linux/mm/rmap.c
<<
>>
Prefs
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_mutex       (while writing or truncating, not reading or faulting)
  24 *   mm->mmap_lock
  25 *     page->flags PG_locked (lock_page)   * (see huegtlbfs below)
  26 *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
  27 *         mapping->i_mmap_rwsem
  28 *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
  29 *           anon_vma->rwsem
  30 *             mm->page_table_lock or pte_lock
  31 *               swap_lock (in swap_duplicate, swap_info_get)
  32 *                 mmlist_lock (in mmput, drain_mmlist and others)
  33 *                 mapping->private_lock (in __set_page_dirty_buffers)
  34 *                   lock_page_memcg move_lock (in __set_page_dirty_buffers)
  35 *                     i_pages lock (widely used)
  36 *                       lruvec->lru_lock (in lock_page_lruvec_irq)
  37 *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  38 *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  39 *                   sb_lock (within inode_lock in fs/fs-writeback.c)
  40 *                   i_pages lock (widely used, in set_page_dirty,
  41 *                             in arch-dependent flush_dcache_mmap_lock,
  42 *                             within bdi.wb->list_lock in __sync_single_inode)
  43 *
  44 * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
  45 *   ->tasklist_lock
  46 *     pte map lock
  47 *
  48 * * hugetlbfs PageHuge() pages take locks in this order:
  49 *         mapping->i_mmap_rwsem
  50 *           hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
  51 *             page->flags PG_locked (lock_page)
  52 */
  53
  54#include <linux/mm.h>
  55#include <linux/sched/mm.h>
  56#include <linux/sched/task.h>
  57#include <linux/pagemap.h>
  58#include <linux/swap.h>
  59#include <linux/swapops.h>
  60#include <linux/slab.h>
  61#include <linux/init.h>
  62#include <linux/ksm.h>
  63#include <linux/rmap.h>
  64#include <linux/rcupdate.h>
  65#include <linux/export.h>
  66#include <linux/memcontrol.h>
  67#include <linux/mmu_notifier.h>
  68#include <linux/migrate.h>
  69#include <linux/hugetlb.h>
  70#include <linux/huge_mm.h>
  71#include <linux/backing-dev.h>
  72#include <linux/page_idle.h>
  73#include <linux/memremap.h>
  74#include <linux/userfaultfd_k.h>
  75
  76#include <asm/tlbflush.h>
  77
  78#include <trace/events/tlb.h>
  79
  80#include "internal.h"
  81
  82static struct kmem_cache *anon_vma_cachep;
  83static struct kmem_cache *anon_vma_chain_cachep;
  84
  85static inline struct anon_vma *anon_vma_alloc(void)
  86{
  87        struct anon_vma *anon_vma;
  88
  89        anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  90        if (anon_vma) {
  91                atomic_set(&anon_vma->refcount, 1);
  92                anon_vma->degree = 1;   /* Reference for first vma */
  93                anon_vma->parent = anon_vma;
  94                /*
  95                 * Initialise the anon_vma root to point to itself. If called
  96                 * from fork, the root will be reset to the parents anon_vma.
  97                 */
  98                anon_vma->root = anon_vma;
  99        }
 100
 101        return anon_vma;
 102}
 103
 104static inline void anon_vma_free(struct anon_vma *anon_vma)
 105{
 106        VM_BUG_ON(atomic_read(&anon_vma->refcount));
 107
 108        /*
 109         * Synchronize against page_lock_anon_vma_read() such that
 110         * we can safely hold the lock without the anon_vma getting
 111         * freed.
 112         *
 113         * Relies on the full mb implied by the atomic_dec_and_test() from
 114         * put_anon_vma() against the acquire barrier implied by
 115         * down_read_trylock() from page_lock_anon_vma_read(). This orders:
 116         *
 117         * page_lock_anon_vma_read()    VS      put_anon_vma()
 118         *   down_read_trylock()                  atomic_dec_and_test()
 119         *   LOCK                                 MB
 120         *   atomic_read()                        rwsem_is_locked()
 121         *
 122         * LOCK should suffice since the actual taking of the lock must
 123         * happen _before_ what follows.
 124         */
 125        might_sleep();
 126        if (rwsem_is_locked(&anon_vma->root->rwsem)) {
 127                anon_vma_lock_write(anon_vma);
 128                anon_vma_unlock_write(anon_vma);
 129        }
 130
 131        kmem_cache_free(anon_vma_cachep, anon_vma);
 132}
 133
 134static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 135{
 136        return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 137}
 138
 139static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 140{
 141        kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 142}
 143
 144static void anon_vma_chain_link(struct vm_area_struct *vma,
 145                                struct anon_vma_chain *avc,
 146                                struct anon_vma *anon_vma)
 147{
 148        avc->vma = vma;
 149        avc->anon_vma = anon_vma;
 150        list_add(&avc->same_vma, &vma->anon_vma_chain);
 151        anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
 152}
 153
 154/**
 155 * __anon_vma_prepare - attach an anon_vma to a memory region
 156 * @vma: the memory region in question
 157 *
 158 * This makes sure the memory mapping described by 'vma' has
 159 * an 'anon_vma' attached to it, so that we can associate the
 160 * anonymous pages mapped into it with that anon_vma.
 161 *
 162 * The common case will be that we already have one, which
 163 * is handled inline by anon_vma_prepare(). But if
 164 * not we either need to find an adjacent mapping that we
 165 * can re-use the anon_vma from (very common when the only
 166 * reason for splitting a vma has been mprotect()), or we
 167 * allocate a new one.
 168 *
 169 * Anon-vma allocations are very subtle, because we may have
 170 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
 171 * and that may actually touch the rwsem even in the newly
 172 * allocated vma (it depends on RCU to make sure that the
 173 * anon_vma isn't actually destroyed).
 174 *
 175 * As a result, we need to do proper anon_vma locking even
 176 * for the new allocation. At the same time, we do not want
 177 * to do any locking for the common case of already having
 178 * an anon_vma.
 179 *
 180 * This must be called with the mmap_lock held for reading.
 181 */
 182int __anon_vma_prepare(struct vm_area_struct *vma)
 183{
 184        struct mm_struct *mm = vma->vm_mm;
 185        struct anon_vma *anon_vma, *allocated;
 186        struct anon_vma_chain *avc;
 187
 188        might_sleep();
 189
 190        avc = anon_vma_chain_alloc(GFP_KERNEL);
 191        if (!avc)
 192                goto out_enomem;
 193
 194        anon_vma = find_mergeable_anon_vma(vma);
 195        allocated = NULL;
 196        if (!anon_vma) {
 197                anon_vma = anon_vma_alloc();
 198                if (unlikely(!anon_vma))
 199                        goto out_enomem_free_avc;
 200                allocated = anon_vma;
 201        }
 202
 203        anon_vma_lock_write(anon_vma);
 204        /* page_table_lock to protect against threads */
 205        spin_lock(&mm->page_table_lock);
 206        if (likely(!vma->anon_vma)) {
 207                vma->anon_vma = anon_vma;
 208                anon_vma_chain_link(vma, avc, anon_vma);
 209                /* vma reference or self-parent link for new root */
 210                anon_vma->degree++;
 211                allocated = NULL;
 212                avc = NULL;
 213        }
 214        spin_unlock(&mm->page_table_lock);
 215        anon_vma_unlock_write(anon_vma);
 216
 217        if (unlikely(allocated))
 218                put_anon_vma(allocated);
 219        if (unlikely(avc))
 220                anon_vma_chain_free(avc);
 221
 222        return 0;
 223
 224 out_enomem_free_avc:
 225        anon_vma_chain_free(avc);
 226 out_enomem:
 227        return -ENOMEM;
 228}
 229
 230/*
 231 * This is a useful helper function for locking the anon_vma root as
 232 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 233 * have the same vma.
 234 *
 235 * Such anon_vma's should have the same root, so you'd expect to see
 236 * just a single mutex_lock for the whole traversal.
 237 */
 238static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 239{
 240        struct anon_vma *new_root = anon_vma->root;
 241        if (new_root != root) {
 242                if (WARN_ON_ONCE(root))
 243                        up_write(&root->rwsem);
 244                root = new_root;
 245                down_write(&root->rwsem);
 246        }
 247        return root;
 248}
 249
 250static inline void unlock_anon_vma_root(struct anon_vma *root)
 251{
 252        if (root)
 253                up_write(&root->rwsem);
 254}
 255
 256/*
 257 * Attach the anon_vmas from src to dst.
 258 * Returns 0 on success, -ENOMEM on failure.
 259 *
 260 * anon_vma_clone() is called by __vma_split(), __split_vma(), copy_vma() and
 261 * anon_vma_fork(). The first three want an exact copy of src, while the last
 262 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
 263 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
 264 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
 265 *
 266 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
 267 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
 268 * This prevents degradation of anon_vma hierarchy to endless linear chain in
 269 * case of constantly forking task. On the other hand, an anon_vma with more
 270 * than one child isn't reused even if there was no alive vma, thus rmap
 271 * walker has a good chance of avoiding scanning the whole hierarchy when it
 272 * searches where page is mapped.
 273 */
 274int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 275{
 276        struct anon_vma_chain *avc, *pavc;
 277        struct anon_vma *root = NULL;
 278
 279        list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 280                struct anon_vma *anon_vma;
 281
 282                avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 283                if (unlikely(!avc)) {
 284                        unlock_anon_vma_root(root);
 285                        root = NULL;
 286                        avc = anon_vma_chain_alloc(GFP_KERNEL);
 287                        if (!avc)
 288                                goto enomem_failure;
 289                }
 290                anon_vma = pavc->anon_vma;
 291                root = lock_anon_vma_root(root, anon_vma);
 292                anon_vma_chain_link(dst, avc, anon_vma);
 293
 294                /*
 295                 * Reuse existing anon_vma if its degree lower than two,
 296                 * that means it has no vma and only one anon_vma child.
 297                 *
 298                 * Do not chose parent anon_vma, otherwise first child
 299                 * will always reuse it. Root anon_vma is never reused:
 300                 * it has self-parent reference and at least one child.
 301                 */
 302                if (!dst->anon_vma && src->anon_vma &&
 303                    anon_vma != src->anon_vma && anon_vma->degree < 2)
 304                        dst->anon_vma = anon_vma;
 305        }
 306        if (dst->anon_vma)
 307                dst->anon_vma->degree++;
 308        unlock_anon_vma_root(root);
 309        return 0;
 310
 311 enomem_failure:
 312        /*
 313         * dst->anon_vma is dropped here otherwise its degree can be incorrectly
 314         * decremented in unlink_anon_vmas().
 315         * We can safely do this because callers of anon_vma_clone() don't care
 316         * about dst->anon_vma if anon_vma_clone() failed.
 317         */
 318        dst->anon_vma = NULL;
 319        unlink_anon_vmas(dst);
 320        return -ENOMEM;
 321}
 322
 323/*
 324 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 325 * the corresponding VMA in the parent process is attached to.
 326 * Returns 0 on success, non-zero on failure.
 327 */
 328int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 329{
 330        struct anon_vma_chain *avc;
 331        struct anon_vma *anon_vma;
 332        int error;
 333
 334        /* Don't bother if the parent process has no anon_vma here. */
 335        if (!pvma->anon_vma)
 336                return 0;
 337
 338        /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
 339        vma->anon_vma = NULL;
 340
 341        /*
 342         * First, attach the new VMA to the parent VMA's anon_vmas,
 343         * so rmap can find non-COWed pages in child processes.
 344         */
 345        error = anon_vma_clone(vma, pvma);
 346        if (error)
 347                return error;
 348
 349        /* An existing anon_vma has been reused, all done then. */
 350        if (vma->anon_vma)
 351                return 0;
 352
 353        /* Then add our own anon_vma. */
 354        anon_vma = anon_vma_alloc();
 355        if (!anon_vma)
 356                goto out_error;
 357        avc = anon_vma_chain_alloc(GFP_KERNEL);
 358        if (!avc)
 359                goto out_error_free_anon_vma;
 360
 361        /*
 362         * The root anon_vma's rwsem is the lock actually used when we
 363         * lock any of the anon_vmas in this anon_vma tree.
 364         */
 365        anon_vma->root = pvma->anon_vma->root;
 366        anon_vma->parent = pvma->anon_vma;
 367        /*
 368         * With refcounts, an anon_vma can stay around longer than the
 369         * process it belongs to. The root anon_vma needs to be pinned until
 370         * this anon_vma is freed, because the lock lives in the root.
 371         */
 372        get_anon_vma(anon_vma->root);
 373        /* Mark this anon_vma as the one where our new (COWed) pages go. */
 374        vma->anon_vma = anon_vma;
 375        anon_vma_lock_write(anon_vma);
 376        anon_vma_chain_link(vma, avc, anon_vma);
 377        anon_vma->parent->degree++;
 378        anon_vma_unlock_write(anon_vma);
 379
 380        return 0;
 381
 382 out_error_free_anon_vma:
 383        put_anon_vma(anon_vma);
 384 out_error:
 385        unlink_anon_vmas(vma);
 386        return -ENOMEM;
 387}
 388
 389void unlink_anon_vmas(struct vm_area_struct *vma)
 390{
 391        struct anon_vma_chain *avc, *next;
 392        struct anon_vma *root = NULL;
 393
 394        /*
 395         * Unlink each anon_vma chained to the VMA.  This list is ordered
 396         * from newest to oldest, ensuring the root anon_vma gets freed last.
 397         */
 398        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 399                struct anon_vma *anon_vma = avc->anon_vma;
 400
 401                root = lock_anon_vma_root(root, anon_vma);
 402                anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
 403
 404                /*
 405                 * Leave empty anon_vmas on the list - we'll need
 406                 * to free them outside the lock.
 407                 */
 408                if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
 409                        anon_vma->parent->degree--;
 410                        continue;
 411                }
 412
 413                list_del(&avc->same_vma);
 414                anon_vma_chain_free(avc);
 415        }
 416        if (vma->anon_vma) {
 417                vma->anon_vma->degree--;
 418
 419                /*
 420                 * vma would still be needed after unlink, and anon_vma will be prepared
 421                 * when handle fault.
 422                 */
 423                vma->anon_vma = NULL;
 424        }
 425        unlock_anon_vma_root(root);
 426
 427        /*
 428         * Iterate the list once more, it now only contains empty and unlinked
 429         * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 430         * needing to write-acquire the anon_vma->root->rwsem.
 431         */
 432        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 433                struct anon_vma *anon_vma = avc->anon_vma;
 434
 435                VM_WARN_ON(anon_vma->degree);
 436                put_anon_vma(anon_vma);
 437
 438                list_del(&avc->same_vma);
 439                anon_vma_chain_free(avc);
 440        }
 441}
 442
 443static void anon_vma_ctor(void *data)
 444{
 445        struct anon_vma *anon_vma = data;
 446
 447        init_rwsem(&anon_vma->rwsem);
 448        atomic_set(&anon_vma->refcount, 0);
 449        anon_vma->rb_root = RB_ROOT_CACHED;
 450}
 451
 452void __init anon_vma_init(void)
 453{
 454        anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 455                        0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
 456                        anon_vma_ctor);
 457        anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
 458                        SLAB_PANIC|SLAB_ACCOUNT);
 459}
 460
 461/*
 462 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 463 *
 464 * Since there is no serialization what so ever against page_remove_rmap()
 465 * the best this function can do is return a refcount increased anon_vma
 466 * that might have been relevant to this page.
 467 *
 468 * The page might have been remapped to a different anon_vma or the anon_vma
 469 * returned may already be freed (and even reused).
 470 *
 471 * In case it was remapped to a different anon_vma, the new anon_vma will be a
 472 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 473 * ensure that any anon_vma obtained from the page will still be valid for as
 474 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 475 *
 476 * All users of this function must be very careful when walking the anon_vma
 477 * chain and verify that the page in question is indeed mapped in it
 478 * [ something equivalent to page_mapped_in_vma() ].
 479 *
 480 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
 481 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
 482 * if there is a mapcount, we can dereference the anon_vma after observing
 483 * those.
 484 */
 485struct anon_vma *page_get_anon_vma(struct page *page)
 486{
 487        struct anon_vma *anon_vma = NULL;
 488        unsigned long anon_mapping;
 489
 490        rcu_read_lock();
 491        anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 492        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 493                goto out;
 494        if (!page_mapped(page))
 495                goto out;
 496
 497        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 498        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 499                anon_vma = NULL;
 500                goto out;
 501        }
 502
 503        /*
 504         * If this page is still mapped, then its anon_vma cannot have been
 505         * freed.  But if it has been unmapped, we have no security against the
 506         * anon_vma structure being freed and reused (for another anon_vma:
 507         * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
 508         * above cannot corrupt).
 509         */
 510        if (!page_mapped(page)) {
 511                rcu_read_unlock();
 512                put_anon_vma(anon_vma);
 513                return NULL;
 514        }
 515out:
 516        rcu_read_unlock();
 517
 518        return anon_vma;
 519}
 520
 521/*
 522 * Similar to page_get_anon_vma() except it locks the anon_vma.
 523 *
 524 * Its a little more complex as it tries to keep the fast path to a single
 525 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 526 * reference like with page_get_anon_vma() and then block on the mutex.
 527 */
 528struct anon_vma *page_lock_anon_vma_read(struct page *page)
 529{
 530        struct anon_vma *anon_vma = NULL;
 531        struct anon_vma *root_anon_vma;
 532        unsigned long anon_mapping;
 533
 534        rcu_read_lock();
 535        anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 536        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 537                goto out;
 538        if (!page_mapped(page))
 539                goto out;
 540
 541        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 542        root_anon_vma = READ_ONCE(anon_vma->root);
 543        if (down_read_trylock(&root_anon_vma->rwsem)) {
 544                /*
 545                 * If the page is still mapped, then this anon_vma is still
 546                 * its anon_vma, and holding the mutex ensures that it will
 547                 * not go away, see anon_vma_free().
 548                 */
 549                if (!page_mapped(page)) {
 550                        up_read(&root_anon_vma->rwsem);
 551                        anon_vma = NULL;
 552                }
 553                goto out;
 554        }
 555
 556        /* trylock failed, we got to sleep */
 557        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 558                anon_vma = NULL;
 559                goto out;
 560        }
 561
 562        if (!page_mapped(page)) {
 563                rcu_read_unlock();
 564                put_anon_vma(anon_vma);
 565                return NULL;
 566        }
 567
 568        /* we pinned the anon_vma, its safe to sleep */
 569        rcu_read_unlock();
 570        anon_vma_lock_read(anon_vma);
 571
 572        if (atomic_dec_and_test(&anon_vma->refcount)) {
 573                /*
 574                 * Oops, we held the last refcount, release the lock
 575                 * and bail -- can't simply use put_anon_vma() because
 576                 * we'll deadlock on the anon_vma_lock_write() recursion.
 577                 */
 578                anon_vma_unlock_read(anon_vma);
 579                __put_anon_vma(anon_vma);
 580                anon_vma = NULL;
 581        }
 582
 583        return anon_vma;
 584
 585out:
 586        rcu_read_unlock();
 587        return anon_vma;
 588}
 589
 590void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
 591{
 592        anon_vma_unlock_read(anon_vma);
 593}
 594
 595#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 596/*
 597 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
 598 * important if a PTE was dirty when it was unmapped that it's flushed
 599 * before any IO is initiated on the page to prevent lost writes. Similarly,
 600 * it must be flushed before freeing to prevent data leakage.
 601 */
 602void try_to_unmap_flush(void)
 603{
 604        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 605
 606        if (!tlb_ubc->flush_required)
 607                return;
 608
 609        arch_tlbbatch_flush(&tlb_ubc->arch);
 610        tlb_ubc->flush_required = false;
 611        tlb_ubc->writable = false;
 612}
 613
 614/* Flush iff there are potentially writable TLB entries that can race with IO */
 615void try_to_unmap_flush_dirty(void)
 616{
 617        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 618
 619        if (tlb_ubc->writable)
 620                try_to_unmap_flush();
 621}
 622
 623static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 624{
 625        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 626
 627        arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
 628        tlb_ubc->flush_required = true;
 629
 630        /*
 631         * Ensure compiler does not re-order the setting of tlb_flush_batched
 632         * before the PTE is cleared.
 633         */
 634        barrier();
 635        mm->tlb_flush_batched = true;
 636
 637        /*
 638         * If the PTE was dirty then it's best to assume it's writable. The
 639         * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
 640         * before the page is queued for IO.
 641         */
 642        if (writable)
 643                tlb_ubc->writable = true;
 644}
 645
 646/*
 647 * Returns true if the TLB flush should be deferred to the end of a batch of
 648 * unmap operations to reduce IPIs.
 649 */
 650static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 651{
 652        bool should_defer = false;
 653
 654        if (!(flags & TTU_BATCH_FLUSH))
 655                return false;
 656
 657        /* If remote CPUs need to be flushed then defer batch the flush */
 658        if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
 659                should_defer = true;
 660        put_cpu();
 661
 662        return should_defer;
 663}
 664
 665/*
 666 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
 667 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
 668 * operation such as mprotect or munmap to race between reclaim unmapping
 669 * the page and flushing the page. If this race occurs, it potentially allows
 670 * access to data via a stale TLB entry. Tracking all mm's that have TLB
 671 * batching in flight would be expensive during reclaim so instead track
 672 * whether TLB batching occurred in the past and if so then do a flush here
 673 * if required. This will cost one additional flush per reclaim cycle paid
 674 * by the first operation at risk such as mprotect and mumap.
 675 *
 676 * This must be called under the PTL so that an access to tlb_flush_batched
 677 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
 678 * via the PTL.
 679 */
 680void flush_tlb_batched_pending(struct mm_struct *mm)
 681{
 682        if (data_race(mm->tlb_flush_batched)) {
 683                flush_tlb_mm(mm);
 684
 685                /*
 686                 * Do not allow the compiler to re-order the clearing of
 687                 * tlb_flush_batched before the tlb is flushed.
 688                 */
 689                barrier();
 690                mm->tlb_flush_batched = false;
 691        }
 692}
 693#else
 694static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 695{
 696}
 697
 698static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 699{
 700        return false;
 701}
 702#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 703
 704/*
 705 * At what user virtual address is page expected in vma?
 706 * Caller should check the page is actually part of the vma.
 707 */
 708unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 709{
 710        unsigned long address;
 711        if (PageAnon(page)) {
 712                struct anon_vma *page__anon_vma = page_anon_vma(page);
 713                /*
 714                 * Note: swapoff's unuse_vma() is more efficient with this
 715                 * check, and needs it to match anon_vma when KSM is active.
 716                 */
 717                if (!vma->anon_vma || !page__anon_vma ||
 718                    vma->anon_vma->root != page__anon_vma->root)
 719                        return -EFAULT;
 720        } else if (page->mapping) {
 721                if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
 722                        return -EFAULT;
 723        } else
 724                return -EFAULT;
 725        address = __vma_address(page, vma);
 726        if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 727                return -EFAULT;
 728        return address;
 729}
 730
 731pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
 732{
 733        pgd_t *pgd;
 734        p4d_t *p4d;
 735        pud_t *pud;
 736        pmd_t *pmd = NULL;
 737        pmd_t pmde;
 738
 739        pgd = pgd_offset(mm, address);
 740        if (!pgd_present(*pgd))
 741                goto out;
 742
 743        p4d = p4d_offset(pgd, address);
 744        if (!p4d_present(*p4d))
 745                goto out;
 746
 747        pud = pud_offset(p4d, address);
 748        if (!pud_present(*pud))
 749                goto out;
 750
 751        pmd = pmd_offset(pud, address);
 752        /*
 753         * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
 754         * without holding anon_vma lock for write.  So when looking for a
 755         * genuine pmde (in which to find pte), test present and !THP together.
 756         */
 757        pmde = *pmd;
 758        barrier();
 759        if (!pmd_present(pmde) || pmd_trans_huge(pmde))
 760                pmd = NULL;
 761out:
 762        return pmd;
 763}
 764
 765struct page_referenced_arg {
 766        int mapcount;
 767        int referenced;
 768        unsigned long vm_flags;
 769        struct mem_cgroup *memcg;
 770};
 771/*
 772 * arg: page_referenced_arg will be passed
 773 */
 774static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
 775                        unsigned long address, void *arg)
 776{
 777        struct page_referenced_arg *pra = arg;
 778        struct page_vma_mapped_walk pvmw = {
 779                .page = page,
 780                .vma = vma,
 781                .address = address,
 782        };
 783        int referenced = 0;
 784
 785        while (page_vma_mapped_walk(&pvmw)) {
 786                address = pvmw.address;
 787
 788                if (vma->vm_flags & VM_LOCKED) {
 789                        page_vma_mapped_walk_done(&pvmw);
 790                        pra->vm_flags |= VM_LOCKED;
 791                        return false; /* To break the loop */
 792                }
 793
 794                if (pvmw.pte) {
 795                        if (ptep_clear_flush_young_notify(vma, address,
 796                                                pvmw.pte)) {
 797                                /*
 798                                 * Don't treat a reference through
 799                                 * a sequentially read mapping as such.
 800                                 * If the page has been used in another mapping,
 801                                 * we will catch it; if this other mapping is
 802                                 * already gone, the unmap path will have set
 803                                 * PG_referenced or activated the page.
 804                                 */
 805                                if (likely(!(vma->vm_flags & VM_SEQ_READ)))
 806                                        referenced++;
 807                        }
 808                } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 809                        if (pmdp_clear_flush_young_notify(vma, address,
 810                                                pvmw.pmd))
 811                                referenced++;
 812                } else {
 813                        /* unexpected pmd-mapped page? */
 814                        WARN_ON_ONCE(1);
 815                }
 816
 817                pra->mapcount--;
 818        }
 819
 820        if (referenced)
 821                clear_page_idle(page);
 822        if (test_and_clear_page_young(page))
 823                referenced++;
 824
 825        if (referenced) {
 826                pra->referenced++;
 827                pra->vm_flags |= vma->vm_flags;
 828        }
 829
 830        if (!pra->mapcount)
 831                return false; /* To break the loop */
 832
 833        return true;
 834}
 835
 836static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
 837{
 838        struct page_referenced_arg *pra = arg;
 839        struct mem_cgroup *memcg = pra->memcg;
 840
 841        if (!mm_match_cgroup(vma->vm_mm, memcg))
 842                return true;
 843
 844        return false;
 845}
 846
 847/**
 848 * page_referenced - test if the page was referenced
 849 * @page: the page to test
 850 * @is_locked: caller holds lock on the page
 851 * @memcg: target memory cgroup
 852 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 853 *
 854 * Quick test_and_clear_referenced for all mappings to a page,
 855 * returns the number of ptes which referenced the page.
 856 */
 857int page_referenced(struct page *page,
 858                    int is_locked,
 859                    struct mem_cgroup *memcg,
 860                    unsigned long *vm_flags)
 861{
 862        int we_locked = 0;
 863        struct page_referenced_arg pra = {
 864                .mapcount = total_mapcount(page),
 865                .memcg = memcg,
 866        };
 867        struct rmap_walk_control rwc = {
 868                .rmap_one = page_referenced_one,
 869                .arg = (void *)&pra,
 870                .anon_lock = page_lock_anon_vma_read,
 871        };
 872
 873        *vm_flags = 0;
 874        if (!pra.mapcount)
 875                return 0;
 876
 877        if (!page_rmapping(page))
 878                return 0;
 879
 880        if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 881                we_locked = trylock_page(page);
 882                if (!we_locked)
 883                        return 1;
 884        }
 885
 886        /*
 887         * If we are reclaiming on behalf of a cgroup, skip
 888         * counting on behalf of references from different
 889         * cgroups
 890         */
 891        if (memcg) {
 892                rwc.invalid_vma = invalid_page_referenced_vma;
 893        }
 894
 895        rmap_walk(page, &rwc);
 896        *vm_flags = pra.vm_flags;
 897
 898        if (we_locked)
 899                unlock_page(page);
 900
 901        return pra.referenced;
 902}
 903
 904static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
 905                            unsigned long address, void *arg)
 906{
 907        struct page_vma_mapped_walk pvmw = {
 908                .page = page,
 909                .vma = vma,
 910                .address = address,
 911                .flags = PVMW_SYNC,
 912        };
 913        struct mmu_notifier_range range;
 914        int *cleaned = arg;
 915
 916        /*
 917         * We have to assume the worse case ie pmd for invalidation. Note that
 918         * the page can not be free from this function.
 919         */
 920        mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
 921                                0, vma, vma->vm_mm, address,
 922                                min(vma->vm_end, address + page_size(page)));
 923        mmu_notifier_invalidate_range_start(&range);
 924
 925        while (page_vma_mapped_walk(&pvmw)) {
 926                int ret = 0;
 927
 928                address = pvmw.address;
 929                if (pvmw.pte) {
 930                        pte_t entry;
 931                        pte_t *pte = pvmw.pte;
 932
 933                        if (!pte_dirty(*pte) && !pte_write(*pte))
 934                                continue;
 935
 936                        flush_cache_page(vma, address, pte_pfn(*pte));
 937                        entry = ptep_clear_flush(vma, address, pte);
 938                        entry = pte_wrprotect(entry);
 939                        entry = pte_mkclean(entry);
 940                        set_pte_at(vma->vm_mm, address, pte, entry);
 941                        ret = 1;
 942                } else {
 943#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 944                        pmd_t *pmd = pvmw.pmd;
 945                        pmd_t entry;
 946
 947                        if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
 948                                continue;
 949
 950                        flush_cache_page(vma, address, page_to_pfn(page));
 951                        entry = pmdp_invalidate(vma, address, pmd);
 952                        entry = pmd_wrprotect(entry);
 953                        entry = pmd_mkclean(entry);
 954                        set_pmd_at(vma->vm_mm, address, pmd, entry);
 955                        ret = 1;
 956#else
 957                        /* unexpected pmd-mapped page? */
 958                        WARN_ON_ONCE(1);
 959#endif
 960                }
 961
 962                /*
 963                 * No need to call mmu_notifier_invalidate_range() as we are
 964                 * downgrading page table protection not changing it to point
 965                 * to a new page.
 966                 *
 967                 * See Documentation/vm/mmu_notifier.rst
 968                 */
 969                if (ret)
 970                        (*cleaned)++;
 971        }
 972
 973        mmu_notifier_invalidate_range_end(&range);
 974
 975        return true;
 976}
 977
 978static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
 979{
 980        if (vma->vm_flags & VM_SHARED)
 981                return false;
 982
 983        return true;
 984}
 985
 986int page_mkclean(struct page *page)
 987{
 988        int cleaned = 0;
 989        struct address_space *mapping;
 990        struct rmap_walk_control rwc = {
 991                .arg = (void *)&cleaned,
 992                .rmap_one = page_mkclean_one,
 993                .invalid_vma = invalid_mkclean_vma,
 994        };
 995
 996        BUG_ON(!PageLocked(page));
 997
 998        if (!page_mapped(page))
 999                return 0;
1000
1001        mapping = page_mapping(page);
1002        if (!mapping)
1003                return 0;
1004
1005        rmap_walk(page, &rwc);
1006
1007        return cleaned;
1008}
1009EXPORT_SYMBOL_GPL(page_mkclean);
1010
1011/**
1012 * page_move_anon_rmap - move a page to our anon_vma
1013 * @page:       the page to move to our anon_vma
1014 * @vma:        the vma the page belongs to
1015 *
1016 * When a page belongs exclusively to one process after a COW event,
1017 * that page can be moved into the anon_vma that belongs to just that
1018 * process, so the rmap code will not search the parent or sibling
1019 * processes.
1020 */
1021void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1022{
1023        struct anon_vma *anon_vma = vma->anon_vma;
1024
1025        page = compound_head(page);
1026
1027        VM_BUG_ON_PAGE(!PageLocked(page), page);
1028        VM_BUG_ON_VMA(!anon_vma, vma);
1029
1030        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1031        /*
1032         * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1033         * simultaneously, so a concurrent reader (eg page_referenced()'s
1034         * PageAnon()) will not see one without the other.
1035         */
1036        WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1037}
1038
1039/**
1040 * __page_set_anon_rmap - set up new anonymous rmap
1041 * @page:       Page or Hugepage to add to rmap
1042 * @vma:        VM area to add page to.
1043 * @address:    User virtual address of the mapping     
1044 * @exclusive:  the page is exclusively owned by the current process
1045 */
1046static void __page_set_anon_rmap(struct page *page,
1047        struct vm_area_struct *vma, unsigned long address, int exclusive)
1048{
1049        struct anon_vma *anon_vma = vma->anon_vma;
1050
1051        BUG_ON(!anon_vma);
1052
1053        if (PageAnon(page))
1054                return;
1055
1056        /*
1057         * If the page isn't exclusively mapped into this vma,
1058         * we must use the _oldest_ possible anon_vma for the
1059         * page mapping!
1060         */
1061        if (!exclusive)
1062                anon_vma = anon_vma->root;
1063
1064        /*
1065         * page_idle does a lockless/optimistic rmap scan on page->mapping.
1066         * Make sure the compiler doesn't split the stores of anon_vma and
1067         * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1068         * could mistake the mapping for a struct address_space and crash.
1069         */
1070        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1071        WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1072        page->index = linear_page_index(vma, address);
1073}
1074
1075/**
1076 * __page_check_anon_rmap - sanity check anonymous rmap addition
1077 * @page:       the page to add the mapping to
1078 * @vma:        the vm area in which the mapping is added
1079 * @address:    the user virtual address mapped
1080 */
1081static void __page_check_anon_rmap(struct page *page,
1082        struct vm_area_struct *vma, unsigned long address)
1083{
1084        /*
1085         * The page's anon-rmap details (mapping and index) are guaranteed to
1086         * be set up correctly at this point.
1087         *
1088         * We have exclusion against page_add_anon_rmap because the caller
1089         * always holds the page locked.
1090         *
1091         * We have exclusion against page_add_new_anon_rmap because those pages
1092         * are initially only visible via the pagetables, and the pte is locked
1093         * over the call to page_add_new_anon_rmap.
1094         */
1095        VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1096        VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1097                       page);
1098}
1099
1100/**
1101 * page_add_anon_rmap - add pte mapping to an anonymous page
1102 * @page:       the page to add the mapping to
1103 * @vma:        the vm area in which the mapping is added
1104 * @address:    the user virtual address mapped
1105 * @compound:   charge the page as compound or small page
1106 *
1107 * The caller needs to hold the pte lock, and the page must be locked in
1108 * the anon_vma case: to serialize mapping,index checking after setting,
1109 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1110 * (but PageKsm is never downgraded to PageAnon).
1111 */
1112void page_add_anon_rmap(struct page *page,
1113        struct vm_area_struct *vma, unsigned long address, bool compound)
1114{
1115        do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1116}
1117
1118/*
1119 * Special version of the above for do_swap_page, which often runs
1120 * into pages that are exclusively owned by the current process.
1121 * Everybody else should continue to use page_add_anon_rmap above.
1122 */
1123void do_page_add_anon_rmap(struct page *page,
1124        struct vm_area_struct *vma, unsigned long address, int flags)
1125{
1126        bool compound = flags & RMAP_COMPOUND;
1127        bool first;
1128
1129        if (unlikely(PageKsm(page)))
1130                lock_page_memcg(page);
1131        else
1132                VM_BUG_ON_PAGE(!PageLocked(page), page);
1133
1134        if (compound) {
1135                atomic_t *mapcount;
1136                VM_BUG_ON_PAGE(!PageLocked(page), page);
1137                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1138                mapcount = compound_mapcount_ptr(page);
1139                first = atomic_inc_and_test(mapcount);
1140        } else {
1141                first = atomic_inc_and_test(&page->_mapcount);
1142        }
1143
1144        if (first) {
1145                int nr = compound ? thp_nr_pages(page) : 1;
1146                /*
1147                 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1148                 * these counters are not modified in interrupt context, and
1149                 * pte lock(a spinlock) is held, which implies preemption
1150                 * disabled.
1151                 */
1152                if (compound)
1153                        __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1154                __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1155        }
1156
1157        if (unlikely(PageKsm(page))) {
1158                unlock_page_memcg(page);
1159                return;
1160        }
1161
1162        /* address might be in next vma when migration races vma_adjust */
1163        if (first)
1164                __page_set_anon_rmap(page, vma, address,
1165                                flags & RMAP_EXCLUSIVE);
1166        else
1167                __page_check_anon_rmap(page, vma, address);
1168}
1169
1170/**
1171 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1172 * @page:       the page to add the mapping to
1173 * @vma:        the vm area in which the mapping is added
1174 * @address:    the user virtual address mapped
1175 * @compound:   charge the page as compound or small page
1176 *
1177 * Same as page_add_anon_rmap but must only be called on *new* pages.
1178 * This means the inc-and-test can be bypassed.
1179 * Page does not have to be locked.
1180 */
1181void page_add_new_anon_rmap(struct page *page,
1182        struct vm_area_struct *vma, unsigned long address, bool compound)
1183{
1184        int nr = compound ? thp_nr_pages(page) : 1;
1185
1186        VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1187        __SetPageSwapBacked(page);
1188        if (compound) {
1189                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1190                /* increment count (starts at -1) */
1191                atomic_set(compound_mapcount_ptr(page), 0);
1192                if (hpage_pincount_available(page))
1193                        atomic_set(compound_pincount_ptr(page), 0);
1194
1195                __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1196        } else {
1197                /* Anon THP always mapped first with PMD */
1198                VM_BUG_ON_PAGE(PageTransCompound(page), page);
1199                /* increment count (starts at -1) */
1200                atomic_set(&page->_mapcount, 0);
1201        }
1202        __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1203        __page_set_anon_rmap(page, vma, address, 1);
1204}
1205
1206/**
1207 * page_add_file_rmap - add pte mapping to a file page
1208 * @page: the page to add the mapping to
1209 * @compound: charge the page as compound or small page
1210 *
1211 * The caller needs to hold the pte lock.
1212 */
1213void page_add_file_rmap(struct page *page, bool compound)
1214{
1215        int i, nr = 1;
1216
1217        VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1218        lock_page_memcg(page);
1219        if (compound && PageTransHuge(page)) {
1220                int nr_pages = thp_nr_pages(page);
1221
1222                for (i = 0, nr = 0; i < nr_pages; i++) {
1223                        if (atomic_inc_and_test(&page[i]._mapcount))
1224                                nr++;
1225                }
1226                if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1227                        goto out;
1228                if (PageSwapBacked(page))
1229                        __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1230                                                nr_pages);
1231                else
1232                        __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1233                                                nr_pages);
1234        } else {
1235                if (PageTransCompound(page) && page_mapping(page)) {
1236                        VM_WARN_ON_ONCE(!PageLocked(page));
1237
1238                        SetPageDoubleMap(compound_head(page));
1239                        if (PageMlocked(page))
1240                                clear_page_mlock(compound_head(page));
1241                }
1242                if (!atomic_inc_and_test(&page->_mapcount))
1243                        goto out;
1244        }
1245        __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1246out:
1247        unlock_page_memcg(page);
1248}
1249
1250static void page_remove_file_rmap(struct page *page, bool compound)
1251{
1252        int i, nr = 1;
1253
1254        VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1255
1256        /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1257        if (unlikely(PageHuge(page))) {
1258                /* hugetlb pages are always mapped with pmds */
1259                atomic_dec(compound_mapcount_ptr(page));
1260                return;
1261        }
1262
1263        /* page still mapped by someone else? */
1264        if (compound && PageTransHuge(page)) {
1265                int nr_pages = thp_nr_pages(page);
1266
1267                for (i = 0, nr = 0; i < nr_pages; i++) {
1268                        if (atomic_add_negative(-1, &page[i]._mapcount))
1269                                nr++;
1270                }
1271                if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1272                        return;
1273                if (PageSwapBacked(page))
1274                        __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1275                                                -nr_pages);
1276                else
1277                        __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1278                                                -nr_pages);
1279        } else {
1280                if (!atomic_add_negative(-1, &page->_mapcount))
1281                        return;
1282        }
1283
1284        /*
1285         * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1286         * these counters are not modified in interrupt context, and
1287         * pte lock(a spinlock) is held, which implies preemption disabled.
1288         */
1289        __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1290
1291        if (unlikely(PageMlocked(page)))
1292                clear_page_mlock(page);
1293}
1294
1295static void page_remove_anon_compound_rmap(struct page *page)
1296{
1297        int i, nr;
1298
1299        if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1300                return;
1301
1302        /* Hugepages are not counted in NR_ANON_PAGES for now. */
1303        if (unlikely(PageHuge(page)))
1304                return;
1305
1306        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1307                return;
1308
1309        __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1310
1311        if (TestClearPageDoubleMap(page)) {
1312                /*
1313                 * Subpages can be mapped with PTEs too. Check how many of
1314                 * them are still mapped.
1315                 */
1316                for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1317                        if (atomic_add_negative(-1, &page[i]._mapcount))
1318                                nr++;
1319                }
1320
1321                /*
1322                 * Queue the page for deferred split if at least one small
1323                 * page of the compound page is unmapped, but at least one
1324                 * small page is still mapped.
1325                 */
1326                if (nr && nr < thp_nr_pages(page))
1327                        deferred_split_huge_page(page);
1328        } else {
1329                nr = thp_nr_pages(page);
1330        }
1331
1332        if (unlikely(PageMlocked(page)))
1333                clear_page_mlock(page);
1334
1335        if (nr)
1336                __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1337}
1338
1339/**
1340 * page_remove_rmap - take down pte mapping from a page
1341 * @page:       page to remove mapping from
1342 * @compound:   uncharge the page as compound or small page
1343 *
1344 * The caller needs to hold the pte lock.
1345 */
1346void page_remove_rmap(struct page *page, bool compound)
1347{
1348        lock_page_memcg(page);
1349
1350        if (!PageAnon(page)) {
1351                page_remove_file_rmap(page, compound);
1352                goto out;
1353        }
1354
1355        if (compound) {
1356                page_remove_anon_compound_rmap(page);
1357                goto out;
1358        }
1359
1360        /* page still mapped by someone else? */
1361        if (!atomic_add_negative(-1, &page->_mapcount))
1362                goto out;
1363
1364        /*
1365         * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1366         * these counters are not modified in interrupt context, and
1367         * pte lock(a spinlock) is held, which implies preemption disabled.
1368         */
1369        __dec_lruvec_page_state(page, NR_ANON_MAPPED);
1370
1371        if (unlikely(PageMlocked(page)))
1372                clear_page_mlock(page);
1373
1374        if (PageTransCompound(page))
1375                deferred_split_huge_page(compound_head(page));
1376
1377        /*
1378         * It would be tidy to reset the PageAnon mapping here,
1379         * but that might overwrite a racing page_add_anon_rmap
1380         * which increments mapcount after us but sets mapping
1381         * before us: so leave the reset to free_unref_page,
1382         * and remember that it's only reliable while mapped.
1383         * Leaving it set also helps swapoff to reinstate ptes
1384         * faster for those pages still in swapcache.
1385         */
1386out:
1387        unlock_page_memcg(page);
1388}
1389
1390/*
1391 * @arg: enum ttu_flags will be passed to this argument
1392 */
1393static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1394                     unsigned long address, void *arg)
1395{
1396        struct mm_struct *mm = vma->vm_mm;
1397        struct page_vma_mapped_walk pvmw = {
1398                .page = page,
1399                .vma = vma,
1400                .address = address,
1401        };
1402        pte_t pteval;
1403        struct page *subpage;
1404        bool ret = true;
1405        struct mmu_notifier_range range;
1406        enum ttu_flags flags = (enum ttu_flags)(long)arg;
1407
1408        /* munlock has nothing to gain from examining un-locked vmas */
1409        if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1410                return true;
1411
1412        if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1413            is_zone_device_page(page) && !is_device_private_page(page))
1414                return true;
1415
1416        if (flags & TTU_SPLIT_HUGE_PMD) {
1417                split_huge_pmd_address(vma, address,
1418                                flags & TTU_SPLIT_FREEZE, page);
1419        }
1420
1421        /*
1422         * For THP, we have to assume the worse case ie pmd for invalidation.
1423         * For hugetlb, it could be much worse if we need to do pud
1424         * invalidation in the case of pmd sharing.
1425         *
1426         * Note that the page can not be free in this function as call of
1427         * try_to_unmap() must hold a reference on the page.
1428         */
1429        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1430                                address,
1431                                min(vma->vm_end, address + page_size(page)));
1432        if (PageHuge(page)) {
1433                /*
1434                 * If sharing is possible, start and end will be adjusted
1435                 * accordingly.
1436                 */
1437                adjust_range_if_pmd_sharing_possible(vma, &range.start,
1438                                                     &range.end);
1439        }
1440        mmu_notifier_invalidate_range_start(&range);
1441
1442        while (page_vma_mapped_walk(&pvmw)) {
1443#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1444                /* PMD-mapped THP migration entry */
1445                if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1446                        VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1447
1448                        set_pmd_migration_entry(&pvmw, page);
1449                        continue;
1450                }
1451#endif
1452
1453                /*
1454                 * If the page is mlock()d, we cannot swap it out.
1455                 * If it's recently referenced (perhaps page_referenced
1456                 * skipped over this mm) then we should reactivate it.
1457                 */
1458                if (!(flags & TTU_IGNORE_MLOCK)) {
1459                        if (vma->vm_flags & VM_LOCKED) {
1460                                /* PTE-mapped THP are never mlocked */
1461                                if (!PageTransCompound(page)) {
1462                                        /*
1463                                         * Holding pte lock, we do *not* need
1464                                         * mmap_lock here
1465                                         */
1466                                        mlock_vma_page(page);
1467                                }
1468                                ret = false;
1469                                page_vma_mapped_walk_done(&pvmw);
1470                                break;
1471                        }
1472                        if (flags & TTU_MUNLOCK)
1473                                continue;
1474                }
1475
1476                /* Unexpected PMD-mapped THP? */
1477                VM_BUG_ON_PAGE(!pvmw.pte, page);
1478
1479                subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1480                address = pvmw.address;
1481
1482                if (PageHuge(page) && !PageAnon(page)) {
1483                        /*
1484                         * To call huge_pmd_unshare, i_mmap_rwsem must be
1485                         * held in write mode.  Caller needs to explicitly
1486                         * do this outside rmap routines.
1487                         */
1488                        VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1489                        if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1490                                /*
1491                                 * huge_pmd_unshare unmapped an entire PMD
1492                                 * page.  There is no way of knowing exactly
1493                                 * which PMDs may be cached for this mm, so
1494                                 * we must flush them all.  start/end were
1495                                 * already adjusted above to cover this range.
1496                                 */
1497                                flush_cache_range(vma, range.start, range.end);
1498                                flush_tlb_range(vma, range.start, range.end);
1499                                mmu_notifier_invalidate_range(mm, range.start,
1500                                                              range.end);
1501
1502                                /*
1503                                 * The ref count of the PMD page was dropped
1504                                 * which is part of the way map counting
1505                                 * is done for shared PMDs.  Return 'true'
1506                                 * here.  When there is no other sharing,
1507                                 * huge_pmd_unshare returns false and we will
1508                                 * unmap the actual page and drop map count
1509                                 * to zero.
1510                                 */
1511                                page_vma_mapped_walk_done(&pvmw);
1512                                break;
1513                        }
1514                }
1515
1516                if (IS_ENABLED(CONFIG_MIGRATION) &&
1517                    (flags & TTU_MIGRATION) &&
1518                    is_zone_device_page(page)) {
1519                        swp_entry_t entry;
1520                        pte_t swp_pte;
1521
1522                        pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1523
1524                        /*
1525                         * Store the pfn of the page in a special migration
1526                         * pte. do_swap_page() will wait until the migration
1527                         * pte is removed and then restart fault handling.
1528                         */
1529                        entry = make_migration_entry(page, 0);
1530                        swp_pte = swp_entry_to_pte(entry);
1531
1532                        /*
1533                         * pteval maps a zone device page and is therefore
1534                         * a swap pte.
1535                         */
1536                        if (pte_swp_soft_dirty(pteval))
1537                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
1538                        if (pte_swp_uffd_wp(pteval))
1539                                swp_pte = pte_swp_mkuffd_wp(swp_pte);
1540                        set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1541                        /*
1542                         * No need to invalidate here it will synchronize on
1543                         * against the special swap migration pte.
1544                         *
1545                         * The assignment to subpage above was computed from a
1546                         * swap PTE which results in an invalid pointer.
1547                         * Since only PAGE_SIZE pages can currently be
1548                         * migrated, just set it to page. This will need to be
1549                         * changed when hugepage migrations to device private
1550                         * memory are supported.
1551                         */
1552                        subpage = page;
1553                        goto discard;
1554                }
1555
1556                /* Nuke the page table entry. */
1557                flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1558                if (should_defer_flush(mm, flags)) {
1559                        /*
1560                         * We clear the PTE but do not flush so potentially
1561                         * a remote CPU could still be writing to the page.
1562                         * If the entry was previously clean then the
1563                         * architecture must guarantee that a clear->dirty
1564                         * transition on a cached TLB entry is written through
1565                         * and traps if the PTE is unmapped.
1566                         */
1567                        pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1568
1569                        set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1570                } else {
1571                        pteval = ptep_clear_flush(vma, address, pvmw.pte);
1572                }
1573
1574                /* Move the dirty bit to the page. Now the pte is gone. */
1575                if (pte_dirty(pteval))
1576                        set_page_dirty(page);
1577
1578                /* Update high watermark before we lower rss */
1579                update_hiwater_rss(mm);
1580
1581                if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1582                        pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1583                        if (PageHuge(page)) {
1584                                hugetlb_count_sub(compound_nr(page), mm);
1585                                set_huge_swap_pte_at(mm, address,
1586                                                     pvmw.pte, pteval,
1587                                                     vma_mmu_pagesize(vma));
1588                        } else {
1589                                dec_mm_counter(mm, mm_counter(page));
1590                                set_pte_at(mm, address, pvmw.pte, pteval);
1591                        }
1592
1593                } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1594                        /*
1595                         * The guest indicated that the page content is of no
1596                         * interest anymore. Simply discard the pte, vmscan
1597                         * will take care of the rest.
1598                         * A future reference will then fault in a new zero
1599                         * page. When userfaultfd is active, we must not drop
1600                         * this page though, as its main user (postcopy
1601                         * migration) will not expect userfaults on already
1602                         * copied pages.
1603                         */
1604                        dec_mm_counter(mm, mm_counter(page));
1605                        /* We have to invalidate as we cleared the pte */
1606                        mmu_notifier_invalidate_range(mm, address,
1607                                                      address + PAGE_SIZE);
1608                } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1609                                (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1610                        swp_entry_t entry;
1611                        pte_t swp_pte;
1612
1613                        if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1614                                set_pte_at(mm, address, pvmw.pte, pteval);
1615                                ret = false;
1616                                page_vma_mapped_walk_done(&pvmw);
1617                                break;
1618                        }
1619
1620                        /*
1621                         * Store the pfn of the page in a special migration
1622                         * pte. do_swap_page() will wait until the migration
1623                         * pte is removed and then restart fault handling.
1624                         */
1625                        entry = make_migration_entry(subpage,
1626                                        pte_write(pteval));
1627                        swp_pte = swp_entry_to_pte(entry);
1628                        if (pte_soft_dirty(pteval))
1629                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
1630                        if (pte_uffd_wp(pteval))
1631                                swp_pte = pte_swp_mkuffd_wp(swp_pte);
1632                        set_pte_at(mm, address, pvmw.pte, swp_pte);
1633                        /*
1634                         * No need to invalidate here it will synchronize on
1635                         * against the special swap migration pte.
1636                         */
1637                } else if (PageAnon(page)) {
1638                        swp_entry_t entry = { .val = page_private(subpage) };
1639                        pte_t swp_pte;
1640                        /*
1641                         * Store the swap location in the pte.
1642                         * See handle_pte_fault() ...
1643                         */
1644                        if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1645                                WARN_ON_ONCE(1);
1646                                ret = false;
1647                                /* We have to invalidate as we cleared the pte */
1648                                mmu_notifier_invalidate_range(mm, address,
1649                                                        address + PAGE_SIZE);
1650                                page_vma_mapped_walk_done(&pvmw);
1651                                break;
1652                        }
1653
1654                        /* MADV_FREE page check */
1655                        if (!PageSwapBacked(page)) {
1656                                if (!PageDirty(page)) {
1657                                        /* Invalidate as we cleared the pte */
1658                                        mmu_notifier_invalidate_range(mm,
1659                                                address, address + PAGE_SIZE);
1660                                        dec_mm_counter(mm, MM_ANONPAGES);
1661                                        goto discard;
1662                                }
1663
1664                                /*
1665                                 * If the page was redirtied, it cannot be
1666                                 * discarded. Remap the page to page table.
1667                                 */
1668                                set_pte_at(mm, address, pvmw.pte, pteval);
1669                                SetPageSwapBacked(page);
1670                                ret = false;
1671                                page_vma_mapped_walk_done(&pvmw);
1672                                break;
1673                        }
1674
1675                        if (swap_duplicate(entry) < 0) {
1676                                set_pte_at(mm, address, pvmw.pte, pteval);
1677                                ret = false;
1678                                page_vma_mapped_walk_done(&pvmw);
1679                                break;
1680                        }
1681                        if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1682                                set_pte_at(mm, address, pvmw.pte, pteval);
1683                                ret = false;
1684                                page_vma_mapped_walk_done(&pvmw);
1685                                break;
1686                        }
1687                        if (list_empty(&mm->mmlist)) {
1688                                spin_lock(&mmlist_lock);
1689                                if (list_empty(&mm->mmlist))
1690                                        list_add(&mm->mmlist, &init_mm.mmlist);
1691                                spin_unlock(&mmlist_lock);
1692                        }
1693                        dec_mm_counter(mm, MM_ANONPAGES);
1694                        inc_mm_counter(mm, MM_SWAPENTS);
1695                        swp_pte = swp_entry_to_pte(entry);
1696                        if (pte_soft_dirty(pteval))
1697                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
1698                        if (pte_uffd_wp(pteval))
1699                                swp_pte = pte_swp_mkuffd_wp(swp_pte);
1700                        set_pte_at(mm, address, pvmw.pte, swp_pte);
1701                        /* Invalidate as we cleared the pte */
1702                        mmu_notifier_invalidate_range(mm, address,
1703                                                      address + PAGE_SIZE);
1704                } else {
1705                        /*
1706                         * This is a locked file-backed page, thus it cannot
1707                         * be removed from the page cache and replaced by a new
1708                         * page before mmu_notifier_invalidate_range_end, so no
1709                         * concurrent thread might update its page table to
1710                         * point at new page while a device still is using this
1711                         * page.
1712                         *
1713                         * See Documentation/vm/mmu_notifier.rst
1714                         */
1715                        dec_mm_counter(mm, mm_counter_file(page));
1716                }
1717discard:
1718                /*
1719                 * No need to call mmu_notifier_invalidate_range() it has be
1720                 * done above for all cases requiring it to happen under page
1721                 * table lock before mmu_notifier_invalidate_range_end()
1722                 *
1723                 * See Documentation/vm/mmu_notifier.rst
1724                 */
1725                page_remove_rmap(subpage, PageHuge(page));
1726                put_page(page);
1727        }
1728
1729        mmu_notifier_invalidate_range_end(&range);
1730
1731        return ret;
1732}
1733
1734static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1735{
1736        return vma_is_temporary_stack(vma);
1737}
1738
1739static int page_not_mapped(struct page *page)
1740{
1741        return !page_mapped(page);
1742}
1743
1744/**
1745 * try_to_unmap - try to remove all page table mappings to a page
1746 * @page: the page to get unmapped
1747 * @flags: action and flags
1748 *
1749 * Tries to remove all the page table entries which are mapping this
1750 * page, used in the pageout path.  Caller must hold the page lock.
1751 *
1752 * If unmap is successful, return true. Otherwise, false.
1753 */
1754bool try_to_unmap(struct page *page, enum ttu_flags flags)
1755{
1756        struct rmap_walk_control rwc = {
1757                .rmap_one = try_to_unmap_one,
1758                .arg = (void *)flags,
1759                .done = page_not_mapped,
1760                .anon_lock = page_lock_anon_vma_read,
1761        };
1762
1763        /*
1764         * During exec, a temporary VMA is setup and later moved.
1765         * The VMA is moved under the anon_vma lock but not the
1766         * page tables leading to a race where migration cannot
1767         * find the migration ptes. Rather than increasing the
1768         * locking requirements of exec(), migration skips
1769         * temporary VMAs until after exec() completes.
1770         */
1771        if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1772            && !PageKsm(page) && PageAnon(page))
1773                rwc.invalid_vma = invalid_migration_vma;
1774
1775        if (flags & TTU_RMAP_LOCKED)
1776                rmap_walk_locked(page, &rwc);
1777        else
1778                rmap_walk(page, &rwc);
1779
1780        return !page_mapcount(page) ? true : false;
1781}
1782
1783/**
1784 * try_to_munlock - try to munlock a page
1785 * @page: the page to be munlocked
1786 *
1787 * Called from munlock code.  Checks all of the VMAs mapping the page
1788 * to make sure nobody else has this page mlocked. The page will be
1789 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1790 */
1791
1792void try_to_munlock(struct page *page)
1793{
1794        struct rmap_walk_control rwc = {
1795                .rmap_one = try_to_unmap_one,
1796                .arg = (void *)TTU_MUNLOCK,
1797                .done = page_not_mapped,
1798                .anon_lock = page_lock_anon_vma_read,
1799
1800        };
1801
1802        VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1803        VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1804
1805        rmap_walk(page, &rwc);
1806}
1807
1808void __put_anon_vma(struct anon_vma *anon_vma)
1809{
1810        struct anon_vma *root = anon_vma->root;
1811
1812        anon_vma_free(anon_vma);
1813        if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1814                anon_vma_free(root);
1815}
1816
1817static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1818                                        struct rmap_walk_control *rwc)
1819{
1820        struct anon_vma *anon_vma;
1821
1822        if (rwc->anon_lock)
1823                return rwc->anon_lock(page);
1824
1825        /*
1826         * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1827         * because that depends on page_mapped(); but not all its usages
1828         * are holding mmap_lock. Users without mmap_lock are required to
1829         * take a reference count to prevent the anon_vma disappearing
1830         */
1831        anon_vma = page_anon_vma(page);
1832        if (!anon_vma)
1833                return NULL;
1834
1835        anon_vma_lock_read(anon_vma);
1836        return anon_vma;
1837}
1838
1839/*
1840 * rmap_walk_anon - do something to anonymous page using the object-based
1841 * rmap method
1842 * @page: the page to be handled
1843 * @rwc: control variable according to each walk type
1844 *
1845 * Find all the mappings of a page using the mapping pointer and the vma chains
1846 * contained in the anon_vma struct it points to.
1847 *
1848 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
1849 * where the page was found will be held for write.  So, we won't recheck
1850 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1851 * LOCKED.
1852 */
1853static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1854                bool locked)
1855{
1856        struct anon_vma *anon_vma;
1857        pgoff_t pgoff_start, pgoff_end;
1858        struct anon_vma_chain *avc;
1859
1860        if (locked) {
1861                anon_vma = page_anon_vma(page);
1862                /* anon_vma disappear under us? */
1863                VM_BUG_ON_PAGE(!anon_vma, page);
1864        } else {
1865                anon_vma = rmap_walk_anon_lock(page, rwc);
1866        }
1867        if (!anon_vma)
1868                return;
1869
1870        pgoff_start = page_to_pgoff(page);
1871        pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
1872        anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1873                        pgoff_start, pgoff_end) {
1874                struct vm_area_struct *vma = avc->vma;
1875                unsigned long address = vma_address(page, vma);
1876
1877                cond_resched();
1878
1879                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1880                        continue;
1881
1882                if (!rwc->rmap_one(page, vma, address, rwc->arg))
1883                        break;
1884                if (rwc->done && rwc->done(page))
1885                        break;
1886        }
1887
1888        if (!locked)
1889                anon_vma_unlock_read(anon_vma);
1890}
1891
1892/*
1893 * rmap_walk_file - do something to file page using the object-based rmap method
1894 * @page: the page to be handled
1895 * @rwc: control variable according to each walk type
1896 *
1897 * Find all the mappings of a page using the mapping pointer and the vma chains
1898 * contained in the address_space struct it points to.
1899 *
1900 * When called from try_to_munlock(), the mmap_lock of the mm containing the vma
1901 * where the page was found will be held for write.  So, we won't recheck
1902 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1903 * LOCKED.
1904 */
1905static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1906                bool locked)
1907{
1908        struct address_space *mapping = page_mapping(page);
1909        pgoff_t pgoff_start, pgoff_end;
1910        struct vm_area_struct *vma;
1911
1912        /*
1913         * The page lock not only makes sure that page->mapping cannot
1914         * suddenly be NULLified by truncation, it makes sure that the
1915         * structure at mapping cannot be freed and reused yet,
1916         * so we can safely take mapping->i_mmap_rwsem.
1917         */
1918        VM_BUG_ON_PAGE(!PageLocked(page), page);
1919
1920        if (!mapping)
1921                return;
1922
1923        pgoff_start = page_to_pgoff(page);
1924        pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
1925        if (!locked)
1926                i_mmap_lock_read(mapping);
1927        vma_interval_tree_foreach(vma, &mapping->i_mmap,
1928                        pgoff_start, pgoff_end) {
1929                unsigned long address = vma_address(page, vma);
1930
1931                cond_resched();
1932
1933                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1934                        continue;
1935
1936                if (!rwc->rmap_one(page, vma, address, rwc->arg))
1937                        goto done;
1938                if (rwc->done && rwc->done(page))
1939                        goto done;
1940        }
1941
1942done:
1943        if (!locked)
1944                i_mmap_unlock_read(mapping);
1945}
1946
1947void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1948{
1949        if (unlikely(PageKsm(page)))
1950                rmap_walk_ksm(page, rwc);
1951        else if (PageAnon(page))
1952                rmap_walk_anon(page, rwc, false);
1953        else
1954                rmap_walk_file(page, rwc, false);
1955}
1956
1957/* Like rmap_walk, but caller holds relevant rmap lock */
1958void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1959{
1960        /* no ksm support for now */
1961        VM_BUG_ON_PAGE(PageKsm(page), page);
1962        if (PageAnon(page))
1963                rmap_walk_anon(page, rwc, true);
1964        else
1965                rmap_walk_file(page, rwc, true);
1966}
1967
1968#ifdef CONFIG_HUGETLB_PAGE
1969/*
1970 * The following two functions are for anonymous (private mapped) hugepages.
1971 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1972 * and no lru code, because we handle hugepages differently from common pages.
1973 */
1974void hugepage_add_anon_rmap(struct page *page,
1975                            struct vm_area_struct *vma, unsigned long address)
1976{
1977        struct anon_vma *anon_vma = vma->anon_vma;
1978        int first;
1979
1980        BUG_ON(!PageLocked(page));
1981        BUG_ON(!anon_vma);
1982        /* address might be in next vma when migration races vma_adjust */
1983        first = atomic_inc_and_test(compound_mapcount_ptr(page));
1984        if (first)
1985                __page_set_anon_rmap(page, vma, address, 0);
1986}
1987
1988void hugepage_add_new_anon_rmap(struct page *page,
1989                        struct vm_area_struct *vma, unsigned long address)
1990{
1991        BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1992        atomic_set(compound_mapcount_ptr(page), 0);
1993        if (hpage_pincount_available(page))
1994                atomic_set(compound_pincount_ptr(page), 0);
1995
1996        __page_set_anon_rmap(page, vma, address, 1);
1997}
1998#endif /* CONFIG_HUGETLB_PAGE */
1999