        LRU_UNEVICTABLE,
 271        NR_LRU_LISTS
 272};
 273
 274#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
 275
 276#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
 277
 278static inline bool is_file_lru(enum lru_list lru)
 279{
 280        return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
 281}
 282
 283static inline bool is_active_lru(enum lru_list lru)
 284{
 285        return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
 286}
 287
 288#define ANON_AND_FILE 2
 289
 290enum lruvec_flags {
 291        LRUVEC_CONGESTED,               /* lruvec has many dirty pages
 292                                         * backed by a congested BDI
 293                                         */
 294};
 295
 296struct lruvec {
 297        struct list_head                lists[NR_LRU_LISTS];
 298        /* per lruvec lru_lock for memcg */
 299        spinlock_t                      lru_lock;
 300        /*
 301         * These track the cost of reclaiming one LRU - file or anon -
 302         * over the other. As the observed cost of reclaiming one LRU
 303         * increases, the reclaim scan balance tips toward the other.
 304         */
 305        unsigned long                   anon_cost;
 306        unsigned long                   file_cost;
 307        /* Non-resident age, driven by LRU movement */
 308        atomic_long_t                   nonresident_age;
 309        /* Refaults at the time of last reclaim cycle */
 310        unsigned long                   refaults[ANON_AND_FILE];
 311        /* Various lruvec state flags (enum lruvec_flags) */
 312        unsigned long                   flags;
 313#ifdef CONFIG_MEMCG
 314        struct pglist_data *pgdat;
 315#endif
 316};
 317
 318/* Isolate unmapped pages */
 319#define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
 320/* Isolate for asynchronous migration */
 321#define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
 322/* Isolate unevictable pages */
 323#define ISOLATE_UNEVICTABLE     ((__force isolate_mode_t)0x8)
 324
 325/* LRU Isolation modes. */
 326typedef unsigned __bitwise isolate_mode_t;
 327
 328enum zone_watermarks {
 329        WMARK_MIN,
 330        WMARK_LOW,
 331        WMARK_HIGH,
 332        NR_WMARK
 333};
 334
 335#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
 336#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
 337#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
 338#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
 339
 340struct per_cpu_pages {
 341        int count;              /* number of pages in the list */
 342        int high;               /* high watermark, emptying needed */
 343        int batch;              /* chunk size for buddy add/remove */
 344
 345        /* Lists of pages, one per migrate type stored on the pcp-lists */
 346        struct list_head lists[MIGRATE_PCPTYPES];
 347};
 348
 349struct per_cpu_pageset {
 350        struct per_cpu_pages pcp;
 351#ifdef CONFIG_NUMA
 352        s8 expire;
 353        u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
 354#endif
 355#ifdef CONFIG_SMP
 356        s8 stat_threshold;
 357        s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
 358#endif
 359};
 360
 361struct per_cpu_nodestat {
 362        s8 stat_threshold;
 363        s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
 364};
 365
 366#endif /* !__GENERATING_BOUNDS.H */
 367
 368enum zone_type {
 369        /*
 370         * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
 371         * to DMA to all of the addressable memory (ZONE_NORMAL).
 372         * On architectures where this area covers the whole 32 bit address
 373         * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
 374         * DMA addressing constraints. This distinction is important as a 32bit
 375         * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
 376         * platforms may need both zones as they support peripherals with
 377         * different DMA addressing limitations.
 378         */
 379#ifdef CONFIG_ZONE_DMA
 380        ZONE_DMA,
 381#endif
 382#ifdef CONFIG_ZONE_DMA32
 383        ZONE_DMA32,
 384#endif
 385        /*
 386         * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
 387         * performed on pages in ZONE_NORMAL if the DMA devices support
 388         * transfers to all addressable memory.
 389         */
 390        ZONE_NORMAL,
 391#ifdef CONFIG_HIGHMEM
 392        /*
 393         * A memory area that is only addressable by the kernel through
 394         * mapping portions into its own address space. This is for example
 395         * used by i386 to allow the kernel to address the memory beyond
 396         * 900MB. The kernel will set up special mappings (page
 397         * table entries on i386) for each page that the kernel needs to
 398         * access.
 399         */
 400        ZONE_HIGHMEM,
 401#endif
 402        /*
 403         * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
 404         * movable pages with few exceptional cases described below. Main use
 405         * cases for ZONE_MOVABLE are to make memory offlining/unplug more
 406         * likely to succeed, and to locally limit unmovable allocations - e.g.,
 407         * to increase the number of THP/huge pages. Notable special cases are:
 408         *
 409         * 1. Pinned pages: (long-term) pinning of movable pages might
 410         *    essentially turn such pages unmovable. Memory offlining might
 411         *    retry a long time.
 412         * 2. memblock allocations: kernelcore/movablecore setups might create
 413         *    situations where ZONE_MOVABLE contains unmovable allocations
 414         *    after boot. Memory offlining and allocations fail early.
 415         * 3. Memory holes: kernelcore/movablecore setups might create very rare
 416         *    situations where ZONE_MOVABLE contains memory holes after boot,
 417         *    for example, if we have sections that are only partially
 418         *    populated. Memory offlining and allocations fail early.
 419         * 4. PG_hwpoison pages: while poisoned pages can be skipped during
 420         *    memory offlining, such pages cannot be allocated.
 421         * 5. Unmovable PG_offline pages: in paravirtualized environments,
 422         *    hotplugged memory blocks might only partially be managed by the
 423         *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
 424         *    parts not manged by the buddy are unmovable PG_offline pages. In
 425         *    some cases (virtio-mem), such pages can be skipped during
 426         *    memory offlining, however, cannot be moved/allocated. These
 427         *    techniques might use alloc_contig_range() to hide previously
 428         *    exposed pages from the buddy again (e.g., to implement some sort
 429         *    of memory unplug in virtio-mem).
 430         *
 431         * In general, no unmovable allocations that degrade memory offlining
 432         * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
 433         * have to expect that migrating pages in ZONE_MOVABLE can fail (even
 434         * if has_unmovable_pages() states that there are no unmovable pages,
 435         * there can be false negatives).
 436         */
 437        ZONE_MOVABLE,
 438#ifdef CONFIG_ZONE_DEVICE
 439        ZONE_DEVICE,
 440#endif
 441        __MAX_NR_ZONES
 442
 443};
 444
 445#ifndef __GENERATING_BOUNDS_H
 446
 447#define ASYNC_AND_SYNC 2
 448
 449struct zone {
 450        /* Read-mostly fields */
 451
 452        /* zone watermarks, access with *_wmark_pages(zone) macros */
 453        unsigned long _watermark[NR_WMARK];
 454        unsigned long watermark_boost;
 455
 456        unsigned long nr_reserved_highatomic;
 457
 458        /*
 459         * We don't know if the memory that we're going to allocate will be
 460         * freeable or/and it will be released eventually, so to avoid totally
 461         * wasting several GB of ram we must reserve some of the lower zone
 462         * memory (otherwise we risk to run OOM on the lower zones despite
 463         * there being tons of freeable ram on the higher zones).  This array is
 464         * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
 465         * changes.
 466         */
 467        long lowmem_reserve[MAX_NR_ZONES];
 468
 469#ifdef CONFIG_NUMA
 470        int node;
 471#endif
 472        struct pglist_data      *zone_pgdat;
 473        struct per_cpu_pageset __percpu *pageset;
 474        /*
 475         * the high and batch values are copied to individual pagesets for
 476         * faster access
 477         */
 478        int pageset_high;
 479        int pageset_batch;
 480
 481#ifndef CONFIG_SPARSEMEM
 482        /*
 483         * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
 484         * In SPARSEMEM, this map is stored in struct mem_section
 485         */
 486        unsigned long           *pageblock_flags;
 487#endif /* CONFIG_SPARSEMEM */
 488
 489        /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
 490        unsigned long           zone_start_pfn;
 491
 492        /*
 493         * spanned_pages is the total pages spanned by the zone, including
 494         * holes, which is calculated as:
 495         *      spanned_pages = zone_end_pfn - zone_start_pfn;
 496         *
 497         * present_pages is physical pages existing within the zone, which
 498         * is calculated as:
 499         *      present_pages = spanned_pages - absent_pages(pages in holes);
 500         *
 501         * managed_pages is present pages managed by the buddy system, which
 502         * is calculated as (reserved_pages includes pages allocated by the
 503         * bootmem allocator):
 504         *      managed_pages = present_pages - reserved_pages;
 505         *
 506         * cma pages is present pages that are assigned for CMA use
 507         * (MIGRATE_CMA).
 508         *
 509         * So present_pages may be used by memory hotplug or memory power
 510         * management logic to figure out unmanaged pages by checking
 511         * (present_pages - managed_pages). And managed_pages should be used
 512         * by page allocator and vm scanner to calculate all kinds of watermarks
 513         * and thresholds.
 514         *
 515         * Locking rules:
 516         *
 517         * zone_start_pfn and spanned_pages are protected by span_seqlock.
 518         * It is a seqlock because it has to be read outside of zone->lock,
 519         * and it is done in the main allocator path.  But, it is written
 520         * quite infrequently.
 521         *
 522         * The span_seq lock is declared along with zone->lock because it is
 523         * frequently read in proximity to zone->lock.  It's good to
 524         * give them a chance of being in the same cacheline.
 525         *
 526         * Write access to present_pages at runtime should be protected by
 527         * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
 528         * present_pages should get_online_mems() to get a stable value.
 529         */
 530        atomic_long_t           managed_pages;
 531        unsigned long           spanned_pages;
 532        unsigned long           present_pages;
 533#ifdef CONFIG_CMA
 534        unsigned long           cma_pages;
 535#endif
 536
 537        const char              *name;
 538
 539#ifdef CONFIG_MEMORY_ISOLATION
 540        /*
 541         * Number of isolated pageblock. It is used to solve incorrect
 542         * freepage counting problem due to racy retrieving migratetype
 543         * of pageblock. Protected by zone->lock.
 544         */
 545        unsigned long           nr_isolate_pageblock;
 546#endif
 547
 548#ifdef CONFIG_MEMORY_HOTPLUG
 549        /* see spanned/present_pages for more description */
 550        seqlock_t               span_seqlock;
 551#endif
 552
 553        int initialized;
 554
 555        /* Write-intensive fields used from the page allocator */
 556        ZONE_PADDING(_pad1_)
 557
 558        /* free areas of different sizes */
 559        struct free_area        free_area[MAX_ORDER];
 560
 561        /* zone flags, see below */
 562        unsigned long           flags;
 563
 564        /* Primarily protects free_area */
 565        spinlock_t              lock;
 566
 567        /* Write-intensive fields used by compaction and vmstats. */
 568        ZONE_PADDING(_pad2_)
 569
 570        /*
 571         * When free pages are below this point, additional steps are taken
 572         * when reading the number of free pages to avoid per-cpu counter
 573         * drift allowing watermarks to be breached
 574         */
 575        unsigned long percpu_drift_mark;
 576
 577#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 578        /* pfn where compaction free scanner should start */
 579        unsigned long           compact_cached_free_pfn;
 580        /* pfn where compaction migration scanner should start */
 581        unsigned long           compact_cached_migrate_pfn[ASYNC_AND_SYNC];
 582        unsigned long           compact_init_migrate_pfn;
 583        unsigned long           compact_init_free_pfn;
 584#endif
 585
 586#ifdef CONFIG_COMPACTION
 587        /*
 588         * On compaction failure, 1<<compact_defer_shift compactions
 589         * are skipped before trying again. The number attempted since
 590         * last failure is tracked with compact_considered.
 591         * compact_order_failed is the minimum compaction failed order.
 592         */
 593        unsigned int            compact_considered;
 594        unsigned int            compact_defer_shift;
 595        int                     compact_order_failed;
 596#endif
 597
 598#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 599        /* Set to true when the PG_migrate_skip bits should be cleared */
 600        bool                    compact_blockskip_flush;
 601#endif
 602
 603        bool                    contiguous;
 604
 605        ZONE_PADDING(_pad3_)
 606        /* Zone statistics */
 607        atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
 608        atomic_long_t           vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
 609} ____cacheline_internodealigned_in_smp;
 610
 611enum pgdat_flags {
 612        PGDAT_DIRTY,                    /* reclaim scanning has recently found
 613                                         * many dirty file pages at the tail
 614                                         * of the LRU.
 615                                         */
 616        PGDAT_WRITEBACK,                /* reclaim scanning has recently found
 617                                         * many pages under writeback
 618                                         */
 619        PGDAT_RECLAIM_LOCKED,           /* prevents concurrent reclaim */
 620};
 621
 622enum zone_flags {
 623        ZONE_BOOSTED_WATERMARK,         /* zone recently boosted watermarks.
 624                                         * Cleared when kswapd is woken.
 625                                         */
 626};
 627
 628static inline unsigned long zone_managed_pages(struct zone *zone)
 629{
 630        return (unsigned long)atomic_long_read(&zone->managed_pages);
 631}
 632
 633static inline unsigned long zone_cma_pages(struct zone *zone)
 634{
 635#ifdef CONFIG_CMA
 636        return zone->cma_pages;
 637#else
 638        return 0;
 639#endif
 640}
 641
 642static inline unsigned long zone_end_pfn(const struct zone *zone)
 643{
 644        return zone->zone_start_pfn + zone->spanned_pages;
 645}
 646
 647static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
 648{
 649        return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
 650}
 651
 652static inline bool zone_is_initialized(struct zone *zone)
 653{
 654        return zone->initialized;
 655}
 656
 657static inline bool zone_is_empty(struct zone *zone)
 658{
 659        return zone->spanned_pages == 0;
 660}
 661
 662/*
 663 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
 664 * intersection with the given zone
 665 */
 666static inline bool zone_intersects(struct zone *zone,
 667                unsigned long start_pfn, unsigned long nr_pages)
 668{
 669        if (zone_is_empty(zone))
 670                return false;
 671        if (start_pfn >= zone_end_pfn(zone) ||
 672            start_pfn + nr_pages <= zone->zone_start_pfn)
 673                return false;
 674
 675        return true;
 676}
 677
 678/*
 679 * The "priority" of VM scanning is how much of the queues we will scan in one
 680 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 681 * queues ("queue_length >> 12") during an aging round.
 682 */
 683#define DEF_PRIORITY 12
 684
 685/* Maximum number of zones on a zonelist */
 686#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
 687
 688enum {
 689        ZONELIST_FALLBACK,      /* zonelist with fallback */
 690#ifdef CONFIG_NUMA
 691        /*
 692         * The NUMA zonelists are doubled because we need zonelists that
 693         * restrict the allocations to a single node for __GFP_THISNODE.
 694         */
 695        ZONELIST_NOFALLBACK,    /* zonelist without fallback (__GFP_THISNODE) */
 696#endif
 697        MAX_ZONELISTS
 698};
 699
 700/*
 701 * This struct contains information about a zone in a zonelist. It is stored
 702 * here to avoid dereferences into large structures and lookups of tables
 703 */
 704struct zoneref {
 705        struct zone *zone;      /* Pointer to actual zone */
 706        int zone_idx;           /* zone_idx(zoneref->zone) */
 707};
 708
 709/*
 710 * One allocation request operates on a zonelist. A zonelist
 711 * is a list of zones, the first one is the 'goal' of the
 712 * allocation, the other zones are fallback zones, in decreasing
 713 * priority.
 714 *
 715 * To speed the reading of the zonelist, the zonerefs contain the zone index
 716 * of the entry being read. Helper functions to access information given
 717 * a struct zoneref are
 718 *
 719 * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
 720 * zonelist_zone_idx()  - Return the index of the zone for an entry
 721 * zonelist_node_idx()  - Return the index of the node for an entry
 722 */
 723struct zonelist {
 724        struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
 725};
 726
 727#ifndef CONFIG_DISCONTIGMEM
 728/* The array of struct pages - for discontigmem use pgdat->lmem_map */
 729extern struct page *mem_map;
 730#endif
 731
 732#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 733struct deferred_split {
 734        spinlock_t split_queue_lock;
 735        struct list_head split_queue;
 736        unsigned long split_queue_len;
 737};
 738#endif
 739
 740/*
 741 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 742 * it's memory layout. On UMA machines there is a single pglist_data which
 743 * describes the whole memory.
 744 *
 745 * Memory statistics and page replacement data structures are maintained on a
 746 * per-zone basis.
 747 */
 748typedef struct pglist_data {
 749        /*
 750         * node_zones contains just the zones for THIS node. Not all of the
 751         * zones may be populated, but it is the full list. It is referenced by
 752         * this node's node_zonelists as well as other node's node_zonelists.
 753         */
 754        struct zone node_zones[MAX_NR_ZONES];
 755
 756        /*
 757         * node_zonelists contains references to all zones in all nodes.
 758         * Generally the first zones will be references to this node's
 759         * node_zones.
 760         */
 761        struct zonelist node_zonelists[MAX_ZONELISTS];
 762
 763        int nr_zones; /* number of populated zones in this node */
 764#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
 765        struct page *node_mem_map;
 766#ifdef CONFIG_PAGE_EXTENSION
 767        struct page_ext *node_page_ext;
 768#endif
 769#endif
 770#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
 771        /*
 772         * Must be held any time you expect node_start_pfn,
 773         * node_present_pages, node_spanned_pages or nr_zones to stay constant.
 774         * Also synchronizes pgdat->first_deferred_pfn during deferred page
 775         * init.
 776         *
 777         * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
 778         * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
 779         * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
 780         *
 781         * Nests above zone->lock and zone->span_seqlock
 782         */
 783        spinlock_t node_size_lock;
 784#endif
 785        unsigned long node_start_pfn;
 786        unsigned long node_present_pages; /* total number of physical pages */
 787        unsigned long node_spanned_pages; /* total size of physical page
 788                                             range, including holes */
 789        int node_id;
 790        wait_queue_head_t kswapd_wait;
 791        wait_queue_head_t pfmemalloc_wait;
 792        struct task_struct *kswapd;     /* Protected by
 793                                           mem_hotplug_begin/end() */
 794        int kswapd_order;
 795        enum zone_type kswapd_highest_zoneidx;
 796
 797        int kswapd_failures;            /* Number of 'reclaimed == 0' runs */
 798
 799#ifdef CONFIG_COMPACTION
 800        int kcompactd_max_order;
 801        enum zone_type kcompactd_highest_zoneidx;
 802        wait_queue_head_t kcompactd_wait;
 803        struct task_struct *kcompactd;
 804#endif
 805        /*
 806         * This is a per-node reserve of pages that are not available
 807         * to userspace allocations.
 808         */
 809        unsigned long           totalreserve_pages;
 810
 811#ifdef CONFIG_NUMA
 812        /*
 813         * node reclaim becomes active if more unmapped pages exist.
 814         */
 815        unsigned long           min_unmapped_pages;
 816        unsigned long           min_slab_pages;
 817#endif /* CONFIG_NUMA */
 818
 819        /* Write-intensive fields used by page reclaim */
 820        ZONE_PADDING(_pad1_)
 821
 822#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 823        /*
 824         * If memory initialisation on large machines is deferred then this
 825         * is the first PFN that needs to be initialised.
 826         */
 827        unsigned long first_deferred_pfn;
 828#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 829
 830#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 831        struct deferred_split deferred_split_queue;
 832#endif
 833
 834        /* Fields commonly accessed by the page reclaim scanner */
 835
 836        /*
 837         * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
 838         *
 839         * Use mem_cgroup_lruvec() to look up lruvecs.
 840         */
 841        struct lruvec           __lruvec;
 842
 843        unsigned long           flags;
 844
 845        ZONE_PADDING(_pad2_)
 846
 847        /* Per-node vmstats */
 848        struct per_cpu_nodestat __percpu *per_cpu_nodestats;
 849        atomic_long_t           vm_stat[NR_VM_NODE_STAT_ITEMS];
 850} pg_data_t;
 851
 852#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
 853#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
 854#ifdef CONFIG_FLAT_NODE_MEM_MAP
 855#define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
 856#else
 857#define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
 858#endif
 859#define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
 860
 861#define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
 862#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
 863
 864static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
 865{
 866        return pgdat->node_start_pfn + pgdat->node_spanned_pages;
 867}
 868
 869static inline bool pgdat_is_empty(pg_data_t *pgdat)
 870{
 871        return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
 872}
 873
 874#include <linux/memory_hotplug.h>
 875
 876void build_all_zonelists(pg_data_t *pgdat);
 877void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
 878                   enum zone_type highest_zoneidx);
 879bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
 880                         int highest_zoneidx, unsigned int alloc_flags,
 881                         long free_pages);
 882bool zone_watermark_ok(struct zone *z, unsigned int order,
 883                unsigned long mark, int highest_zoneidx,
 884                unsigned int alloc_flags);
 885bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
 886                unsigned long mark, int highest_zoneidx);
 887/*
 888 * Memory initialization context, use to differentiate memory added by
 889 * the platform statically or via memory hotplug interface.
 890 */
 891enum meminit_context {
 892        MEMINIT_EARLY,
 893        MEMINIT_HOTPLUG,
 894};
 895
 896extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
 897                                     unsigned long size);
 898
 899extern void lruvec_init(struct lruvec *lruvec);
 900
 901static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
 902{
 903#ifdef CONFIG_MEMCG
 904        return lruvec->pgdat;
 905#else
 906        return container_of(lruvec, struct pglist_data, __lruvec);
 907#endif
 908}
 909
 910#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 911int local_memory_node(int node_id);
 912#else
 913static inline int local_memory_node(int node_id) { return node_id; };
 914#endif
 915
 916/*
 917 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 918 */
 919#define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
 920
 921#ifdef CONFIG_ZONE_DEVICE
 922static inline bool zone_is_zone_device(struct zone *zone)
 923{
 924        return zone_idx(zone) == ZONE_DEVICE;
 925}
 926#else
 927static inline bool zone_is_zone_device(struct zone *zone)
 928{
 929        return false;
 930}
 931#endif
 932
 933/*
 934 * Returns true if a zone has pages managed by the buddy allocator.
 935 * All the reclaim decisions have to use this function rather than
 936 * populated_zone(). If the whole zone is reserved then we can easily
 937 * end up with populated_zone() && !managed_zone().
 938 */
 939static inline bool managed_zone(struct zone *zone)
 940{
 941        return zone_managed_pages(zone);
 942}
 943
 944/* Returns true if a zone has memory */
 945static inline bool populated_zone(struct zone *zone)
 946{
 947        return zone->present_pages;
 948}
 949
 950#ifdef CONFIG_NUMA
 951static inline int zone_to_nid(struct zone *zone)
 952{
 953        return zone->node;
 954}
 955
 956static inline void zone_set_nid(struct zone *zone, int nid)
 957{
 958        zone->node = nid;
 959}
 960#else
 961static inline int zone_to_nid(struct zone *zone)
 962{
 963        return 0;
 964}
 965
 966static inline void zone_set_nid(struct zone *zone, int nid) {}
 967#endif
 968
 969extern int movable_zone;
 970
 971#ifdef CONFIG_HIGHMEM
 972static inline int zone_movable_is_highmem(void)
 973{
 974#ifdef CONFIG_NEED_MULTIPLE_NODES
 975        return movable_zone == ZONE_HIGHMEM;
 976#else
 977        return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
 978#endif
 979}
 980#endif
 981
 982static inline int is_highmem_idx(enum zone_type idx)
 983{
 984#ifdef CONFIG_HIGHMEM
 985        return (idx == ZONE_HIGHMEM ||
 986                (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
 987#else
 988        return 0;
 989#endif
 990}
 991
 992/**
 993 * is_highmem - helper function to quickly check if a struct zone is a
 994 *              highmem zone or not.  This is an attempt to keep references
 995 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 996 * @zone - pointer to struct zone variable
 997 */
 998static inline int is_highmem(struct zone *zone)
 999{
1000#ifdef CONFIG_HIGHMEM
1001        return is_highmem_idx(zone_idx(zone));
1002#else
1003        return 0;
1004#endif
1005}
1006
1007/* These two functions are used to setup the per zone pages min values */
1008struct ctl_table;
1009
1010int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1011                loff_t *);
1012int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1013                size_t *, loff_t *);
1014extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
1015int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1016                size_t *, loff_t *);
1017int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
1018                void *, size_t *, loff_t *);
1019int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
1020                void *, size_t *, loff_t *);
1021int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
1022                void *, size_t *, loff_t *);
1023int numa_zonelist_order_handler(struct ctl_table *, int,
1024                void *, size_t *, loff_t *);
1025extern int percpu_pagelist_fraction;
1026extern char numa_zonelist_order[];
1027#define NUMA_ZONELIST_ORDER_LEN 16
1028
1029#ifndef CONFIG_NEED_MULTIPLE_NODES
1030
1031extern struct pglist_data contig_page_data;
1032#define NODE_DATA(nid)          (&contig_page_data)
1033#define NODE_MEM_MAP(nid)       mem_map
1034
1035#else /* CONFIG_NEED_MULTIPLE_NODES */
1036
1037#include <asm/mmzone.h>
1038
1039#endif /* !CONFIG_NEED_MULTIPLE_NODES */
1040
1041extern struct pglist_data *first_online_pgdat(void);
1042extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1043extern struct zone *next_zone(struct zone *zone);
1044
1045/**
1046 * for_each_online_pgdat - helper macro to iterate over all online nodes
1047 * @pgdat - pointer to a pg_data_t variable
1048 */
1049#define for_each_online_pgdat(pgdat)                    \
1050        for (pgdat = first_online_pgdat();              \
1051             pgdat;                                     \
1052             pgdat = next_online_pgdat(pgdat))
1053/**
1054 * for_each_zone - helper macro to iterate over all memory zones
1055 * @zone - pointer to struct zone variable
1056 *
1057 * The user only needs to declare the zone variable, for_each_zone
1058 * fills it in.
1059 */
1060#define for_each_zone(zone)                             \
1061        for (zone = (first_online_pgdat())->node_zones; \
1062             zone;                                      \
1063             zone = next_zone(zone))
1064
1065#define for_each_populated_zone(zone)                   \
1066        for (zone = (first_online_pgdat())->node_zones; \
1067             zone;                                      \
1068             zone = next_zone(zone))                    \
1069                if (!populated_zone(zone))              \
1070                        ; /* do nothing */              \
1071                else
1072
1073static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1074{
1075        return zoneref->zone;
1076}
1077
1078static inline int zonelist_zone_idx(struct zoneref *zoneref)
1079{
1080        return zoneref->zone_idx;
1081}
1082
1083static inline int zonelist_node_idx(struct zoneref *zoneref)
1084{
1085        return zone_to_nid(zoneref->zone);
1086}
1087
1088struct zoneref *__next_zones_zonelist(struct zoneref *z,
1089                                        enum zone_type highest_zoneidx,
1090                                        nodemask_t *nodes);
1091
1092/**
1093 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1094 * @z - The cursor used as a starting point for the search
1095 * @highest_zoneidx - The zone index of the highest zone to return
1096 * @nodes - An optional nodemask to filter the zonelist with
1097 *
1098 * This function returns the next zone at or below a given zone index that is
1099 * within the allowed nodemask using a cursor as the starting point for the
1100 * search. The zoneref returned is a cursor that represents the current zone
1101 * being examined. It should be advanced by one before calling
1102 * next_zones_zonelist again.
1103 */
1104static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1105                                        enum zone_type highest_zoneidx,
1106                                        nodemask_t *nodes)
1107{
1108        if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1109                return z;
1110        return __next_zones_zonelist(z, highest_zoneidx, nodes);
1111}
1112
1113/**
1114 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1115 * @zonelist - The zonelist to search for a suitable zone
1116 * @highest_zoneidx - The zone index of the highest zone to return
1117 * @nodes - An optional nodemask to filter the zonelist with
1118 * @return - Zoneref pointer for the first suitable zone found (see below)
1119 *
1120 * This function returns the first zone at or below a given zone index that is
1121 * within the allowed nodemask. The zoneref returned is a cursor that can be
1122 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1123 * one before calling.
1124 *
1125 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1126 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1127 * update due to cpuset modification.
1128 */
1129static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1130                                        enum zone_type highest_zoneidx,
1131                                        nodemask_t *nodes)
1132{
1133        return next_zones_zonelist(zonelist->_zonerefs,
1134                                                        highest_zoneidx, nodes);
1135}
1136
1137/**
1138 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1139 * @zone - The current zone in the iterator
1140 * @z - The current pointer within zonelist->_zonerefs being iterated
1141 * @zlist - The zonelist being iterated
1142 * @highidx - The zone index of the highest zone to return
1143 * @nodemask - Nodemask allowed by the allocator
1144 *
1145 * This iterator iterates though all zones at or below a given zone index and
1146 * within a given nodemask
1147 */
1148#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1149        for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);       \
1150                zone;                                                   \
1151                z = next_zones_zonelist(++z, highidx, nodemask),        \
1152                        zone = zonelist_zone(z))
1153
1154#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1155        for (zone = z->zone;    \
1156                zone;                                                   \
1157                z = next_zones_zonelist(++z, highidx, nodemask),        \
1158                        zone = zonelist_zone(z))
1159
1160
1161/**
1162 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1163 * @zone - The current zone in the iterator
1164 * @z - The current pointer within zonelist->zones being iterated
1165 * @zlist - The zonelist being iterated
1166 * @highidx - The zone index of the highest zone to return
1167 *
1168 * This iterator iterates though all zones at or below a given zone index.
1169 */
1170#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1171        for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1172
1173#ifdef CONFIG_SPARSEMEM
1174#include <asm/sparsemem.h>
1175#endif
1176
1177#ifdef CONFIG_FLATMEM
1178#define pfn_to_nid(pfn)         (0)
1179#endif
1180
1181#ifdef CONFIG_SPARSEMEM
1182
1183/*
1184 * SECTION_SHIFT                #bits space required to store a section #
1185 *
1186 * PA_SECTION_SHIFT             physical address to/from section number
1187 * PFN_SECTION_SHIFT            pfn to/from section number
1188 */
1189#define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
1190#define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
1191
1192#define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
1193
1194#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1195#define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
1196
1197#define SECTION_BLOCKFLAGS_BITS \
1198        ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1199
1200#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1201#error Allocator MAX_ORDER exceeds SECTION_SIZE
1202#endif
1203
1204static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1205{
1206        return pfn >> PFN_SECTION_SHIFT;
1207}
1208static inline unsigned long section_nr_to_pfn(unsigned long sec)
1209{
1210        return sec << PFN_SECTION_SHIFT;
1211}
1212
1213#define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1214#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1215
1216#define SUBSECTION_SHIFT 21
1217#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1218
1219#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1220#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1221#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1222
1223#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1224#error Subsection size exceeds section size
1225#else
1226#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1227#endif
1228
1229#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1230#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1231
1232struct mem_section_usage {
1233#ifdef CONFIG_SPARSEMEM_VMEMMAP
1234        DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1235#endif
1236        /* See declaration of similar field in struct zone */
1237        unsigned long pageblock_flags[0];
1238};
1239
1240void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1241
1242struct page;
1243struct page_ext;
1244struct mem_section {
1245        /*
1246         * This is, logically, a pointer to an array of struct
1247         * pages.  However, it is stored with some other magic.
1248         * (see sparse.c::sparse_init_one_section())
1249         *
1250         * Additionally during early boot we encode node id of
1251         * the location of the section here to guide allocation.
1252         * (see sparse.c::memory_present())
1253         *
1254         * Making it a UL at least makes someone do a cast
1255         * before using it wrong.
1256         */
1257        unsigned long section_mem_map;
1258
1259        struct mem_section_usage *usage;
1260#ifdef CONFIG_PAGE_EXTENSION
1261        /*
1262         * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1263         * section. (see page_ext.h about this.)
1264         */
1265        struct page_ext *page_ext;
1266        unsigned long pad;
1267#endif
1268        /*
1269         * WARNING: mem_section must be a power-of-2 in size for the
1270         * calculation and use of SECTION_ROOT_MASK to make sense.
1271         */
1272};
1273
1274#ifdef CONFIG_SPARSEMEM_EXTREME
1275#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1276#else
1277#define SECTIONS_PER_ROOT       1
1278#endif
1279
1280#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1281#define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1282#define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1283
1284#ifdef CONFIG_SPARSEMEM_EXTREME
1285extern struct mem_section **mem_section;
1286#else
1287extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1288#endif
1289
1290static inline unsigned long *section_to_usemap(struct mem_section *ms)
1291{
1292        return ms->usage->pageblock_flags;
1293}
1294
1295static inline struct mem_section *__nr_to_section(unsigned long nr)
1296{
1297#ifdef CONFIG_SPARSEMEM_EXTREME
1298        if (!mem_section)
1299                return NULL;
1300#endif
1301        if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1302                return NULL;
1303        return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1304}
1305extern unsigned long __section_nr(struct mem_section *ms);
1306extern size_t mem_section_usage_size(void);
1307
1308/*
1309 * We use the lower bits of the mem_map pointer to store
1310 * a little bit of information.  The pointer is calculated
1311 * as mem_map - section_nr_to_pfn(pnum).  The result is
1312 * aligned to the minimum alignment of the two values:
1313 *   1. All mem_map arrays are page-aligned.
1314 *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1315 *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1316 *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1317 *      worst combination is powerpc with 256k pages,
1318 *      which results in PFN_SECTION_SHIFT equal 6.
1319 * To sum it up, at least 6 bits are available.
1320 */
1321#define SECTION_MARKED_PRESENT          (1UL<<0)
1322#define SECTION_HAS_MEM_MAP             (1UL<<1)
1323#define SECTION_IS_ONLINE               (1UL<<2)
1324#define SECTION_IS_EARLY                (1UL<<3)
1325#define SECTION_TAINT_ZONE_DEVICE       (1UL<<4)
1326#define SECTION_MAP_LAST_BIT            (1UL<<5)
1327#define SECTION_MAP_MASK                (~(SECTION_MAP_LAST_BIT-1))
1328#define SECTION_NID_SHIFT               3
1329
1330static inline struct page *__section_mem_map_addr(struct mem_section *section)
1331{
1332        unsigned long map = section->section_mem_map;
1333        map &= SECTION_MAP_MASK;
1334        return (struct page *)map;
1335}
1336
1337static inline int present_section(struct mem_section *section)
1338{
1339        return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1340}
1341
1342static inline int present_section_nr(unsigned long nr)
1343{
1344        return present_section(__nr_to_section(nr));
1345}
1346
1347static inline int valid_section(struct mem_section *section)
1348{
1349        return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1350}
1351
1352static inline int early_section(struct mem_section *section)
1353{
1354        return (section && (section->section_mem_map & SECTION_IS_EARLY));
1355}
1356
1357static inline int valid_section_nr(unsigned long nr)
1358{
1359        return valid_section(__nr_to_section(nr));
1360}
1361
1362static inline int online_section(struct mem_section *section)
1363{
1364        return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1365}
1366
1367static inline int online_device_section(struct mem_section *section)
1368{
1369        unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1370
1371        return section && ((section->section_mem_map & flags) == flags);
1372}
1373
1374static inline int online_section_nr(unsigned long nr)
1375{
1376        return online_section(__nr_to_section(nr));
1377}
1378
1379#ifdef CONFIG_MEMORY_HOTPLUG
1380void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1381#ifdef CONFIG_MEMORY_HOTREMOVE
1382void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1383#endif
1384#endif
1385
1386static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1387{
1388        return __nr_to_section(pfn_to_section_nr(pfn));
1389}
1390
1391extern unsigned long __highest_present_section_nr;
1392
1393static inline int subsection_map_index(unsigned long pfn)
1394{
1395        return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1396}
1397
1398#ifdef CONFIG_SPARSEMEM_VMEMMAP
1399static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1400{
1401        int idx = subsection_map_index(pfn);
1402
1403        return test_bit(idx, ms->usage->subsection_map);
1404}
1405#else
1406static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1407{
1408        return 1;
1409}
1410#endif
1411
1412#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1413static inline int pfn_valid(unsigned long pfn)
1414{
1415        struct mem_section *ms;
1416
1417        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1418                return 0;
1419        ms = __nr_to_section(pfn_to_section_nr(pfn));
1420        if (!valid_section(ms))
1421                return 0;
1422        /*
1423         * Traditionally early sections always returned pfn_valid() for
1424         * the entire section-sized span.
1425         */
1426        return early_section(ms) || pfn_section_valid(ms, pfn);
1427}
1428#endif
1429
1430static inline int pfn_in_present_section(unsigned long pfn)
1431{
1432        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1433                return 0;
1434        return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1435}
1436
1437static inline unsigned long next_present_section_nr(unsigned long section_nr)
1438{
1439        while (++section_nr <= __highest_present_section_nr) {
1440                if (present_section_nr(section_nr))
1441                        return section_nr;
1442        }
1443
1444        return -1;
1445}
1446
1447/*
1448 * These are _only_ used during initialisation, therefore they
1449 * can use __initdata ...  They could have names to indicate
1450 * this restriction.
1451 */
1452#ifdef CONFIG_NUMA
1453#define pfn_to_nid(pfn)                                                 \
1454({                                                                      \
1455        unsigned long __pfn_to_nid_pfn = (pfn);                         \
1456        page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1457})
1458#else
1459#define pfn_to_nid(pfn)         (0)
1460#endif
1461
1462void sparse_init(void);
1463#else
1464#define sparse_init()   do {} while (0)
1465#define sparse_index_init(_sec, _nid)  do {} while (0)
1466#define pfn_in_present_section pfn_valid
1467#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1468#endif /* CONFIG_SPARSEMEM */
1469
1470/*
1471 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1472 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1473 * pfn_valid_within() should be used in this case; we optimise this away
1474 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1475 */
1476#ifdef CONFIG_HOLES_IN_ZONE
1477#define pfn_valid_within(pfn) pfn_valid(pfn)
1478#else
1479#define pfn_valid_within(pfn) (1)
1480#endif
1481
1482#endif /* !__GENERATING_BOUNDS.H */
1483#endif /* !__ASSEMBLY__ */
1484#endif /* _LINUX_MMZONE_H */
1485