linux/net/tls/tls_device.c
<<
>>
Prefs
   1/* Copyright (c) 2018, Mellanox Technologies All rights reserved.
   2 *
   3 * This software is available to you under a choice of one of two
   4 * licenses.  You may choose to be licensed under the terms of the GNU
   5 * General Public License (GPL) Version 2, available from the file
   6 * COPYING in the main directory of this source tree, or the
   7 * OpenIB.org BSD license below:
   8 *
   9 *     Redistribution and use in source and binary forms, with or
  10 *     without modification, are permitted provided that the following
  11 *     conditions are met:
  12 *
  13 *      - Redistributions of source code must retain the above
  14 *        copyright notice, this list of conditions and the following
  15 *        disclaimer.
  16 *
  17 *      - Redistributions in binary form must reproduce the above
  18 *        copyright notice, this list of conditions and the following
  19 *        disclaimer in the documentation and/or other materials
  20 *        provided with the distribution.
  21 *
  22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  29 * SOFTWARE.
  30 */
  31
  32#include <crypto/aead.h>
  33#include <linux/highmem.h>
  34#include <linux/module.h>
  35#include <linux/netdevice.h>
  36#include <net/dst.h>
  37#include <net/inet_connection_sock.h>
  38#include <net/tcp.h>
  39#include <net/tls.h>
  40
  41#include "trace.h"
  42
  43/* device_offload_lock is used to synchronize tls_dev_add
  44 * against NETDEV_DOWN notifications.
  45 */
  46static DECLARE_RWSEM(device_offload_lock);
  47
  48static void tls_device_gc_task(struct work_struct *work);
  49
  50static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
  51static LIST_HEAD(tls_device_gc_list);
  52static LIST_HEAD(tls_device_list);
  53static DEFINE_SPINLOCK(tls_device_lock);
  54
  55static void tls_device_free_ctx(struct tls_context *ctx)
  56{
  57        if (ctx->tx_conf == TLS_HW) {
  58                kfree(tls_offload_ctx_tx(ctx));
  59                kfree(ctx->tx.rec_seq);
  60                kfree(ctx->tx.iv);
  61        }
  62
  63        if (ctx->rx_conf == TLS_HW)
  64                kfree(tls_offload_ctx_rx(ctx));
  65
  66        tls_ctx_free(NULL, ctx);
  67}
  68
  69static void tls_device_gc_task(struct work_struct *work)
  70{
  71        struct tls_context *ctx, *tmp;
  72        unsigned long flags;
  73        LIST_HEAD(gc_list);
  74
  75        spin_lock_irqsave(&tls_device_lock, flags);
  76        list_splice_init(&tls_device_gc_list, &gc_list);
  77        spin_unlock_irqrestore(&tls_device_lock, flags);
  78
  79        list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
  80                struct net_device *netdev = ctx->netdev;
  81
  82                if (netdev && ctx->tx_conf == TLS_HW) {
  83                        netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
  84                                                        TLS_OFFLOAD_CTX_DIR_TX);
  85                        dev_put(netdev);
  86                        ctx->netdev = NULL;
  87                }
  88
  89                list_del(&ctx->list);
  90                tls_device_free_ctx(ctx);
  91        }
  92}
  93
  94static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
  95{
  96        unsigned long flags;
  97
  98        spin_lock_irqsave(&tls_device_lock, flags);
  99        list_move_tail(&ctx->list, &tls_device_gc_list);
 100
 101        /* schedule_work inside the spinlock
 102         * to make sure tls_device_down waits for that work.
 103         */
 104        schedule_work(&tls_device_gc_work);
 105
 106        spin_unlock_irqrestore(&tls_device_lock, flags);
 107}
 108
 109/* We assume that the socket is already connected */
 110static struct net_device *get_netdev_for_sock(struct sock *sk)
 111{
 112        struct dst_entry *dst = sk_dst_get(sk);
 113        struct net_device *netdev = NULL;
 114
 115        if (likely(dst)) {
 116                netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
 117                dev_hold(netdev);
 118        }
 119
 120        dst_release(dst);
 121
 122        return netdev;
 123}
 124
 125static void destroy_record(struct tls_record_info *record)
 126{
 127        int i;
 128
 129        for (i = 0; i < record->num_frags; i++)
 130                __skb_frag_unref(&record->frags[i]);
 131        kfree(record);
 132}
 133
 134static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
 135{
 136        struct tls_record_info *info, *temp;
 137
 138        list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
 139                list_del(&info->list);
 140                destroy_record(info);
 141        }
 142
 143        offload_ctx->retransmit_hint = NULL;
 144}
 145
 146static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
 147{
 148        struct tls_context *tls_ctx = tls_get_ctx(sk);
 149        struct tls_record_info *info, *temp;
 150        struct tls_offload_context_tx *ctx;
 151        u64 deleted_records = 0;
 152        unsigned long flags;
 153
 154        if (!tls_ctx)
 155                return;
 156
 157        ctx = tls_offload_ctx_tx(tls_ctx);
 158
 159        spin_lock_irqsave(&ctx->lock, flags);
 160        info = ctx->retransmit_hint;
 161        if (info && !before(acked_seq, info->end_seq))
 162                ctx->retransmit_hint = NULL;
 163
 164        list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
 165                if (before(acked_seq, info->end_seq))
 166                        break;
 167                list_del(&info->list);
 168
 169                destroy_record(info);
 170                deleted_records++;
 171        }
 172
 173        ctx->unacked_record_sn += deleted_records;
 174        spin_unlock_irqrestore(&ctx->lock, flags);
 175}
 176
 177/* At this point, there should be no references on this
 178 * socket and no in-flight SKBs associated with this
 179 * socket, so it is safe to free all the resources.
 180 */
 181void tls_device_sk_destruct(struct sock *sk)
 182{
 183        struct tls_context *tls_ctx = tls_get_ctx(sk);
 184        struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
 185
 186        tls_ctx->sk_destruct(sk);
 187
 188        if (tls_ctx->tx_conf == TLS_HW) {
 189                if (ctx->open_record)
 190                        destroy_record(ctx->open_record);
 191                delete_all_records(ctx);
 192                crypto_free_aead(ctx->aead_send);
 193                clean_acked_data_disable(inet_csk(sk));
 194        }
 195
 196        if (refcount_dec_and_test(&tls_ctx->refcount))
 197                tls_device_queue_ctx_destruction(tls_ctx);
 198}
 199EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
 200
 201void tls_device_free_resources_tx(struct sock *sk)
 202{
 203        struct tls_context *tls_ctx = tls_get_ctx(sk);
 204
 205        tls_free_partial_record(sk, tls_ctx);
 206}
 207
 208void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
 209{
 210        struct tls_context *tls_ctx = tls_get_ctx(sk);
 211
 212        trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
 213        WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
 214}
 215EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
 216
 217static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
 218                                 u32 seq)
 219{
 220        struct net_device *netdev;
 221        struct sk_buff *skb;
 222        int err = 0;
 223        u8 *rcd_sn;
 224
 225        skb = tcp_write_queue_tail(sk);
 226        if (skb)
 227                TCP_SKB_CB(skb)->eor = 1;
 228
 229        rcd_sn = tls_ctx->tx.rec_seq;
 230
 231        trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
 232        down_read(&device_offload_lock);
 233        netdev = tls_ctx->netdev;
 234        if (netdev)
 235                err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
 236                                                         rcd_sn,
 237                                                         TLS_OFFLOAD_CTX_DIR_TX);
 238        up_read(&device_offload_lock);
 239        if (err)
 240                return;
 241
 242        clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
 243}
 244
 245static void tls_append_frag(struct tls_record_info *record,
 246                            struct page_frag *pfrag,
 247                            int size)
 248{
 249        skb_frag_t *frag;
 250
 251        frag = &record->frags[record->num_frags - 1];
 252        if (skb_frag_page(frag) == pfrag->page &&
 253            skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
 254                skb_frag_size_add(frag, size);
 255        } else {
 256                ++frag;
 257                __skb_frag_set_page(frag, pfrag->page);
 258                skb_frag_off_set(frag, pfrag->offset);
 259                skb_frag_size_set(frag, size);
 260                ++record->num_frags;
 261                get_page(pfrag->page);
 262        }
 263
 264        pfrag->offset += size;
 265        record->len += size;
 266}
 267
 268static int tls_push_record(struct sock *sk,
 269                           struct tls_context *ctx,
 270                           struct tls_offload_context_tx *offload_ctx,
 271                           struct tls_record_info *record,
 272                           int flags)
 273{
 274        struct tls_prot_info *prot = &ctx->prot_info;
 275        struct tcp_sock *tp = tcp_sk(sk);
 276        skb_frag_t *frag;
 277        int i;
 278
 279        record->end_seq = tp->write_seq + record->len;
 280        list_add_tail_rcu(&record->list, &offload_ctx->records_list);
 281        offload_ctx->open_record = NULL;
 282
 283        if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
 284                tls_device_resync_tx(sk, ctx, tp->write_seq);
 285
 286        tls_advance_record_sn(sk, prot, &ctx->tx);
 287
 288        for (i = 0; i < record->num_frags; i++) {
 289                frag = &record->frags[i];
 290                sg_unmark_end(&offload_ctx->sg_tx_data[i]);
 291                sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
 292                            skb_frag_size(frag), skb_frag_off(frag));
 293                sk_mem_charge(sk, skb_frag_size(frag));
 294                get_page(skb_frag_page(frag));
 295        }
 296        sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
 297
 298        /* all ready, send */
 299        return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
 300}
 301
 302static int tls_device_record_close(struct sock *sk,
 303                                   struct tls_context *ctx,
 304                                   struct tls_record_info *record,
 305                                   struct page_frag *pfrag,
 306                                   unsigned char record_type)
 307{
 308        struct tls_prot_info *prot = &ctx->prot_info;
 309        int ret;
 310
 311        /* append tag
 312         * device will fill in the tag, we just need to append a placeholder
 313         * use socket memory to improve coalescing (re-using a single buffer
 314         * increases frag count)
 315         * if we can't allocate memory now, steal some back from data
 316         */
 317        if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
 318                                        sk->sk_allocation))) {
 319                ret = 0;
 320                tls_append_frag(record, pfrag, prot->tag_size);
 321        } else {
 322                ret = prot->tag_size;
 323                if (record->len <= prot->overhead_size)
 324                        return -ENOMEM;
 325        }
 326
 327        /* fill prepend */
 328        tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
 329                         record->len - prot->overhead_size,
 330                         record_type);
 331        return ret;
 332}
 333
 334static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
 335                                 struct page_frag *pfrag,
 336                                 size_t prepend_size)
 337{
 338        struct tls_record_info *record;
 339        skb_frag_t *frag;
 340
 341        record = kmalloc(sizeof(*record), GFP_KERNEL);
 342        if (!record)
 343                return -ENOMEM;
 344
 345        frag = &record->frags[0];
 346        __skb_frag_set_page(frag, pfrag->page);
 347        skb_frag_off_set(frag, pfrag->offset);
 348        skb_frag_size_set(frag, prepend_size);
 349
 350        get_page(pfrag->page);
 351        pfrag->offset += prepend_size;
 352
 353        record->num_frags = 1;
 354        record->len = prepend_size;
 355        offload_ctx->open_record = record;
 356        return 0;
 357}
 358
 359static int tls_do_allocation(struct sock *sk,
 360                             struct tls_offload_context_tx *offload_ctx,
 361                             struct page_frag *pfrag,
 362                             size_t prepend_size)
 363{
 364        int ret;
 365
 366        if (!offload_ctx->open_record) {
 367                if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
 368                                                   sk->sk_allocation))) {
 369                        READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
 370                        sk_stream_moderate_sndbuf(sk);
 371                        return -ENOMEM;
 372                }
 373
 374                ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
 375                if (ret)
 376                        return ret;
 377
 378                if (pfrag->size > pfrag->offset)
 379                        return 0;
 380        }
 381
 382        if (!sk_page_frag_refill(sk, pfrag))
 383                return -ENOMEM;
 384
 385        return 0;
 386}
 387
 388static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
 389{
 390        size_t pre_copy, nocache;
 391
 392        pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
 393        if (pre_copy) {
 394                pre_copy = min(pre_copy, bytes);
 395                if (copy_from_iter(addr, pre_copy, i) != pre_copy)
 396                        return -EFAULT;
 397                bytes -= pre_copy;
 398                addr += pre_copy;
 399        }
 400
 401        nocache = round_down(bytes, SMP_CACHE_BYTES);
 402        if (copy_from_iter_nocache(addr, nocache, i) != nocache)
 403                return -EFAULT;
 404        bytes -= nocache;
 405        addr += nocache;
 406
 407        if (bytes && copy_from_iter(addr, bytes, i) != bytes)
 408                return -EFAULT;
 409
 410        return 0;
 411}
 412
 413static int tls_push_data(struct sock *sk,
 414                         struct iov_iter *msg_iter,
 415                         size_t size, int flags,
 416                         unsigned char record_type)
 417{
 418        struct tls_context *tls_ctx = tls_get_ctx(sk);
 419        struct tls_prot_info *prot = &tls_ctx->prot_info;
 420        struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
 421        struct tls_record_info *record = ctx->open_record;
 422        int tls_push_record_flags;
 423        struct page_frag *pfrag;
 424        size_t orig_size = size;
 425        u32 max_open_record_len;
 426        bool more = false;
 427        bool done = false;
 428        int copy, rc = 0;
 429        long timeo;
 430
 431        if (flags &
 432            ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
 433                return -EOPNOTSUPP;
 434
 435        if (unlikely(sk->sk_err))
 436                return -sk->sk_err;
 437
 438        flags |= MSG_SENDPAGE_DECRYPTED;
 439        tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
 440
 441        timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 442        if (tls_is_partially_sent_record(tls_ctx)) {
 443                rc = tls_push_partial_record(sk, tls_ctx, flags);
 444                if (rc < 0)
 445                        return rc;
 446        }
 447
 448        pfrag = sk_page_frag(sk);
 449
 450        /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
 451         * we need to leave room for an authentication tag.
 452         */
 453        max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
 454                              prot->prepend_size;
 455        do {
 456                rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
 457                if (unlikely(rc)) {
 458                        rc = sk_stream_wait_memory(sk, &timeo);
 459                        if (!rc)
 460                                continue;
 461
 462                        record = ctx->open_record;
 463                        if (!record)
 464                                break;
 465handle_error:
 466                        if (record_type != TLS_RECORD_TYPE_DATA) {
 467                                /* avoid sending partial
 468                                 * record with type !=
 469                                 * application_data
 470                                 */
 471                                size = orig_size;
 472                                destroy_record(record);
 473                                ctx->open_record = NULL;
 474                        } else if (record->len > prot->prepend_size) {
 475                                goto last_record;
 476                        }
 477
 478                        break;
 479                }
 480
 481                record = ctx->open_record;
 482                copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
 483                copy = min_t(size_t, copy, (max_open_record_len - record->len));
 484
 485                rc = tls_device_copy_data(page_address(pfrag->page) +
 486                                          pfrag->offset, copy, msg_iter);
 487                if (rc)
 488                        goto handle_error;
 489                tls_append_frag(record, pfrag, copy);
 490
 491                size -= copy;
 492                if (!size) {
 493last_record:
 494                        tls_push_record_flags = flags;
 495                        if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) {
 496                                more = true;
 497                                break;
 498                        }
 499
 500                        done = true;
 501                }
 502
 503                if (done || record->len >= max_open_record_len ||
 504                    (record->num_frags >= MAX_SKB_FRAGS - 1)) {
 505                        rc = tls_device_record_close(sk, tls_ctx, record,
 506                                                     pfrag, record_type);
 507                        if (rc) {
 508                                if (rc > 0) {
 509                                        size += rc;
 510                                } else {
 511                                        size = orig_size;
 512                                        destroy_record(record);
 513                                        ctx->open_record = NULL;
 514                                        break;
 515                                }
 516                        }
 517
 518                        rc = tls_push_record(sk,
 519                                             tls_ctx,
 520                                             ctx,
 521                                             record,
 522                                             tls_push_record_flags);
 523                        if (rc < 0)
 524                                break;
 525                }
 526        } while (!done);
 527
 528        tls_ctx->pending_open_record_frags = more;
 529
 530        if (orig_size - size > 0)
 531                rc = orig_size - size;
 532
 533        return rc;
 534}
 535
 536int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
 537{
 538        unsigned char record_type = TLS_RECORD_TYPE_DATA;
 539        struct tls_context *tls_ctx = tls_get_ctx(sk);
 540        int rc;
 541
 542        mutex_lock(&tls_ctx->tx_lock);
 543        lock_sock(sk);
 544
 545        if (unlikely(msg->msg_controllen)) {
 546                rc = tls_proccess_cmsg(sk, msg, &record_type);
 547                if (rc)
 548                        goto out;
 549        }
 550
 551        rc = tls_push_data(sk, &msg->msg_iter, size,
 552                           msg->msg_flags, record_type);
 553
 554out:
 555        release_sock(sk);
 556        mutex_unlock(&tls_ctx->tx_lock);
 557        return rc;
 558}
 559
 560int tls_device_sendpage(struct sock *sk, struct page *page,
 561                        int offset, size_t size, int flags)
 562{
 563        struct tls_context *tls_ctx = tls_get_ctx(sk);
 564        struct iov_iter msg_iter;
 565        char *kaddr;
 566        struct kvec iov;
 567        int rc;
 568
 569        if (flags & MSG_SENDPAGE_NOTLAST)
 570                flags |= MSG_MORE;
 571
 572        mutex_lock(&tls_ctx->tx_lock);
 573        lock_sock(sk);
 574
 575        if (flags & MSG_OOB) {
 576                rc = -EOPNOTSUPP;
 577                goto out;
 578        }
 579
 580        kaddr = kmap(page);
 581        iov.iov_base = kaddr + offset;
 582        iov.iov_len = size;
 583        iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
 584        rc = tls_push_data(sk, &msg_iter, size,
 585                           flags, TLS_RECORD_TYPE_DATA);
 586        kunmap(page);
 587
 588out:
 589        release_sock(sk);
 590        mutex_unlock(&tls_ctx->tx_lock);
 591        return rc;
 592}
 593
 594struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
 595                                       u32 seq, u64 *p_record_sn)
 596{
 597        u64 record_sn = context->hint_record_sn;
 598        struct tls_record_info *info, *last;
 599
 600        info = context->retransmit_hint;
 601        if (!info ||
 602            before(seq, info->end_seq - info->len)) {
 603                /* if retransmit_hint is irrelevant start
 604                 * from the beggining of the list
 605                 */
 606                info = list_first_entry_or_null(&context->records_list,
 607                                                struct tls_record_info, list);
 608                if (!info)
 609                        return NULL;
 610                /* send the start_marker record if seq number is before the
 611                 * tls offload start marker sequence number. This record is
 612                 * required to handle TCP packets which are before TLS offload
 613                 * started.
 614                 *  And if it's not start marker, look if this seq number
 615                 * belongs to the list.
 616                 */
 617                if (likely(!tls_record_is_start_marker(info))) {
 618                        /* we have the first record, get the last record to see
 619                         * if this seq number belongs to the list.
 620                         */
 621                        last = list_last_entry(&context->records_list,
 622                                               struct tls_record_info, list);
 623
 624                        if (!between(seq, tls_record_start_seq(info),
 625                                     last->end_seq))
 626                                return NULL;
 627                }
 628                record_sn = context->unacked_record_sn;
 629        }
 630
 631        /* We just need the _rcu for the READ_ONCE() */
 632        rcu_read_lock();
 633        list_for_each_entry_from_rcu(info, &context->records_list, list) {
 634                if (before(seq, info->end_seq)) {
 635                        if (!context->retransmit_hint ||
 636                            after(info->end_seq,
 637                                  context->retransmit_hint->end_seq)) {
 638                                context->hint_record_sn = record_sn;
 639                                context->retransmit_hint = info;
 640                        }
 641                        *p_record_sn = record_sn;
 642                        goto exit_rcu_unlock;
 643                }
 644                record_sn++;
 645        }
 646        info = NULL;
 647
 648exit_rcu_unlock:
 649        rcu_read_unlock();
 650        return info;
 651}
 652EXPORT_SYMBOL(tls_get_record);
 653
 654static int tls_device_push_pending_record(struct sock *sk, int flags)
 655{
 656        struct iov_iter msg_iter;
 657
 658        iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
 659        return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
 660}
 661
 662void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
 663{
 664        if (tls_is_partially_sent_record(ctx)) {
 665                gfp_t sk_allocation = sk->sk_allocation;
 666
 667                WARN_ON_ONCE(sk->sk_write_pending);
 668
 669                sk->sk_allocation = GFP_ATOMIC;
 670                tls_push_partial_record(sk, ctx,
 671                                        MSG_DONTWAIT | MSG_NOSIGNAL |
 672                                        MSG_SENDPAGE_DECRYPTED);
 673                sk->sk_allocation = sk_allocation;
 674        }
 675}
 676
 677static void tls_device_resync_rx(struct tls_context *tls_ctx,
 678                                 struct sock *sk, u32 seq, u8 *rcd_sn)
 679{
 680        struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
 681        struct net_device *netdev;
 682
 683        if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
 684                return;
 685
 686        trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
 687        netdev = READ_ONCE(tls_ctx->netdev);
 688        if (netdev)
 689                netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
 690                                                   TLS_OFFLOAD_CTX_DIR_RX);
 691        clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
 692        TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
 693}
 694
 695static bool
 696tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
 697                           s64 resync_req, u32 *seq, u16 *rcd_delta)
 698{
 699        u32 is_async = resync_req & RESYNC_REQ_ASYNC;
 700        u32 req_seq = resync_req >> 32;
 701        u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
 702        u16 i;
 703
 704        *rcd_delta = 0;
 705
 706        if (is_async) {
 707                /* shouldn't get to wraparound:
 708                 * too long in async stage, something bad happened
 709                 */
 710                if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
 711                        return false;
 712
 713                /* asynchronous stage: log all headers seq such that
 714                 * req_seq <= seq <= end_seq, and wait for real resync request
 715                 */
 716                if (before(*seq, req_seq))
 717                        return false;
 718                if (!after(*seq, req_end) &&
 719                    resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
 720                        resync_async->log[resync_async->loglen++] = *seq;
 721
 722                resync_async->rcd_delta++;
 723
 724                return false;
 725        }
 726
 727        /* synchronous stage: check against the logged entries and
 728         * proceed to check the next entries if no match was found
 729         */
 730        for (i = 0; i < resync_async->loglen; i++)
 731                if (req_seq == resync_async->log[i] &&
 732                    atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
 733                        *rcd_delta = resync_async->rcd_delta - i;
 734                        *seq = req_seq;
 735                        resync_async->loglen = 0;
 736                        resync_async->rcd_delta = 0;
 737                        return true;
 738                }
 739
 740        resync_async->loglen = 0;
 741        resync_async->rcd_delta = 0;
 742
 743        if (req_seq == *seq &&
 744            atomic64_try_cmpxchg(&resync_async->req,
 745                                 &resync_req, 0))
 746                return true;
 747
 748        return false;
 749}
 750
 751void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
 752{
 753        struct tls_context *tls_ctx = tls_get_ctx(sk);
 754        struct tls_offload_context_rx *rx_ctx;
 755        u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
 756        u32 sock_data, is_req_pending;
 757        struct tls_prot_info *prot;
 758        s64 resync_req;
 759        u16 rcd_delta;
 760        u32 req_seq;
 761
 762        if (tls_ctx->rx_conf != TLS_HW)
 763                return;
 764
 765        prot = &tls_ctx->prot_info;
 766        rx_ctx = tls_offload_ctx_rx(tls_ctx);
 767        memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
 768
 769        switch (rx_ctx->resync_type) {
 770        case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
 771                resync_req = atomic64_read(&rx_ctx->resync_req);
 772                req_seq = resync_req >> 32;
 773                seq += TLS_HEADER_SIZE - 1;
 774                is_req_pending = resync_req;
 775
 776                if (likely(!is_req_pending) || req_seq != seq ||
 777                    !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
 778                        return;
 779                break;
 780        case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
 781                if (likely(!rx_ctx->resync_nh_do_now))
 782                        return;
 783
 784                /* head of next rec is already in, note that the sock_inq will
 785                 * include the currently parsed message when called from parser
 786                 */
 787                sock_data = tcp_inq(sk);
 788                if (sock_data > rcd_len) {
 789                        trace_tls_device_rx_resync_nh_delay(sk, sock_data,
 790                                                            rcd_len);
 791                        return;
 792                }
 793
 794                rx_ctx->resync_nh_do_now = 0;
 795                seq += rcd_len;
 796                tls_bigint_increment(rcd_sn, prot->rec_seq_size);
 797                break;
 798        case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
 799                resync_req = atomic64_read(&rx_ctx->resync_async->req);
 800                is_req_pending = resync_req;
 801                if (likely(!is_req_pending))
 802                        return;
 803
 804                if (!tls_device_rx_resync_async(rx_ctx->resync_async,
 805                                                resync_req, &seq, &rcd_delta))
 806                        return;
 807                tls_bigint_subtract(rcd_sn, rcd_delta);
 808                break;
 809        }
 810
 811        tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
 812}
 813
 814static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
 815                                           struct tls_offload_context_rx *ctx,
 816                                           struct sock *sk, struct sk_buff *skb)
 817{
 818        struct strp_msg *rxm;
 819
 820        /* device will request resyncs by itself based on stream scan */
 821        if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
 822                return;
 823        /* already scheduled */
 824        if (ctx->resync_nh_do_now)
 825                return;
 826        /* seen decrypted fragments since last fully-failed record */
 827        if (ctx->resync_nh_reset) {
 828                ctx->resync_nh_reset = 0;
 829                ctx->resync_nh.decrypted_failed = 1;
 830                ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
 831                return;
 832        }
 833
 834        if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
 835                return;
 836
 837        /* doing resync, bump the next target in case it fails */
 838        if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
 839                ctx->resync_nh.decrypted_tgt *= 2;
 840        else
 841                ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
 842
 843        rxm = strp_msg(skb);
 844
 845        /* head of next rec is already in, parser will sync for us */
 846        if (tcp_inq(sk) > rxm->full_len) {
 847                trace_tls_device_rx_resync_nh_schedule(sk);
 848                ctx->resync_nh_do_now = 1;
 849        } else {
 850                struct tls_prot_info *prot = &tls_ctx->prot_info;
 851                u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
 852
 853                memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
 854                tls_bigint_increment(rcd_sn, prot->rec_seq_size);
 855
 856                tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
 857                                     rcd_sn);
 858        }
 859}
 860
 861static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
 862{
 863        struct strp_msg *rxm = strp_msg(skb);
 864        int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
 865        struct sk_buff *skb_iter, *unused;
 866        struct scatterlist sg[1];
 867        char *orig_buf, *buf;
 868
 869        orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
 870                           TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
 871        if (!orig_buf)
 872                return -ENOMEM;
 873        buf = orig_buf;
 874
 875        nsg = skb_cow_data(skb, 0, &unused);
 876        if (unlikely(nsg < 0)) {
 877                err = nsg;
 878                goto free_buf;
 879        }
 880
 881        sg_init_table(sg, 1);
 882        sg_set_buf(&sg[0], buf,
 883                   rxm->full_len + TLS_HEADER_SIZE +
 884                   TLS_CIPHER_AES_GCM_128_IV_SIZE);
 885        err = skb_copy_bits(skb, offset, buf,
 886                            TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
 887        if (err)
 888                goto free_buf;
 889
 890        /* We are interested only in the decrypted data not the auth */
 891        err = decrypt_skb(sk, skb, sg);
 892        if (err != -EBADMSG)
 893                goto free_buf;
 894        else
 895                err = 0;
 896
 897        data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
 898
 899        if (skb_pagelen(skb) > offset) {
 900                copy = min_t(int, skb_pagelen(skb) - offset, data_len);
 901
 902                if (skb->decrypted) {
 903                        err = skb_store_bits(skb, offset, buf, copy);
 904                        if (err)
 905                                goto free_buf;
 906                }
 907
 908                offset += copy;
 909                buf += copy;
 910        }
 911
 912        pos = skb_pagelen(skb);
 913        skb_walk_frags(skb, skb_iter) {
 914                int frag_pos;
 915
 916                /* Practically all frags must belong to msg if reencrypt
 917                 * is needed with current strparser and coalescing logic,
 918                 * but strparser may "get optimized", so let's be safe.
 919                 */
 920                if (pos + skb_iter->len <= offset)
 921                        goto done_with_frag;
 922                if (pos >= data_len + rxm->offset)
 923                        break;
 924
 925                frag_pos = offset - pos;
 926                copy = min_t(int, skb_iter->len - frag_pos,
 927                             data_len + rxm->offset - offset);
 928
 929                if (skb_iter->decrypted) {
 930                        err = skb_store_bits(skb_iter, frag_pos, buf, copy);
 931                        if (err)
 932                                goto free_buf;
 933                }
 934
 935                offset += copy;
 936                buf += copy;
 937done_with_frag:
 938                pos += skb_iter->len;
 939        }
 940
 941free_buf:
 942        kfree(orig_buf);
 943        return err;
 944}
 945
 946int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
 947                         struct sk_buff *skb, struct strp_msg *rxm)
 948{
 949        struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
 950        int is_decrypted = skb->decrypted;
 951        int is_encrypted = !is_decrypted;
 952        struct sk_buff *skb_iter;
 953
 954        /* Check if all the data is decrypted already */
 955        skb_walk_frags(skb, skb_iter) {
 956                is_decrypted &= skb_iter->decrypted;
 957                is_encrypted &= !skb_iter->decrypted;
 958        }
 959
 960        trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
 961                                   tls_ctx->rx.rec_seq, rxm->full_len,
 962                                   is_encrypted, is_decrypted);
 963
 964        ctx->sw.decrypted |= is_decrypted;
 965
 966        /* Return immediately if the record is either entirely plaintext or
 967         * entirely ciphertext. Otherwise handle reencrypt partially decrypted
 968         * record.
 969         */
 970        if (is_decrypted) {
 971                ctx->resync_nh_reset = 1;
 972                return 0;
 973        }
 974        if (is_encrypted) {
 975                tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
 976                return 0;
 977        }
 978
 979        ctx->resync_nh_reset = 1;
 980        return tls_device_reencrypt(sk, skb);
 981}
 982
 983static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
 984                              struct net_device *netdev)
 985{
 986        if (sk->sk_destruct != tls_device_sk_destruct) {
 987                refcount_set(&ctx->refcount, 1);
 988                dev_hold(netdev);
 989                ctx->netdev = netdev;
 990                spin_lock_irq(&tls_device_lock);
 991                list_add_tail(&ctx->list, &tls_device_list);
 992                spin_unlock_irq(&tls_device_lock);
 993
 994                ctx->sk_destruct = sk->sk_destruct;
 995                smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
 996        }
 997}
 998
 999int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
1000{
1001        u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
1002        struct tls_context *tls_ctx = tls_get_ctx(sk);
1003        struct tls_prot_info *prot = &tls_ctx->prot_info;
1004        struct tls_record_info *start_marker_record;
1005        struct tls_offload_context_tx *offload_ctx;
1006        struct tls_crypto_info *crypto_info;
1007        struct net_device *netdev;
1008        char *iv, *rec_seq;
1009        struct sk_buff *skb;
1010        __be64 rcd_sn;
1011        int rc;
1012
1013        if (!ctx)
1014                return -EINVAL;
1015
1016        if (ctx->priv_ctx_tx)
1017                return -EEXIST;
1018
1019        start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1020        if (!start_marker_record)
1021                return -ENOMEM;
1022
1023        offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
1024        if (!offload_ctx) {
1025                rc = -ENOMEM;
1026                goto free_marker_record;
1027        }
1028
1029        crypto_info = &ctx->crypto_send.info;
1030        if (crypto_info->version != TLS_1_2_VERSION) {
1031                rc = -EOPNOTSUPP;
1032                goto free_offload_ctx;
1033        }
1034
1035        switch (crypto_info->cipher_type) {
1036        case TLS_CIPHER_AES_GCM_128:
1037                nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1038                tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1039                iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1040                iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1041                rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1042                salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
1043                rec_seq =
1044                 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1045                break;
1046        default:
1047                rc = -EINVAL;
1048                goto free_offload_ctx;
1049        }
1050
1051        /* Sanity-check the rec_seq_size for stack allocations */
1052        if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
1053                rc = -EINVAL;
1054                goto free_offload_ctx;
1055        }
1056
1057        prot->version = crypto_info->version;
1058        prot->cipher_type = crypto_info->cipher_type;
1059        prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
1060        prot->tag_size = tag_size;
1061        prot->overhead_size = prot->prepend_size + prot->tag_size;
1062        prot->iv_size = iv_size;
1063        prot->salt_size = salt_size;
1064        ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1065                             GFP_KERNEL);
1066        if (!ctx->tx.iv) {
1067                rc = -ENOMEM;
1068                goto free_offload_ctx;
1069        }
1070
1071        memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1072
1073        prot->rec_seq_size = rec_seq_size;
1074        ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
1075        if (!ctx->tx.rec_seq) {
1076                rc = -ENOMEM;
1077                goto free_iv;
1078        }
1079
1080        rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1081        if (rc)
1082                goto free_rec_seq;
1083
1084        /* start at rec_seq - 1 to account for the start marker record */
1085        memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1086        offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1087
1088        start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1089        start_marker_record->len = 0;
1090        start_marker_record->num_frags = 0;
1091
1092        INIT_LIST_HEAD(&offload_ctx->records_list);
1093        list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1094        spin_lock_init(&offload_ctx->lock);
1095        sg_init_table(offload_ctx->sg_tx_data,
1096                      ARRAY_SIZE(offload_ctx->sg_tx_data));
1097
1098        clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1099        ctx->push_pending_record = tls_device_push_pending_record;
1100
1101        /* TLS offload is greatly simplified if we don't send
1102         * SKBs where only part of the payload needs to be encrypted.
1103         * So mark the last skb in the write queue as end of record.
1104         */
1105        skb = tcp_write_queue_tail(sk);
1106        if (skb)
1107                TCP_SKB_CB(skb)->eor = 1;
1108
1109        netdev = get_netdev_for_sock(sk);
1110        if (!netdev) {
1111                pr_err_ratelimited("%s: netdev not found\n", __func__);
1112                rc = -EINVAL;
1113                goto disable_cad;
1114        }
1115
1116        if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1117                rc = -EOPNOTSUPP;
1118                goto release_netdev;
1119        }
1120
1121        /* Avoid offloading if the device is down
1122         * We don't want to offload new flows after
1123         * the NETDEV_DOWN event
1124         *
1125         * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1126         * handler thus protecting from the device going down before
1127         * ctx was added to tls_device_list.
1128         */
1129        down_read(&device_offload_lock);
1130        if (!(netdev->flags & IFF_UP)) {
1131                rc = -EINVAL;
1132                goto release_lock;
1133        }
1134
1135        ctx->priv_ctx_tx = offload_ctx;
1136        rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1137                                             &ctx->crypto_send.info,
1138                                             tcp_sk(sk)->write_seq);
1139        trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1140                                     tcp_sk(sk)->write_seq, rec_seq, rc);
1141        if (rc)
1142                goto release_lock;
1143
1144        tls_device_attach(ctx, sk, netdev);
1145        up_read(&device_offload_lock);
1146
1147        /* following this assignment tls_is_sk_tx_device_offloaded
1148         * will return true and the context might be accessed
1149         * by the netdev's xmit function.
1150         */
1151        smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1152        dev_put(netdev);
1153
1154        return 0;
1155
1156release_lock:
1157        up_read(&device_offload_lock);
1158release_netdev:
1159        dev_put(netdev);
1160disable_cad:
1161        clean_acked_data_disable(inet_csk(sk));
1162        crypto_free_aead(offload_ctx->aead_send);
1163free_rec_seq:
1164        kfree(ctx->tx.rec_seq);
1165free_iv:
1166        kfree(ctx->tx.iv);
1167free_offload_ctx:
1168        kfree(offload_ctx);
1169        ctx->priv_ctx_tx = NULL;
1170free_marker_record:
1171        kfree(start_marker_record);
1172        return rc;
1173}
1174
1175int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1176{
1177        struct tls12_crypto_info_aes_gcm_128 *info;
1178        struct tls_offload_context_rx *context;
1179        struct net_device *netdev;
1180        int rc = 0;
1181
1182        if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1183                return -EOPNOTSUPP;
1184
1185        netdev = get_netdev_for_sock(sk);
1186        if (!netdev) {
1187                pr_err_ratelimited("%s: netdev not found\n", __func__);
1188                return -EINVAL;
1189        }
1190
1191        if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1192                rc = -EOPNOTSUPP;
1193                goto release_netdev;
1194        }
1195
1196        /* Avoid offloading if the device is down
1197         * We don't want to offload new flows after
1198         * the NETDEV_DOWN event
1199         *
1200         * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1201         * handler thus protecting from the device going down before
1202         * ctx was added to tls_device_list.
1203         */
1204        down_read(&device_offload_lock);
1205        if (!(netdev->flags & IFF_UP)) {
1206                rc = -EINVAL;
1207                goto release_lock;
1208        }
1209
1210        context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1211        if (!context) {
1212                rc = -ENOMEM;
1213                goto release_lock;
1214        }
1215        context->resync_nh_reset = 1;
1216
1217        ctx->priv_ctx_rx = context;
1218        rc = tls_set_sw_offload(sk, ctx, 0);
1219        if (rc)
1220                goto release_ctx;
1221
1222        rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1223                                             &ctx->crypto_recv.info,
1224                                             tcp_sk(sk)->copied_seq);
1225        info = (void *)&ctx->crypto_recv.info;
1226        trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1227                                     tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1228        if (rc)
1229                goto free_sw_resources;
1230
1231        tls_device_attach(ctx, sk, netdev);
1232        up_read(&device_offload_lock);
1233
1234        dev_put(netdev);
1235
1236        return 0;
1237
1238free_sw_resources:
1239        up_read(&device_offload_lock);
1240        tls_sw_free_resources_rx(sk);
1241        down_read(&device_offload_lock);
1242release_ctx:
1243        ctx->priv_ctx_rx = NULL;
1244release_lock:
1245        up_read(&device_offload_lock);
1246release_netdev:
1247        dev_put(netdev);
1248        return rc;
1249}
1250
1251void tls_device_offload_cleanup_rx(struct sock *sk)
1252{
1253        struct tls_context *tls_ctx = tls_get_ctx(sk);
1254        struct net_device *netdev;
1255
1256        down_read(&device_offload_lock);
1257        netdev = tls_ctx->netdev;
1258        if (!netdev)
1259                goto out;
1260
1261        netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1262                                        TLS_OFFLOAD_CTX_DIR_RX);
1263
1264        if (tls_ctx->tx_conf != TLS_HW) {
1265                dev_put(netdev);
1266                tls_ctx->netdev = NULL;
1267        } else {
1268                set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1269        }
1270out:
1271        up_read(&device_offload_lock);
1272        tls_sw_release_resources_rx(sk);
1273}
1274
1275static int tls_device_down(struct net_device *netdev)
1276{
1277        struct tls_context *ctx, *tmp;
1278        unsigned long flags;
1279        LIST_HEAD(list);
1280
1281        /* Request a write lock to block new offload attempts */
1282        down_write(&device_offload_lock);
1283
1284        spin_lock_irqsave(&tls_device_lock, flags);
1285        list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1286                if (ctx->netdev != netdev ||
1287                    !refcount_inc_not_zero(&ctx->refcount))
1288                        continue;
1289
1290                list_move(&ctx->list, &list);
1291        }
1292        spin_unlock_irqrestore(&tls_device_lock, flags);
1293
1294        list_for_each_entry_safe(ctx, tmp, &list, list) {
1295                if (ctx->tx_conf == TLS_HW)
1296                        netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1297                                                        TLS_OFFLOAD_CTX_DIR_TX);
1298                if (ctx->rx_conf == TLS_HW &&
1299                    !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1300                        netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1301                                                        TLS_OFFLOAD_CTX_DIR_RX);
1302                WRITE_ONCE(ctx->netdev, NULL);
1303                smp_mb__before_atomic(); /* pairs with test_and_set_bit() */
1304                while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
1305                        usleep_range(10, 200);
1306                dev_put(netdev);
1307                list_del_init(&ctx->list);
1308
1309                if (refcount_dec_and_test(&ctx->refcount))
1310                        tls_device_free_ctx(ctx);
1311        }
1312
1313        up_write(&device_offload_lock);
1314
1315        flush_work(&tls_device_gc_work);
1316
1317        return NOTIFY_DONE;
1318}
1319
1320static int tls_dev_event(struct notifier_block *this, unsigned long event,
1321                         void *ptr)
1322{
1323        struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1324
1325        if (!dev->tlsdev_ops &&
1326            !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1327                return NOTIFY_DONE;
1328
1329        switch (event) {
1330        case NETDEV_REGISTER:
1331        case NETDEV_FEAT_CHANGE:
1332                if (netif_is_bond_master(dev))
1333                        return NOTIFY_DONE;
1334                if ((dev->features & NETIF_F_HW_TLS_RX) &&
1335                    !dev->tlsdev_ops->tls_dev_resync)
1336                        return NOTIFY_BAD;
1337
1338                if  (dev->tlsdev_ops &&
1339                     dev->tlsdev_ops->tls_dev_add &&
1340                     dev->tlsdev_ops->tls_dev_del)
1341                        return NOTIFY_DONE;
1342                else
1343                        return NOTIFY_BAD;
1344        case NETDEV_DOWN:
1345                return tls_device_down(dev);
1346        }
1347        return NOTIFY_DONE;
1348}
1349
1350static struct notifier_block tls_dev_notifier = {
1351        .notifier_call  = tls_dev_event,
1352};
1353
1354void __init tls_device_init(void)
1355{
1356        register_netdevice_notifier(&tls_dev_notifier);
1357}
1358
1359void __exit tls_device_cleanup(void)
1360{
1361        unregister_netdevice_notifier(&tls_dev_notifier);
1362        flush_work(&tls_device_gc_work);
1363        clean_acked_data_flush();
1364}
1365