linux/mm/memblock.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Procedures for maintaining information about logical memory blocks.
   4 *
   5 * Peter Bergner, IBM Corp.     June 2001.
   6 * Copyright (C) 2001 Peter Bergner.
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/init.h>
  12#include <linux/bitops.h>
  13#include <linux/poison.h>
  14#include <linux/pfn.h>
  15#include <linux/debugfs.h>
  16#include <linux/kmemleak.h>
  17#include <linux/seq_file.h>
  18#include <linux/memblock.h>
  19
  20#include <asm/sections.h>
  21#include <linux/io.h>
  22
  23#include "internal.h"
  24
  25#define INIT_MEMBLOCK_REGIONS                   128
  26#define INIT_PHYSMEM_REGIONS                    4
  27
  28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
  29# define INIT_MEMBLOCK_RESERVED_REGIONS         INIT_MEMBLOCK_REGIONS
  30#endif
  31
  32/**
  33 * DOC: memblock overview
  34 *
  35 * Memblock is a method of managing memory regions during the early
  36 * boot period when the usual kernel memory allocators are not up and
  37 * running.
  38 *
  39 * Memblock views the system memory as collections of contiguous
  40 * regions. There are several types of these collections:
  41 *
  42 * * ``memory`` - describes the physical memory available to the
  43 *   kernel; this may differ from the actual physical memory installed
  44 *   in the system, for instance when the memory is restricted with
  45 *   ``mem=`` command line parameter
  46 * * ``reserved`` - describes the regions that were allocated
  47 * * ``physmem`` - describes the actual physical memory available during
  48 *   boot regardless of the possible restrictions and memory hot(un)plug;
  49 *   the ``physmem`` type is only available on some architectures.
  50 *
  51 * Each region is represented by struct memblock_region that
  52 * defines the region extents, its attributes and NUMA node id on NUMA
  53 * systems. Every memory type is described by the struct memblock_type
  54 * which contains an array of memory regions along with
  55 * the allocator metadata. The "memory" and "reserved" types are nicely
  56 * wrapped with struct memblock. This structure is statically
  57 * initialized at build time. The region arrays are initially sized to
  58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
  59 * for "reserved". The region array for "physmem" is initially sized to
  60 * %INIT_PHYSMEM_REGIONS.
  61 * The memblock_allow_resize() enables automatic resizing of the region
  62 * arrays during addition of new regions. This feature should be used
  63 * with care so that memory allocated for the region array will not
  64 * overlap with areas that should be reserved, for example initrd.
  65 *
  66 * The early architecture setup should tell memblock what the physical
  67 * memory layout is by using memblock_add() or memblock_add_node()
  68 * functions. The first function does not assign the region to a NUMA
  69 * node and it is appropriate for UMA systems. Yet, it is possible to
  70 * use it on NUMA systems as well and assign the region to a NUMA node
  71 * later in the setup process using memblock_set_node(). The
  72 * memblock_add_node() performs such an assignment directly.
  73 *
  74 * Once memblock is setup the memory can be allocated using one of the
  75 * API variants:
  76 *
  77 * * memblock_phys_alloc*() - these functions return the **physical**
  78 *   address of the allocated memory
  79 * * memblock_alloc*() - these functions return the **virtual** address
  80 *   of the allocated memory.
  81 *
  82 * Note, that both API variants use implicit assumptions about allowed
  83 * memory ranges and the fallback methods. Consult the documentation
  84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
  85 * functions for more elaborate description.
  86 *
  87 * As the system boot progresses, the architecture specific mem_init()
  88 * function frees all the memory to the buddy page allocator.
  89 *
  90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
  91 * memblock data structures (except "physmem") will be discarded after the
  92 * system initialization completes.
  93 */
  94
  95#ifndef CONFIG_NEED_MULTIPLE_NODES
  96struct pglist_data __refdata contig_page_data;
  97EXPORT_SYMBOL(contig_page_data);
  98#endif
  99
 100unsigned long max_low_pfn;
 101unsigned long min_low_pfn;
 102unsigned long max_pfn;
 103unsigned long long max_possible_pfn;
 104
 105static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
 106static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
 107#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 108static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
 109#endif
 110
 111struct memblock memblock __initdata_memblock = {
 112        .memory.regions         = memblock_memory_init_regions,
 113        .memory.cnt             = 1,    /* empty dummy entry */
 114        .memory.max             = INIT_MEMBLOCK_REGIONS,
 115        .memory.name            = "memory",
 116
 117        .reserved.regions       = memblock_reserved_init_regions,
 118        .reserved.cnt           = 1,    /* empty dummy entry */
 119        .reserved.max           = INIT_MEMBLOCK_RESERVED_REGIONS,
 120        .reserved.name          = "reserved",
 121
 122        .bottom_up              = false,
 123        .current_limit          = MEMBLOCK_ALLOC_ANYWHERE,
 124};
 125
 126#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 127struct memblock_type physmem = {
 128        .regions                = memblock_physmem_init_regions,
 129        .cnt                    = 1,    /* empty dummy entry */
 130        .max                    = INIT_PHYSMEM_REGIONS,
 131        .name                   = "physmem",
 132};
 133#endif
 134
 135/*
 136 * keep a pointer to &memblock.memory in the text section to use it in
 137 * __next_mem_range() and its helpers.
 138 *  For architectures that do not keep memblock data after init, this
 139 * pointer will be reset to NULL at memblock_discard()
 140 */
 141static __refdata struct memblock_type *memblock_memory = &memblock.memory;
 142
 143#define for_each_memblock_type(i, memblock_type, rgn)                   \
 144        for (i = 0, rgn = &memblock_type->regions[0];                   \
 145             i < memblock_type->cnt;                                    \
 146             i++, rgn = &memblock_type->regions[i])
 147
 148#define memblock_dbg(fmt, ...)                                          \
 149        do {                                                            \
 150                if (memblock_debug)                                     \
 151                        pr_info(fmt, ##__VA_ARGS__);                    \
 152        } while (0)
 153
 154static int memblock_debug __initdata_memblock;
 155static bool system_has_some_mirror __initdata_memblock = false;
 156static int memblock_can_resize __initdata_memblock;
 157static int memblock_memory_in_slab __initdata_memblock = 0;
 158static int memblock_reserved_in_slab __initdata_memblock = 0;
 159
 160static enum memblock_flags __init_memblock choose_memblock_flags(void)
 161{
 162        return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
 163}
 164
 165/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
 166static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
 167{
 168        return *size = min(*size, PHYS_ADDR_MAX - base);
 169}
 170
 171/*
 172 * Address comparison utilities
 173 */
 174static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
 175                                       phys_addr_t base2, phys_addr_t size2)
 176{
 177        return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 178}
 179
 180bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
 181                                        phys_addr_t base, phys_addr_t size)
 182{
 183        unsigned long i;
 184
 185        for (i = 0; i < type->cnt; i++)
 186                if (memblock_addrs_overlap(base, size, type->regions[i].base,
 187                                           type->regions[i].size))
 188                        break;
 189        return i < type->cnt;
 190}
 191
 192/**
 193 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 194 * @start: start of candidate range
 195 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 196 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 197 * @size: size of free area to find
 198 * @align: alignment of free area to find
 199 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 200 * @flags: pick from blocks based on memory attributes
 201 *
 202 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 203 *
 204 * Return:
 205 * Found address on success, 0 on failure.
 206 */
 207static phys_addr_t __init_memblock
 208__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 209                                phys_addr_t size, phys_addr_t align, int nid,
 210                                enum memblock_flags flags)
 211{
 212        phys_addr_t this_start, this_end, cand;
 213        u64 i;
 214
 215        for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 216                this_start = clamp(this_start, start, end);
 217                this_end = clamp(this_end, start, end);
 218
 219                cand = round_up(this_start, align);
 220                if (cand < this_end && this_end - cand >= size)
 221                        return cand;
 222        }
 223
 224        return 0;
 225}
 226
 227/**
 228 * __memblock_find_range_top_down - find free area utility, in top-down
 229 * @start: start of candidate range
 230 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 231 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 232 * @size: size of free area to find
 233 * @align: alignment of free area to find
 234 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 235 * @flags: pick from blocks based on memory attributes
 236 *
 237 * Utility called from memblock_find_in_range_node(), find free area top-down.
 238 *
 239 * Return:
 240 * Found address on success, 0 on failure.
 241 */
 242static phys_addr_t __init_memblock
 243__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 244                               phys_addr_t size, phys_addr_t align, int nid,
 245                               enum memblock_flags flags)
 246{
 247        phys_addr_t this_start, this_end, cand;
 248        u64 i;
 249
 250        for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 251                                        NULL) {
 252                this_start = clamp(this_start, start, end);
 253                this_end = clamp(this_end, start, end);
 254
 255                if (this_end < size)
 256                        continue;
 257
 258                cand = round_down(this_end - size, align);
 259                if (cand >= this_start)
 260                        return cand;
 261        }
 262
 263        return 0;
 264}
 265
 266/**
 267 * memblock_find_in_range_node - find free area in given range and node
 268 * @size: size of free area to find
 269 * @align: alignment of free area to find
 270 * @start: start of candidate range
 271 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 272 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 273 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 274 * @flags: pick from blocks based on memory attributes
 275 *
 276 * Find @size free area aligned to @align in the specified range and node.
 277 *
 278 * Return:
 279 * Found address on success, 0 on failure.
 280 */
 281static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 282                                        phys_addr_t align, phys_addr_t start,
 283                                        phys_addr_t end, int nid,
 284                                        enum memblock_flags flags)
 285{
 286        /* pump up @end */
 287        if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
 288            end == MEMBLOCK_ALLOC_KASAN)
 289                end = memblock.current_limit;
 290
 291        /* avoid allocating the first page */
 292        start = max_t(phys_addr_t, start, PAGE_SIZE);
 293        end = max(start, end);
 294
 295        if (memblock_bottom_up())
 296                return __memblock_find_range_bottom_up(start, end, size, align,
 297                                                       nid, flags);
 298        else
 299                return __memblock_find_range_top_down(start, end, size, align,
 300                                                      nid, flags);
 301}
 302
 303/**
 304 * memblock_find_in_range - find free area in given range
 305 * @start: start of candidate range
 306 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 307 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 308 * @size: size of free area to find
 309 * @align: alignment of free area to find
 310 *
 311 * Find @size free area aligned to @align in the specified range.
 312 *
 313 * Return:
 314 * Found address on success, 0 on failure.
 315 */
 316phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 317                                        phys_addr_t end, phys_addr_t size,
 318                                        phys_addr_t align)
 319{
 320        phys_addr_t ret;
 321        enum memblock_flags flags = choose_memblock_flags();
 322
 323again:
 324        ret = memblock_find_in_range_node(size, align, start, end,
 325                                            NUMA_NO_NODE, flags);
 326
 327        if (!ret && (flags & MEMBLOCK_MIRROR)) {
 328                pr_warn("Could not allocate %pap bytes of mirrored memory\n",
 329                        &size);
 330                flags &= ~MEMBLOCK_MIRROR;
 331                goto again;
 332        }
 333
 334        return ret;
 335}
 336
 337static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 338{
 339        type->total_size -= type->regions[r].size;
 340        memmove(&type->regions[r], &type->regions[r + 1],
 341                (type->cnt - (r + 1)) * sizeof(type->regions[r]));
 342        type->cnt--;
 343
 344        /* Special case for empty arrays */
 345        if (type->cnt == 0) {
 346                WARN_ON(type->total_size != 0);
 347                type->cnt = 1;
 348                type->regions[0].base = 0;
 349                type->regions[0].size = 0;
 350                type->regions[0].flags = 0;
 351                memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 352        }
 353}
 354
 355#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
 356/**
 357 * memblock_discard - discard memory and reserved arrays if they were allocated
 358 */
 359void __init memblock_discard(void)
 360{
 361        phys_addr_t addr, size;
 362
 363        if (memblock.reserved.regions != memblock_reserved_init_regions) {
 364                addr = __pa(memblock.reserved.regions);
 365                size = PAGE_ALIGN(sizeof(struct memblock_region) *
 366                                  memblock.reserved.max);
 367                __memblock_free_late(addr, size);
 368        }
 369
 370        if (memblock.memory.regions != memblock_memory_init_regions) {
 371                addr = __pa(memblock.memory.regions);
 372                size = PAGE_ALIGN(sizeof(struct memblock_region) *
 373                                  memblock.memory.max);
 374                __memblock_free_late(addr, size);
 375        }
 376
 377        memblock_memory = NULL;
 378}
 379#endif
 380
 381/**
 382 * memblock_double_array - double the size of the memblock regions array
 383 * @type: memblock type of the regions array being doubled
 384 * @new_area_start: starting address of memory range to avoid overlap with
 385 * @new_area_size: size of memory range to avoid overlap with
 386 *
 387 * Double the size of the @type regions array. If memblock is being used to
 388 * allocate memory for a new reserved regions array and there is a previously
 389 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
 390 * waiting to be reserved, ensure the memory used by the new array does
 391 * not overlap.
 392 *
 393 * Return:
 394 * 0 on success, -1 on failure.
 395 */
 396static int __init_memblock memblock_double_array(struct memblock_type *type,
 397                                                phys_addr_t new_area_start,
 398                                                phys_addr_t new_area_size)
 399{
 400        struct memblock_region *new_array, *old_array;
 401        phys_addr_t old_alloc_size, new_alloc_size;
 402        phys_addr_t old_size, new_size, addr, new_end;
 403        int use_slab = slab_is_available();
 404        int *in_slab;
 405
 406        /* We don't allow resizing until we know about the reserved regions
 407         * of memory that aren't suitable for allocation
 408         */
 409        if (!memblock_can_resize)
 410                return -1;
 411
 412        /* Calculate new doubled size */
 413        old_size = type->max * sizeof(struct memblock_region);
 414        new_size = old_size << 1;
 415        /*
 416         * We need to allocated new one align to PAGE_SIZE,
 417         *   so we can free them completely later.
 418         */
 419        old_alloc_size = PAGE_ALIGN(old_size);
 420        new_alloc_size = PAGE_ALIGN(new_size);
 421
 422        /* Retrieve the slab flag */
 423        if (type == &memblock.memory)
 424                in_slab = &memblock_memory_in_slab;
 425        else
 426                in_slab = &memblock_reserved_in_slab;
 427
 428        /* Try to find some space for it */
 429        if (use_slab) {
 430                new_array = kmalloc(new_size, GFP_KERNEL);
 431                addr = new_array ? __pa(new_array) : 0;
 432        } else {
 433                /* only exclude range when trying to double reserved.regions */
 434                if (type != &memblock.reserved)
 435                        new_area_start = new_area_size = 0;
 436
 437                addr = memblock_find_in_range(new_area_start + new_area_size,
 438                                                memblock.current_limit,
 439                                                new_alloc_size, PAGE_SIZE);
 440                if (!addr && new_area_size)
 441                        addr = memblock_find_in_range(0,
 442                                min(new_area_start, memblock.current_limit),
 443                                new_alloc_size, PAGE_SIZE);
 444
 445                new_array = addr ? __va(addr) : NULL;
 446        }
 447        if (!addr) {
 448                pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 449                       type->name, type->max, type->max * 2);
 450                return -1;
 451        }
 452
 453        new_end = addr + new_size - 1;
 454        memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
 455                        type->name, type->max * 2, &addr, &new_end);
 456
 457        /*
 458         * Found space, we now need to move the array over before we add the
 459         * reserved region since it may be our reserved array itself that is
 460         * full.
 461         */
 462        memcpy(new_array, type->regions, old_size);
 463        memset(new_array + type->max, 0, old_size);
 464        old_array = type->regions;
 465        type->regions = new_array;
 466        type->max <<= 1;
 467
 468        /* Free old array. We needn't free it if the array is the static one */
 469        if (*in_slab)
 470                kfree(old_array);
 471        else if (old_array != memblock_memory_init_regions &&
 472                 old_array != memblock_reserved_init_regions)
 473                memblock_free(__pa(old_array), old_alloc_size);
 474
 475        /*
 476         * Reserve the new array if that comes from the memblock.  Otherwise, we
 477         * needn't do it
 478         */
 479        if (!use_slab)
 480                BUG_ON(memblock_reserve(addr, new_alloc_size));
 481
 482        /* Update slab flag */
 483        *in_slab = use_slab;
 484
 485        return 0;
 486}
 487
 488/**
 489 * memblock_merge_regions - merge neighboring compatible regions
 490 * @type: memblock type to scan
 491 *
 492 * Scan @type and merge neighboring compatible regions.
 493 */
 494static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 495{
 496        int i = 0;
 497
 498        /* cnt never goes below 1 */
 499        while (i < type->cnt - 1) {
 500                struct memblock_region *this = &type->regions[i];
 501                struct memblock_region *next = &type->regions[i + 1];
 502
 503                if (this->base + this->size != next->base ||
 504                    memblock_get_region_node(this) !=
 505                    memblock_get_region_node(next) ||
 506                    this->flags != next->flags) {
 507                        BUG_ON(this->base + this->size > next->base);
 508                        i++;
 509                        continue;
 510                }
 511
 512                this->size += next->size;
 513                /* move forward from next + 1, index of which is i + 2 */
 514                memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 515                type->cnt--;
 516        }
 517}
 518
 519/**
 520 * memblock_insert_region - insert new memblock region
 521 * @type:       memblock type to insert into
 522 * @idx:        index for the insertion point
 523 * @base:       base address of the new region
 524 * @size:       size of the new region
 525 * @nid:        node id of the new region
 526 * @flags:      flags of the new region
 527 *
 528 * Insert new memblock region [@base, @base + @size) into @type at @idx.
 529 * @type must already have extra room to accommodate the new region.
 530 */
 531static void __init_memblock memblock_insert_region(struct memblock_type *type,
 532                                                   int idx, phys_addr_t base,
 533                                                   phys_addr_t size,
 534                                                   int nid,
 535                                                   enum memblock_flags flags)
 536{
 537        struct memblock_region *rgn = &type->regions[idx];
 538
 539        BUG_ON(type->cnt >= type->max);
 540        memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 541        rgn->base = base;
 542        rgn->size = size;
 543        rgn->flags = flags;
 544        memblock_set_region_node(rgn, nid);
 545        type->cnt++;
 546        type->total_size += size;
 547}
 548
 549/**
 550 * memblock_add_range - add new memblock region
 551 * @type: memblock type to add new region into
 552 * @base: base address of the new region
 553 * @size: size of the new region
 554 * @nid: nid of the new region
 555 * @flags: flags of the new region
 556 *
 557 * Add new memblock region [@base, @base + @size) into @type.  The new region
 558 * is allowed to overlap with existing ones - overlaps don't affect already
 559 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 560 * compatible regions are merged) after the addition.
 561 *
 562 * Return:
 563 * 0 on success, -errno on failure.
 564 */
 565static int __init_memblock memblock_add_range(struct memblock_type *type,
 566                                phys_addr_t base, phys_addr_t size,
 567                                int nid, enum memblock_flags flags)
 568{
 569        bool insert = false;
 570        phys_addr_t obase = base;
 571        phys_addr_t end = base + memblock_cap_size(base, &size);
 572        int idx, nr_new;
 573        struct memblock_region *rgn;
 574
 575        if (!size)
 576                return 0;
 577
 578        /* special case for empty array */
 579        if (type->regions[0].size == 0) {
 580                WARN_ON(type->cnt != 1 || type->total_size);
 581                type->regions[0].base = base;
 582                type->regions[0].size = size;
 583                type->regions[0].flags = flags;
 584                memblock_set_region_node(&type->regions[0], nid);
 585                type->total_size = size;
 586                return 0;
 587        }
 588repeat:
 589        /*
 590         * The following is executed twice.  Once with %false @insert and
 591         * then with %true.  The first counts the number of regions needed
 592         * to accommodate the new area.  The second actually inserts them.
 593         */
 594        base = obase;
 595        nr_new = 0;
 596
 597        for_each_memblock_type(idx, type, rgn) {
 598                phys_addr_t rbase = rgn->base;
 599                phys_addr_t rend = rbase + rgn->size;
 600
 601                if (rbase >= end)
 602                        break;
 603                if (rend <= base)
 604                        continue;
 605                /*
 606                 * @rgn overlaps.  If it separates the lower part of new
 607                 * area, insert that portion.
 608                 */
 609                if (rbase > base) {
 610#ifdef CONFIG_NEED_MULTIPLE_NODES
 611                        WARN_ON(nid != memblock_get_region_node(rgn));
 612#endif
 613                        WARN_ON(flags != rgn->flags);
 614                        nr_new++;
 615                        if (insert)
 616                                memblock_insert_region(type, idx++, base,
 617                                                       rbase - base, nid,
 618                                                       flags);
 619                }
 620                /* area below @rend is dealt with, forget about it */
 621                base = min(rend, end);
 622        }
 623
 624        /* insert the remaining portion */
 625        if (base < end) {
 626                nr_new++;
 627                if (insert)
 628                        memblock_insert_region(type, idx, base, end - base,
 629                                               nid, flags);
 630        }
 631
 632        if (!nr_new)
 633                return 0;
 634
 635        /*
 636         * If this was the first round, resize array and repeat for actual
 637         * insertions; otherwise, merge and return.
 638         */
 639        if (!insert) {
 640                while (type->cnt + nr_new > type->max)
 641                        if (memblock_double_array(type, obase, size) < 0)
 642                                return -ENOMEM;
 643                insert = true;
 644                goto repeat;
 645        } else {
 646                memblock_merge_regions(type);
 647                return 0;
 648        }
 649}
 650
 651/**
 652 * memblock_add_node - add new memblock region within a NUMA node
 653 * @base: base address of the new region
 654 * @size: size of the new region
 655 * @nid: nid of the new region
 656 *
 657 * Add new memblock region [@base, @base + @size) to the "memory"
 658 * type. See memblock_add_range() description for mode details
 659 *
 660 * Return:
 661 * 0 on success, -errno on failure.
 662 */
 663int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 664                                       int nid)
 665{
 666        return memblock_add_range(&memblock.memory, base, size, nid, 0);
 667}
 668
 669/**
 670 * memblock_add - add new memblock region
 671 * @base: base address of the new region
 672 * @size: size of the new region
 673 *
 674 * Add new memblock region [@base, @base + @size) to the "memory"
 675 * type. See memblock_add_range() description for mode details
 676 *
 677 * Return:
 678 * 0 on success, -errno on failure.
 679 */
 680int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 681{
 682        phys_addr_t end = base + size - 1;
 683
 684        memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 685                     &base, &end, (void *)_RET_IP_);
 686
 687        return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 688}
 689
 690/**
 691 * memblock_isolate_range - isolate given range into disjoint memblocks
 692 * @type: memblock type to isolate range for
 693 * @base: base of range to isolate
 694 * @size: size of range to isolate
 695 * @start_rgn: out parameter for the start of isolated region
 696 * @end_rgn: out parameter for the end of isolated region
 697 *
 698 * Walk @type and ensure that regions don't cross the boundaries defined by
 699 * [@base, @base + @size).  Crossing regions are split at the boundaries,
 700 * which may create at most two more regions.  The index of the first
 701 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 702 *
 703 * Return:
 704 * 0 on success, -errno on failure.
 705 */
 706static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 707                                        phys_addr_t base, phys_addr_t size,
 708                                        int *start_rgn, int *end_rgn)
 709{
 710        phys_addr_t end = base + memblock_cap_size(base, &size);
 711        int idx;
 712        struct memblock_region *rgn;
 713
 714        *start_rgn = *end_rgn = 0;
 715
 716        if (!size)
 717                return 0;
 718
 719        /* we'll create at most two more regions */
 720        while (type->cnt + 2 > type->max)
 721                if (memblock_double_array(type, base, size) < 0)
 722                        return -ENOMEM;
 723
 724        for_each_memblock_type(idx, type, rgn) {
 725                phys_addr_t rbase = rgn->base;
 726                phys_addr_t rend = rbase + rgn->size;
 727
 728                if (rbase >= end)
 729                        break;
 730                if (rend <= base)
 731                        continue;
 732
 733                if (rbase < base) {
 734                        /*
 735                         * @rgn intersects from below.  Split and continue
 736                         * to process the next region - the new top half.
 737                         */
 738                        rgn->base = base;
 739                        rgn->size -= base - rbase;
 740                        type->total_size -= base - rbase;
 741                        memblock_insert_region(type, idx, rbase, base - rbase,
 742                                               memblock_get_region_node(rgn),
 743                                               rgn->flags);
 744                } else if (rend > end) {
 745                        /*
 746                         * @rgn intersects from above.  Split and redo the
 747                         * current region - the new bottom half.
 748                         */
 749                        rgn->base = end;
 750                        rgn->size -= end - rbase;
 751                        type->total_size -= end - rbase;
 752                        memblock_insert_region(type, idx--, rbase, end - rbase,
 753                                               memblock_get_region_node(rgn),
 754                                               rgn->flags);
 755                } else {
 756                        /* @rgn is fully contained, record it */
 757                        if (!*end_rgn)
 758                                *start_rgn = idx;
 759                        *end_rgn = idx + 1;
 760                }
 761        }
 762
 763        return 0;
 764}
 765
 766static int __init_memblock memblock_remove_range(struct memblock_type *type,
 767                                          phys_addr_t base, phys_addr_t size)
 768{
 769        int start_rgn, end_rgn;
 770        int i, ret;
 771
 772        ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 773        if (ret)
 774                return ret;
 775
 776        for (i = end_rgn - 1; i >= start_rgn; i--)
 777                memblock_remove_region(type, i);
 778        return 0;
 779}
 780
 781int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 782{
 783        phys_addr_t end = base + size - 1;
 784
 785        memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 786                     &base, &end, (void *)_RET_IP_);
 787
 788        return memblock_remove_range(&memblock.memory, base, size);
 789}
 790
 791/**
 792 * memblock_free - free boot memory block
 793 * @base: phys starting address of the  boot memory block
 794 * @size: size of the boot memory block in bytes
 795 *
 796 * Free boot memory block previously allocated by memblock_alloc_xx() API.
 797 * The freeing memory will not be released to the buddy allocator.
 798 */
 799int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 800{
 801        phys_addr_t end = base + size - 1;
 802
 803        memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 804                     &base, &end, (void *)_RET_IP_);
 805
 806        kmemleak_free_part_phys(base, size);
 807        return memblock_remove_range(&memblock.reserved, base, size);
 808}
 809
 810int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 811{
 812        phys_addr_t end = base + size - 1;
 813
 814        memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 815                     &base, &end, (void *)_RET_IP_);
 816
 817        return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 818}
 819
 820#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 821int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
 822{
 823        phys_addr_t end = base + size - 1;
 824
 825        memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 826                     &base, &end, (void *)_RET_IP_);
 827
 828        return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
 829}
 830#endif
 831
 832/**
 833 * memblock_setclr_flag - set or clear flag for a memory region
 834 * @base: base address of the region
 835 * @size: size of the region
 836 * @set: set or clear the flag
 837 * @flag: the flag to update
 838 *
 839 * This function isolates region [@base, @base + @size), and sets/clears flag
 840 *
 841 * Return: 0 on success, -errno on failure.
 842 */
 843static int __init_memblock memblock_setclr_flag(phys_addr_t base,
 844                                phys_addr_t size, int set, int flag)
 845{
 846        struct memblock_type *type = &memblock.memory;
 847        int i, ret, start_rgn, end_rgn;
 848
 849        ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 850        if (ret)
 851                return ret;
 852
 853        for (i = start_rgn; i < end_rgn; i++) {
 854                struct memblock_region *r = &type->regions[i];
 855
 856                if (set)
 857                        r->flags |= flag;
 858                else
 859                        r->flags &= ~flag;
 860        }
 861
 862        memblock_merge_regions(type);
 863        return 0;
 864}
 865
 866/**
 867 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 868 * @base: the base phys addr of the region
 869 * @size: the size of the region
 870 *
 871 * Return: 0 on success, -errno on failure.
 872 */
 873int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 874{
 875        return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
 876}
 877
 878/**
 879 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 880 * @base: the base phys addr of the region
 881 * @size: the size of the region
 882 *
 883 * Return: 0 on success, -errno on failure.
 884 */
 885int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 886{
 887        return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
 888}
 889
 890/**
 891 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 892 * @base: the base phys addr of the region
 893 * @size: the size of the region
 894 *
 895 * Return: 0 on success, -errno on failure.
 896 */
 897int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 898{
 899        system_has_some_mirror = true;
 900
 901        return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
 902}
 903
 904/**
 905 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 906 * @base: the base phys addr of the region
 907 * @size: the size of the region
 908 *
 909 * Return: 0 on success, -errno on failure.
 910 */
 911int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
 912{
 913        return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
 914}
 915
 916/**
 917 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
 918 * @base: the base phys addr of the region
 919 * @size: the size of the region
 920 *
 921 * Return: 0 on success, -errno on failure.
 922 */
 923int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
 924{
 925        return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
 926}
 927
 928static bool should_skip_region(struct memblock_type *type,
 929                               struct memblock_region *m,
 930                               int nid, int flags)
 931{
 932        int m_nid = memblock_get_region_node(m);
 933
 934        /* we never skip regions when iterating memblock.reserved or physmem */
 935        if (type != memblock_memory)
 936                return false;
 937
 938        /* only memory regions are associated with nodes, check it */
 939        if (nid != NUMA_NO_NODE && nid != m_nid)
 940                return true;
 941
 942        /* skip hotpluggable memory regions if needed */
 943        if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
 944                return true;
 945
 946        /* if we want mirror memory skip non-mirror memory regions */
 947        if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
 948                return true;
 949
 950        /* skip nomap memory unless we were asked for it explicitly */
 951        if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
 952                return true;
 953
 954        return false;
 955}
 956
 957/**
 958 * __next_mem_range - next function for for_each_free_mem_range() etc.
 959 * @idx: pointer to u64 loop variable
 960 * @nid: node selector, %NUMA_NO_NODE for all nodes
 961 * @flags: pick from blocks based on memory attributes
 962 * @type_a: pointer to memblock_type from where the range is taken
 963 * @type_b: pointer to memblock_type which excludes memory from being taken
 964 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 965 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 966 * @out_nid: ptr to int for nid of the range, can be %NULL
 967 *
 968 * Find the first area from *@idx which matches @nid, fill the out
 969 * parameters, and update *@idx for the next iteration.  The lower 32bit of
 970 * *@idx contains index into type_a and the upper 32bit indexes the
 971 * areas before each region in type_b.  For example, if type_b regions
 972 * look like the following,
 973 *
 974 *      0:[0-16), 1:[32-48), 2:[128-130)
 975 *
 976 * The upper 32bit indexes the following regions.
 977 *
 978 *      0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
 979 *
 980 * As both region arrays are sorted, the function advances the two indices
 981 * in lockstep and returns each intersection.
 982 */
 983void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
 984                      struct memblock_type *type_a,
 985                      struct memblock_type *type_b, phys_addr_t *out_start,
 986                      phys_addr_t *out_end, int *out_nid)
 987{
 988        int idx_a = *idx & 0xffffffff;
 989        int idx_b = *idx >> 32;
 990
 991        if (WARN_ONCE(nid == MAX_NUMNODES,
 992        "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 993                nid = NUMA_NO_NODE;
 994
 995        for (; idx_a < type_a->cnt; idx_a++) {
 996                struct memblock_region *m = &type_a->regions[idx_a];
 997
 998                phys_addr_t m_start = m->base;
 999                phys_addr_t m_end = m->base + m->size;
1000                int         m_nid = memblock_get_region_node(m);
1001
1002                if (should_skip_region(type_a, m, nid, flags))
1003                        continue;
1004
1005                if (!type_b) {
1006                        if (out_start)
1007                                *out_start = m_start;
1008                        if (out_end)
1009                                *out_end = m_end;
1010                        if (out_nid)
1011                                *out_nid = m_nid;
1012                        idx_a++;
1013                        *idx = (u32)idx_a | (u64)idx_b << 32;
1014                        return;
1015                }
1016
1017                /* scan areas before each reservation */
1018                for (; idx_b < type_b->cnt + 1; idx_b++) {
1019                        struct memblock_region *r;
1020                        phys_addr_t r_start;
1021                        phys_addr_t r_end;
1022
1023                        r = &type_b->regions[idx_b];
1024                        r_start = idx_b ? r[-1].base + r[-1].size : 0;
1025                        r_end = idx_b < type_b->cnt ?
1026                                r->base : PHYS_ADDR_MAX;
1027
1028                        /*
1029                         * if idx_b advanced past idx_a,
1030                         * break out to advance idx_a
1031                         */
1032                        if (r_start >= m_end)
1033                                break;
1034                        /* if the two regions intersect, we're done */
1035                        if (m_start < r_end) {
1036                                if (out_start)
1037                                        *out_start =
1038                                                max(m_start, r_start);
1039                                if (out_end)
1040                                        *out_end = min(m_end, r_end);
1041                                if (out_nid)
1042                                        *out_nid = m_nid;
1043                                /*
1044                                 * The region which ends first is
1045                                 * advanced for the next iteration.
1046                                 */
1047                                if (m_end <= r_end)
1048                                        idx_a++;
1049                                else
1050                                        idx_b++;
1051                                *idx = (u32)idx_a | (u64)idx_b << 32;
1052                                return;
1053                        }
1054                }
1055        }
1056
1057        /* signal end of iteration */
1058        *idx = ULLONG_MAX;
1059}
1060
1061/**
1062 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1063 *
1064 * @idx: pointer to u64 loop variable
1065 * @nid: node selector, %NUMA_NO_NODE for all nodes
1066 * @flags: pick from blocks based on memory attributes
1067 * @type_a: pointer to memblock_type from where the range is taken
1068 * @type_b: pointer to memblock_type which excludes memory from being taken
1069 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1070 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1071 * @out_nid: ptr to int for nid of the range, can be %NULL
1072 *
1073 * Finds the next range from type_a which is not marked as unsuitable
1074 * in type_b.
1075 *
1076 * Reverse of __next_mem_range().
1077 */
1078void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1079                                          enum memblock_flags flags,
1080                                          struct memblock_type *type_a,
1081                                          struct memblock_type *type_b,
1082                                          phys_addr_t *out_start,
1083                                          phys_addr_t *out_end, int *out_nid)
1084{
1085        int idx_a = *idx & 0xffffffff;
1086        int idx_b = *idx >> 32;
1087
1088        if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1089                nid = NUMA_NO_NODE;
1090
1091        if (*idx == (u64)ULLONG_MAX) {
1092                idx_a = type_a->cnt - 1;
1093                if (type_b != NULL)
1094                        idx_b = type_b->cnt;
1095                else
1096                        idx_b = 0;
1097        }
1098
1099        for (; idx_a >= 0; idx_a--) {
1100                struct memblock_region *m = &type_a->regions[idx_a];
1101
1102                phys_addr_t m_start = m->base;
1103                phys_addr_t m_end = m->base + m->size;
1104                int m_nid = memblock_get_region_node(m);
1105
1106                if (should_skip_region(type_a, m, nid, flags))
1107                        continue;
1108
1109                if (!type_b) {
1110                        if (out_start)
1111                                *out_start = m_start;
1112                        if (out_end)
1113                                *out_end = m_end;
1114                        if (out_nid)
1115                                *out_nid = m_nid;
1116                        idx_a--;
1117                        *idx = (u32)idx_a | (u64)idx_b << 32;
1118                        return;
1119                }
1120
1121                /* scan areas before each reservation */
1122                for (; idx_b >= 0; idx_b--) {
1123                        struct memblock_region *r;
1124                        phys_addr_t r_start;
1125                        phys_addr_t r_end;
1126
1127                        r = &type_b->regions[idx_b];
1128                        r_start = idx_b ? r[-1].base + r[-1].size : 0;
1129                        r_end = idx_b < type_b->cnt ?
1130                                r->base : PHYS_ADDR_MAX;
1131                        /*
1132                         * if idx_b advanced past idx_a,
1133                         * break out to advance idx_a
1134                         */
1135
1136                        if (r_end <= m_start)
1137                                break;
1138                        /* if the two regions intersect, we're done */
1139                        if (m_end > r_start) {
1140                                if (out_start)
1141                                        *out_start = max(m_start, r_start);
1142                                if (out_end)
1143                                        *out_end = min(m_end, r_end);
1144                                if (out_nid)
1145                                        *out_nid = m_nid;
1146                                if (m_start >= r_start)
1147                                        idx_a--;
1148                                else
1149                                        idx_b--;
1150                                *idx = (u32)idx_a | (u64)idx_b << 32;
1151                                return;
1152                        }
1153                }
1154        }
1155        /* signal end of iteration */
1156        *idx = ULLONG_MAX;
1157}
1158
1159/*
1160 * Common iterator interface used to define for_each_mem_pfn_range().
1161 */
1162void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1163                                unsigned long *out_start_pfn,
1164                                unsigned long *out_end_pfn, int *out_nid)
1165{
1166        struct memblock_type *type = &memblock.memory;
1167        struct memblock_region *r;
1168        int r_nid;
1169
1170        while (++*idx < type->cnt) {
1171                r = &type->regions[*idx];
1172                r_nid = memblock_get_region_node(r);
1173
1174                if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1175                        continue;
1176                if (nid == MAX_NUMNODES || nid == r_nid)
1177                        break;
1178        }
1179        if (*idx >= type->cnt) {
1180                *idx = -1;
1181                return;
1182        }
1183
1184        if (out_start_pfn)
1185                *out_start_pfn = PFN_UP(r->base);
1186        if (out_end_pfn)
1187                *out_end_pfn = PFN_DOWN(r->base + r->size);
1188        if (out_nid)
1189                *out_nid = r_nid;
1190}
1191
1192/**
1193 * memblock_set_node - set node ID on memblock regions
1194 * @base: base of area to set node ID for
1195 * @size: size of area to set node ID for
1196 * @type: memblock type to set node ID for
1197 * @nid: node ID to set
1198 *
1199 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1200 * Regions which cross the area boundaries are split as necessary.
1201 *
1202 * Return:
1203 * 0 on success, -errno on failure.
1204 */
1205int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1206                                      struct memblock_type *type, int nid)
1207{
1208#ifdef CONFIG_NEED_MULTIPLE_NODES
1209        int start_rgn, end_rgn;
1210        int i, ret;
1211
1212        ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1213        if (ret)
1214                return ret;
1215
1216        for (i = start_rgn; i < end_rgn; i++)
1217                memblock_set_region_node(&type->regions[i], nid);
1218
1219        memblock_merge_regions(type);
1220#endif
1221        return 0;
1222}
1223
1224#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1225/**
1226 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1227 *
1228 * @idx: pointer to u64 loop variable
1229 * @zone: zone in which all of the memory blocks reside
1230 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1231 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1232 *
1233 * This function is meant to be a zone/pfn specific wrapper for the
1234 * for_each_mem_range type iterators. Specifically they are used in the
1235 * deferred memory init routines and as such we were duplicating much of
1236 * this logic throughout the code. So instead of having it in multiple
1237 * locations it seemed like it would make more sense to centralize this to
1238 * one new iterator that does everything they need.
1239 */
1240void __init_memblock
1241__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1242                             unsigned long *out_spfn, unsigned long *out_epfn)
1243{
1244        int zone_nid = zone_to_nid(zone);
1245        phys_addr_t spa, epa;
1246        int nid;
1247
1248        __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1249                         &memblock.memory, &memblock.reserved,
1250                         &spa, &epa, &nid);
1251
1252        while (*idx != U64_MAX) {
1253                unsigned long epfn = PFN_DOWN(epa);
1254                unsigned long spfn = PFN_UP(spa);
1255
1256                /*
1257                 * Verify the end is at least past the start of the zone and
1258                 * that we have at least one PFN to initialize.
1259                 */
1260                if (zone->zone_start_pfn < epfn && spfn < epfn) {
1261                        /* if we went too far just stop searching */
1262                        if (zone_end_pfn(zone) <= spfn) {
1263                                *idx = U64_MAX;
1264                                break;
1265                        }
1266
1267                        if (out_spfn)
1268                                *out_spfn = max(zone->zone_start_pfn, spfn);
1269                        if (out_epfn)
1270                                *out_epfn = min(zone_end_pfn(zone), epfn);
1271
1272                        return;
1273                }
1274
1275                __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1276                                 &memblock.memory, &memblock.reserved,
1277                                 &spa, &epa, &nid);
1278        }
1279
1280        /* signal end of iteration */
1281        if (out_spfn)
1282                *out_spfn = ULONG_MAX;
1283        if (out_epfn)
1284                *out_epfn = 0;
1285}
1286
1287#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1288
1289/**
1290 * memblock_alloc_range_nid - allocate boot memory block
1291 * @size: size of memory block to be allocated in bytes
1292 * @align: alignment of the region and block's size
1293 * @start: the lower bound of the memory region to allocate (phys address)
1294 * @end: the upper bound of the memory region to allocate (phys address)
1295 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1296 * @exact_nid: control the allocation fall back to other nodes
1297 *
1298 * The allocation is performed from memory region limited by
1299 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1300 *
1301 * If the specified node can not hold the requested memory and @exact_nid
1302 * is false, the allocation falls back to any node in the system.
1303 *
1304 * For systems with memory mirroring, the allocation is attempted first
1305 * from the regions with mirroring enabled and then retried from any
1306 * memory region.
1307 *
1308 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1309 * allocated boot memory block, so that it is never reported as leaks.
1310 *
1311 * Return:
1312 * Physical address of allocated memory block on success, %0 on failure.
1313 */
1314phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1315                                        phys_addr_t align, phys_addr_t start,
1316                                        phys_addr_t end, int nid,
1317                                        bool exact_nid)
1318{
1319        enum memblock_flags flags = choose_memblock_flags();
1320        phys_addr_t found;
1321
1322        if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1323                nid = NUMA_NO_NODE;
1324
1325        if (!align) {
1326                /* Can't use WARNs this early in boot on powerpc */
1327                dump_stack();
1328                align = SMP_CACHE_BYTES;
1329        }
1330
1331again:
1332        found = memblock_find_in_range_node(size, align, start, end, nid,
1333                                            flags);
1334        if (found && !memblock_reserve(found, size))
1335                goto done;
1336
1337        if (nid != NUMA_NO_NODE && !exact_nid) {
1338                found = memblock_find_in_range_node(size, align, start,
1339                                                    end, NUMA_NO_NODE,
1340                                                    flags);
1341                if (found && !memblock_reserve(found, size))
1342                        goto done;
1343        }
1344
1345        if (flags & MEMBLOCK_MIRROR) {
1346                flags &= ~MEMBLOCK_MIRROR;
1347                pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1348                        &size);
1349                goto again;
1350        }
1351
1352        return 0;
1353
1354done:
1355        /* Skip kmemleak for kasan_init() due to high volume. */
1356        if (end != MEMBLOCK_ALLOC_KASAN)
1357                /*
1358                 * The min_count is set to 0 so that memblock allocated
1359                 * blocks are never reported as leaks. This is because many
1360                 * of these blocks are only referred via the physical
1361                 * address which is not looked up by kmemleak.
1362                 */
1363                kmemleak_alloc_phys(found, size, 0, 0);
1364
1365        return found;
1366}
1367
1368/**
1369 * memblock_phys_alloc_range - allocate a memory block inside specified range
1370 * @size: size of memory block to be allocated in bytes
1371 * @align: alignment of the region and block's size
1372 * @start: the lower bound of the memory region to allocate (physical address)
1373 * @end: the upper bound of the memory region to allocate (physical address)
1374 *
1375 * Allocate @size bytes in the between @start and @end.
1376 *
1377 * Return: physical address of the allocated memory block on success,
1378 * %0 on failure.
1379 */
1380phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1381                                             phys_addr_t align,
1382                                             phys_addr_t start,
1383                                             phys_addr_t end)
1384{
1385        memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1386                     __func__, (u64)size, (u64)align, &start, &end,
1387                     (void *)_RET_IP_);
1388        return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1389                                        false);
1390}
1391
1392/**
1393 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1394 * @size: size of memory block to be allocated in bytes
1395 * @align: alignment of the region and block's size
1396 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1397 *
1398 * Allocates memory block from the specified NUMA node. If the node
1399 * has no available memory, attempts to allocated from any node in the
1400 * system.
1401 *
1402 * Return: physical address of the allocated memory block on success,
1403 * %0 on failure.
1404 */
1405phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1406{
1407        return memblock_alloc_range_nid(size, align, 0,
1408                                        MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1409}
1410
1411/**
1412 * memblock_alloc_internal - allocate boot memory block
1413 * @size: size of memory block to be allocated in bytes
1414 * @align: alignment of the region and block's size
1415 * @min_addr: the lower bound of the memory region to allocate (phys address)
1416 * @max_addr: the upper bound of the memory region to allocate (phys address)
1417 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1418 * @exact_nid: control the allocation fall back to other nodes
1419 *
1420 * Allocates memory block using memblock_alloc_range_nid() and
1421 * converts the returned physical address to virtual.
1422 *
1423 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1424 * will fall back to memory below @min_addr. Other constraints, such
1425 * as node and mirrored memory will be handled again in
1426 * memblock_alloc_range_nid().
1427 *
1428 * Return:
1429 * Virtual address of allocated memory block on success, NULL on failure.
1430 */
1431static void * __init memblock_alloc_internal(
1432                                phys_addr_t size, phys_addr_t align,
1433                                phys_addr_t min_addr, phys_addr_t max_addr,
1434                                int nid, bool exact_nid)
1435{
1436        phys_addr_t alloc;
1437
1438        /*
1439         * Detect any accidental use of these APIs after slab is ready, as at
1440         * this moment memblock may be deinitialized already and its
1441         * internal data may be destroyed (after execution of memblock_free_all)
1442         */
1443        if (WARN_ON_ONCE(slab_is_available()))
1444                return kzalloc_node(size, GFP_NOWAIT, nid);
1445
1446        if (max_addr > memblock.current_limit)
1447                max_addr = memblock.current_limit;
1448
1449        alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1450                                        exact_nid);
1451
1452        /* retry allocation without lower limit */
1453        if (!alloc && min_addr)
1454                alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1455                                                exact_nid);
1456
1457        if (!alloc)
1458                return NULL;
1459
1460        return phys_to_virt(alloc);
1461}
1462
1463/**
1464 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1465 * without zeroing memory
1466 * @size: size of memory block to be allocated in bytes
1467 * @align: alignment of the region and block's size
1468 * @min_addr: the lower bound of the memory region from where the allocation
1469 *        is preferred (phys address)
1470 * @max_addr: the upper bound of the memory region from where the allocation
1471 *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1472 *            allocate only from memory limited by memblock.current_limit value
1473 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1474 *
1475 * Public function, provides additional debug information (including caller
1476 * info), if enabled. Does not zero allocated memory.
1477 *
1478 * Return:
1479 * Virtual address of allocated memory block on success, NULL on failure.
1480 */
1481void * __init memblock_alloc_exact_nid_raw(
1482                        phys_addr_t size, phys_addr_t align,
1483                        phys_addr_t min_addr, phys_addr_t max_addr,
1484                        int nid)
1485{
1486        void *ptr;
1487
1488        memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1489                     __func__, (u64)size, (u64)align, nid, &min_addr,
1490                     &max_addr, (void *)_RET_IP_);
1491
1492        ptr = memblock_alloc_internal(size, align,
1493                                           min_addr, max_addr, nid, true);
1494        if (ptr && size > 0)
1495                page_init_poison(ptr, size);
1496
1497        return ptr;
1498}
1499
1500/**
1501 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1502 * memory and without panicking
1503 * @size: size of memory block to be allocated in bytes
1504 * @align: alignment of the region and block's size
1505 * @min_addr: the lower bound of the memory region from where the allocation
1506 *        is preferred (phys address)
1507 * @max_addr: the upper bound of the memory region from where the allocation
1508 *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1509 *            allocate only from memory limited by memblock.current_limit value
1510 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1511 *
1512 * Public function, provides additional debug information (including caller
1513 * info), if enabled. Does not zero allocated memory, does not panic if request
1514 * cannot be satisfied.
1515 *
1516 * Return:
1517 * Virtual address of allocated memory block on success, NULL on failure.
1518 */
1519void * __init memblock_alloc_try_nid_raw(
1520                        phys_addr_t size, phys_addr_t align,
1521                        phys_addr_t min_addr, phys_addr_t max_addr,
1522                        int nid)
1523{
1524        void *ptr;
1525
1526        memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1527                     __func__, (u64)size, (u64)align, nid, &min_addr,
1528                     &max_addr, (void *)_RET_IP_);
1529
1530        ptr = memblock_alloc_internal(size, align,
1531                                           min_addr, max_addr, nid, false);
1532        if (ptr && size > 0)
1533                page_init_poison(ptr, size);
1534
1535        return ptr;
1536}
1537
1538/**
1539 * memblock_alloc_try_nid - allocate boot memory block
1540 * @size: size of memory block to be allocated in bytes
1541 * @align: alignment of the region and block's size
1542 * @min_addr: the lower bound of the memory region from where the allocation
1543 *        is preferred (phys address)
1544 * @max_addr: the upper bound of the memory region from where the allocation
1545 *            is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1546 *            allocate only from memory limited by memblock.current_limit value
1547 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1548 *
1549 * Public function, provides additional debug information (including caller
1550 * info), if enabled. This function zeroes the allocated memory.
1551 *
1552 * Return:
1553 * Virtual address of allocated memory block on success, NULL on failure.
1554 */
1555void * __init memblock_alloc_try_nid(
1556                        phys_addr_t size, phys_addr_t align,
1557                        phys_addr_t min_addr, phys_addr_t max_addr,
1558                        int nid)
1559{
1560        void *ptr;
1561
1562        memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1563                     __func__, (u64)size, (u64)align, nid, &min_addr,
1564                     &max_addr, (void *)_RET_IP_);
1565        ptr = memblock_alloc_internal(size, align,
1566                                           min_addr, max_addr, nid, false);
1567        if (ptr)
1568                memset(ptr, 0, size);
1569
1570        return ptr;
1571}
1572
1573/**
1574 * __memblock_free_late - free pages directly to buddy allocator
1575 * @base: phys starting address of the  boot memory block
1576 * @size: size of the boot memory block in bytes
1577 *
1578 * This is only useful when the memblock allocator has already been torn
1579 * down, but we are still initializing the system.  Pages are released directly
1580 * to the buddy allocator.
1581 */
1582void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1583{
1584        phys_addr_t cursor, end;
1585
1586        end = base + size - 1;
1587        memblock_dbg("%s: [%pa-%pa] %pS\n",
1588                     __func__, &base, &end, (void *)_RET_IP_);
1589        kmemleak_free_part_phys(base, size);
1590        cursor = PFN_UP(base);
1591        end = PFN_DOWN(base + size);
1592
1593        for (; cursor < end; cursor++) {
1594                memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1595                totalram_pages_inc();
1596        }
1597}
1598
1599/*
1600 * Remaining API functions
1601 */
1602
1603phys_addr_t __init_memblock memblock_phys_mem_size(void)
1604{
1605        return memblock.memory.total_size;
1606}
1607
1608phys_addr_t __init_memblock memblock_reserved_size(void)
1609{
1610        return memblock.reserved.total_size;
1611}
1612
1613/* lowest address */
1614phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1615{
1616        return memblock.memory.regions[0].base;
1617}
1618
1619phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1620{
1621        int idx = memblock.memory.cnt - 1;
1622
1623        return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1624}
1625
1626static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1627{
1628        phys_addr_t max_addr = PHYS_ADDR_MAX;
1629        struct memblock_region *r;
1630
1631        /*
1632         * translate the memory @limit size into the max address within one of
1633         * the memory memblock regions, if the @limit exceeds the total size
1634         * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1635         */
1636        for_each_mem_region(r) {
1637                if (limit <= r->size) {
1638                        max_addr = r->base + limit;
1639                        break;
1640                }
1641                limit -= r->size;
1642        }
1643
1644        return max_addr;
1645}
1646
1647void __init memblock_enforce_memory_limit(phys_addr_t limit)
1648{
1649        phys_addr_t max_addr;
1650
1651        if (!limit)
1652                return;
1653
1654        max_addr = __find_max_addr(limit);
1655
1656        /* @limit exceeds the total size of the memory, do nothing */
1657        if (max_addr == PHYS_ADDR_MAX)
1658                return;
1659
1660        /* truncate both memory and reserved regions */
1661        memblock_remove_range(&memblock.memory, max_addr,
1662                              PHYS_ADDR_MAX);
1663        memblock_remove_range(&memblock.reserved, max_addr,
1664                              PHYS_ADDR_MAX);
1665}
1666
1667void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1668{
1669        int start_rgn, end_rgn;
1670        int i, ret;
1671
1672        if (!size)
1673                return;
1674
1675        ret = memblock_isolate_range(&memblock.memory, base, size,
1676                                                &start_rgn, &end_rgn);
1677        if (ret)
1678                return;
1679
1680        /* remove all the MAP regions */
1681        for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1682                if (!memblock_is_nomap(&memblock.memory.regions[i]))
1683                        memblock_remove_region(&memblock.memory, i);
1684
1685        for (i = start_rgn - 1; i >= 0; i--)
1686                if (!memblock_is_nomap(&memblock.memory.regions[i]))
1687                        memblock_remove_region(&memblock.memory, i);
1688
1689        /* truncate the reserved regions */
1690        memblock_remove_range(&memblock.reserved, 0, base);
1691        memblock_remove_range(&memblock.reserved,
1692                        base + size, PHYS_ADDR_MAX);
1693}
1694
1695void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1696{
1697        phys_addr_t max_addr;
1698
1699        if (!limit)
1700                return;
1701
1702        max_addr = __find_max_addr(limit);
1703
1704        /* @limit exceeds the total size of the memory, do nothing */
1705        if (max_addr == PHYS_ADDR_MAX)
1706                return;
1707
1708        memblock_cap_memory_range(0, max_addr);
1709}
1710
1711static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1712{
1713        unsigned int left = 0, right = type->cnt;
1714
1715        do {
1716                unsigned int mid = (right + left) / 2;
1717
1718                if (addr < type->regions[mid].base)
1719                        right = mid;
1720                else if (addr >= (type->regions[mid].base +
1721                                  type->regions[mid].size))
1722                        left = mid + 1;
1723                else
1724                        return mid;
1725        } while (left < right);
1726        return -1;
1727}
1728
1729bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1730{
1731        return memblock_search(&memblock.reserved, addr) != -1;
1732}
1733
1734bool __init_memblock memblock_is_memory(phys_addr_t addr)
1735{
1736        return memblock_search(&memblock.memory, addr) != -1;
1737}
1738
1739bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1740{
1741        int i = memblock_search(&memblock.memory, addr);
1742
1743        if (i == -1)
1744                return false;
1745        return !memblock_is_nomap(&memblock.memory.regions[i]);
1746}
1747
1748int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1749                         unsigned long *start_pfn, unsigned long *end_pfn)
1750{
1751        struct memblock_type *type = &memblock.memory;
1752        int mid = memblock_search(type, PFN_PHYS(pfn));
1753
1754        if (mid == -1)
1755                return -1;
1756
1757        *start_pfn = PFN_DOWN(type->regions[mid].base);
1758        *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1759
1760        return memblock_get_region_node(&type->regions[mid]);
1761}
1762
1763/**
1764 * memblock_is_region_memory - check if a region is a subset of memory
1765 * @base: base of region to check
1766 * @size: size of region to check
1767 *
1768 * Check if the region [@base, @base + @size) is a subset of a memory block.
1769 *
1770 * Return:
1771 * 0 if false, non-zero if true
1772 */
1773bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1774{
1775        int idx = memblock_search(&memblock.memory, base);
1776        phys_addr_t end = base + memblock_cap_size(base, &size);
1777
1778        if (idx == -1)
1779                return false;
1780        return (memblock.memory.regions[idx].base +
1781                 memblock.memory.regions[idx].size) >= end;
1782}
1783
1784/**
1785 * memblock_is_region_reserved - check if a region intersects reserved memory
1786 * @base: base of region to check
1787 * @size: size of region to check
1788 *
1789 * Check if the region [@base, @base + @size) intersects a reserved
1790 * memory block.
1791 *
1792 * Return:
1793 * True if they intersect, false if not.
1794 */
1795bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1796{
1797        memblock_cap_size(base, &size);
1798        return memblock_overlaps_region(&memblock.reserved, base, size);
1799}
1800
1801void __init_memblock memblock_trim_memory(phys_addr_t align)
1802{
1803        phys_addr_t start, end, orig_start, orig_end;
1804        struct memblock_region *r;
1805
1806        for_each_mem_region(r) {
1807                orig_start = r->base;
1808                orig_end = r->base + r->size;
1809                start = round_up(orig_start, align);
1810                end = round_down(orig_end, align);
1811
1812                if (start == orig_start && end == orig_end)
1813                        continue;
1814
1815                if (start < end) {
1816                        r->base = start;
1817                        r->size = end - start;
1818                } else {
1819                        memblock_remove_region(&memblock.memory,
1820                                               r - memblock.memory.regions);
1821                        r--;
1822                }
1823        }
1824}
1825
1826void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1827{
1828        memblock.current_limit = limit;
1829}
1830
1831phys_addr_t __init_memblock memblock_get_current_limit(void)
1832{
1833        return memblock.current_limit;
1834}
1835
1836static void __init_memblock memblock_dump(struct memblock_type *type)
1837{
1838        phys_addr_t base, end, size;
1839        enum memblock_flags flags;
1840        int idx;
1841        struct memblock_region *rgn;
1842
1843        pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1844
1845        for_each_memblock_type(idx, type, rgn) {
1846                char nid_buf[32] = "";
1847
1848                base = rgn->base;
1849                size = rgn->size;
1850                end = base + size - 1;
1851                flags = rgn->flags;
1852#ifdef CONFIG_NEED_MULTIPLE_NODES
1853                if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1854                        snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1855                                 memblock_get_region_node(rgn));
1856#endif
1857                pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1858                        type->name, idx, &base, &end, &size, nid_buf, flags);
1859        }
1860}
1861
1862static void __init_memblock __memblock_dump_all(void)
1863{
1864        pr_info("MEMBLOCK configuration:\n");
1865        pr_info(" memory size = %pa reserved size = %pa\n",
1866                &memblock.memory.total_size,
1867                &memblock.reserved.total_size);
1868
1869        memblock_dump(&memblock.memory);
1870        memblock_dump(&memblock.reserved);
1871#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1872        memblock_dump(&physmem);
1873#endif
1874}
1875
1876void __init_memblock memblock_dump_all(void)
1877{
1878        if (memblock_debug)
1879                __memblock_dump_all();
1880}
1881
1882void __init memblock_allow_resize(void)
1883{
1884        memblock_can_resize = 1;
1885}
1886
1887static int __init early_memblock(char *p)
1888{
1889        if (p && strstr(p, "debug"))
1890                memblock_debug = 1;
1891        return 0;
1892}
1893early_param("memblock", early_memblock);
1894
1895static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1896{
1897        struct page *start_pg, *end_pg;
1898        phys_addr_t pg, pgend;
1899
1900        /*
1901         * Convert start_pfn/end_pfn to a struct page pointer.
1902         */
1903        start_pg = pfn_to_page(start_pfn - 1) + 1;
1904        end_pg = pfn_to_page(end_pfn - 1) + 1;
1905
1906        /*
1907         * Convert to physical addresses, and round start upwards and end
1908         * downwards.
1909         */
1910        pg = PAGE_ALIGN(__pa(start_pg));
1911        pgend = __pa(end_pg) & PAGE_MASK;
1912
1913        /*
1914         * If there are free pages between these, free the section of the
1915         * memmap array.
1916         */
1917        if (pg < pgend)
1918                memblock_free(pg, pgend - pg);
1919}
1920
1921/*
1922 * The mem_map array can get very big.  Free the unused area of the memory map.
1923 */
1924static void __init free_unused_memmap(void)
1925{
1926        unsigned long start, end, prev_end = 0;
1927        int i;
1928
1929        if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1930            IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1931                return;
1932
1933        /*
1934         * This relies on each bank being in address order.
1935         * The banks are sorted previously in bootmem_init().
1936         */
1937        for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1938#ifdef CONFIG_SPARSEMEM
1939                /*
1940                 * Take care not to free memmap entries that don't exist
1941                 * due to SPARSEMEM sections which aren't present.
1942                 */
1943                start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
1944#else
1945                /*
1946                 * Align down here since the VM subsystem insists that the
1947                 * memmap entries are valid from the bank start aligned to
1948                 * MAX_ORDER_NR_PAGES.
1949                 */
1950                start = round_down(start, MAX_ORDER_NR_PAGES);
1951#endif
1952
1953                /*
1954                 * If we had a previous bank, and there is a space
1955                 * between the current bank and the previous, free it.
1956                 */
1957                if (prev_end && prev_end < start)
1958                        free_memmap(prev_end, start);
1959
1960                /*
1961                 * Align up here since the VM subsystem insists that the
1962                 * memmap entries are valid from the bank end aligned to
1963                 * MAX_ORDER_NR_PAGES.
1964                 */
1965                prev_end = ALIGN(end, MAX_ORDER_NR_PAGES);
1966        }
1967
1968#ifdef CONFIG_SPARSEMEM
1969        if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
1970                free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
1971#endif
1972}
1973
1974static void __init __free_pages_memory(unsigned long start, unsigned long end)
1975{
1976        int order;
1977
1978        while (start < end) {
1979                order = min(MAX_ORDER - 1UL, __ffs(start));
1980
1981                while (start + (1UL << order) > end)
1982                        order--;
1983
1984                memblock_free_pages(pfn_to_page(start), start, order);
1985
1986                start += (1UL << order);
1987        }
1988}
1989
1990static unsigned long __init __free_memory_core(phys_addr_t start,
1991                                 phys_addr_t end)
1992{
1993        unsigned long start_pfn = PFN_UP(start);
1994        unsigned long end_pfn = min_t(unsigned long,
1995                                      PFN_DOWN(end), max_low_pfn);
1996
1997        if (start_pfn >= end_pfn)
1998                return 0;
1999
2000        __free_pages_memory(start_pfn, end_pfn);
2001
2002        return end_pfn - start_pfn;
2003}
2004
2005static unsigned long __init free_low_memory_core_early(void)
2006{
2007        unsigned long count = 0;
2008        phys_addr_t start, end;
2009        u64 i;
2010
2011        memblock_clear_hotplug(0, -1);
2012
2013        for_each_reserved_mem_range(i, &start, &end)
2014                reserve_bootmem_region(start, end);
2015
2016        /*
2017         * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2018         *  because in some case like Node0 doesn't have RAM installed
2019         *  low ram will be on Node1
2020         */
2021        for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2022                                NULL)
2023                count += __free_memory_core(start, end);
2024
2025        return count;
2026}
2027
2028static int reset_managed_pages_done __initdata;
2029
2030void reset_node_managed_pages(pg_data_t *pgdat)
2031{
2032        struct zone *z;
2033
2034        for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2035                atomic_long_set(&z->managed_pages, 0);
2036}
2037
2038void __init reset_all_zones_managed_pages(void)
2039{
2040        struct pglist_data *pgdat;
2041
2042        if (reset_managed_pages_done)
2043                return;
2044
2045        for_each_online_pgdat(pgdat)
2046                reset_node_managed_pages(pgdat);
2047
2048        reset_managed_pages_done = 1;
2049}
2050
2051/**
2052 * memblock_free_all - release free pages to the buddy allocator
2053 */
2054void __init memblock_free_all(void)
2055{
2056        unsigned long pages;
2057
2058        free_unused_memmap();
2059        reset_all_zones_managed_pages();
2060
2061        pages = free_low_memory_core_early();
2062        totalram_pages_add(pages);
2063}
2064
2065#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2066
2067static int memblock_debug_show(struct seq_file *m, void *private)
2068{
2069        struct memblock_type *type = m->private;
2070        struct memblock_region *reg;
2071        int i;
2072        phys_addr_t end;
2073
2074        for (i = 0; i < type->cnt; i++) {
2075                reg = &type->regions[i];
2076                end = reg->base + reg->size - 1;
2077
2078                seq_printf(m, "%4d: ", i);
2079                seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2080        }
2081        return 0;
2082}
2083DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2084
2085static int __init memblock_init_debugfs(void)
2086{
2087        struct dentry *root = debugfs_create_dir("memblock", NULL);
2088
2089        debugfs_create_file("memory", 0444, root,
2090                            &memblock.memory, &memblock_debug_fops);
2091        debugfs_create_file("reserved", 0444, root,
2092                            &memblock.reserved, &memblock_debug_fops);
2093#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2094        debugfs_create_file("physmem", 0444, root, &physmem,
2095                            &memblock_debug_fops);
2096#endif
2097
2098        return 0;
2099}
2100__initcall(memblock_init_debugfs);
2101
2102#endif /* CONFIG_DEBUG_FS */
2103