linux/net/wireless/util.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Wireless utility functions
   4 *
   5 * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright 2017       Intel Deutschland GmbH
   8 * Copyright (C) 2018-2020 Intel Corporation
   9 */
  10#include <linux/export.h>
  11#include <linux/bitops.h>
  12#include <linux/etherdevice.h>
  13#include <linux/slab.h>
  14#include <linux/ieee80211.h>
  15#include <net/cfg80211.h>
  16#include <net/ip.h>
  17#include <net/dsfield.h>
  18#include <linux/if_vlan.h>
  19#include <linux/mpls.h>
  20#include <linux/gcd.h>
  21#include <linux/bitfield.h>
  22#include <linux/nospec.h>
  23#include "core.h"
  24#include "rdev-ops.h"
  25
  26
  27struct ieee80211_rate *
  28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  29                            u32 basic_rates, int bitrate)
  30{
  31        struct ieee80211_rate *result = &sband->bitrates[0];
  32        int i;
  33
  34        for (i = 0; i < sband->n_bitrates; i++) {
  35                if (!(basic_rates & BIT(i)))
  36                        continue;
  37                if (sband->bitrates[i].bitrate > bitrate)
  38                        continue;
  39                result = &sband->bitrates[i];
  40        }
  41
  42        return result;
  43}
  44EXPORT_SYMBOL(ieee80211_get_response_rate);
  45
  46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
  47                              enum nl80211_bss_scan_width scan_width)
  48{
  49        struct ieee80211_rate *bitrates;
  50        u32 mandatory_rates = 0;
  51        enum ieee80211_rate_flags mandatory_flag;
  52        int i;
  53
  54        if (WARN_ON(!sband))
  55                return 1;
  56
  57        if (sband->band == NL80211_BAND_2GHZ) {
  58                if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
  59                    scan_width == NL80211_BSS_CHAN_WIDTH_10)
  60                        mandatory_flag = IEEE80211_RATE_MANDATORY_G;
  61                else
  62                        mandatory_flag = IEEE80211_RATE_MANDATORY_B;
  63        } else {
  64                mandatory_flag = IEEE80211_RATE_MANDATORY_A;
  65        }
  66
  67        bitrates = sband->bitrates;
  68        for (i = 0; i < sband->n_bitrates; i++)
  69                if (bitrates[i].flags & mandatory_flag)
  70                        mandatory_rates |= BIT(i);
  71        return mandatory_rates;
  72}
  73EXPORT_SYMBOL(ieee80211_mandatory_rates);
  74
  75u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
  76{
  77        /* see 802.11 17.3.8.3.2 and Annex J
  78         * there are overlapping channel numbers in 5GHz and 2GHz bands */
  79        if (chan <= 0)
  80                return 0; /* not supported */
  81        switch (band) {
  82        case NL80211_BAND_2GHZ:
  83                if (chan == 14)
  84                        return MHZ_TO_KHZ(2484);
  85                else if (chan < 14)
  86                        return MHZ_TO_KHZ(2407 + chan * 5);
  87                break;
  88        case NL80211_BAND_5GHZ:
  89                if (chan >= 182 && chan <= 196)
  90                        return MHZ_TO_KHZ(4000 + chan * 5);
  91                else
  92                        return MHZ_TO_KHZ(5000 + chan * 5);
  93                break;
  94        case NL80211_BAND_6GHZ:
  95                /* see 802.11ax D6.1 27.3.23.2 */
  96                if (chan == 2)
  97                        return MHZ_TO_KHZ(5935);
  98                if (chan <= 233)
  99                        return MHZ_TO_KHZ(5950 + chan * 5);
 100                break;
 101        case NL80211_BAND_60GHZ:
 102                if (chan < 7)
 103                        return MHZ_TO_KHZ(56160 + chan * 2160);
 104                break;
 105        case NL80211_BAND_S1GHZ:
 106                return 902000 + chan * 500;
 107        default:
 108                ;
 109        }
 110        return 0; /* not supported */
 111}
 112EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
 113
 114enum nl80211_chan_width
 115ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
 116{
 117        if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
 118                return NL80211_CHAN_WIDTH_20_NOHT;
 119
 120        /*S1G defines a single allowed channel width per channel.
 121         * Extract that width here.
 122         */
 123        if (chan->flags & IEEE80211_CHAN_1MHZ)
 124                return NL80211_CHAN_WIDTH_1;
 125        else if (chan->flags & IEEE80211_CHAN_2MHZ)
 126                return NL80211_CHAN_WIDTH_2;
 127        else if (chan->flags & IEEE80211_CHAN_4MHZ)
 128                return NL80211_CHAN_WIDTH_4;
 129        else if (chan->flags & IEEE80211_CHAN_8MHZ)
 130                return NL80211_CHAN_WIDTH_8;
 131        else if (chan->flags & IEEE80211_CHAN_16MHZ)
 132                return NL80211_CHAN_WIDTH_16;
 133
 134        pr_err("unknown channel width for channel at %dKHz?\n",
 135               ieee80211_channel_to_khz(chan));
 136
 137        return NL80211_CHAN_WIDTH_1;
 138}
 139EXPORT_SYMBOL(ieee80211_s1g_channel_width);
 140
 141int ieee80211_freq_khz_to_channel(u32 freq)
 142{
 143        /* TODO: just handle MHz for now */
 144        freq = KHZ_TO_MHZ(freq);
 145
 146        /* see 802.11 17.3.8.3.2 and Annex J */
 147        if (freq == 2484)
 148                return 14;
 149        else if (freq < 2484)
 150                return (freq - 2407) / 5;
 151        else if (freq >= 4910 && freq <= 4980)
 152                return (freq - 4000) / 5;
 153        else if (freq < 5925)
 154                return (freq - 5000) / 5;
 155        else if (freq == 5935)
 156                return 2;
 157        else if (freq <= 45000) /* DMG band lower limit */
 158                /* see 802.11ax D6.1 27.3.22.2 */
 159                return (freq - 5950) / 5;
 160        else if (freq >= 58320 && freq <= 70200)
 161                return (freq - 56160) / 2160;
 162        else
 163                return 0;
 164}
 165EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
 166
 167struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
 168                                                    u32 freq)
 169{
 170        enum nl80211_band band;
 171        struct ieee80211_supported_band *sband;
 172        int i;
 173
 174        for (band = 0; band < NUM_NL80211_BANDS; band++) {
 175                sband = wiphy->bands[band];
 176
 177                if (!sband)
 178                        continue;
 179
 180                for (i = 0; i < sband->n_channels; i++) {
 181                        struct ieee80211_channel *chan = &sband->channels[i];
 182
 183                        if (ieee80211_channel_to_khz(chan) == freq)
 184                                return chan;
 185                }
 186        }
 187
 188        return NULL;
 189}
 190EXPORT_SYMBOL(ieee80211_get_channel_khz);
 191
 192static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
 193{
 194        int i, want;
 195
 196        switch (sband->band) {
 197        case NL80211_BAND_5GHZ:
 198        case NL80211_BAND_6GHZ:
 199                want = 3;
 200                for (i = 0; i < sband->n_bitrates; i++) {
 201                        if (sband->bitrates[i].bitrate == 60 ||
 202                            sband->bitrates[i].bitrate == 120 ||
 203                            sband->bitrates[i].bitrate == 240) {
 204                                sband->bitrates[i].flags |=
 205                                        IEEE80211_RATE_MANDATORY_A;
 206                                want--;
 207                        }
 208                }
 209                WARN_ON(want);
 210                break;
 211        case NL80211_BAND_2GHZ:
 212                want = 7;
 213                for (i = 0; i < sband->n_bitrates; i++) {
 214                        switch (sband->bitrates[i].bitrate) {
 215                        case 10:
 216                        case 20:
 217                        case 55:
 218                        case 110:
 219                                sband->bitrates[i].flags |=
 220                                        IEEE80211_RATE_MANDATORY_B |
 221                                        IEEE80211_RATE_MANDATORY_G;
 222                                want--;
 223                                break;
 224                        case 60:
 225                        case 120:
 226                        case 240:
 227                                sband->bitrates[i].flags |=
 228                                        IEEE80211_RATE_MANDATORY_G;
 229                                want--;
 230                                fallthrough;
 231                        default:
 232                                sband->bitrates[i].flags |=
 233                                        IEEE80211_RATE_ERP_G;
 234                                break;
 235                        }
 236                }
 237                WARN_ON(want != 0 && want != 3);
 238                break;
 239        case NL80211_BAND_60GHZ:
 240                /* check for mandatory HT MCS 1..4 */
 241                WARN_ON(!sband->ht_cap.ht_supported);
 242                WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
 243                break;
 244        case NL80211_BAND_S1GHZ:
 245                /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
 246                 * mandatory is ok.
 247                 */
 248                WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
 249                break;
 250        case NUM_NL80211_BANDS:
 251        default:
 252                WARN_ON(1);
 253                break;
 254        }
 255}
 256
 257void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
 258{
 259        enum nl80211_band band;
 260
 261        for (band = 0; band < NUM_NL80211_BANDS; band++)
 262                if (wiphy->bands[band])
 263                        set_mandatory_flags_band(wiphy->bands[band]);
 264}
 265
 266bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
 267{
 268        int i;
 269        for (i = 0; i < wiphy->n_cipher_suites; i++)
 270                if (cipher == wiphy->cipher_suites[i])
 271                        return true;
 272        return false;
 273}
 274
 275static bool
 276cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
 277{
 278        struct wiphy *wiphy = &rdev->wiphy;
 279        int i;
 280
 281        for (i = 0; i < wiphy->n_cipher_suites; i++) {
 282                switch (wiphy->cipher_suites[i]) {
 283                case WLAN_CIPHER_SUITE_AES_CMAC:
 284                case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 285                case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 286                case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 287                        return true;
 288                }
 289        }
 290
 291        return false;
 292}
 293
 294bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
 295                            int key_idx, bool pairwise)
 296{
 297        int max_key_idx;
 298
 299        if (pairwise)
 300                max_key_idx = 3;
 301        else if (wiphy_ext_feature_isset(&rdev->wiphy,
 302                                         NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
 303                 wiphy_ext_feature_isset(&rdev->wiphy,
 304                                         NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
 305                max_key_idx = 7;
 306        else if (cfg80211_igtk_cipher_supported(rdev))
 307                max_key_idx = 5;
 308        else
 309                max_key_idx = 3;
 310
 311        if (key_idx < 0 || key_idx > max_key_idx)
 312                return false;
 313
 314        return true;
 315}
 316
 317int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
 318                                   struct key_params *params, int key_idx,
 319                                   bool pairwise, const u8 *mac_addr)
 320{
 321        if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
 322                return -EINVAL;
 323
 324        if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
 325                return -EINVAL;
 326
 327        if (pairwise && !mac_addr)
 328                return -EINVAL;
 329
 330        switch (params->cipher) {
 331        case WLAN_CIPHER_SUITE_TKIP:
 332                /* Extended Key ID can only be used with CCMP/GCMP ciphers */
 333                if ((pairwise && key_idx) ||
 334                    params->mode != NL80211_KEY_RX_TX)
 335                        return -EINVAL;
 336                break;
 337        case WLAN_CIPHER_SUITE_CCMP:
 338        case WLAN_CIPHER_SUITE_CCMP_256:
 339        case WLAN_CIPHER_SUITE_GCMP:
 340        case WLAN_CIPHER_SUITE_GCMP_256:
 341                /* IEEE802.11-2016 allows only 0 and - when supporting
 342                 * Extended Key ID - 1 as index for pairwise keys.
 343                 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
 344                 * the driver supports Extended Key ID.
 345                 * @NL80211_KEY_SET_TX can't be set when installing and
 346                 * validating a key.
 347                 */
 348                if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
 349                    params->mode == NL80211_KEY_SET_TX)
 350                        return -EINVAL;
 351                if (wiphy_ext_feature_isset(&rdev->wiphy,
 352                                            NL80211_EXT_FEATURE_EXT_KEY_ID)) {
 353                        if (pairwise && (key_idx < 0 || key_idx > 1))
 354                                return -EINVAL;
 355                } else if (pairwise && key_idx) {
 356                        return -EINVAL;
 357                }
 358                break;
 359        case WLAN_CIPHER_SUITE_AES_CMAC:
 360        case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 361        case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 362        case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 363                /* Disallow BIP (group-only) cipher as pairwise cipher */
 364                if (pairwise)
 365                        return -EINVAL;
 366                if (key_idx < 4)
 367                        return -EINVAL;
 368                break;
 369        case WLAN_CIPHER_SUITE_WEP40:
 370        case WLAN_CIPHER_SUITE_WEP104:
 371                if (key_idx > 3)
 372                        return -EINVAL;
 373                break;
 374        default:
 375                break;
 376        }
 377
 378        switch (params->cipher) {
 379        case WLAN_CIPHER_SUITE_WEP40:
 380                if (params->key_len != WLAN_KEY_LEN_WEP40)
 381                        return -EINVAL;
 382                break;
 383        case WLAN_CIPHER_SUITE_TKIP:
 384                if (params->key_len != WLAN_KEY_LEN_TKIP)
 385                        return -EINVAL;
 386                break;
 387        case WLAN_CIPHER_SUITE_CCMP:
 388                if (params->key_len != WLAN_KEY_LEN_CCMP)
 389                        return -EINVAL;
 390                break;
 391        case WLAN_CIPHER_SUITE_CCMP_256:
 392                if (params->key_len != WLAN_KEY_LEN_CCMP_256)
 393                        return -EINVAL;
 394                break;
 395        case WLAN_CIPHER_SUITE_GCMP:
 396                if (params->key_len != WLAN_KEY_LEN_GCMP)
 397                        return -EINVAL;
 398                break;
 399        case WLAN_CIPHER_SUITE_GCMP_256:
 400                if (params->key_len != WLAN_KEY_LEN_GCMP_256)
 401                        return -EINVAL;
 402                break;
 403        case WLAN_CIPHER_SUITE_WEP104:
 404                if (params->key_len != WLAN_KEY_LEN_WEP104)
 405                        return -EINVAL;
 406                break;
 407        case WLAN_CIPHER_SUITE_AES_CMAC:
 408                if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
 409                        return -EINVAL;
 410                break;
 411        case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 412                if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
 413                        return -EINVAL;
 414                break;
 415        case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 416                if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
 417                        return -EINVAL;
 418                break;
 419        case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 420                if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
 421                        return -EINVAL;
 422                break;
 423        default:
 424                /*
 425                 * We don't know anything about this algorithm,
 426                 * allow using it -- but the driver must check
 427                 * all parameters! We still check below whether
 428                 * or not the driver supports this algorithm,
 429                 * of course.
 430                 */
 431                break;
 432        }
 433
 434        if (params->seq) {
 435                switch (params->cipher) {
 436                case WLAN_CIPHER_SUITE_WEP40:
 437                case WLAN_CIPHER_SUITE_WEP104:
 438                        /* These ciphers do not use key sequence */
 439                        return -EINVAL;
 440                case WLAN_CIPHER_SUITE_TKIP:
 441                case WLAN_CIPHER_SUITE_CCMP:
 442                case WLAN_CIPHER_SUITE_CCMP_256:
 443                case WLAN_CIPHER_SUITE_GCMP:
 444                case WLAN_CIPHER_SUITE_GCMP_256:
 445                case WLAN_CIPHER_SUITE_AES_CMAC:
 446                case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 447                case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 448                case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 449                        if (params->seq_len != 6)
 450                                return -EINVAL;
 451                        break;
 452                }
 453        }
 454
 455        if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
 456                return -EINVAL;
 457
 458        return 0;
 459}
 460
 461unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
 462{
 463        unsigned int hdrlen = 24;
 464
 465        if (ieee80211_is_ext(fc)) {
 466                hdrlen = 4;
 467                goto out;
 468        }
 469
 470        if (ieee80211_is_data(fc)) {
 471                if (ieee80211_has_a4(fc))
 472                        hdrlen = 30;
 473                if (ieee80211_is_data_qos(fc)) {
 474                        hdrlen += IEEE80211_QOS_CTL_LEN;
 475                        if (ieee80211_has_order(fc))
 476                                hdrlen += IEEE80211_HT_CTL_LEN;
 477                }
 478                goto out;
 479        }
 480
 481        if (ieee80211_is_mgmt(fc)) {
 482                if (ieee80211_has_order(fc))
 483                        hdrlen += IEEE80211_HT_CTL_LEN;
 484                goto out;
 485        }
 486
 487        if (ieee80211_is_ctl(fc)) {
 488                /*
 489                 * ACK and CTS are 10 bytes, all others 16. To see how
 490                 * to get this condition consider
 491                 *   subtype mask:   0b0000000011110000 (0x00F0)
 492                 *   ACK subtype:    0b0000000011010000 (0x00D0)
 493                 *   CTS subtype:    0b0000000011000000 (0x00C0)
 494                 *   bits that matter:         ^^^      (0x00E0)
 495                 *   value of those: 0b0000000011000000 (0x00C0)
 496                 */
 497                if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
 498                        hdrlen = 10;
 499                else
 500                        hdrlen = 16;
 501        }
 502out:
 503        return hdrlen;
 504}
 505EXPORT_SYMBOL(ieee80211_hdrlen);
 506
 507unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
 508{
 509        const struct ieee80211_hdr *hdr =
 510                        (const struct ieee80211_hdr *)skb->data;
 511        unsigned int hdrlen;
 512
 513        if (unlikely(skb->len < 10))
 514                return 0;
 515        hdrlen = ieee80211_hdrlen(hdr->frame_control);
 516        if (unlikely(hdrlen > skb->len))
 517                return 0;
 518        return hdrlen;
 519}
 520EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
 521
 522static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
 523{
 524        int ae = flags & MESH_FLAGS_AE;
 525        /* 802.11-2012, 8.2.4.7.3 */
 526        switch (ae) {
 527        default:
 528        case 0:
 529                return 6;
 530        case MESH_FLAGS_AE_A4:
 531                return 12;
 532        case MESH_FLAGS_AE_A5_A6:
 533                return 18;
 534        }
 535}
 536
 537unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
 538{
 539        return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
 540}
 541EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
 542
 543int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
 544                                  const u8 *addr, enum nl80211_iftype iftype,
 545                                  u8 data_offset)
 546{
 547        struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 548        struct {
 549                u8 hdr[ETH_ALEN] __aligned(2);
 550                __be16 proto;
 551        } payload;
 552        struct ethhdr tmp;
 553        u16 hdrlen;
 554        u8 mesh_flags = 0;
 555
 556        if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 557                return -1;
 558
 559        hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
 560        if (skb->len < hdrlen + 8)
 561                return -1;
 562
 563        /* convert IEEE 802.11 header + possible LLC headers into Ethernet
 564         * header
 565         * IEEE 802.11 address fields:
 566         * ToDS FromDS Addr1 Addr2 Addr3 Addr4
 567         *   0     0   DA    SA    BSSID n/a
 568         *   0     1   DA    BSSID SA    n/a
 569         *   1     0   BSSID SA    DA    n/a
 570         *   1     1   RA    TA    DA    SA
 571         */
 572        memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
 573        memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
 574
 575        if (iftype == NL80211_IFTYPE_MESH_POINT)
 576                skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
 577
 578        mesh_flags &= MESH_FLAGS_AE;
 579
 580        switch (hdr->frame_control &
 581                cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
 582        case cpu_to_le16(IEEE80211_FCTL_TODS):
 583                if (unlikely(iftype != NL80211_IFTYPE_AP &&
 584                             iftype != NL80211_IFTYPE_AP_VLAN &&
 585                             iftype != NL80211_IFTYPE_P2P_GO))
 586                        return -1;
 587                break;
 588        case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
 589                if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
 590                             iftype != NL80211_IFTYPE_AP_VLAN &&
 591                             iftype != NL80211_IFTYPE_STATION))
 592                        return -1;
 593                if (iftype == NL80211_IFTYPE_MESH_POINT) {
 594                        if (mesh_flags == MESH_FLAGS_AE_A4)
 595                                return -1;
 596                        if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
 597                                skb_copy_bits(skb, hdrlen +
 598                                        offsetof(struct ieee80211s_hdr, eaddr1),
 599                                        tmp.h_dest, 2 * ETH_ALEN);
 600                        }
 601                        hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 602                }
 603                break;
 604        case cpu_to_le16(IEEE80211_FCTL_FROMDS):
 605                if ((iftype != NL80211_IFTYPE_STATION &&
 606                     iftype != NL80211_IFTYPE_P2P_CLIENT &&
 607                     iftype != NL80211_IFTYPE_MESH_POINT) ||
 608                    (is_multicast_ether_addr(tmp.h_dest) &&
 609                     ether_addr_equal(tmp.h_source, addr)))
 610                        return -1;
 611                if (iftype == NL80211_IFTYPE_MESH_POINT) {
 612                        if (mesh_flags == MESH_FLAGS_AE_A5_A6)
 613                                return -1;
 614                        if (mesh_flags == MESH_FLAGS_AE_A4)
 615                                skb_copy_bits(skb, hdrlen +
 616                                        offsetof(struct ieee80211s_hdr, eaddr1),
 617                                        tmp.h_source, ETH_ALEN);
 618                        hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 619                }
 620                break;
 621        case cpu_to_le16(0):
 622                if (iftype != NL80211_IFTYPE_ADHOC &&
 623                    iftype != NL80211_IFTYPE_STATION &&
 624                    iftype != NL80211_IFTYPE_OCB)
 625                                return -1;
 626                break;
 627        }
 628
 629        skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
 630        tmp.h_proto = payload.proto;
 631
 632        if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
 633                    tmp.h_proto != htons(ETH_P_AARP) &&
 634                    tmp.h_proto != htons(ETH_P_IPX)) ||
 635                   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
 636                /* remove RFC1042 or Bridge-Tunnel encapsulation and
 637                 * replace EtherType */
 638                hdrlen += ETH_ALEN + 2;
 639        else
 640                tmp.h_proto = htons(skb->len - hdrlen);
 641
 642        pskb_pull(skb, hdrlen);
 643
 644        if (!ehdr)
 645                ehdr = skb_push(skb, sizeof(struct ethhdr));
 646        memcpy(ehdr, &tmp, sizeof(tmp));
 647
 648        return 0;
 649}
 650EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
 651
 652static void
 653__frame_add_frag(struct sk_buff *skb, struct page *page,
 654                 void *ptr, int len, int size)
 655{
 656        struct skb_shared_info *sh = skb_shinfo(skb);
 657        int page_offset;
 658
 659        get_page(page);
 660        page_offset = ptr - page_address(page);
 661        skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
 662}
 663
 664static void
 665__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
 666                            int offset, int len)
 667{
 668        struct skb_shared_info *sh = skb_shinfo(skb);
 669        const skb_frag_t *frag = &sh->frags[0];
 670        struct page *frag_page;
 671        void *frag_ptr;
 672        int frag_len, frag_size;
 673        int head_size = skb->len - skb->data_len;
 674        int cur_len;
 675
 676        frag_page = virt_to_head_page(skb->head);
 677        frag_ptr = skb->data;
 678        frag_size = head_size;
 679
 680        while (offset >= frag_size) {
 681                offset -= frag_size;
 682                frag_page = skb_frag_page(frag);
 683                frag_ptr = skb_frag_address(frag);
 684                frag_size = skb_frag_size(frag);
 685                frag++;
 686        }
 687
 688        frag_ptr += offset;
 689        frag_len = frag_size - offset;
 690
 691        cur_len = min(len, frag_len);
 692
 693        __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
 694        len -= cur_len;
 695
 696        while (len > 0) {
 697                frag_len = skb_frag_size(frag);
 698                cur_len = min(len, frag_len);
 699                __frame_add_frag(frame, skb_frag_page(frag),
 700                                 skb_frag_address(frag), cur_len, frag_len);
 701                len -= cur_len;
 702                frag++;
 703        }
 704}
 705
 706static struct sk_buff *
 707__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
 708                       int offset, int len, bool reuse_frag)
 709{
 710        struct sk_buff *frame;
 711        int cur_len = len;
 712
 713        if (skb->len - offset < len)
 714                return NULL;
 715
 716        /*
 717         * When reusing framents, copy some data to the head to simplify
 718         * ethernet header handling and speed up protocol header processing
 719         * in the stack later.
 720         */
 721        if (reuse_frag)
 722                cur_len = min_t(int, len, 32);
 723
 724        /*
 725         * Allocate and reserve two bytes more for payload
 726         * alignment since sizeof(struct ethhdr) is 14.
 727         */
 728        frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
 729        if (!frame)
 730                return NULL;
 731
 732        skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
 733        skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
 734
 735        len -= cur_len;
 736        if (!len)
 737                return frame;
 738
 739        offset += cur_len;
 740        __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
 741
 742        return frame;
 743}
 744
 745void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
 746                              const u8 *addr, enum nl80211_iftype iftype,
 747                              const unsigned int extra_headroom,
 748                              const u8 *check_da, const u8 *check_sa)
 749{
 750        unsigned int hlen = ALIGN(extra_headroom, 4);
 751        struct sk_buff *frame = NULL;
 752        u16 ethertype;
 753        u8 *payload;
 754        int offset = 0, remaining;
 755        struct ethhdr eth;
 756        bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
 757        bool reuse_skb = false;
 758        bool last = false;
 759
 760        while (!last) {
 761                unsigned int subframe_len;
 762                int len;
 763                u8 padding;
 764
 765                skb_copy_bits(skb, offset, &eth, sizeof(eth));
 766                len = ntohs(eth.h_proto);
 767                subframe_len = sizeof(struct ethhdr) + len;
 768                padding = (4 - subframe_len) & 0x3;
 769
 770                /* the last MSDU has no padding */
 771                remaining = skb->len - offset;
 772                if (subframe_len > remaining)
 773                        goto purge;
 774
 775                offset += sizeof(struct ethhdr);
 776                last = remaining <= subframe_len + padding;
 777
 778                /* FIXME: should we really accept multicast DA? */
 779                if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
 780                     !ether_addr_equal(check_da, eth.h_dest)) ||
 781                    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
 782                        offset += len + padding;
 783                        continue;
 784                }
 785
 786                /* reuse skb for the last subframe */
 787                if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
 788                        skb_pull(skb, offset);
 789                        frame = skb;
 790                        reuse_skb = true;
 791                } else {
 792                        frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
 793                                                       reuse_frag);
 794                        if (!frame)
 795                                goto purge;
 796
 797                        offset += len + padding;
 798                }
 799
 800                skb_reset_network_header(frame);
 801                frame->dev = skb->dev;
 802                frame->priority = skb->priority;
 803
 804                payload = frame->data;
 805                ethertype = (payload[6] << 8) | payload[7];
 806                if (likely((ether_addr_equal(payload, rfc1042_header) &&
 807                            ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
 808                           ether_addr_equal(payload, bridge_tunnel_header))) {
 809                        eth.h_proto = htons(ethertype);
 810                        skb_pull(frame, ETH_ALEN + 2);
 811                }
 812
 813                memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
 814                __skb_queue_tail(list, frame);
 815        }
 816
 817        if (!reuse_skb)
 818                dev_kfree_skb(skb);
 819
 820        return;
 821
 822 purge:
 823        __skb_queue_purge(list);
 824        dev_kfree_skb(skb);
 825}
 826EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
 827
 828/* Given a data frame determine the 802.1p/1d tag to use. */
 829unsigned int cfg80211_classify8021d(struct sk_buff *skb,
 830                                    struct cfg80211_qos_map *qos_map)
 831{
 832        unsigned int dscp;
 833        unsigned char vlan_priority;
 834        unsigned int ret;
 835
 836        /* skb->priority values from 256->263 are magic values to
 837         * directly indicate a specific 802.1d priority.  This is used
 838         * to allow 802.1d priority to be passed directly in from VLAN
 839         * tags, etc.
 840         */
 841        if (skb->priority >= 256 && skb->priority <= 263) {
 842                ret = skb->priority - 256;
 843                goto out;
 844        }
 845
 846        if (skb_vlan_tag_present(skb)) {
 847                vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
 848                        >> VLAN_PRIO_SHIFT;
 849                if (vlan_priority > 0) {
 850                        ret = vlan_priority;
 851                        goto out;
 852                }
 853        }
 854
 855        switch (skb->protocol) {
 856        case htons(ETH_P_IP):
 857                dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
 858                break;
 859        case htons(ETH_P_IPV6):
 860                dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
 861                break;
 862        case htons(ETH_P_MPLS_UC):
 863        case htons(ETH_P_MPLS_MC): {
 864                struct mpls_label mpls_tmp, *mpls;
 865
 866                mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
 867                                          sizeof(*mpls), &mpls_tmp);
 868                if (!mpls)
 869                        return 0;
 870
 871                ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
 872                        >> MPLS_LS_TC_SHIFT;
 873                goto out;
 874        }
 875        case htons(ETH_P_80221):
 876                /* 802.21 is always network control traffic */
 877                return 7;
 878        default:
 879                return 0;
 880        }
 881
 882        if (qos_map) {
 883                unsigned int i, tmp_dscp = dscp >> 2;
 884
 885                for (i = 0; i < qos_map->num_des; i++) {
 886                        if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
 887                                ret = qos_map->dscp_exception[i].up;
 888                                goto out;
 889                        }
 890                }
 891
 892                for (i = 0; i < 8; i++) {
 893                        if (tmp_dscp >= qos_map->up[i].low &&
 894                            tmp_dscp <= qos_map->up[i].high) {
 895                                ret = i;
 896                                goto out;
 897                        }
 898                }
 899        }
 900
 901        ret = dscp >> 5;
 902out:
 903        return array_index_nospec(ret, IEEE80211_NUM_TIDS);
 904}
 905EXPORT_SYMBOL(cfg80211_classify8021d);
 906
 907const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
 908{
 909        const struct cfg80211_bss_ies *ies;
 910
 911        ies = rcu_dereference(bss->ies);
 912        if (!ies)
 913                return NULL;
 914
 915        return cfg80211_find_elem(id, ies->data, ies->len);
 916}
 917EXPORT_SYMBOL(ieee80211_bss_get_elem);
 918
 919void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
 920{
 921        struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
 922        struct net_device *dev = wdev->netdev;
 923        int i;
 924
 925        if (!wdev->connect_keys)
 926                return;
 927
 928        for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
 929                if (!wdev->connect_keys->params[i].cipher)
 930                        continue;
 931                if (rdev_add_key(rdev, dev, i, false, NULL,
 932                                 &wdev->connect_keys->params[i])) {
 933                        netdev_err(dev, "failed to set key %d\n", i);
 934                        continue;
 935                }
 936                if (wdev->connect_keys->def == i &&
 937                    rdev_set_default_key(rdev, dev, i, true, true)) {
 938                        netdev_err(dev, "failed to set defkey %d\n", i);
 939                        continue;
 940                }
 941        }
 942
 943        kfree_sensitive(wdev->connect_keys);
 944        wdev->connect_keys = NULL;
 945}
 946
 947void cfg80211_process_wdev_events(struct wireless_dev *wdev)
 948{
 949        struct cfg80211_event *ev;
 950        unsigned long flags;
 951
 952        spin_lock_irqsave(&wdev->event_lock, flags);
 953        while (!list_empty(&wdev->event_list)) {
 954                ev = list_first_entry(&wdev->event_list,
 955                                      struct cfg80211_event, list);
 956                list_del(&ev->list);
 957                spin_unlock_irqrestore(&wdev->event_lock, flags);
 958
 959                wdev_lock(wdev);
 960                switch (ev->type) {
 961                case EVENT_CONNECT_RESULT:
 962                        __cfg80211_connect_result(
 963                                wdev->netdev,
 964                                &ev->cr,
 965                                ev->cr.status == WLAN_STATUS_SUCCESS);
 966                        break;
 967                case EVENT_ROAMED:
 968                        __cfg80211_roamed(wdev, &ev->rm);
 969                        break;
 970                case EVENT_DISCONNECTED:
 971                        __cfg80211_disconnected(wdev->netdev,
 972                                                ev->dc.ie, ev->dc.ie_len,
 973                                                ev->dc.reason,
 974                                                !ev->dc.locally_generated);
 975                        break;
 976                case EVENT_IBSS_JOINED:
 977                        __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
 978                                               ev->ij.channel);
 979                        break;
 980                case EVENT_STOPPED:
 981                        __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
 982                        break;
 983                case EVENT_PORT_AUTHORIZED:
 984                        __cfg80211_port_authorized(wdev, ev->pa.bssid);
 985                        break;
 986                }
 987                wdev_unlock(wdev);
 988
 989                kfree(ev);
 990
 991                spin_lock_irqsave(&wdev->event_lock, flags);
 992        }
 993        spin_unlock_irqrestore(&wdev->event_lock, flags);
 994}
 995
 996void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
 997{
 998        struct wireless_dev *wdev;
 999
1000        lockdep_assert_held(&rdev->wiphy.mtx);
1001
1002        list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1003                cfg80211_process_wdev_events(wdev);
1004}
1005
1006int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1007                          struct net_device *dev, enum nl80211_iftype ntype,
1008                          struct vif_params *params)
1009{
1010        int err;
1011        enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1012
1013        lockdep_assert_held(&rdev->wiphy.mtx);
1014
1015        /* don't support changing VLANs, you just re-create them */
1016        if (otype == NL80211_IFTYPE_AP_VLAN)
1017                return -EOPNOTSUPP;
1018
1019        /* cannot change into P2P device or NAN */
1020        if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1021            ntype == NL80211_IFTYPE_NAN)
1022                return -EOPNOTSUPP;
1023
1024        if (!rdev->ops->change_virtual_intf ||
1025            !(rdev->wiphy.interface_modes & (1 << ntype)))
1026                return -EOPNOTSUPP;
1027
1028        /* if it's part of a bridge, reject changing type to station/ibss */
1029        if (netif_is_bridge_port(dev) &&
1030            (ntype == NL80211_IFTYPE_ADHOC ||
1031             ntype == NL80211_IFTYPE_STATION ||
1032             ntype == NL80211_IFTYPE_P2P_CLIENT))
1033                return -EBUSY;
1034
1035        if (ntype != otype) {
1036                dev->ieee80211_ptr->use_4addr = false;
1037                dev->ieee80211_ptr->mesh_id_up_len = 0;
1038                wdev_lock(dev->ieee80211_ptr);
1039                rdev_set_qos_map(rdev, dev, NULL);
1040                wdev_unlock(dev->ieee80211_ptr);
1041
1042                switch (otype) {
1043                case NL80211_IFTYPE_AP:
1044                        cfg80211_stop_ap(rdev, dev, true);
1045                        break;
1046                case NL80211_IFTYPE_ADHOC:
1047                        cfg80211_leave_ibss(rdev, dev, false);
1048                        break;
1049                case NL80211_IFTYPE_STATION:
1050                case NL80211_IFTYPE_P2P_CLIENT:
1051                        wdev_lock(dev->ieee80211_ptr);
1052                        cfg80211_disconnect(rdev, dev,
1053                                            WLAN_REASON_DEAUTH_LEAVING, true);
1054                        wdev_unlock(dev->ieee80211_ptr);
1055                        break;
1056                case NL80211_IFTYPE_MESH_POINT:
1057                        /* mesh should be handled? */
1058                        break;
1059                default:
1060                        break;
1061                }
1062
1063                cfg80211_process_rdev_events(rdev);
1064                cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1065        }
1066
1067        err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1068
1069        WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1070
1071        if (!err && params && params->use_4addr != -1)
1072                dev->ieee80211_ptr->use_4addr = params->use_4addr;
1073
1074        if (!err) {
1075                dev->priv_flags &= ~IFF_DONT_BRIDGE;
1076                switch (ntype) {
1077                case NL80211_IFTYPE_STATION:
1078                        if (dev->ieee80211_ptr->use_4addr)
1079                                break;
1080                        fallthrough;
1081                case NL80211_IFTYPE_OCB:
1082                case NL80211_IFTYPE_P2P_CLIENT:
1083                case NL80211_IFTYPE_ADHOC:
1084                        dev->priv_flags |= IFF_DONT_BRIDGE;
1085                        break;
1086                case NL80211_IFTYPE_P2P_GO:
1087                case NL80211_IFTYPE_AP:
1088                case NL80211_IFTYPE_AP_VLAN:
1089                case NL80211_IFTYPE_MESH_POINT:
1090                        /* bridging OK */
1091                        break;
1092                case NL80211_IFTYPE_MONITOR:
1093                        /* monitor can't bridge anyway */
1094                        break;
1095                case NL80211_IFTYPE_UNSPECIFIED:
1096                case NUM_NL80211_IFTYPES:
1097                        /* not happening */
1098                        break;
1099                case NL80211_IFTYPE_P2P_DEVICE:
1100                case NL80211_IFTYPE_WDS:
1101                case NL80211_IFTYPE_NAN:
1102                        WARN_ON(1);
1103                        break;
1104                }
1105        }
1106
1107        if (!err && ntype != otype && netif_running(dev)) {
1108                cfg80211_update_iface_num(rdev, ntype, 1);
1109                cfg80211_update_iface_num(rdev, otype, -1);
1110        }
1111
1112        return err;
1113}
1114
1115static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1116{
1117        int modulation, streams, bitrate;
1118
1119        /* the formula below does only work for MCS values smaller than 32 */
1120        if (WARN_ON_ONCE(rate->mcs >= 32))
1121                return 0;
1122
1123        modulation = rate->mcs & 7;
1124        streams = (rate->mcs >> 3) + 1;
1125
1126        bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1127
1128        if (modulation < 4)
1129                bitrate *= (modulation + 1);
1130        else if (modulation == 4)
1131                bitrate *= (modulation + 2);
1132        else
1133                bitrate *= (modulation + 3);
1134
1135        bitrate *= streams;
1136
1137        if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1138                bitrate = (bitrate / 9) * 10;
1139
1140        /* do NOT round down here */
1141        return (bitrate + 50000) / 100000;
1142}
1143
1144static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1145{
1146        static const u32 __mcs2bitrate[] = {
1147                /* control PHY */
1148                [0] =   275,
1149                /* SC PHY */
1150                [1] =  3850,
1151                [2] =  7700,
1152                [3] =  9625,
1153                [4] = 11550,
1154                [5] = 12512, /* 1251.25 mbps */
1155                [6] = 15400,
1156                [7] = 19250,
1157                [8] = 23100,
1158                [9] = 25025,
1159                [10] = 30800,
1160                [11] = 38500,
1161                [12] = 46200,
1162                /* OFDM PHY */
1163                [13] =  6930,
1164                [14] =  8662, /* 866.25 mbps */
1165                [15] = 13860,
1166                [16] = 17325,
1167                [17] = 20790,
1168                [18] = 27720,
1169                [19] = 34650,
1170                [20] = 41580,
1171                [21] = 45045,
1172                [22] = 51975,
1173                [23] = 62370,
1174                [24] = 67568, /* 6756.75 mbps */
1175                /* LP-SC PHY */
1176                [25] =  6260,
1177                [26] =  8340,
1178                [27] = 11120,
1179                [28] = 12510,
1180                [29] = 16680,
1181                [30] = 22240,
1182                [31] = 25030,
1183        };
1184
1185        if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1186                return 0;
1187
1188        return __mcs2bitrate[rate->mcs];
1189}
1190
1191static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1192{
1193        static const u32 __mcs2bitrate[] = {
1194                [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1195                [7 - 6] = 50050, /* MCS 12.1 */
1196                [8 - 6] = 53900,
1197                [9 - 6] = 57750,
1198                [10 - 6] = 63900,
1199                [11 - 6] = 75075,
1200                [12 - 6] = 80850,
1201        };
1202
1203        /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1204        if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1205                return 0;
1206
1207        return __mcs2bitrate[rate->mcs - 6];
1208}
1209
1210static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1211{
1212        static const u32 __mcs2bitrate[] = {
1213                /* control PHY */
1214                [0] =   275,
1215                /* SC PHY */
1216                [1] =  3850,
1217                [2] =  7700,
1218                [3] =  9625,
1219                [4] = 11550,
1220                [5] = 12512, /* 1251.25 mbps */
1221                [6] = 13475,
1222                [7] = 15400,
1223                [8] = 19250,
1224                [9] = 23100,
1225                [10] = 25025,
1226                [11] = 26950,
1227                [12] = 30800,
1228                [13] = 38500,
1229                [14] = 46200,
1230                [15] = 50050,
1231                [16] = 53900,
1232                [17] = 57750,
1233                [18] = 69300,
1234                [19] = 75075,
1235                [20] = 80850,
1236        };
1237
1238        if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1239                return 0;
1240
1241        return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1242}
1243
1244static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1245{
1246        static const u32 base[4][12] = {
1247                {   6500000,
1248                   13000000,
1249                   19500000,
1250                   26000000,
1251                   39000000,
1252                   52000000,
1253                   58500000,
1254                   65000000,
1255                   78000000,
1256                /* not in the spec, but some devices use this: */
1257                   86700000,
1258                   97500000,
1259                  108300000,
1260                },
1261                {  13500000,
1262                   27000000,
1263                   40500000,
1264                   54000000,
1265                   81000000,
1266                  108000000,
1267                  121500000,
1268                  135000000,
1269                  162000000,
1270                  180000000,
1271                  202500000,
1272                  225000000,
1273                },
1274                {  29300000,
1275                   58500000,
1276                   87800000,
1277                  117000000,
1278                  175500000,
1279                  234000000,
1280                  263300000,
1281                  292500000,
1282                  351000000,
1283                  390000000,
1284                  438800000,
1285                  487500000,
1286                },
1287                {  58500000,
1288                  117000000,
1289                  175500000,
1290                  234000000,
1291                  351000000,
1292                  468000000,
1293                  526500000,
1294                  585000000,
1295                  702000000,
1296                  780000000,
1297                  877500000,
1298                  975000000,
1299                },
1300        };
1301        u32 bitrate;
1302        int idx;
1303
1304        if (rate->mcs > 11)
1305                goto warn;
1306
1307        switch (rate->bw) {
1308        case RATE_INFO_BW_160:
1309                idx = 3;
1310                break;
1311        case RATE_INFO_BW_80:
1312                idx = 2;
1313                break;
1314        case RATE_INFO_BW_40:
1315                idx = 1;
1316                break;
1317        case RATE_INFO_BW_5:
1318        case RATE_INFO_BW_10:
1319        default:
1320                goto warn;
1321        case RATE_INFO_BW_20:
1322                idx = 0;
1323        }
1324
1325        bitrate = base[idx][rate->mcs];
1326        bitrate *= rate->nss;
1327
1328        if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1329                bitrate = (bitrate / 9) * 10;
1330
1331        /* do NOT round down here */
1332        return (bitrate + 50000) / 100000;
1333 warn:
1334        WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1335                  rate->bw, rate->mcs, rate->nss);
1336        return 0;
1337}
1338
1339static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1340{
1341#define SCALE 6144
1342        u32 mcs_divisors[14] = {
1343                102399, /* 16.666666... */
1344                 51201, /*  8.333333... */
1345                 34134, /*  5.555555... */
1346                 25599, /*  4.166666... */
1347                 17067, /*  2.777777... */
1348                 12801, /*  2.083333... */
1349                 11769, /*  1.851851... */
1350                 10239, /*  1.666666... */
1351                  8532, /*  1.388888... */
1352                  7680, /*  1.250000... */
1353                  6828, /*  1.111111... */
1354                  6144, /*  1.000000... */
1355                  5690, /*  0.926106... */
1356                  5120, /*  0.833333... */
1357        };
1358        u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1359        u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1360        u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1361        u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1362        u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1363        u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1364        u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1365        u64 tmp;
1366        u32 result;
1367
1368        if (WARN_ON_ONCE(rate->mcs > 13))
1369                return 0;
1370
1371        if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1372                return 0;
1373        if (WARN_ON_ONCE(rate->he_ru_alloc >
1374                         NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1375                return 0;
1376        if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1377                return 0;
1378
1379        if (rate->bw == RATE_INFO_BW_160)
1380                result = rates_160M[rate->he_gi];
1381        else if (rate->bw == RATE_INFO_BW_80 ||
1382                 (rate->bw == RATE_INFO_BW_HE_RU &&
1383                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1384                result = rates_969[rate->he_gi];
1385        else if (rate->bw == RATE_INFO_BW_40 ||
1386                 (rate->bw == RATE_INFO_BW_HE_RU &&
1387                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1388                result = rates_484[rate->he_gi];
1389        else if (rate->bw == RATE_INFO_BW_20 ||
1390                 (rate->bw == RATE_INFO_BW_HE_RU &&
1391                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1392                result = rates_242[rate->he_gi];
1393        else if (rate->bw == RATE_INFO_BW_HE_RU &&
1394                 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1395                result = rates_106[rate->he_gi];
1396        else if (rate->bw == RATE_INFO_BW_HE_RU &&
1397                 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1398                result = rates_52[rate->he_gi];
1399        else if (rate->bw == RATE_INFO_BW_HE_RU &&
1400                 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1401                result = rates_26[rate->he_gi];
1402        else {
1403                WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1404                     rate->bw, rate->he_ru_alloc);
1405                return 0;
1406        }
1407
1408        /* now scale to the appropriate MCS */
1409        tmp = result;
1410        tmp *= SCALE;
1411        do_div(tmp, mcs_divisors[rate->mcs]);
1412        result = tmp;
1413
1414        /* and take NSS, DCM into account */
1415        result = (result * rate->nss) / 8;
1416        if (rate->he_dcm)
1417                result /= 2;
1418
1419        return result / 10000;
1420}
1421
1422u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1423{
1424        if (rate->flags & RATE_INFO_FLAGS_MCS)
1425                return cfg80211_calculate_bitrate_ht(rate);
1426        if (rate->flags & RATE_INFO_FLAGS_DMG)
1427                return cfg80211_calculate_bitrate_dmg(rate);
1428        if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1429                return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1430        if (rate->flags & RATE_INFO_FLAGS_EDMG)
1431                return cfg80211_calculate_bitrate_edmg(rate);
1432        if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1433                return cfg80211_calculate_bitrate_vht(rate);
1434        if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1435                return cfg80211_calculate_bitrate_he(rate);
1436
1437        return rate->legacy;
1438}
1439EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1440
1441int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1442                          enum ieee80211_p2p_attr_id attr,
1443                          u8 *buf, unsigned int bufsize)
1444{
1445        u8 *out = buf;
1446        u16 attr_remaining = 0;
1447        bool desired_attr = false;
1448        u16 desired_len = 0;
1449
1450        while (len > 0) {
1451                unsigned int iedatalen;
1452                unsigned int copy;
1453                const u8 *iedata;
1454
1455                if (len < 2)
1456                        return -EILSEQ;
1457                iedatalen = ies[1];
1458                if (iedatalen + 2 > len)
1459                        return -EILSEQ;
1460
1461                if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1462                        goto cont;
1463
1464                if (iedatalen < 4)
1465                        goto cont;
1466
1467                iedata = ies + 2;
1468
1469                /* check WFA OUI, P2P subtype */
1470                if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1471                    iedata[2] != 0x9a || iedata[3] != 0x09)
1472                        goto cont;
1473
1474                iedatalen -= 4;
1475                iedata += 4;
1476
1477                /* check attribute continuation into this IE */
1478                copy = min_t(unsigned int, attr_remaining, iedatalen);
1479                if (copy && desired_attr) {
1480                        desired_len += copy;
1481                        if (out) {
1482                                memcpy(out, iedata, min(bufsize, copy));
1483                                out += min(bufsize, copy);
1484                                bufsize -= min(bufsize, copy);
1485                        }
1486
1487
1488                        if (copy == attr_remaining)
1489                                return desired_len;
1490                }
1491
1492                attr_remaining -= copy;
1493                if (attr_remaining)
1494                        goto cont;
1495
1496                iedatalen -= copy;
1497                iedata += copy;
1498
1499                while (iedatalen > 0) {
1500                        u16 attr_len;
1501
1502                        /* P2P attribute ID & size must fit */
1503                        if (iedatalen < 3)
1504                                return -EILSEQ;
1505                        desired_attr = iedata[0] == attr;
1506                        attr_len = get_unaligned_le16(iedata + 1);
1507                        iedatalen -= 3;
1508                        iedata += 3;
1509
1510                        copy = min_t(unsigned int, attr_len, iedatalen);
1511
1512                        if (desired_attr) {
1513                                desired_len += copy;
1514                                if (out) {
1515                                        memcpy(out, iedata, min(bufsize, copy));
1516                                        out += min(bufsize, copy);
1517                                        bufsize -= min(bufsize, copy);
1518                                }
1519
1520                                if (copy == attr_len)
1521                                        return desired_len;
1522                        }
1523
1524                        iedata += copy;
1525                        iedatalen -= copy;
1526                        attr_remaining = attr_len - copy;
1527                }
1528
1529 cont:
1530                len -= ies[1] + 2;
1531                ies += ies[1] + 2;
1532        }
1533
1534        if (attr_remaining && desired_attr)
1535                return -EILSEQ;
1536
1537        return -ENOENT;
1538}
1539EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1540
1541static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1542{
1543        int i;
1544
1545        /* Make sure array values are legal */
1546        if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1547                return false;
1548
1549        i = 0;
1550        while (i < n_ids) {
1551                if (ids[i] == WLAN_EID_EXTENSION) {
1552                        if (id_ext && (ids[i + 1] == id))
1553                                return true;
1554
1555                        i += 2;
1556                        continue;
1557                }
1558
1559                if (ids[i] == id && !id_ext)
1560                        return true;
1561
1562                i++;
1563        }
1564        return false;
1565}
1566
1567static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1568{
1569        /* we assume a validly formed IEs buffer */
1570        u8 len = ies[pos + 1];
1571
1572        pos += 2 + len;
1573
1574        /* the IE itself must have 255 bytes for fragments to follow */
1575        if (len < 255)
1576                return pos;
1577
1578        while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1579                len = ies[pos + 1];
1580                pos += 2 + len;
1581        }
1582
1583        return pos;
1584}
1585
1586size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1587                              const u8 *ids, int n_ids,
1588                              const u8 *after_ric, int n_after_ric,
1589                              size_t offset)
1590{
1591        size_t pos = offset;
1592
1593        while (pos < ielen) {
1594                u8 ext = 0;
1595
1596                if (ies[pos] == WLAN_EID_EXTENSION)
1597                        ext = 2;
1598                if ((pos + ext) >= ielen)
1599                        break;
1600
1601                if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1602                                          ies[pos] == WLAN_EID_EXTENSION))
1603                        break;
1604
1605                if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1606                        pos = skip_ie(ies, ielen, pos);
1607
1608                        while (pos < ielen) {
1609                                if (ies[pos] == WLAN_EID_EXTENSION)
1610                                        ext = 2;
1611                                else
1612                                        ext = 0;
1613
1614                                if ((pos + ext) >= ielen)
1615                                        break;
1616
1617                                if (!ieee80211_id_in_list(after_ric,
1618                                                          n_after_ric,
1619                                                          ies[pos + ext],
1620                                                          ext == 2))
1621                                        pos = skip_ie(ies, ielen, pos);
1622                                else
1623                                        break;
1624                        }
1625                } else {
1626                        pos = skip_ie(ies, ielen, pos);
1627                }
1628        }
1629
1630        return pos;
1631}
1632EXPORT_SYMBOL(ieee80211_ie_split_ric);
1633
1634bool ieee80211_operating_class_to_band(u8 operating_class,
1635                                       enum nl80211_band *band)
1636{
1637        switch (operating_class) {
1638        case 112:
1639        case 115 ... 127:
1640        case 128 ... 130:
1641                *band = NL80211_BAND_5GHZ;
1642                return true;
1643        case 131 ... 135:
1644                *band = NL80211_BAND_6GHZ;
1645                return true;
1646        case 81:
1647        case 82:
1648        case 83:
1649        case 84:
1650                *band = NL80211_BAND_2GHZ;
1651                return true;
1652        case 180:
1653                *band = NL80211_BAND_60GHZ;
1654                return true;
1655        }
1656
1657        return false;
1658}
1659EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1660
1661bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1662                                          u8 *op_class)
1663{
1664        u8 vht_opclass;
1665        u32 freq = chandef->center_freq1;
1666
1667        if (freq >= 2412 && freq <= 2472) {
1668                if (chandef->width > NL80211_CHAN_WIDTH_40)
1669                        return false;
1670
1671                /* 2.407 GHz, channels 1..13 */
1672                if (chandef->width == NL80211_CHAN_WIDTH_40) {
1673                        if (freq > chandef->chan->center_freq)
1674                                *op_class = 83; /* HT40+ */
1675                        else
1676                                *op_class = 84; /* HT40- */
1677                } else {
1678                        *op_class = 81;
1679                }
1680
1681                return true;
1682        }
1683
1684        if (freq == 2484) {
1685                /* channel 14 is only for IEEE 802.11b */
1686                if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1687                        return false;
1688
1689                *op_class = 82; /* channel 14 */
1690                return true;
1691        }
1692
1693        switch (chandef->width) {
1694        case NL80211_CHAN_WIDTH_80:
1695                vht_opclass = 128;
1696                break;
1697        case NL80211_CHAN_WIDTH_160:
1698                vht_opclass = 129;
1699                break;
1700        case NL80211_CHAN_WIDTH_80P80:
1701                vht_opclass = 130;
1702                break;
1703        case NL80211_CHAN_WIDTH_10:
1704        case NL80211_CHAN_WIDTH_5:
1705                return false; /* unsupported for now */
1706        default:
1707                vht_opclass = 0;
1708                break;
1709        }
1710
1711        /* 5 GHz, channels 36..48 */
1712        if (freq >= 5180 && freq <= 5240) {
1713                if (vht_opclass) {
1714                        *op_class = vht_opclass;
1715                } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1716                        if (freq > chandef->chan->center_freq)
1717                                *op_class = 116;
1718                        else
1719                                *op_class = 117;
1720                } else {
1721                        *op_class = 115;
1722                }
1723
1724                return true;
1725        }
1726
1727        /* 5 GHz, channels 52..64 */
1728        if (freq >= 5260 && freq <= 5320) {
1729                if (vht_opclass) {
1730                        *op_class = vht_opclass;
1731                } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1732                        if (freq > chandef->chan->center_freq)
1733                                *op_class = 119;
1734                        else
1735                                *op_class = 120;
1736                } else {
1737                        *op_class = 118;
1738                }
1739
1740                return true;
1741        }
1742
1743        /* 5 GHz, channels 100..144 */
1744        if (freq >= 5500 && freq <= 5720) {
1745                if (vht_opclass) {
1746                        *op_class = vht_opclass;
1747                } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1748                        if (freq > chandef->chan->center_freq)
1749                                *op_class = 122;
1750                        else
1751                                *op_class = 123;
1752                } else {
1753                        *op_class = 121;
1754                }
1755
1756                return true;
1757        }
1758
1759        /* 5 GHz, channels 149..169 */
1760        if (freq >= 5745 && freq <= 5845) {
1761                if (vht_opclass) {
1762                        *op_class = vht_opclass;
1763                } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1764                        if (freq > chandef->chan->center_freq)
1765                                *op_class = 126;
1766                        else
1767                                *op_class = 127;
1768                } else if (freq <= 5805) {
1769                        *op_class = 124;
1770                } else {
1771                        *op_class = 125;
1772                }
1773
1774                return true;
1775        }
1776
1777        /* 56.16 GHz, channel 1..4 */
1778        if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1779                if (chandef->width >= NL80211_CHAN_WIDTH_40)
1780                        return false;
1781
1782                *op_class = 180;
1783                return true;
1784        }
1785
1786        /* not supported yet */
1787        return false;
1788}
1789EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1790
1791static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1792                                       u32 *beacon_int_gcd,
1793                                       bool *beacon_int_different)
1794{
1795        struct wireless_dev *wdev;
1796
1797        *beacon_int_gcd = 0;
1798        *beacon_int_different = false;
1799
1800        list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1801                if (!wdev->beacon_interval)
1802                        continue;
1803
1804                if (!*beacon_int_gcd) {
1805                        *beacon_int_gcd = wdev->beacon_interval;
1806                        continue;
1807                }
1808
1809                if (wdev->beacon_interval == *beacon_int_gcd)
1810                        continue;
1811
1812                *beacon_int_different = true;
1813                *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1814        }
1815
1816        if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1817                if (*beacon_int_gcd)
1818                        *beacon_int_different = true;
1819                *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1820        }
1821}
1822
1823int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1824                                 enum nl80211_iftype iftype, u32 beacon_int)
1825{
1826        /*
1827         * This is just a basic pre-condition check; if interface combinations
1828         * are possible the driver must already be checking those with a call
1829         * to cfg80211_check_combinations(), in which case we'll validate more
1830         * through the cfg80211_calculate_bi_data() call and code in
1831         * cfg80211_iter_combinations().
1832         */
1833
1834        if (beacon_int < 10 || beacon_int > 10000)
1835                return -EINVAL;
1836
1837        return 0;
1838}
1839
1840int cfg80211_iter_combinations(struct wiphy *wiphy,
1841                               struct iface_combination_params *params,
1842                               void (*iter)(const struct ieee80211_iface_combination *c,
1843                                            void *data),
1844                               void *data)
1845{
1846        const struct ieee80211_regdomain *regdom;
1847        enum nl80211_dfs_regions region = 0;
1848        int i, j, iftype;
1849        int num_interfaces = 0;
1850        u32 used_iftypes = 0;
1851        u32 beacon_int_gcd;
1852        bool beacon_int_different;
1853
1854        /*
1855         * This is a bit strange, since the iteration used to rely only on
1856         * the data given by the driver, but here it now relies on context,
1857         * in form of the currently operating interfaces.
1858         * This is OK for all current users, and saves us from having to
1859         * push the GCD calculations into all the drivers.
1860         * In the future, this should probably rely more on data that's in
1861         * cfg80211 already - the only thing not would appear to be any new
1862         * interfaces (while being brought up) and channel/radar data.
1863         */
1864        cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1865                                   &beacon_int_gcd, &beacon_int_different);
1866
1867        if (params->radar_detect) {
1868                rcu_read_lock();
1869                regdom = rcu_dereference(cfg80211_regdomain);
1870                if (regdom)
1871                        region = regdom->dfs_region;
1872                rcu_read_unlock();
1873        }
1874
1875        for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1876                num_interfaces += params->iftype_num[iftype];
1877                if (params->iftype_num[iftype] > 0 &&
1878                    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1879                        used_iftypes |= BIT(iftype);
1880        }
1881
1882        for (i = 0; i < wiphy->n_iface_combinations; i++) {
1883                const struct ieee80211_iface_combination *c;
1884                struct ieee80211_iface_limit *limits;
1885                u32 all_iftypes = 0;
1886
1887                c = &wiphy->iface_combinations[i];
1888
1889                if (num_interfaces > c->max_interfaces)
1890                        continue;
1891                if (params->num_different_channels > c->num_different_channels)
1892                        continue;
1893
1894                limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1895                                 GFP_KERNEL);
1896                if (!limits)
1897                        return -ENOMEM;
1898
1899                for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1900                        if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1901                                continue;
1902                        for (j = 0; j < c->n_limits; j++) {
1903                                all_iftypes |= limits[j].types;
1904                                if (!(limits[j].types & BIT(iftype)))
1905                                        continue;
1906                                if (limits[j].max < params->iftype_num[iftype])
1907                                        goto cont;
1908                                limits[j].max -= params->iftype_num[iftype];
1909                        }
1910                }
1911
1912                if (params->radar_detect !=
1913                        (c->radar_detect_widths & params->radar_detect))
1914                        goto cont;
1915
1916                if (params->radar_detect && c->radar_detect_regions &&
1917                    !(c->radar_detect_regions & BIT(region)))
1918                        goto cont;
1919
1920                /* Finally check that all iftypes that we're currently
1921                 * using are actually part of this combination. If they
1922                 * aren't then we can't use this combination and have
1923                 * to continue to the next.
1924                 */
1925                if ((all_iftypes & used_iftypes) != used_iftypes)
1926                        goto cont;
1927
1928                if (beacon_int_gcd) {
1929                        if (c->beacon_int_min_gcd &&
1930                            beacon_int_gcd < c->beacon_int_min_gcd)
1931                                goto cont;
1932                        if (!c->beacon_int_min_gcd && beacon_int_different)
1933                                goto cont;
1934                }
1935
1936                /* This combination covered all interface types and
1937                 * supported the requested numbers, so we're good.
1938                 */
1939
1940                (*iter)(c, data);
1941 cont:
1942                kfree(limits);
1943        }
1944
1945        return 0;
1946}
1947EXPORT_SYMBOL(cfg80211_iter_combinations);
1948
1949static void
1950cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1951                          void *data)
1952{
1953        int *num = data;
1954        (*num)++;
1955}
1956
1957int cfg80211_check_combinations(struct wiphy *wiphy,
1958                                struct iface_combination_params *params)
1959{
1960        int err, num = 0;
1961
1962        err = cfg80211_iter_combinations(wiphy, params,
1963                                         cfg80211_iter_sum_ifcombs, &num);
1964        if (err)
1965                return err;
1966        if (num == 0)
1967                return -EBUSY;
1968
1969        return 0;
1970}
1971EXPORT_SYMBOL(cfg80211_check_combinations);
1972
1973int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1974                           const u8 *rates, unsigned int n_rates,
1975                           u32 *mask)
1976{
1977        int i, j;
1978
1979        if (!sband)
1980                return -EINVAL;
1981
1982        if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1983                return -EINVAL;
1984
1985        *mask = 0;
1986
1987        for (i = 0; i < n_rates; i++) {
1988                int rate = (rates[i] & 0x7f) * 5;
1989                bool found = false;
1990
1991                for (j = 0; j < sband->n_bitrates; j++) {
1992                        if (sband->bitrates[j].bitrate == rate) {
1993                                found = true;
1994                                *mask |= BIT(j);
1995                                break;
1996                        }
1997                }
1998                if (!found)
1999                        return -EINVAL;
2000        }
2001
2002        /*
2003         * mask must have at least one bit set here since we
2004         * didn't accept a 0-length rates array nor allowed
2005         * entries in the array that didn't exist
2006         */
2007
2008        return 0;
2009}
2010
2011unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2012{
2013        enum nl80211_band band;
2014        unsigned int n_channels = 0;
2015
2016        for (band = 0; band < NUM_NL80211_BANDS; band++)
2017                if (wiphy->bands[band])
2018                        n_channels += wiphy->bands[band]->n_channels;
2019
2020        return n_channels;
2021}
2022EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2023
2024int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2025                         struct station_info *sinfo)
2026{
2027        struct cfg80211_registered_device *rdev;
2028        struct wireless_dev *wdev;
2029
2030        wdev = dev->ieee80211_ptr;
2031        if (!wdev)
2032                return -EOPNOTSUPP;
2033
2034        rdev = wiphy_to_rdev(wdev->wiphy);
2035        if (!rdev->ops->get_station)
2036                return -EOPNOTSUPP;
2037
2038        memset(sinfo, 0, sizeof(*sinfo));
2039
2040        return rdev_get_station(rdev, dev, mac_addr, sinfo);
2041}
2042EXPORT_SYMBOL(cfg80211_get_station);
2043
2044void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2045{
2046        int i;
2047
2048        if (!f)
2049                return;
2050
2051        kfree(f->serv_spec_info);
2052        kfree(f->srf_bf);
2053        kfree(f->srf_macs);
2054        for (i = 0; i < f->num_rx_filters; i++)
2055                kfree(f->rx_filters[i].filter);
2056
2057        for (i = 0; i < f->num_tx_filters; i++)
2058                kfree(f->tx_filters[i].filter);
2059
2060        kfree(f->rx_filters);
2061        kfree(f->tx_filters);
2062        kfree(f);
2063}
2064EXPORT_SYMBOL(cfg80211_free_nan_func);
2065
2066bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2067                                u32 center_freq_khz, u32 bw_khz)
2068{
2069        u32 start_freq_khz, end_freq_khz;
2070
2071        start_freq_khz = center_freq_khz - (bw_khz / 2);
2072        end_freq_khz = center_freq_khz + (bw_khz / 2);
2073
2074        if (start_freq_khz >= freq_range->start_freq_khz &&
2075            end_freq_khz <= freq_range->end_freq_khz)
2076                return true;
2077
2078        return false;
2079}
2080
2081int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2082{
2083        sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2084                                sizeof(*(sinfo->pertid)),
2085                                gfp);
2086        if (!sinfo->pertid)
2087                return -ENOMEM;
2088
2089        return 0;
2090}
2091EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2092
2093/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2094/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2095const unsigned char rfc1042_header[] __aligned(2) =
2096        { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2097EXPORT_SYMBOL(rfc1042_header);
2098
2099/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2100const unsigned char bridge_tunnel_header[] __aligned(2) =
2101        { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2102EXPORT_SYMBOL(bridge_tunnel_header);
2103
2104/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2105struct iapp_layer2_update {
2106        u8 da[ETH_ALEN];        /* broadcast */
2107        u8 sa[ETH_ALEN];        /* STA addr */
2108        __be16 len;             /* 6 */
2109        u8 dsap;                /* 0 */
2110        u8 ssap;                /* 0 */
2111        u8 control;
2112        u8 xid_info[3];
2113} __packed;
2114
2115void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2116{
2117        struct iapp_layer2_update *msg;
2118        struct sk_buff *skb;
2119
2120        /* Send Level 2 Update Frame to update forwarding tables in layer 2
2121         * bridge devices */
2122
2123        skb = dev_alloc_skb(sizeof(*msg));
2124        if (!skb)
2125                return;
2126        msg = skb_put(skb, sizeof(*msg));
2127
2128        /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2129         * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2130
2131        eth_broadcast_addr(msg->da);
2132        ether_addr_copy(msg->sa, addr);
2133        msg->len = htons(6);
2134        msg->dsap = 0;
2135        msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2136        msg->control = 0xaf;    /* XID response lsb.1111F101.
2137                                 * F=0 (no poll command; unsolicited frame) */
2138        msg->xid_info[0] = 0x81;        /* XID format identifier */
2139        msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2140        msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2141
2142        skb->dev = dev;
2143        skb->protocol = eth_type_trans(skb, dev);
2144        memset(skb->cb, 0, sizeof(skb->cb));
2145        netif_rx_ni(skb);
2146}
2147EXPORT_SYMBOL(cfg80211_send_layer2_update);
2148
2149int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2150                              enum ieee80211_vht_chanwidth bw,
2151                              int mcs, bool ext_nss_bw_capable,
2152                              unsigned int max_vht_nss)
2153{
2154        u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2155        int ext_nss_bw;
2156        int supp_width;
2157        int i, mcs_encoding;
2158
2159        if (map == 0xffff)
2160                return 0;
2161
2162        if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2163                return 0;
2164        if (mcs <= 7)
2165                mcs_encoding = 0;
2166        else if (mcs == 8)
2167                mcs_encoding = 1;
2168        else
2169                mcs_encoding = 2;
2170
2171        if (!max_vht_nss) {
2172                /* find max_vht_nss for the given MCS */
2173                for (i = 7; i >= 0; i--) {
2174                        int supp = (map >> (2 * i)) & 3;
2175
2176                        if (supp == 3)
2177                                continue;
2178
2179                        if (supp >= mcs_encoding) {
2180                                max_vht_nss = i + 1;
2181                                break;
2182                        }
2183                }
2184        }
2185
2186        if (!(cap->supp_mcs.tx_mcs_map &
2187                        cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2188                return max_vht_nss;
2189
2190        ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2191                                   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2192        supp_width = le32_get_bits(cap->vht_cap_info,
2193                                   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2194
2195        /* if not capable, treat ext_nss_bw as 0 */
2196        if (!ext_nss_bw_capable)
2197                ext_nss_bw = 0;
2198
2199        /* This is invalid */
2200        if (supp_width == 3)
2201                return 0;
2202
2203        /* This is an invalid combination so pretend nothing is supported */
2204        if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2205                return 0;
2206
2207        /*
2208         * Cover all the special cases according to IEEE 802.11-2016
2209         * Table 9-250. All other cases are either factor of 1 or not
2210         * valid/supported.
2211         */
2212        switch (bw) {
2213        case IEEE80211_VHT_CHANWIDTH_USE_HT:
2214        case IEEE80211_VHT_CHANWIDTH_80MHZ:
2215                if ((supp_width == 1 || supp_width == 2) &&
2216                    ext_nss_bw == 3)
2217                        return 2 * max_vht_nss;
2218                break;
2219        case IEEE80211_VHT_CHANWIDTH_160MHZ:
2220                if (supp_width == 0 &&
2221                    (ext_nss_bw == 1 || ext_nss_bw == 2))
2222                        return max_vht_nss / 2;
2223                if (supp_width == 0 &&
2224                    ext_nss_bw == 3)
2225                        return (3 * max_vht_nss) / 4;
2226                if (supp_width == 1 &&
2227                    ext_nss_bw == 3)
2228                        return 2 * max_vht_nss;
2229                break;
2230        case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2231                if (supp_width == 0 && ext_nss_bw == 1)
2232                        return 0; /* not possible */
2233                if (supp_width == 0 &&
2234                    ext_nss_bw == 2)
2235                        return max_vht_nss / 2;
2236                if (supp_width == 0 &&
2237                    ext_nss_bw == 3)
2238                        return (3 * max_vht_nss) / 4;
2239                if (supp_width == 1 &&
2240                    ext_nss_bw == 0)
2241                        return 0; /* not possible */
2242                if (supp_width == 1 &&
2243                    ext_nss_bw == 1)
2244                        return max_vht_nss / 2;
2245                if (supp_width == 1 &&
2246                    ext_nss_bw == 2)
2247                        return (3 * max_vht_nss) / 4;
2248                break;
2249        }
2250
2251        /* not covered or invalid combination received */
2252        return max_vht_nss;
2253}
2254EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2255
2256bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2257                             bool is_4addr, u8 check_swif)
2258
2259{
2260        bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2261
2262        switch (check_swif) {
2263        case 0:
2264                if (is_vlan && is_4addr)
2265                        return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2266                return wiphy->interface_modes & BIT(iftype);
2267        case 1:
2268                if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2269                        return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2270                return wiphy->software_iftypes & BIT(iftype);
2271        default:
2272                break;
2273        }
2274
2275        return false;
2276}
2277EXPORT_SYMBOL(cfg80211_iftype_allowed);
2278