1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_USB_H 3#define __LINUX_USB_H 4 5#include <linux/mod_devicetable.h> 6#include <linux/usb/ch9.h> 7 8#define USB_MAJOR 180 9#define USB_DEVICE_MAJOR 189 10 11 12#ifdef __KERNEL__ 13 14#include <linux/errno.h> /* for -ENODEV */ 15#include <linux/delay.h> /* for mdelay() */ 16#include <linux/interrupt.h> /* for in_interrupt() */ 17#include <linux/list.h> /* for struct list_head */ 18#include <linux/kref.h> /* for struct kref */ 19#include <linux/device.h> /* for struct device */ 20#include <linux/fs.h> /* for struct file_operations */ 21#include <linux/completion.h> /* for struct completion */ 22#include <linux/sched.h> /* for current && schedule_timeout */ 23#include <linux/mutex.h> /* for struct mutex */ 24#include <linux/pm_runtime.h> /* for runtime PM */ 25 26struct usb_device; 27struct usb_driver; 28struct wusb_dev; 29 30/*-------------------------------------------------------------------------*/ 31 32/* 33 * Host-side wrappers for standard USB descriptors ... these are parsed 34 * from the data provided by devices. Parsing turns them from a flat 35 * sequence of descriptors into a hierarchy: 36 * 37 * - devices have one (usually) or more configs; 38 * - configs have one (often) or more interfaces; 39 * - interfaces have one (usually) or more settings; 40 * - each interface setting has zero or (usually) more endpoints. 41 * - a SuperSpeed endpoint has a companion descriptor 42 * 43 * And there might be other descriptors mixed in with those. 44 * 45 * Devices may also have class-specific or vendor-specific descriptors. 46 */ 47 48struct ep_device; 49 50/** 51 * struct usb_host_endpoint - host-side endpoint descriptor and queue 52 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 53 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 54 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint 55 * @urb_list: urbs queued to this endpoint; maintained by usbcore 56 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 57 * with one or more transfer descriptors (TDs) per urb 58 * @ep_dev: ep_device for sysfs info 59 * @extra: descriptors following this endpoint in the configuration 60 * @extralen: how many bytes of "extra" are valid 61 * @enabled: URBs may be submitted to this endpoint 62 * @streams: number of USB-3 streams allocated on the endpoint 63 * 64 * USB requests are always queued to a given endpoint, identified by a 65 * descriptor within an active interface in a given USB configuration. 66 */ 67struct usb_host_endpoint { 68 struct usb_endpoint_descriptor desc; 69 struct usb_ss_ep_comp_descriptor ss_ep_comp; 70 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp; 71 struct list_head urb_list; 72 void *hcpriv; 73 struct ep_device *ep_dev; /* For sysfs info */ 74 75 unsigned char *extra; /* Extra descriptors */ 76 int extralen; 77 int enabled; 78 int streams; 79}; 80 81/* host-side wrapper for one interface setting's parsed descriptors */ 82struct usb_host_interface { 83 struct usb_interface_descriptor desc; 84 85 int extralen; 86 unsigned char *extra; /* Extra descriptors */ 87 88 /* array of desc.bNumEndpoints endpoints associated with this 89 * interface setting. these will be in no particular order. 90 */ 91 struct usb_host_endpoint *endpoint; 92 93 char *string; /* iInterface string, if present */ 94}; 95 96enum usb_interface_condition { 97 USB_INTERFACE_UNBOUND = 0, 98 USB_INTERFACE_BINDING, 99 USB_INTERFACE_BOUND, 100 USB_INTERFACE_UNBINDING, 101}; 102 103int __must_check 104usb_find_common_endpoints(struct usb_host_interface *alt, 105 struct usb_endpoint_descriptor **bulk_in, 106 struct usb_endpoint_descriptor **bulk_out, 107 struct usb_endpoint_descriptor **int_in, 108 struct usb_endpoint_descriptor **int_out); 109 110int __must_check 111usb_find_common_endpoints_reverse(struct usb_host_interface *alt, 112 struct usb_endpoint_descriptor **bulk_in, 113 struct usb_endpoint_descriptor **bulk_out, 114 struct usb_endpoint_descriptor **int_in, 115 struct usb_endpoint_descriptor **int_out); 116 117static inline int __must_check 118usb_find_bulk_in_endpoint(struct usb_host_interface *alt, 119 struct usb_endpoint_descriptor **bulk_in) 120{ 121 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL); 122} 123 124static inline int __must_check 125usb_find_bulk_out_endpoint(struct usb_host_interface *alt, 126 struct usb_endpoint_descriptor **bulk_out) 127{ 128 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL); 129} 130 131static inline int __must_check 132usb_find_int_in_endpoint(struct usb_host_interface *alt, 133 struct usb_endpoint_descriptor **int_in) 134{ 135 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL); 136} 137 138static inline int __must_check 139usb_find_int_out_endpoint(struct usb_host_interface *alt, 140 struct usb_endpoint_descriptor **int_out) 141{ 142 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out); 143} 144 145static inline int __must_check 146usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt, 147 struct usb_endpoint_descriptor **bulk_in) 148{ 149 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL); 150} 151 152static inline int __must_check 153usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt, 154 struct usb_endpoint_descriptor **bulk_out) 155{ 156 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL); 157} 158 159static inline int __must_check 160usb_find_last_int_in_endpoint(struct usb_host_interface *alt, 161 struct usb_endpoint_descriptor **int_in) 162{ 163 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL); 164} 165 166static inline int __must_check 167usb_find_last_int_out_endpoint(struct usb_host_interface *alt, 168 struct usb_endpoint_descriptor **int_out) 169{ 170 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out); 171} 172 173/** 174 * struct usb_interface - what usb device drivers talk to 175 * @altsetting: array of interface structures, one for each alternate 176 * setting that may be selected. Each one includes a set of 177 * endpoint configurations. They will be in no particular order. 178 * @cur_altsetting: the current altsetting. 179 * @num_altsetting: number of altsettings defined. 180 * @intf_assoc: interface association descriptor 181 * @minor: the minor number assigned to this interface, if this 182 * interface is bound to a driver that uses the USB major number. 183 * If this interface does not use the USB major, this field should 184 * be unused. The driver should set this value in the probe() 185 * function of the driver, after it has been assigned a minor 186 * number from the USB core by calling usb_register_dev(). 187 * @condition: binding state of the interface: not bound, binding 188 * (in probe()), bound to a driver, or unbinding (in disconnect()) 189 * @sysfs_files_created: sysfs attributes exist 190 * @ep_devs_created: endpoint child pseudo-devices exist 191 * @unregistering: flag set when the interface is being unregistered 192 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 193 * capability during autosuspend. 194 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 195 * has been deferred. 196 * @needs_binding: flag set when the driver should be re-probed or unbound 197 * following a reset or suspend operation it doesn't support. 198 * @authorized: This allows to (de)authorize individual interfaces instead 199 * a whole device in contrast to the device authorization. 200 * @dev: driver model's view of this device 201 * @usb_dev: if an interface is bound to the USB major, this will point 202 * to the sysfs representation for that device. 203 * @reset_ws: Used for scheduling resets from atomic context. 204 * @resetting_device: USB core reset the device, so use alt setting 0 as 205 * current; needs bandwidth alloc after reset. 206 * 207 * USB device drivers attach to interfaces on a physical device. Each 208 * interface encapsulates a single high level function, such as feeding 209 * an audio stream to a speaker or reporting a change in a volume control. 210 * Many USB devices only have one interface. The protocol used to talk to 211 * an interface's endpoints can be defined in a usb "class" specification, 212 * or by a product's vendor. The (default) control endpoint is part of 213 * every interface, but is never listed among the interface's descriptors. 214 * 215 * The driver that is bound to the interface can use standard driver model 216 * calls such as dev_get_drvdata() on the dev member of this structure. 217 * 218 * Each interface may have alternate settings. The initial configuration 219 * of a device sets altsetting 0, but the device driver can change 220 * that setting using usb_set_interface(). Alternate settings are often 221 * used to control the use of periodic endpoints, such as by having 222 * different endpoints use different amounts of reserved USB bandwidth. 223 * All standards-conformant USB devices that use isochronous endpoints 224 * will use them in non-default settings. 225 * 226 * The USB specification says that alternate setting numbers must run from 227 * 0 to one less than the total number of alternate settings. But some 228 * devices manage to mess this up, and the structures aren't necessarily 229 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 230 * look up an alternate setting in the altsetting array based on its number. 231 */ 232struct usb_interface { 233 /* array of alternate settings for this interface, 234 * stored in no particular order */ 235 struct usb_host_interface *altsetting; 236 237 struct usb_host_interface *cur_altsetting; /* the currently 238 * active alternate setting */ 239 unsigned num_altsetting; /* number of alternate settings */ 240 241 /* If there is an interface association descriptor then it will list 242 * the associated interfaces */ 243 struct usb_interface_assoc_descriptor *intf_assoc; 244 245 int minor; /* minor number this interface is 246 * bound to */ 247 enum usb_interface_condition condition; /* state of binding */ 248 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 249 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 250 unsigned unregistering:1; /* unregistration is in progress */ 251 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 252 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 253 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 254 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 255 unsigned authorized:1; /* used for interface authorization */ 256 257 struct device dev; /* interface specific device info */ 258 struct device *usb_dev; 259 struct work_struct reset_ws; /* for resets in atomic context */ 260}; 261#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 262 263static inline void *usb_get_intfdata(struct usb_interface *intf) 264{ 265 return dev_get_drvdata(&intf->dev); 266} 267 268static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 269{ 270 dev_set_drvdata(&intf->dev, data); 271} 272 273struct usb_interface *usb_get_intf(struct usb_interface *intf); 274void usb_put_intf(struct usb_interface *intf); 275 276/* Hard limit */ 277#define USB_MAXENDPOINTS 30 278/* this maximum is arbitrary */ 279#define USB_MAXINTERFACES 32 280#define USB_MAXIADS (USB_MAXINTERFACES/2) 281 282/* 283 * USB Resume Timer: Every Host controller driver should drive the resume 284 * signalling on the bus for the amount of time defined by this macro. 285 * 286 * That way we will have a 'stable' behavior among all HCDs supported by Linux. 287 * 288 * Note that the USB Specification states we should drive resume for *at least* 289 * 20 ms, but it doesn't give an upper bound. This creates two possible 290 * situations which we want to avoid: 291 * 292 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes 293 * us to fail USB Electrical Tests, thus failing Certification 294 * 295 * (b) Some (many) devices actually need more than 20 ms of resume signalling, 296 * and while we can argue that's against the USB Specification, we don't have 297 * control over which devices a certification laboratory will be using for 298 * certification. If CertLab uses a device which was tested against Windows and 299 * that happens to have relaxed resume signalling rules, we might fall into 300 * situations where we fail interoperability and electrical tests. 301 * 302 * In order to avoid both conditions, we're using a 40 ms resume timeout, which 303 * should cope with both LPJ calibration errors and devices not following every 304 * detail of the USB Specification. 305 */ 306#define USB_RESUME_TIMEOUT 40 /* ms */ 307 308/** 309 * struct usb_interface_cache - long-term representation of a device interface 310 * @num_altsetting: number of altsettings defined. 311 * @ref: reference counter. 312 * @altsetting: variable-length array of interface structures, one for 313 * each alternate setting that may be selected. Each one includes a 314 * set of endpoint configurations. They will be in no particular order. 315 * 316 * These structures persist for the lifetime of a usb_device, unlike 317 * struct usb_interface (which persists only as long as its configuration 318 * is installed). The altsetting arrays can be accessed through these 319 * structures at any time, permitting comparison of configurations and 320 * providing support for the /sys/kernel/debug/usb/devices pseudo-file. 321 */ 322struct usb_interface_cache { 323 unsigned num_altsetting; /* number of alternate settings */ 324 struct kref ref; /* reference counter */ 325 326 /* variable-length array of alternate settings for this interface, 327 * stored in no particular order */ 328 struct usb_host_interface altsetting[]; 329}; 330#define ref_to_usb_interface_cache(r) \ 331 container_of(r, struct usb_interface_cache, ref) 332#define altsetting_to_usb_interface_cache(a) \ 333 container_of(a, struct usb_interface_cache, altsetting[0]) 334 335/** 336 * struct usb_host_config - representation of a device's configuration 337 * @desc: the device's configuration descriptor. 338 * @string: pointer to the cached version of the iConfiguration string, if 339 * present for this configuration. 340 * @intf_assoc: list of any interface association descriptors in this config 341 * @interface: array of pointers to usb_interface structures, one for each 342 * interface in the configuration. The number of interfaces is stored 343 * in desc.bNumInterfaces. These pointers are valid only while the 344 * configuration is active. 345 * @intf_cache: array of pointers to usb_interface_cache structures, one 346 * for each interface in the configuration. These structures exist 347 * for the entire life of the device. 348 * @extra: pointer to buffer containing all extra descriptors associated 349 * with this configuration (those preceding the first interface 350 * descriptor). 351 * @extralen: length of the extra descriptors buffer. 352 * 353 * USB devices may have multiple configurations, but only one can be active 354 * at any time. Each encapsulates a different operational environment; 355 * for example, a dual-speed device would have separate configurations for 356 * full-speed and high-speed operation. The number of configurations 357 * available is stored in the device descriptor as bNumConfigurations. 358 * 359 * A configuration can contain multiple interfaces. Each corresponds to 360 * a different function of the USB device, and all are available whenever 361 * the configuration is active. The USB standard says that interfaces 362 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 363 * of devices get this wrong. In addition, the interface array is not 364 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 365 * look up an interface entry based on its number. 366 * 367 * Device drivers should not attempt to activate configurations. The choice 368 * of which configuration to install is a policy decision based on such 369 * considerations as available power, functionality provided, and the user's 370 * desires (expressed through userspace tools). However, drivers can call 371 * usb_reset_configuration() to reinitialize the current configuration and 372 * all its interfaces. 373 */ 374struct usb_host_config { 375 struct usb_config_descriptor desc; 376 377 char *string; /* iConfiguration string, if present */ 378 379 /* List of any Interface Association Descriptors in this 380 * configuration. */ 381 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 382 383 /* the interfaces associated with this configuration, 384 * stored in no particular order */ 385 struct usb_interface *interface[USB_MAXINTERFACES]; 386 387 /* Interface information available even when this is not the 388 * active configuration */ 389 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 390 391 unsigned char *extra; /* Extra descriptors */ 392 int extralen; 393}; 394 395/* USB2.0 and USB3.0 device BOS descriptor set */ 396struct usb_host_bos { 397 struct usb_bos_descriptor *desc; 398 399 /* wireless cap descriptor is handled by wusb */ 400 struct usb_ext_cap_descriptor *ext_cap; 401 struct usb_ss_cap_descriptor *ss_cap; 402 struct usb_ssp_cap_descriptor *ssp_cap; 403 struct usb_ss_container_id_descriptor *ss_id; 404 struct usb_ptm_cap_descriptor *ptm_cap; 405}; 406 407int __usb_get_extra_descriptor(char *buffer, unsigned size, 408 unsigned char type, void **ptr, size_t min); 409#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 410 __usb_get_extra_descriptor((ifpoint)->extra, \ 411 (ifpoint)->extralen, \ 412 type, (void **)ptr, sizeof(**(ptr))) 413 414/* ----------------------------------------------------------------------- */ 415 416/* USB device number allocation bitmap */ 417struct usb_devmap { 418 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 419}; 420 421/* 422 * Allocated per bus (tree of devices) we have: 423 */ 424struct usb_bus { 425 struct device *controller; /* host side hardware */ 426 struct device *sysdev; /* as seen from firmware or bus */ 427 int busnum; /* Bus number (in order of reg) */ 428 const char *bus_name; /* stable id (PCI slot_name etc) */ 429 u8 uses_pio_for_control; /* 430 * Does the host controller use PIO 431 * for control transfers? 432 */ 433 u8 otg_port; /* 0, or number of OTG/HNP port */ 434 unsigned is_b_host:1; /* true during some HNP roleswitches */ 435 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 436 unsigned no_stop_on_short:1; /* 437 * Quirk: some controllers don't stop 438 * the ep queue on a short transfer 439 * with the URB_SHORT_NOT_OK flag set. 440 */ 441 unsigned no_sg_constraint:1; /* no sg constraint */ 442 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 443 444 int devnum_next; /* Next open device number in 445 * round-robin allocation */ 446 struct mutex devnum_next_mutex; /* devnum_next mutex */ 447 448 struct usb_devmap devmap; /* device address allocation map */ 449 struct usb_device *root_hub; /* Root hub */ 450 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 451 452 int bandwidth_allocated; /* on this bus: how much of the time 453 * reserved for periodic (intr/iso) 454 * requests is used, on average? 455 * Units: microseconds/frame. 456 * Limits: Full/low speed reserve 90%, 457 * while high speed reserves 80%. 458 */ 459 int bandwidth_int_reqs; /* number of Interrupt requests */ 460 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 461 462 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 463 464#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 465 struct mon_bus *mon_bus; /* non-null when associated */ 466 int monitored; /* non-zero when monitored */ 467#endif 468}; 469 470struct usb_dev_state; 471 472/* ----------------------------------------------------------------------- */ 473 474struct usb_tt; 475 476enum usb_device_removable { 477 USB_DEVICE_REMOVABLE_UNKNOWN = 0, 478 USB_DEVICE_REMOVABLE, 479 USB_DEVICE_FIXED, 480}; 481 482enum usb_port_connect_type { 483 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 484 USB_PORT_CONNECT_TYPE_HOT_PLUG, 485 USB_PORT_CONNECT_TYPE_HARD_WIRED, 486 USB_PORT_NOT_USED, 487}; 488 489/* 490 * USB port quirks. 491 */ 492 493/* For the given port, prefer the old (faster) enumeration scheme. */ 494#define USB_PORT_QUIRK_OLD_SCHEME BIT(0) 495 496/* Decrease TRSTRCY to 10ms during device enumeration. */ 497#define USB_PORT_QUIRK_FAST_ENUM BIT(1) 498 499/* 500 * USB 2.0 Link Power Management (LPM) parameters. 501 */ 502struct usb2_lpm_parameters { 503 /* Best effort service latency indicate how long the host will drive 504 * resume on an exit from L1. 505 */ 506 unsigned int besl; 507 508 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 509 * When the timer counts to zero, the parent hub will initiate a LPM 510 * transition to L1. 511 */ 512 int timeout; 513}; 514 515/* 516 * USB 3.0 Link Power Management (LPM) parameters. 517 * 518 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 519 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 520 * All three are stored in nanoseconds. 521 */ 522struct usb3_lpm_parameters { 523 /* 524 * Maximum exit latency (MEL) for the host to send a packet to the 525 * device (either a Ping for isoc endpoints, or a data packet for 526 * interrupt endpoints), the hubs to decode the packet, and for all hubs 527 * in the path to transition the links to U0. 528 */ 529 unsigned int mel; 530 /* 531 * Maximum exit latency for a device-initiated LPM transition to bring 532 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 533 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 534 */ 535 unsigned int pel; 536 537 /* 538 * The System Exit Latency (SEL) includes PEL, and three other 539 * latencies. After a device initiates a U0 transition, it will take 540 * some time from when the device sends the ERDY to when it will finally 541 * receive the data packet. Basically, SEL should be the worse-case 542 * latency from when a device starts initiating a U0 transition to when 543 * it will get data. 544 */ 545 unsigned int sel; 546 /* 547 * The idle timeout value that is currently programmed into the parent 548 * hub for this device. When the timer counts to zero, the parent hub 549 * will initiate an LPM transition to either U1 or U2. 550 */ 551 int timeout; 552}; 553 554/** 555 * struct usb_device - kernel's representation of a USB device 556 * @devnum: device number; address on a USB bus 557 * @devpath: device ID string for use in messages (e.g., /port/...) 558 * @route: tree topology hex string for use with xHCI 559 * @state: device state: configured, not attached, etc. 560 * @speed: device speed: high/full/low (or error) 561 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support 562 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support 563 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 564 * @ttport: device port on that tt hub 565 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 566 * @parent: our hub, unless we're the root 567 * @bus: bus we're part of 568 * @ep0: endpoint 0 data (default control pipe) 569 * @dev: generic device interface 570 * @descriptor: USB device descriptor 571 * @bos: USB device BOS descriptor set 572 * @config: all of the device's configs 573 * @actconfig: the active configuration 574 * @ep_in: array of IN endpoints 575 * @ep_out: array of OUT endpoints 576 * @rawdescriptors: raw descriptors for each config 577 * @bus_mA: Current available from the bus 578 * @portnum: parent port number (origin 1) 579 * @level: number of USB hub ancestors 580 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum 581 * @can_submit: URBs may be submitted 582 * @persist_enabled: USB_PERSIST enabled for this device 583 * @have_langid: whether string_langid is valid 584 * @authorized: policy has said we can use it; 585 * (user space) policy determines if we authorize this device to be 586 * used or not. By default, wired USB devices are authorized. 587 * WUSB devices are not, until we authorize them from user space. 588 * FIXME -- complete doc 589 * @authenticated: Crypto authentication passed 590 * @wusb: device is Wireless USB 591 * @lpm_capable: device supports LPM 592 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 593 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 594 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 595 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 596 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled 597 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled 598 * @string_langid: language ID for strings 599 * @product: iProduct string, if present (static) 600 * @manufacturer: iManufacturer string, if present (static) 601 * @serial: iSerialNumber string, if present (static) 602 * @filelist: usbfs files that are open to this device 603 * @maxchild: number of ports if hub 604 * @quirks: quirks of the whole device 605 * @urbnum: number of URBs submitted for the whole device 606 * @active_duration: total time device is not suspended 607 * @connect_time: time device was first connected 608 * @do_remote_wakeup: remote wakeup should be enabled 609 * @reset_resume: needs reset instead of resume 610 * @port_is_suspended: the upstream port is suspended (L2 or U3) 611 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 612 * specific data for the device. 613 * @slot_id: Slot ID assigned by xHCI 614 * @removable: Device can be physically removed from this port 615 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 616 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 617 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 618 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 619 * to keep track of the number of functions that require USB 3.0 Link Power 620 * Management to be disabled for this usb_device. This count should only 621 * be manipulated by those functions, with the bandwidth_mutex is held. 622 * @hub_delay: cached value consisting of: 623 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns) 624 * Will be used as wValue for SetIsochDelay requests. 625 * @use_generic_driver: ask driver core to reprobe using the generic driver. 626 * 627 * Notes: 628 * Usbcore drivers should not set usbdev->state directly. Instead use 629 * usb_set_device_state(). 630 */ 631struct usb_device { 632 int devnum; 633 char devpath[16]; 634 u32 route; 635 enum usb_device_state state; 636 enum usb_device_speed speed; 637 unsigned int rx_lanes; 638 unsigned int tx_lanes; 639 640 struct usb_tt *tt; 641 int ttport; 642 643 unsigned int toggle[2]; 644 645 struct usb_device *parent; 646 struct usb_bus *bus; 647 struct usb_host_endpoint ep0; 648 649 struct device dev; 650 651 struct usb_device_descriptor descriptor; 652 struct usb_host_bos *bos; 653 struct usb_host_config *config; 654 655 struct usb_host_config *actconfig; 656 struct usb_host_endpoint *ep_in[16]; 657 struct usb_host_endpoint *ep_out[16]; 658 659 char **rawdescriptors; 660 661 unsigned short bus_mA; 662 u8 portnum; 663 u8 level; 664 u8 devaddr; 665 666 unsigned can_submit:1; 667 unsigned persist_enabled:1; 668 unsigned have_langid:1; 669 unsigned authorized:1; 670 unsigned authenticated:1; 671 unsigned wusb:1; 672 unsigned lpm_capable:1; 673 unsigned usb2_hw_lpm_capable:1; 674 unsigned usb2_hw_lpm_besl_capable:1; 675 unsigned usb2_hw_lpm_enabled:1; 676 unsigned usb2_hw_lpm_allowed:1; 677 unsigned usb3_lpm_u1_enabled:1; 678 unsigned usb3_lpm_u2_enabled:1; 679 int string_langid; 680 681 /* static strings from the device */ 682 char *product; 683 char *manufacturer; 684 char *serial; 685 686 struct list_head filelist; 687 688 int maxchild; 689 690 u32 quirks; 691 atomic_t urbnum; 692 693 unsigned long active_duration; 694 695#ifdef CONFIG_PM 696 unsigned long connect_time; 697 698 unsigned do_remote_wakeup:1; 699 unsigned reset_resume:1; 700 unsigned port_is_suspended:1; 701#endif 702 struct wusb_dev *wusb_dev; 703 int slot_id; 704 enum usb_device_removable removable; 705 struct usb2_lpm_parameters l1_params; 706 struct usb3_lpm_parameters u1_params; 707 struct usb3_lpm_parameters u2_params; 708 unsigned lpm_disable_count; 709 710 u16 hub_delay; 711 unsigned use_generic_driver:1; 712}; 713#define to_usb_device(d) container_of(d, struct usb_device, dev) 714 715static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf) 716{ 717 return to_usb_device(intf->dev.parent); 718} 719 720extern struct usb_device *usb_get_dev(struct usb_device *dev); 721extern void usb_put_dev(struct usb_device *dev); 722extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 723 int port1); 724 725/** 726 * usb_hub_for_each_child - iterate over all child devices on the hub 727 * @hdev: USB device belonging to the usb hub 728 * @port1: portnum associated with child device 729 * @child: child device pointer 730 */ 731#define usb_hub_for_each_child(hdev, port1, child) \ 732 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 733 port1 <= hdev->maxchild; \ 734 child = usb_hub_find_child(hdev, ++port1)) \ 735 if (!child) continue; else 736 737/* USB device locking */ 738#define usb_lock_device(udev) device_lock(&(udev)->dev) 739#define usb_unlock_device(udev) device_unlock(&(udev)->dev) 740#define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev) 741#define usb_trylock_device(udev) device_trylock(&(udev)->dev) 742extern int usb_lock_device_for_reset(struct usb_device *udev, 743 const struct usb_interface *iface); 744 745/* USB port reset for device reinitialization */ 746extern int usb_reset_device(struct usb_device *dev); 747extern void usb_queue_reset_device(struct usb_interface *dev); 748 749extern struct device *usb_intf_get_dma_device(struct usb_interface *intf); 750 751#ifdef CONFIG_ACPI 752extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 753 bool enable); 754extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 755#else 756static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 757 bool enable) { return 0; } 758static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 759 { return true; } 760#endif 761 762/* USB autosuspend and autoresume */ 763#ifdef CONFIG_PM 764extern void usb_enable_autosuspend(struct usb_device *udev); 765extern void usb_disable_autosuspend(struct usb_device *udev); 766 767extern int usb_autopm_get_interface(struct usb_interface *intf); 768extern void usb_autopm_put_interface(struct usb_interface *intf); 769extern int usb_autopm_get_interface_async(struct usb_interface *intf); 770extern void usb_autopm_put_interface_async(struct usb_interface *intf); 771extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 772extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 773 774static inline void usb_mark_last_busy(struct usb_device *udev) 775{ 776 pm_runtime_mark_last_busy(&udev->dev); 777} 778 779#else 780 781static inline int usb_enable_autosuspend(struct usb_device *udev) 782{ return 0; } 783static inline int usb_disable_autosuspend(struct usb_device *udev) 784{ return 0; } 785 786static inline int usb_autopm_get_interface(struct usb_interface *intf) 787{ return 0; } 788static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 789{ return 0; } 790 791static inline void usb_autopm_put_interface(struct usb_interface *intf) 792{ } 793static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 794{ } 795static inline void usb_autopm_get_interface_no_resume( 796 struct usb_interface *intf) 797{ } 798static inline void usb_autopm_put_interface_no_suspend( 799 struct usb_interface *intf) 800{ } 801static inline void usb_mark_last_busy(struct usb_device *udev) 802{ } 803#endif 804 805extern int usb_disable_lpm(struct usb_device *udev); 806extern void usb_enable_lpm(struct usb_device *udev); 807/* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 808extern int usb_unlocked_disable_lpm(struct usb_device *udev); 809extern void usb_unlocked_enable_lpm(struct usb_device *udev); 810 811extern int usb_disable_ltm(struct usb_device *udev); 812extern void usb_enable_ltm(struct usb_device *udev); 813 814static inline bool usb_device_supports_ltm(struct usb_device *udev) 815{ 816 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 817 return false; 818 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 819} 820 821static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 822{ 823 return udev && udev->bus && udev->bus->no_sg_constraint; 824} 825 826 827/*-------------------------------------------------------------------------*/ 828 829/* for drivers using iso endpoints */ 830extern int usb_get_current_frame_number(struct usb_device *usb_dev); 831 832/* Sets up a group of bulk endpoints to support multiple stream IDs. */ 833extern int usb_alloc_streams(struct usb_interface *interface, 834 struct usb_host_endpoint **eps, unsigned int num_eps, 835 unsigned int num_streams, gfp_t mem_flags); 836 837/* Reverts a group of bulk endpoints back to not using stream IDs. */ 838extern int usb_free_streams(struct usb_interface *interface, 839 struct usb_host_endpoint **eps, unsigned int num_eps, 840 gfp_t mem_flags); 841 842/* used these for multi-interface device registration */ 843extern int usb_driver_claim_interface(struct usb_driver *driver, 844 struct usb_interface *iface, void *priv); 845 846/** 847 * usb_interface_claimed - returns true iff an interface is claimed 848 * @iface: the interface being checked 849 * 850 * Return: %true (nonzero) iff the interface is claimed, else %false 851 * (zero). 852 * 853 * Note: 854 * Callers must own the driver model's usb bus readlock. So driver 855 * probe() entries don't need extra locking, but other call contexts 856 * may need to explicitly claim that lock. 857 * 858 */ 859static inline int usb_interface_claimed(struct usb_interface *iface) 860{ 861 return (iface->dev.driver != NULL); 862} 863 864extern void usb_driver_release_interface(struct usb_driver *driver, 865 struct usb_interface *iface); 866const struct usb_device_id *usb_match_id(struct usb_interface *interface, 867 const struct usb_device_id *id); 868extern int usb_match_one_id(struct usb_interface *interface, 869 const struct usb_device_id *id); 870 871extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 872extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 873 int minor); 874extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 875 unsigned ifnum); 876extern struct usb_host_interface *usb_altnum_to_altsetting( 877 const struct usb_interface *intf, unsigned int altnum); 878extern struct usb_host_interface *usb_find_alt_setting( 879 struct usb_host_config *config, 880 unsigned int iface_num, 881 unsigned int alt_num); 882 883/* port claiming functions */ 884int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, 885 struct usb_dev_state *owner); 886int usb_hub_release_port(struct usb_device *hdev, unsigned port1, 887 struct usb_dev_state *owner); 888 889/** 890 * usb_make_path - returns stable device path in the usb tree 891 * @dev: the device whose path is being constructed 892 * @buf: where to put the string 893 * @size: how big is "buf"? 894 * 895 * Return: Length of the string (> 0) or negative if size was too small. 896 * 897 * Note: 898 * This identifier is intended to be "stable", reflecting physical paths in 899 * hardware such as physical bus addresses for host controllers or ports on 900 * USB hubs. That makes it stay the same until systems are physically 901 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 902 * controllers. Adding and removing devices, including virtual root hubs 903 * in host controller driver modules, does not change these path identifiers; 904 * neither does rebooting or re-enumerating. These are more useful identifiers 905 * than changeable ("unstable") ones like bus numbers or device addresses. 906 * 907 * With a partial exception for devices connected to USB 2.0 root hubs, these 908 * identifiers are also predictable. So long as the device tree isn't changed, 909 * plugging any USB device into a given hub port always gives it the same path. 910 * Because of the use of "companion" controllers, devices connected to ports on 911 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 912 * high speed, and a different one if they are full or low speed. 913 */ 914static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 915{ 916 int actual; 917 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 918 dev->devpath); 919 return (actual >= (int)size) ? -1 : actual; 920} 921 922/*-------------------------------------------------------------------------*/ 923 924#define USB_DEVICE_ID_MATCH_DEVICE \ 925 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 926#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 927 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 928#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 929 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 930#define USB_DEVICE_ID_MATCH_DEV_INFO \ 931 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 932 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 933 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 934#define USB_DEVICE_ID_MATCH_INT_INFO \ 935 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 936 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 937 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 938 939/** 940 * USB_DEVICE - macro used to describe a specific usb device 941 * @vend: the 16 bit USB Vendor ID 942 * @prod: the 16 bit USB Product ID 943 * 944 * This macro is used to create a struct usb_device_id that matches a 945 * specific device. 946 */ 947#define USB_DEVICE(vend, prod) \ 948 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 949 .idVendor = (vend), \ 950 .idProduct = (prod) 951/** 952 * USB_DEVICE_VER - describe a specific usb device with a version range 953 * @vend: the 16 bit USB Vendor ID 954 * @prod: the 16 bit USB Product ID 955 * @lo: the bcdDevice_lo value 956 * @hi: the bcdDevice_hi value 957 * 958 * This macro is used to create a struct usb_device_id that matches a 959 * specific device, with a version range. 960 */ 961#define USB_DEVICE_VER(vend, prod, lo, hi) \ 962 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 963 .idVendor = (vend), \ 964 .idProduct = (prod), \ 965 .bcdDevice_lo = (lo), \ 966 .bcdDevice_hi = (hi) 967 968/** 969 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 970 * @vend: the 16 bit USB Vendor ID 971 * @prod: the 16 bit USB Product ID 972 * @cl: bInterfaceClass value 973 * 974 * This macro is used to create a struct usb_device_id that matches a 975 * specific interface class of devices. 976 */ 977#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 978 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 979 USB_DEVICE_ID_MATCH_INT_CLASS, \ 980 .idVendor = (vend), \ 981 .idProduct = (prod), \ 982 .bInterfaceClass = (cl) 983 984/** 985 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 986 * @vend: the 16 bit USB Vendor ID 987 * @prod: the 16 bit USB Product ID 988 * @pr: bInterfaceProtocol value 989 * 990 * This macro is used to create a struct usb_device_id that matches a 991 * specific interface protocol of devices. 992 */ 993#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 994 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 995 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 996 .idVendor = (vend), \ 997 .idProduct = (prod), \ 998 .bInterfaceProtocol = (pr) 999 1000/**
1001 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 1002 * @vend: the 16 bit USB Vendor ID 1003 * @prod: the 16 bit USB Product ID 1004 * @num: bInterfaceNumber value 1005 * 1006 * This macro is used to create a struct usb_device_id that matches a 1007 * specific interface number of devices. 1008 */ 1009#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 1010 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 1011 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 1012 .idVendor = (vend), \ 1013 .idProduct = (prod), \ 1014 .bInterfaceNumber = (num) 1015 1016/** 1017 * USB_DEVICE_INFO - macro used to describe a class of usb devices 1018 * @cl: bDeviceClass value 1019 * @sc: bDeviceSubClass value 1020 * @pr: bDeviceProtocol value 1021 * 1022 * This macro is used to create a struct usb_device_id that matches a 1023 * specific class of devices. 1024 */ 1025#define USB_DEVICE_INFO(cl, sc, pr) \ 1026 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 1027 .bDeviceClass = (cl), \ 1028 .bDeviceSubClass = (sc), \ 1029 .bDeviceProtocol = (pr) 1030 1031/** 1032 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 1033 * @cl: bInterfaceClass value 1034 * @sc: bInterfaceSubClass value 1035 * @pr: bInterfaceProtocol value 1036 * 1037 * This macro is used to create a struct usb_device_id that matches a 1038 * specific class of interfaces. 1039 */ 1040#define USB_INTERFACE_INFO(cl, sc, pr) \ 1041 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 1042 .bInterfaceClass = (cl), \ 1043 .bInterfaceSubClass = (sc), \ 1044 .bInterfaceProtocol = (pr) 1045 1046/** 1047 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 1048 * @vend: the 16 bit USB Vendor ID 1049 * @prod: the 16 bit USB Product ID 1050 * @cl: bInterfaceClass value 1051 * @sc: bInterfaceSubClass value 1052 * @pr: bInterfaceProtocol value 1053 * 1054 * This macro is used to create a struct usb_device_id that matches a 1055 * specific device with a specific class of interfaces. 1056 * 1057 * This is especially useful when explicitly matching devices that have 1058 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1059 */ 1060#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 1061 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1062 | USB_DEVICE_ID_MATCH_DEVICE, \ 1063 .idVendor = (vend), \ 1064 .idProduct = (prod), \ 1065 .bInterfaceClass = (cl), \ 1066 .bInterfaceSubClass = (sc), \ 1067 .bInterfaceProtocol = (pr) 1068 1069/** 1070 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 1071 * @vend: the 16 bit USB Vendor ID 1072 * @cl: bInterfaceClass value 1073 * @sc: bInterfaceSubClass value 1074 * @pr: bInterfaceProtocol value 1075 * 1076 * This macro is used to create a struct usb_device_id that matches a 1077 * specific vendor with a specific class of interfaces. 1078 * 1079 * This is especially useful when explicitly matching devices that have 1080 * vendor specific bDeviceClass values, but standards-compliant interfaces. 1081 */ 1082#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 1083 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 1084 | USB_DEVICE_ID_MATCH_VENDOR, \ 1085 .idVendor = (vend), \ 1086 .bInterfaceClass = (cl), \ 1087 .bInterfaceSubClass = (sc), \ 1088 .bInterfaceProtocol = (pr) 1089 1090/* ----------------------------------------------------------------------- */ 1091 1092/* Stuff for dynamic usb ids */ 1093struct usb_dynids { 1094 spinlock_t lock; 1095 struct list_head list; 1096}; 1097 1098struct usb_dynid { 1099 struct list_head node; 1100 struct usb_device_id id; 1101}; 1102 1103extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 1104 const struct usb_device_id *id_table, 1105 struct device_driver *driver, 1106 const char *buf, size_t count); 1107 1108extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 1109 1110/** 1111 * struct usbdrv_wrap - wrapper for driver-model structure 1112 * @driver: The driver-model core driver structure. 1113 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 1114 */ 1115struct usbdrv_wrap { 1116 struct device_driver driver; 1117 int for_devices; 1118}; 1119 1120/** 1121 * struct usb_driver - identifies USB interface driver to usbcore 1122 * @name: The driver name should be unique among USB drivers, 1123 * and should normally be the same as the module name. 1124 * @probe: Called to see if the driver is willing to manage a particular 1125 * interface on a device. If it is, probe returns zero and uses 1126 * usb_set_intfdata() to associate driver-specific data with the 1127 * interface. It may also use usb_set_interface() to specify the 1128 * appropriate altsetting. If unwilling to manage the interface, 1129 * return -ENODEV, if genuine IO errors occurred, an appropriate 1130 * negative errno value. 1131 * @disconnect: Called when the interface is no longer accessible, usually 1132 * because its device has been (or is being) disconnected or the 1133 * driver module is being unloaded. 1134 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 1135 * the "usbfs" filesystem. This lets devices provide ways to 1136 * expose information to user space regardless of where they 1137 * do (or don't) show up otherwise in the filesystem. 1138 * @suspend: Called when the device is going to be suspended by the 1139 * system either from system sleep or runtime suspend context. The 1140 * return value will be ignored in system sleep context, so do NOT 1141 * try to continue using the device if suspend fails in this case. 1142 * Instead, let the resume or reset-resume routine recover from 1143 * the failure. 1144 * @resume: Called when the device is being resumed by the system. 1145 * @reset_resume: Called when the suspended device has been reset instead 1146 * of being resumed. 1147 * @pre_reset: Called by usb_reset_device() when the device is about to be 1148 * reset. This routine must not return until the driver has no active 1149 * URBs for the device, and no more URBs may be submitted until the 1150 * post_reset method is called. 1151 * @post_reset: Called by usb_reset_device() after the device 1152 * has been reset 1153 * @id_table: USB drivers use ID table to support hotplugging. 1154 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1155 * or your driver's probe function will never get called. 1156 * @dev_groups: Attributes attached to the device that will be created once it 1157 * is bound to the driver. 1158 * @dynids: used internally to hold the list of dynamically added device 1159 * ids for this driver. 1160 * @drvwrap: Driver-model core structure wrapper. 1161 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1162 * added to this driver by preventing the sysfs file from being created. 1163 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1164 * for interfaces bound to this driver. 1165 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1166 * endpoints before calling the driver's disconnect method. 1167 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs 1168 * to initiate lower power link state transitions when an idle timeout 1169 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1170 * 1171 * USB interface drivers must provide a name, probe() and disconnect() 1172 * methods, and an id_table. Other driver fields are optional. 1173 * 1174 * The id_table is used in hotplugging. It holds a set of descriptors, 1175 * and specialized data may be associated with each entry. That table 1176 * is used by both user and kernel mode hotplugging support. 1177 * 1178 * The probe() and disconnect() methods are called in a context where 1179 * they can sleep, but they should avoid abusing the privilege. Most 1180 * work to connect to a device should be done when the device is opened, 1181 * and undone at the last close. The disconnect code needs to address 1182 * concurrency issues with respect to open() and close() methods, as 1183 * well as forcing all pending I/O requests to complete (by unlinking 1184 * them as necessary, and blocking until the unlinks complete). 1185 */ 1186struct usb_driver { 1187 const char *name; 1188 1189 int (*probe) (struct usb_interface *intf, 1190 const struct usb_device_id *id); 1191 1192 void (*disconnect) (struct usb_interface *intf); 1193 1194 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1195 void *buf); 1196 1197 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1198 int (*resume) (struct usb_interface *intf); 1199 int (*reset_resume)(struct usb_interface *intf); 1200 1201 int (*pre_reset)(struct usb_interface *intf); 1202 int (*post_reset)(struct usb_interface *intf); 1203 1204 const struct usb_device_id *id_table; 1205 const struct attribute_group **dev_groups; 1206 1207 struct usb_dynids dynids; 1208 struct usbdrv_wrap drvwrap; 1209 unsigned int no_dynamic_id:1; 1210 unsigned int supports_autosuspend:1; 1211 unsigned int disable_hub_initiated_lpm:1; 1212 unsigned int soft_unbind:1; 1213}; 1214#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1215 1216/** 1217 * struct usb_device_driver - identifies USB device driver to usbcore 1218 * @name: The driver name should be unique among USB drivers, 1219 * and should normally be the same as the module name. 1220 * @match: If set, used for better device/driver matching. 1221 * @probe: Called to see if the driver is willing to manage a particular 1222 * device. If it is, probe returns zero and uses dev_set_drvdata() 1223 * to associate driver-specific data with the device. If unwilling 1224 * to manage the device, return a negative errno value. 1225 * @disconnect: Called when the device is no longer accessible, usually 1226 * because it has been (or is being) disconnected or the driver's 1227 * module is being unloaded. 1228 * @suspend: Called when the device is going to be suspended by the system. 1229 * @resume: Called when the device is being resumed by the system. 1230 * @dev_groups: Attributes attached to the device that will be created once it 1231 * is bound to the driver. 1232 * @drvwrap: Driver-model core structure wrapper. 1233 * @id_table: used with @match() to select better matching driver at 1234 * probe() time. 1235 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1236 * for devices bound to this driver. 1237 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect, 1238 * resume and suspend functions will be called in addition to the driver's 1239 * own, so this part of the setup does not need to be replicated. 1240 * 1241 * USB drivers must provide all the fields listed above except drvwrap, 1242 * match, and id_table. 1243 */ 1244struct usb_device_driver { 1245 const char *name; 1246 1247 bool (*match) (struct usb_device *udev); 1248 int (*probe) (struct usb_device *udev); 1249 void (*disconnect) (struct usb_device *udev); 1250 1251 int (*suspend) (struct usb_device *udev, pm_message_t message); 1252 int (*resume) (struct usb_device *udev, pm_message_t message); 1253 const struct attribute_group **dev_groups; 1254 struct usbdrv_wrap drvwrap; 1255 const struct usb_device_id *id_table; 1256 unsigned int supports_autosuspend:1; 1257 unsigned int generic_subclass:1; 1258}; 1259#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1260 drvwrap.driver) 1261 1262extern struct bus_type usb_bus_type; 1263 1264/** 1265 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1266 * @name: the usb class device name for this driver. Will show up in sysfs. 1267 * @devnode: Callback to provide a naming hint for a possible 1268 * device node to create. 1269 * @fops: pointer to the struct file_operations of this driver. 1270 * @minor_base: the start of the minor range for this driver. 1271 * 1272 * This structure is used for the usb_register_dev() and 1273 * usb_deregister_dev() functions, to consolidate a number of the 1274 * parameters used for them. 1275 */ 1276struct usb_class_driver { 1277 char *name; 1278 char *(*devnode)(struct device *dev, umode_t *mode); 1279 const struct file_operations *fops; 1280 int minor_base; 1281}; 1282 1283/* 1284 * use these in module_init()/module_exit() 1285 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1286 */ 1287extern int usb_register_driver(struct usb_driver *, struct module *, 1288 const char *); 1289 1290/* use a define to avoid include chaining to get THIS_MODULE & friends */ 1291#define usb_register(driver) \ 1292 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1293 1294extern void usb_deregister(struct usb_driver *); 1295 1296/** 1297 * module_usb_driver() - Helper macro for registering a USB driver 1298 * @__usb_driver: usb_driver struct 1299 * 1300 * Helper macro for USB drivers which do not do anything special in module 1301 * init/exit. This eliminates a lot of boilerplate. Each module may only 1302 * use this macro once, and calling it replaces module_init() and module_exit() 1303 */ 1304#define module_usb_driver(__usb_driver) \ 1305 module_driver(__usb_driver, usb_register, \ 1306 usb_deregister) 1307 1308extern int usb_register_device_driver(struct usb_device_driver *, 1309 struct module *); 1310extern void usb_deregister_device_driver(struct usb_device_driver *); 1311 1312extern int usb_register_dev(struct usb_interface *intf, 1313 struct usb_class_driver *class_driver); 1314extern void usb_deregister_dev(struct usb_interface *intf, 1315 struct usb_class_driver *class_driver); 1316 1317extern int usb_disabled(void); 1318 1319/* ----------------------------------------------------------------------- */ 1320 1321/* 1322 * URB support, for asynchronous request completions 1323 */ 1324 1325/* 1326 * urb->transfer_flags: 1327 * 1328 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1329 */ 1330#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1331#define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1332 * slot in the schedule */ 1333#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1334#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1335#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1336 * needed */ 1337#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1338 1339/* The following flags are used internally by usbcore and HCDs */ 1340#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1341#define URB_DIR_OUT 0 1342#define URB_DIR_MASK URB_DIR_IN 1343 1344#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1345#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1346#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1347#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1348#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1349#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1350#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1351#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1352 1353struct usb_iso_packet_descriptor { 1354 unsigned int offset; 1355 unsigned int length; /* expected length */ 1356 unsigned int actual_length; 1357 int status; 1358}; 1359 1360struct urb; 1361 1362struct usb_anchor { 1363 struct list_head urb_list; 1364 wait_queue_head_t wait; 1365 spinlock_t lock; 1366 atomic_t suspend_wakeups; 1367 unsigned int poisoned:1; 1368}; 1369 1370static inline void init_usb_anchor(struct usb_anchor *anchor) 1371{ 1372 memset(anchor, 0, sizeof(*anchor)); 1373 INIT_LIST_HEAD(&anchor->urb_list); 1374 init_waitqueue_head(&anchor->wait); 1375 spin_lock_init(&anchor->lock); 1376} 1377 1378typedef void (*usb_complete_t)(struct urb *); 1379 1380/** 1381 * struct urb - USB Request Block 1382 * @urb_list: For use by current owner of the URB. 1383 * @anchor_list: membership in the list of an anchor 1384 * @anchor: to anchor URBs to a common mooring 1385 * @ep: Points to the endpoint's data structure. Will eventually 1386 * replace @pipe. 1387 * @pipe: Holds endpoint number, direction, type, and more. 1388 * Create these values with the eight macros available; 1389 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1390 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1391 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1392 * numbers range from zero to fifteen. Note that "in" endpoint two 1393 * is a different endpoint (and pipe) from "out" endpoint two. 1394 * The current configuration controls the existence, type, and 1395 * maximum packet size of any given endpoint. 1396 * @stream_id: the endpoint's stream ID for bulk streams 1397 * @dev: Identifies the USB device to perform the request. 1398 * @status: This is read in non-iso completion functions to get the 1399 * status of the particular request. ISO requests only use it 1400 * to tell whether the URB was unlinked; detailed status for 1401 * each frame is in the fields of the iso_frame-desc. 1402 * @transfer_flags: A variety of flags may be used to affect how URB 1403 * submission, unlinking, or operation are handled. Different 1404 * kinds of URB can use different flags. 1405 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1406 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1407 * (however, do not leave garbage in transfer_buffer even then). 1408 * This buffer must be suitable for DMA; allocate it with 1409 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1410 * of this buffer will be modified. This buffer is used for the data 1411 * stage of control transfers. 1412 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1413 * the device driver is saying that it provided this DMA address, 1414 * which the host controller driver should use in preference to the 1415 * transfer_buffer. 1416 * @sg: scatter gather buffer list, the buffer size of each element in 1417 * the list (except the last) must be divisible by the endpoint's 1418 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1419 * @num_mapped_sgs: (internal) number of mapped sg entries 1420 * @num_sgs: number of entries in the sg list 1421 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1422 * be broken up into chunks according to the current maximum packet 1423 * size for the endpoint, which is a function of the configuration 1424 * and is encoded in the pipe. When the length is zero, neither 1425 * transfer_buffer nor transfer_dma is used. 1426 * @actual_length: This is read in non-iso completion functions, and 1427 * it tells how many bytes (out of transfer_buffer_length) were 1428 * transferred. It will normally be the same as requested, unless 1429 * either an error was reported or a short read was performed. 1430 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1431 * short reads be reported as errors. 1432 * @setup_packet: Only used for control transfers, this points to eight bytes 1433 * of setup data. Control transfers always start by sending this data 1434 * to the device. Then transfer_buffer is read or written, if needed. 1435 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1436 * this field; setup_packet must point to a valid buffer. 1437 * @start_frame: Returns the initial frame for isochronous transfers. 1438 * @number_of_packets: Lists the number of ISO transfer buffers. 1439 * @interval: Specifies the polling interval for interrupt or isochronous 1440 * transfers. The units are frames (milliseconds) for full and low 1441 * speed devices, and microframes (1/8 millisecond) for highspeed 1442 * and SuperSpeed devices. 1443 * @error_count: Returns the number of ISO transfers that reported errors. 1444 * @context: For use in completion functions. This normally points to 1445 * request-specific driver context. 1446 * @complete: Completion handler. This URB is passed as the parameter to the 1447 * completion function. The completion function may then do what 1448 * it likes with the URB, including resubmitting or freeing it. 1449 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1450 * collect the transfer status for each buffer. 1451 * 1452 * This structure identifies USB transfer requests. URBs must be allocated by 1453 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1454 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1455 * are submitted using usb_submit_urb(), and pending requests may be canceled 1456 * using usb_unlink_urb() or usb_kill_urb(). 1457 * 1458 * Data Transfer Buffers: 1459 * 1460 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1461 * taken from the general page pool. That is provided by transfer_buffer 1462 * (control requests also use setup_packet), and host controller drivers 1463 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1464 * mapping operations can be expensive on some platforms (perhaps using a dma 1465 * bounce buffer or talking to an IOMMU), 1466 * although they're cheap on commodity x86 and ppc hardware. 1467 * 1468 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1469 * which tells the host controller driver that no such mapping is needed for 1470 * the transfer_buffer since 1471 * the device driver is DMA-aware. For example, a device driver might 1472 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1473 * When this transfer flag is provided, host controller drivers will 1474 * attempt to use the dma address found in the transfer_dma 1475 * field rather than determining a dma address themselves. 1476 * 1477 * Note that transfer_buffer must still be set if the controller 1478 * does not support DMA (as indicated by hcd_uses_dma()) and when talking 1479 * to root hub. If you have to trasfer between highmem zone and the device 1480 * on such controller, create a bounce buffer or bail out with an error. 1481 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1482 * capable, assign NULL to it, so that usbmon knows not to use the value. 1483 * The setup_packet must always be set, so it cannot be located in highmem. 1484 * 1485 * Initialization: 1486 * 1487 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1488 * zero), and complete fields. All URBs must also initialize 1489 * transfer_buffer and transfer_buffer_length. They may provide the 1490 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1491 * to be treated as errors; that flag is invalid for write requests. 1492 * 1493 * Bulk URBs may 1494 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1495 * should always terminate with a short packet, even if it means adding an 1496 * extra zero length packet. 1497 * 1498 * Control URBs must provide a valid pointer in the setup_packet field. 1499 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1500 * beforehand. 1501 * 1502 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1503 * or, for highspeed devices, 125 microsecond units) 1504 * to poll for transfers. After the URB has been submitted, the interval 1505 * field reflects how the transfer was actually scheduled. 1506 * The polling interval may be more frequent than requested. 1507 * For example, some controllers have a maximum interval of 32 milliseconds, 1508 * while others support intervals of up to 1024 milliseconds. 1509 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1510 * endpoints, as well as high speed interrupt endpoints, the encoding of 1511 * the transfer interval in the endpoint descriptor is logarithmic. 1512 * Device drivers must convert that value to linear units themselves.) 1513 * 1514 * If an isochronous endpoint queue isn't already running, the host 1515 * controller will schedule a new URB to start as soon as bandwidth 1516 * utilization allows. If the queue is running then a new URB will be 1517 * scheduled to start in the first transfer slot following the end of the 1518 * preceding URB, if that slot has not already expired. If the slot has 1519 * expired (which can happen when IRQ delivery is delayed for a long time), 1520 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1521 * is clear then the URB will be scheduled to start in the expired slot, 1522 * implying that some of its packets will not be transferred; if the flag 1523 * is set then the URB will be scheduled in the first unexpired slot, 1524 * breaking the queue's synchronization. Upon URB completion, the 1525 * start_frame field will be set to the (micro)frame number in which the 1526 * transfer was scheduled. Ranges for frame counter values are HC-specific 1527 * and can go from as low as 256 to as high as 65536 frames. 1528 * 1529 * Isochronous URBs have a different data transfer model, in part because 1530 * the quality of service is only "best effort". Callers provide specially 1531 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1532 * at the end. Each such packet is an individual ISO transfer. Isochronous 1533 * URBs are normally queued, submitted by drivers to arrange that 1534 * transfers are at least double buffered, and then explicitly resubmitted 1535 * in completion handlers, so 1536 * that data (such as audio or video) streams at as constant a rate as the 1537 * host controller scheduler can support. 1538 * 1539 * Completion Callbacks: 1540 * 1541 * The completion callback is made in_interrupt(), and one of the first 1542 * things that a completion handler should do is check the status field. 1543 * The status field is provided for all URBs. It is used to report 1544 * unlinked URBs, and status for all non-ISO transfers. It should not 1545 * be examined before the URB is returned to the completion handler. 1546 * 1547 * The context field is normally used to link URBs back to the relevant 1548 * driver or request state. 1549 * 1550 * When the completion callback is invoked for non-isochronous URBs, the 1551 * actual_length field tells how many bytes were transferred. This field 1552 * is updated even when the URB terminated with an error or was unlinked. 1553 * 1554 * ISO transfer status is reported in the status and actual_length fields 1555 * of the iso_frame_desc array, and the number of errors is reported in 1556 * error_count. Completion callbacks for ISO transfers will normally 1557 * (re)submit URBs to ensure a constant transfer rate. 1558 * 1559 * Note that even fields marked "public" should not be touched by the driver 1560 * when the urb is owned by the hcd, that is, since the call to 1561 * usb_submit_urb() till the entry into the completion routine. 1562 */ 1563struct urb { 1564 /* private: usb core and host controller only fields in the urb */ 1565 struct kref kref; /* reference count of the URB */ 1566 int unlinked; /* unlink error code */ 1567 void *hcpriv; /* private data for host controller */ 1568 atomic_t use_count; /* concurrent submissions counter */ 1569 atomic_t reject; /* submissions will fail */ 1570 1571 /* public: documented fields in the urb that can be used by drivers */ 1572 struct list_head urb_list; /* list head for use by the urb's 1573 * current owner */ 1574 struct list_head anchor_list; /* the URB may be anchored */ 1575 struct usb_anchor *anchor; 1576 struct usb_device *dev; /* (in) pointer to associated device */ 1577 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1578 unsigned int pipe; /* (in) pipe information */ 1579 unsigned int stream_id; /* (in) stream ID */ 1580 int status; /* (return) non-ISO status */ 1581 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1582 void *transfer_buffer; /* (in) associated data buffer */ 1583 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1584 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1585 int num_mapped_sgs; /* (internal) mapped sg entries */ 1586 int num_sgs; /* (in) number of entries in the sg list */ 1587 u32 transfer_buffer_length; /* (in) data buffer length */ 1588 u32 actual_length; /* (return) actual transfer length */ 1589 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1590 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1591 int start_frame; /* (modify) start frame (ISO) */ 1592 int number_of_packets; /* (in) number of ISO packets */ 1593 int interval; /* (modify) transfer interval 1594 * (INT/ISO) */ 1595 int error_count; /* (return) number of ISO errors */ 1596 void *context; /* (in) context for completion */ 1597 usb_complete_t complete; /* (in) completion routine */ 1598 struct usb_iso_packet_descriptor iso_frame_desc[]; 1599 /* (in) ISO ONLY */ 1600}; 1601 1602/* ----------------------------------------------------------------------- */ 1603 1604/** 1605 * usb_fill_control_urb - initializes a control urb 1606 * @urb: pointer to the urb to initialize. 1607 * @dev: pointer to the struct usb_device for this urb. 1608 * @pipe: the endpoint pipe 1609 * @setup_packet: pointer to the setup_packet buffer 1610 * @transfer_buffer: pointer to the transfer buffer 1611 * @buffer_length: length of the transfer buffer 1612 * @complete_fn: pointer to the usb_complete_t function 1613 * @context: what to set the urb context to. 1614 * 1615 * Initializes a control urb with the proper information needed to submit 1616 * it to a device. 1617 */ 1618static inline void usb_fill_control_urb(struct urb *urb, 1619 struct usb_device *dev, 1620 unsigned int pipe, 1621 unsigned char *setup_packet, 1622 void *transfer_buffer, 1623 int buffer_length, 1624 usb_complete_t complete_fn, 1625 void *context) 1626{ 1627 urb->dev = dev; 1628 urb->pipe = pipe; 1629 urb->setup_packet = setup_packet; 1630 urb->transfer_buffer = transfer_buffer; 1631 urb->transfer_buffer_length = buffer_length; 1632 urb->complete = complete_fn; 1633 urb->context = context; 1634} 1635 1636/** 1637 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1638 * @urb: pointer to the urb to initialize. 1639 * @dev: pointer to the struct usb_device for this urb. 1640 * @pipe: the endpoint pipe 1641 * @transfer_buffer: pointer to the transfer buffer 1642 * @buffer_length: length of the transfer buffer 1643 * @complete_fn: pointer to the usb_complete_t function 1644 * @context: what to set the urb context to. 1645 * 1646 * Initializes a bulk urb with the proper information needed to submit it 1647 * to a device. 1648 */ 1649static inline void usb_fill_bulk_urb(struct urb *urb, 1650 struct usb_device *dev, 1651 unsigned int pipe, 1652 void *transfer_buffer, 1653 int buffer_length, 1654 usb_complete_t complete_fn, 1655 void *context) 1656{ 1657 urb->dev = dev; 1658 urb->pipe = pipe; 1659 urb->transfer_buffer = transfer_buffer; 1660 urb->transfer_buffer_length = buffer_length; 1661 urb->complete = complete_fn; 1662 urb->context = context; 1663} 1664 1665/** 1666 * usb_fill_int_urb - macro to help initialize a interrupt urb 1667 * @urb: pointer to the urb to initialize. 1668 * @dev: pointer to the struct usb_device for this urb. 1669 * @pipe: the endpoint pipe 1670 * @transfer_buffer: pointer to the transfer buffer 1671 * @buffer_length: length of the transfer buffer 1672 * @complete_fn: pointer to the usb_complete_t function 1673 * @context: what to set the urb context to. 1674 * @interval: what to set the urb interval to, encoded like 1675 * the endpoint descriptor's bInterval value. 1676 * 1677 * Initializes a interrupt urb with the proper information needed to submit 1678 * it to a device. 1679 * 1680 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic 1681 * encoding of the endpoint interval, and express polling intervals in 1682 * microframes (eight per millisecond) rather than in frames (one per 1683 * millisecond). 1684 * 1685 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1686 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1687 * through to the host controller, rather than being translated into microframe 1688 * units. 1689 */ 1690static inline void usb_fill_int_urb(struct urb *urb, 1691 struct usb_device *dev, 1692 unsigned int pipe, 1693 void *transfer_buffer, 1694 int buffer_length, 1695 usb_complete_t complete_fn, 1696 void *context, 1697 int interval) 1698{ 1699 urb->dev = dev; 1700 urb->pipe = pipe; 1701 urb->transfer_buffer = transfer_buffer; 1702 urb->transfer_buffer_length = buffer_length; 1703 urb->complete = complete_fn; 1704 urb->context = context; 1705 1706 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) { 1707 /* make sure interval is within allowed range */ 1708 interval = clamp(interval, 1, 16); 1709 1710 urb->interval = 1 << (interval - 1); 1711 } else { 1712 urb->interval = interval; 1713 } 1714 1715 urb->start_frame = -1; 1716} 1717 1718extern void usb_init_urb(struct urb *urb); 1719extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1720extern void usb_free_urb(struct urb *urb); 1721#define usb_put_urb usb_free_urb 1722extern struct urb *usb_get_urb(struct urb *urb); 1723extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1724extern int usb_unlink_urb(struct urb *urb); 1725extern void usb_kill_urb(struct urb *urb); 1726extern void usb_poison_urb(struct urb *urb); 1727extern void usb_unpoison_urb(struct urb *urb); 1728extern void usb_block_urb(struct urb *urb); 1729extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1730extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1731extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1732extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1733extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1734extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1735extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1736extern void usb_unanchor_urb(struct urb *urb); 1737extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1738 unsigned int timeout); 1739extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1740extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1741extern int usb_anchor_empty(struct usb_anchor *anchor); 1742 1743#define usb_unblock_urb usb_unpoison_urb 1744 1745/** 1746 * usb_urb_dir_in - check if an URB describes an IN transfer 1747 * @urb: URB to be checked 1748 * 1749 * Return: 1 if @urb describes an IN transfer (device-to-host), 1750 * otherwise 0. 1751 */ 1752static inline int usb_urb_dir_in(struct urb *urb) 1753{ 1754 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1755} 1756 1757/** 1758 * usb_urb_dir_out - check if an URB describes an OUT transfer 1759 * @urb: URB to be checked 1760 * 1761 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1762 * otherwise 0. 1763 */ 1764static inline int usb_urb_dir_out(struct urb *urb) 1765{ 1766 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1767} 1768 1769int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe); 1770int usb_urb_ep_type_check(const struct urb *urb); 1771 1772void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1773 gfp_t mem_flags, dma_addr_t *dma); 1774void usb_free_coherent(struct usb_device *dev, size_t size, 1775 void *addr, dma_addr_t dma); 1776 1777#if 0 1778struct urb *usb_buffer_map(struct urb *urb); 1779void usb_buffer_dmasync(struct urb *urb); 1780void usb_buffer_unmap(struct urb *urb); 1781#endif 1782 1783struct scatterlist; 1784int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1785 struct scatterlist *sg, int nents); 1786#if 0 1787void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1788 struct scatterlist *sg, int n_hw_ents); 1789#endif 1790void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1791 struct scatterlist *sg, int n_hw_ents); 1792 1793/*-------------------------------------------------------------------* 1794 * SYNCHRONOUS CALL SUPPORT * 1795 *-------------------------------------------------------------------*/ 1796 1797extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1798 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1799 void *data, __u16 size, int timeout); 1800extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1801 void *data, int len, int *actual_length, int timeout); 1802extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1803 void *data, int len, int *actual_length, 1804 int timeout); 1805 1806/* wrappers around usb_control_msg() for the most common standard requests */ 1807int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request, 1808 __u8 requesttype, __u16 value, __u16 index, 1809 const void *data, __u16 size, int timeout, 1810 gfp_t memflags); 1811int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request, 1812 __u8 requesttype, __u16 value, __u16 index, 1813 void *data, __u16 size, int timeout, 1814 gfp_t memflags); 1815extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1816 unsigned char descindex, void *buf, int size); 1817extern int usb_get_status(struct usb_device *dev, 1818 int recip, int type, int target, void *data); 1819 1820static inline int usb_get_std_status(struct usb_device *dev, 1821 int recip, int target, void *data) 1822{ 1823 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target, 1824 data); 1825} 1826 1827static inline int usb_get_ptm_status(struct usb_device *dev, void *data) 1828{ 1829 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM, 1830 0, data); 1831} 1832 1833extern int usb_string(struct usb_device *dev, int index, 1834 char *buf, size_t size); 1835 1836/* wrappers that also update important state inside usbcore */ 1837extern int usb_clear_halt(struct usb_device *dev, int pipe); 1838extern int usb_reset_configuration(struct usb_device *dev); 1839extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1840extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1841 1842/* this request isn't really synchronous, but it belongs with the others */ 1843extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1844 1845/* choose and set configuration for device */ 1846extern int usb_choose_configuration(struct usb_device *udev); 1847extern int usb_set_configuration(struct usb_device *dev, int configuration); 1848 1849/* 1850 * timeouts, in milliseconds, used for sending/receiving control messages 1851 * they typically complete within a few frames (msec) after they're issued 1852 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1853 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1854 */ 1855#define USB_CTRL_GET_TIMEOUT 5000 1856#define USB_CTRL_SET_TIMEOUT 5000 1857 1858 1859/** 1860 * struct usb_sg_request - support for scatter/gather I/O 1861 * @status: zero indicates success, else negative errno 1862 * @bytes: counts bytes transferred. 1863 * 1864 * These requests are initialized using usb_sg_init(), and then are used 1865 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1866 * members of the request object aren't for driver access. 1867 * 1868 * The status and bytecount values are valid only after usb_sg_wait() 1869 * returns. If the status is zero, then the bytecount matches the total 1870 * from the request. 1871 * 1872 * After an error completion, drivers may need to clear a halt condition 1873 * on the endpoint. 1874 */ 1875struct usb_sg_request { 1876 int status; 1877 size_t bytes; 1878 1879 /* private: 1880 * members below are private to usbcore, 1881 * and are not provided for driver access! 1882 */ 1883 spinlock_t lock; 1884 1885 struct usb_device *dev; 1886 int pipe; 1887 1888 int entries; 1889 struct urb **urbs; 1890 1891 int count; 1892 struct completion complete; 1893}; 1894 1895int usb_sg_init( 1896 struct usb_sg_request *io, 1897 struct usb_device *dev, 1898 unsigned pipe, 1899 unsigned period, 1900 struct scatterlist *sg, 1901 int nents, 1902 size_t length, 1903 gfp_t mem_flags 1904); 1905void usb_sg_cancel(struct usb_sg_request *io); 1906void usb_sg_wait(struct usb_sg_request *io); 1907 1908 1909/* ----------------------------------------------------------------------- */ 1910 1911/* 1912 * For various legacy reasons, Linux has a small cookie that's paired with 1913 * a struct usb_device to identify an endpoint queue. Queue characteristics 1914 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1915 * an unsigned int encoded as: 1916 * 1917 * - direction: bit 7 (0 = Host-to-Device [Out], 1918 * 1 = Device-to-Host [In] ... 1919 * like endpoint bEndpointAddress) 1920 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1921 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1922 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1923 * 10 = control, 11 = bulk) 1924 * 1925 * Given the device address and endpoint descriptor, pipes are redundant. 1926 */ 1927 1928/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1929/* (yet ... they're the values used by usbfs) */ 1930#define PIPE_ISOCHRONOUS 0 1931#define PIPE_INTERRUPT 1 1932#define PIPE_CONTROL 2 1933#define PIPE_BULK 3 1934 1935#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1936#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1937 1938#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1939#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1940 1941#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1942#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1943#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1944#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1945#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1946 1947static inline unsigned int __create_pipe(struct usb_device *dev, 1948 unsigned int endpoint) 1949{ 1950 return (dev->devnum << 8) | (endpoint << 15); 1951} 1952 1953/* Create various pipes... */ 1954#define usb_sndctrlpipe(dev, endpoint) \ 1955 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1956#define usb_rcvctrlpipe(dev, endpoint) \ 1957 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1958#define usb_sndisocpipe(dev, endpoint) \ 1959 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1960#define usb_rcvisocpipe(dev, endpoint) \ 1961 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1962#define usb_sndbulkpipe(dev, endpoint) \ 1963 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1964#define usb_rcvbulkpipe(dev, endpoint) \ 1965 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1966#define usb_sndintpipe(dev, endpoint) \ 1967 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1968#define usb_rcvintpipe(dev, endpoint) \ 1969 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1970 1971static inline struct usb_host_endpoint * 1972usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1973{ 1974 struct usb_host_endpoint **eps; 1975 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1976 return eps[usb_pipeendpoint(pipe)]; 1977} 1978 1979/*-------------------------------------------------------------------------*/ 1980 1981static inline __u16 1982usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1983{ 1984 struct usb_host_endpoint *ep; 1985 unsigned epnum = usb_pipeendpoint(pipe); 1986 1987 if (is_out) { 1988 WARN_ON(usb_pipein(pipe)); 1989 ep = udev->ep_out[epnum]; 1990 } else { 1991 WARN_ON(usb_pipeout(pipe)); 1992 ep = udev->ep_in[epnum]; 1993 } 1994 if (!ep) 1995 return 0; 1996 1997 /* NOTE: only 0x07ff bits are for packet size... */ 1998 return usb_endpoint_maxp(&ep->desc); 1999} 2000
2001/* ----------------------------------------------------------------------- */ 2002 2003/* translate USB error codes to codes user space understands */ 2004static inline int usb_translate_errors(int error_code) 2005{ 2006 switch (error_code) { 2007 case 0: 2008 case -ENOMEM: 2009 case -ENODEV: 2010 case -EOPNOTSUPP: 2011 return error_code; 2012 default: 2013 return -EIO; 2014 } 2015} 2016 2017/* Events from the usb core */ 2018#define USB_DEVICE_ADD 0x0001 2019#define USB_DEVICE_REMOVE 0x0002 2020#define USB_BUS_ADD 0x0003 2021#define USB_BUS_REMOVE 0x0004 2022extern void usb_register_notify(struct notifier_block *nb); 2023extern void usb_unregister_notify(struct notifier_block *nb); 2024 2025/* debugfs stuff */ 2026extern struct dentry *usb_debug_root; 2027 2028/* LED triggers */ 2029enum usb_led_event { 2030 USB_LED_EVENT_HOST = 0, 2031 USB_LED_EVENT_GADGET = 1, 2032}; 2033 2034#ifdef CONFIG_USB_LED_TRIG 2035extern void usb_led_activity(enum usb_led_event ev); 2036#else 2037static inline void usb_led_activity(enum usb_led_event ev) {} 2038#endif 2039 2040#endif /* __KERNEL__ */ 2041 2042#endif 2043