linux/security/security.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Security plug functions
   4 *
   5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   8 * Copyright (C) 2016 Mellanox Technologies
   9 */
  10
  11#define pr_fmt(fmt) "LSM: " fmt
  12
  13#include <linux/bpf.h>
  14#include <linux/capability.h>
  15#include <linux/dcache.h>
  16#include <linux/export.h>
  17#include <linux/init.h>
  18#include <linux/kernel.h>
  19#include <linux/kernel_read_file.h>
  20#include <linux/lsm_hooks.h>
  21#include <linux/integrity.h>
  22#include <linux/ima.h>
  23#include <linux/evm.h>
  24#include <linux/fsnotify.h>
  25#include <linux/mman.h>
  26#include <linux/mount.h>
  27#include <linux/personality.h>
  28#include <linux/backing-dev.h>
  29#include <linux/string.h>
  30#include <linux/msg.h>
  31#include <net/flow.h>
  32
  33#define MAX_LSM_EVM_XATTR       2
  34
  35/* How many LSMs were built into the kernel? */
  36#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
  37
  38/*
  39 * These are descriptions of the reasons that can be passed to the
  40 * security_locked_down() LSM hook. Placing this array here allows
  41 * all security modules to use the same descriptions for auditing
  42 * purposes.
  43 */
  44const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
  45        [LOCKDOWN_NONE] = "none",
  46        [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
  47        [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
  48        [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
  49        [LOCKDOWN_KEXEC] = "kexec of unsigned images",
  50        [LOCKDOWN_HIBERNATION] = "hibernation",
  51        [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
  52        [LOCKDOWN_IOPORT] = "raw io port access",
  53        [LOCKDOWN_MSR] = "raw MSR access",
  54        [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
  55        [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
  56        [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
  57        [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
  58        [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
  59        [LOCKDOWN_DEBUGFS] = "debugfs access",
  60        [LOCKDOWN_XMON_WR] = "xmon write access",
  61        [LOCKDOWN_INTEGRITY_MAX] = "integrity",
  62        [LOCKDOWN_KCORE] = "/proc/kcore access",
  63        [LOCKDOWN_KPROBES] = "use of kprobes",
  64        [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
  65        [LOCKDOWN_PERF] = "unsafe use of perf",
  66        [LOCKDOWN_TRACEFS] = "use of tracefs",
  67        [LOCKDOWN_XMON_RW] = "xmon read and write access",
  68        [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
  69        [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
  70};
  71
  72struct security_hook_heads security_hook_heads __lsm_ro_after_init;
  73static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
  74
  75static struct kmem_cache *lsm_file_cache;
  76static struct kmem_cache *lsm_inode_cache;
  77
  78char *lsm_names;
  79static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
  80
  81/* Boot-time LSM user choice */
  82static __initdata const char *chosen_lsm_order;
  83static __initdata const char *chosen_major_lsm;
  84
  85static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
  86
  87/* Ordered list of LSMs to initialize. */
  88static __initdata struct lsm_info **ordered_lsms;
  89static __initdata struct lsm_info *exclusive;
  90
  91static __initdata bool debug;
  92#define init_debug(...)                                         \
  93        do {                                                    \
  94                if (debug)                                      \
  95                        pr_info(__VA_ARGS__);                   \
  96        } while (0)
  97
  98static bool __init is_enabled(struct lsm_info *lsm)
  99{
 100        if (!lsm->enabled)
 101                return false;
 102
 103        return *lsm->enabled;
 104}
 105
 106/* Mark an LSM's enabled flag. */
 107static int lsm_enabled_true __initdata = 1;
 108static int lsm_enabled_false __initdata = 0;
 109static void __init set_enabled(struct lsm_info *lsm, bool enabled)
 110{
 111        /*
 112         * When an LSM hasn't configured an enable variable, we can use
 113         * a hard-coded location for storing the default enabled state.
 114         */
 115        if (!lsm->enabled) {
 116                if (enabled)
 117                        lsm->enabled = &lsm_enabled_true;
 118                else
 119                        lsm->enabled = &lsm_enabled_false;
 120        } else if (lsm->enabled == &lsm_enabled_true) {
 121                if (!enabled)
 122                        lsm->enabled = &lsm_enabled_false;
 123        } else if (lsm->enabled == &lsm_enabled_false) {
 124                if (enabled)
 125                        lsm->enabled = &lsm_enabled_true;
 126        } else {
 127                *lsm->enabled = enabled;
 128        }
 129}
 130
 131/* Is an LSM already listed in the ordered LSMs list? */
 132static bool __init exists_ordered_lsm(struct lsm_info *lsm)
 133{
 134        struct lsm_info **check;
 135
 136        for (check = ordered_lsms; *check; check++)
 137                if (*check == lsm)
 138                        return true;
 139
 140        return false;
 141}
 142
 143/* Append an LSM to the list of ordered LSMs to initialize. */
 144static int last_lsm __initdata;
 145static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
 146{
 147        /* Ignore duplicate selections. */
 148        if (exists_ordered_lsm(lsm))
 149                return;
 150
 151        if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
 152                return;
 153
 154        /* Enable this LSM, if it is not already set. */
 155        if (!lsm->enabled)
 156                lsm->enabled = &lsm_enabled_true;
 157        ordered_lsms[last_lsm++] = lsm;
 158
 159        init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
 160                   is_enabled(lsm) ? "en" : "dis");
 161}
 162
 163/* Is an LSM allowed to be initialized? */
 164static bool __init lsm_allowed(struct lsm_info *lsm)
 165{
 166        /* Skip if the LSM is disabled. */
 167        if (!is_enabled(lsm))
 168                return false;
 169
 170        /* Not allowed if another exclusive LSM already initialized. */
 171        if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
 172                init_debug("exclusive disabled: %s\n", lsm->name);
 173                return false;
 174        }
 175
 176        return true;
 177}
 178
 179static void __init lsm_set_blob_size(int *need, int *lbs)
 180{
 181        int offset;
 182
 183        if (*need > 0) {
 184                offset = *lbs;
 185                *lbs += *need;
 186                *need = offset;
 187        }
 188}
 189
 190static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
 191{
 192        if (!needed)
 193                return;
 194
 195        lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
 196        lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
 197        /*
 198         * The inode blob gets an rcu_head in addition to
 199         * what the modules might need.
 200         */
 201        if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
 202                blob_sizes.lbs_inode = sizeof(struct rcu_head);
 203        lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
 204        lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
 205        lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
 206        lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
 207}
 208
 209/* Prepare LSM for initialization. */
 210static void __init prepare_lsm(struct lsm_info *lsm)
 211{
 212        int enabled = lsm_allowed(lsm);
 213
 214        /* Record enablement (to handle any following exclusive LSMs). */
 215        set_enabled(lsm, enabled);
 216
 217        /* If enabled, do pre-initialization work. */
 218        if (enabled) {
 219                if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
 220                        exclusive = lsm;
 221                        init_debug("exclusive chosen: %s\n", lsm->name);
 222                }
 223
 224                lsm_set_blob_sizes(lsm->blobs);
 225        }
 226}
 227
 228/* Initialize a given LSM, if it is enabled. */
 229static void __init initialize_lsm(struct lsm_info *lsm)
 230{
 231        if (is_enabled(lsm)) {
 232                int ret;
 233
 234                init_debug("initializing %s\n", lsm->name);
 235                ret = lsm->init();
 236                WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
 237        }
 238}
 239
 240/* Populate ordered LSMs list from comma-separated LSM name list. */
 241static void __init ordered_lsm_parse(const char *order, const char *origin)
 242{
 243        struct lsm_info *lsm;
 244        char *sep, *name, *next;
 245
 246        /* LSM_ORDER_FIRST is always first. */
 247        for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 248                if (lsm->order == LSM_ORDER_FIRST)
 249                        append_ordered_lsm(lsm, "first");
 250        }
 251
 252        /* Process "security=", if given. */
 253        if (chosen_major_lsm) {
 254                struct lsm_info *major;
 255
 256                /*
 257                 * To match the original "security=" behavior, this
 258                 * explicitly does NOT fallback to another Legacy Major
 259                 * if the selected one was separately disabled: disable
 260                 * all non-matching Legacy Major LSMs.
 261                 */
 262                for (major = __start_lsm_info; major < __end_lsm_info;
 263                     major++) {
 264                        if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
 265                            strcmp(major->name, chosen_major_lsm) != 0) {
 266                                set_enabled(major, false);
 267                                init_debug("security=%s disabled: %s\n",
 268                                           chosen_major_lsm, major->name);
 269                        }
 270                }
 271        }
 272
 273        sep = kstrdup(order, GFP_KERNEL);
 274        next = sep;
 275        /* Walk the list, looking for matching LSMs. */
 276        while ((name = strsep(&next, ",")) != NULL) {
 277                bool found = false;
 278
 279                for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 280                        if (lsm->order == LSM_ORDER_MUTABLE &&
 281                            strcmp(lsm->name, name) == 0) {
 282                                append_ordered_lsm(lsm, origin);
 283                                found = true;
 284                        }
 285                }
 286
 287                if (!found)
 288                        init_debug("%s ignored: %s\n", origin, name);
 289        }
 290
 291        /* Process "security=", if given. */
 292        if (chosen_major_lsm) {
 293                for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 294                        if (exists_ordered_lsm(lsm))
 295                                continue;
 296                        if (strcmp(lsm->name, chosen_major_lsm) == 0)
 297                                append_ordered_lsm(lsm, "security=");
 298                }
 299        }
 300
 301        /* Disable all LSMs not in the ordered list. */
 302        for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 303                if (exists_ordered_lsm(lsm))
 304                        continue;
 305                set_enabled(lsm, false);
 306                init_debug("%s disabled: %s\n", origin, lsm->name);
 307        }
 308
 309        kfree(sep);
 310}
 311
 312static void __init lsm_early_cred(struct cred *cred);
 313static void __init lsm_early_task(struct task_struct *task);
 314
 315static int lsm_append(const char *new, char **result);
 316
 317static void __init ordered_lsm_init(void)
 318{
 319        struct lsm_info **lsm;
 320
 321        ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
 322                                GFP_KERNEL);
 323
 324        if (chosen_lsm_order) {
 325                if (chosen_major_lsm) {
 326                        pr_info("security= is ignored because it is superseded by lsm=\n");
 327                        chosen_major_lsm = NULL;
 328                }
 329                ordered_lsm_parse(chosen_lsm_order, "cmdline");
 330        } else
 331                ordered_lsm_parse(builtin_lsm_order, "builtin");
 332
 333        for (lsm = ordered_lsms; *lsm; lsm++)
 334                prepare_lsm(*lsm);
 335
 336        init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
 337        init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
 338        init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
 339        init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
 340        init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
 341        init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
 342
 343        /*
 344         * Create any kmem_caches needed for blobs
 345         */
 346        if (blob_sizes.lbs_file)
 347                lsm_file_cache = kmem_cache_create("lsm_file_cache",
 348                                                   blob_sizes.lbs_file, 0,
 349                                                   SLAB_PANIC, NULL);
 350        if (blob_sizes.lbs_inode)
 351                lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
 352                                                    blob_sizes.lbs_inode, 0,
 353                                                    SLAB_PANIC, NULL);
 354
 355        lsm_early_cred((struct cred *) current->cred);
 356        lsm_early_task(current);
 357        for (lsm = ordered_lsms; *lsm; lsm++)
 358                initialize_lsm(*lsm);
 359
 360        kfree(ordered_lsms);
 361}
 362
 363int __init early_security_init(void)
 364{
 365        int i;
 366        struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
 367        struct lsm_info *lsm;
 368
 369        for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
 370             i++)
 371                INIT_HLIST_HEAD(&list[i]);
 372
 373        for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 374                if (!lsm->enabled)
 375                        lsm->enabled = &lsm_enabled_true;
 376                prepare_lsm(lsm);
 377                initialize_lsm(lsm);
 378        }
 379
 380        return 0;
 381}
 382
 383/**
 384 * security_init - initializes the security framework
 385 *
 386 * This should be called early in the kernel initialization sequence.
 387 */
 388int __init security_init(void)
 389{
 390        struct lsm_info *lsm;
 391
 392        pr_info("Security Framework initializing\n");
 393
 394        /*
 395         * Append the names of the early LSM modules now that kmalloc() is
 396         * available
 397         */
 398        for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 399                if (lsm->enabled)
 400                        lsm_append(lsm->name, &lsm_names);
 401        }
 402
 403        /* Load LSMs in specified order. */
 404        ordered_lsm_init();
 405
 406        return 0;
 407}
 408
 409/* Save user chosen LSM */
 410static int __init choose_major_lsm(char *str)
 411{
 412        chosen_major_lsm = str;
 413        return 1;
 414}
 415__setup("security=", choose_major_lsm);
 416
 417/* Explicitly choose LSM initialization order. */
 418static int __init choose_lsm_order(char *str)
 419{
 420        chosen_lsm_order = str;
 421        return 1;
 422}
 423__setup("lsm=", choose_lsm_order);
 424
 425/* Enable LSM order debugging. */
 426static int __init enable_debug(char *str)
 427{
 428        debug = true;
 429        return 1;
 430}
 431__setup("lsm.debug", enable_debug);
 432
 433static bool match_last_lsm(const char *list, const char *lsm)
 434{
 435        const char *last;
 436
 437        if (WARN_ON(!list || !lsm))
 438                return false;
 439        last = strrchr(list, ',');
 440        if (last)
 441                /* Pass the comma, strcmp() will check for '\0' */
 442                last++;
 443        else
 444                last = list;
 445        return !strcmp(last, lsm);
 446}
 447
 448static int lsm_append(const char *new, char **result)
 449{
 450        char *cp;
 451
 452        if (*result == NULL) {
 453                *result = kstrdup(new, GFP_KERNEL);
 454                if (*result == NULL)
 455                        return -ENOMEM;
 456        } else {
 457                /* Check if it is the last registered name */
 458                if (match_last_lsm(*result, new))
 459                        return 0;
 460                cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
 461                if (cp == NULL)
 462                        return -ENOMEM;
 463                kfree(*result);
 464                *result = cp;
 465        }
 466        return 0;
 467}
 468
 469/**
 470 * security_add_hooks - Add a modules hooks to the hook lists.
 471 * @hooks: the hooks to add
 472 * @count: the number of hooks to add
 473 * @lsm: the name of the security module
 474 *
 475 * Each LSM has to register its hooks with the infrastructure.
 476 */
 477void __init security_add_hooks(struct security_hook_list *hooks, int count,
 478                                char *lsm)
 479{
 480        int i;
 481
 482        for (i = 0; i < count; i++) {
 483                hooks[i].lsm = lsm;
 484                hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
 485        }
 486
 487        /*
 488         * Don't try to append during early_security_init(), we'll come back
 489         * and fix this up afterwards.
 490         */
 491        if (slab_is_available()) {
 492                if (lsm_append(lsm, &lsm_names) < 0)
 493                        panic("%s - Cannot get early memory.\n", __func__);
 494        }
 495}
 496
 497int call_blocking_lsm_notifier(enum lsm_event event, void *data)
 498{
 499        return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
 500                                            event, data);
 501}
 502EXPORT_SYMBOL(call_blocking_lsm_notifier);
 503
 504int register_blocking_lsm_notifier(struct notifier_block *nb)
 505{
 506        return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
 507                                                nb);
 508}
 509EXPORT_SYMBOL(register_blocking_lsm_notifier);
 510
 511int unregister_blocking_lsm_notifier(struct notifier_block *nb)
 512{
 513        return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
 514                                                  nb);
 515}
 516EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
 517
 518/**
 519 * lsm_cred_alloc - allocate a composite cred blob
 520 * @cred: the cred that needs a blob
 521 * @gfp: allocation type
 522 *
 523 * Allocate the cred blob for all the modules
 524 *
 525 * Returns 0, or -ENOMEM if memory can't be allocated.
 526 */
 527static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
 528{
 529        if (blob_sizes.lbs_cred == 0) {
 530                cred->security = NULL;
 531                return 0;
 532        }
 533
 534        cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
 535        if (cred->security == NULL)
 536                return -ENOMEM;
 537        return 0;
 538}
 539
 540/**
 541 * lsm_early_cred - during initialization allocate a composite cred blob
 542 * @cred: the cred that needs a blob
 543 *
 544 * Allocate the cred blob for all the modules
 545 */
 546static void __init lsm_early_cred(struct cred *cred)
 547{
 548        int rc = lsm_cred_alloc(cred, GFP_KERNEL);
 549
 550        if (rc)
 551                panic("%s: Early cred alloc failed.\n", __func__);
 552}
 553
 554/**
 555 * lsm_file_alloc - allocate a composite file blob
 556 * @file: the file that needs a blob
 557 *
 558 * Allocate the file blob for all the modules
 559 *
 560 * Returns 0, or -ENOMEM if memory can't be allocated.
 561 */
 562static int lsm_file_alloc(struct file *file)
 563{
 564        if (!lsm_file_cache) {
 565                file->f_security = NULL;
 566                return 0;
 567        }
 568
 569        file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
 570        if (file->f_security == NULL)
 571                return -ENOMEM;
 572        return 0;
 573}
 574
 575/**
 576 * lsm_inode_alloc - allocate a composite inode blob
 577 * @inode: the inode that needs a blob
 578 *
 579 * Allocate the inode blob for all the modules
 580 *
 581 * Returns 0, or -ENOMEM if memory can't be allocated.
 582 */
 583int lsm_inode_alloc(struct inode *inode)
 584{
 585        if (!lsm_inode_cache) {
 586                inode->i_security = NULL;
 587                return 0;
 588        }
 589
 590        inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
 591        if (inode->i_security == NULL)
 592                return -ENOMEM;
 593        return 0;
 594}
 595
 596/**
 597 * lsm_task_alloc - allocate a composite task blob
 598 * @task: the task that needs a blob
 599 *
 600 * Allocate the task blob for all the modules
 601 *
 602 * Returns 0, or -ENOMEM if memory can't be allocated.
 603 */
 604static int lsm_task_alloc(struct task_struct *task)
 605{
 606        if (blob_sizes.lbs_task == 0) {
 607                task->security = NULL;
 608                return 0;
 609        }
 610
 611        task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
 612        if (task->security == NULL)
 613                return -ENOMEM;
 614        return 0;
 615}
 616
 617/**
 618 * lsm_ipc_alloc - allocate a composite ipc blob
 619 * @kip: the ipc that needs a blob
 620 *
 621 * Allocate the ipc blob for all the modules
 622 *
 623 * Returns 0, or -ENOMEM if memory can't be allocated.
 624 */
 625static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
 626{
 627        if (blob_sizes.lbs_ipc == 0) {
 628                kip->security = NULL;
 629                return 0;
 630        }
 631
 632        kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
 633        if (kip->security == NULL)
 634                return -ENOMEM;
 635        return 0;
 636}
 637
 638/**
 639 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
 640 * @mp: the msg_msg that needs a blob
 641 *
 642 * Allocate the ipc blob for all the modules
 643 *
 644 * Returns 0, or -ENOMEM if memory can't be allocated.
 645 */
 646static int lsm_msg_msg_alloc(struct msg_msg *mp)
 647{
 648        if (blob_sizes.lbs_msg_msg == 0) {
 649                mp->security = NULL;
 650                return 0;
 651        }
 652
 653        mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
 654        if (mp->security == NULL)
 655                return -ENOMEM;
 656        return 0;
 657}
 658
 659/**
 660 * lsm_early_task - during initialization allocate a composite task blob
 661 * @task: the task that needs a blob
 662 *
 663 * Allocate the task blob for all the modules
 664 */
 665static void __init lsm_early_task(struct task_struct *task)
 666{
 667        int rc = lsm_task_alloc(task);
 668
 669        if (rc)
 670                panic("%s: Early task alloc failed.\n", __func__);
 671}
 672
 673/*
 674 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
 675 * can be accessed with:
 676 *
 677 *      LSM_RET_DEFAULT(<hook_name>)
 678 *
 679 * The macros below define static constants for the default value of each
 680 * LSM hook.
 681 */
 682#define LSM_RET_DEFAULT(NAME) (NAME##_default)
 683#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
 684#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
 685        static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
 686#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
 687        DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
 688
 689#include <linux/lsm_hook_defs.h>
 690#undef LSM_HOOK
 691
 692/*
 693 * Hook list operation macros.
 694 *
 695 * call_void_hook:
 696 *      This is a hook that does not return a value.
 697 *
 698 * call_int_hook:
 699 *      This is a hook that returns a value.
 700 */
 701
 702#define call_void_hook(FUNC, ...)                               \
 703        do {                                                    \
 704                struct security_hook_list *P;                   \
 705                                                                \
 706                hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
 707                        P->hook.FUNC(__VA_ARGS__);              \
 708        } while (0)
 709
 710#define call_int_hook(FUNC, IRC, ...) ({                        \
 711        int RC = IRC;                                           \
 712        do {                                                    \
 713                struct security_hook_list *P;                   \
 714                                                                \
 715                hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
 716                        RC = P->hook.FUNC(__VA_ARGS__);         \
 717                        if (RC != 0)                            \
 718                                break;                          \
 719                }                                               \
 720        } while (0);                                            \
 721        RC;                                                     \
 722})
 723
 724/* Security operations */
 725
 726int security_binder_set_context_mgr(struct task_struct *mgr)
 727{
 728        return call_int_hook(binder_set_context_mgr, 0, mgr);
 729}
 730
 731int security_binder_transaction(struct task_struct *from,
 732                                struct task_struct *to)
 733{
 734        return call_int_hook(binder_transaction, 0, from, to);
 735}
 736
 737int security_binder_transfer_binder(struct task_struct *from,
 738                                    struct task_struct *to)
 739{
 740        return call_int_hook(binder_transfer_binder, 0, from, to);
 741}
 742
 743int security_binder_transfer_file(struct task_struct *from,
 744                                  struct task_struct *to, struct file *file)
 745{
 746        return call_int_hook(binder_transfer_file, 0, from, to, file);
 747}
 748
 749int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 750{
 751        return call_int_hook(ptrace_access_check, 0, child, mode);
 752}
 753
 754int security_ptrace_traceme(struct task_struct *parent)
 755{
 756        return call_int_hook(ptrace_traceme, 0, parent);
 757}
 758
 759int security_capget(struct task_struct *target,
 760                     kernel_cap_t *effective,
 761                     kernel_cap_t *inheritable,
 762                     kernel_cap_t *permitted)
 763{
 764        return call_int_hook(capget, 0, target,
 765                                effective, inheritable, permitted);
 766}
 767
 768int security_capset(struct cred *new, const struct cred *old,
 769                    const kernel_cap_t *effective,
 770                    const kernel_cap_t *inheritable,
 771                    const kernel_cap_t *permitted)
 772{
 773        return call_int_hook(capset, 0, new, old,
 774                                effective, inheritable, permitted);
 775}
 776
 777int security_capable(const struct cred *cred,
 778                     struct user_namespace *ns,
 779                     int cap,
 780                     unsigned int opts)
 781{
 782        return call_int_hook(capable, 0, cred, ns, cap, opts);
 783}
 784
 785int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 786{
 787        return call_int_hook(quotactl, 0, cmds, type, id, sb);
 788}
 789
 790int security_quota_on(struct dentry *dentry)
 791{
 792        return call_int_hook(quota_on, 0, dentry);
 793}
 794
 795int security_syslog(int type)
 796{
 797        return call_int_hook(syslog, 0, type);
 798}
 799
 800int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
 801{
 802        return call_int_hook(settime, 0, ts, tz);
 803}
 804
 805int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 806{
 807        struct security_hook_list *hp;
 808        int cap_sys_admin = 1;
 809        int rc;
 810
 811        /*
 812         * The module will respond with a positive value if
 813         * it thinks the __vm_enough_memory() call should be
 814         * made with the cap_sys_admin set. If all of the modules
 815         * agree that it should be set it will. If any module
 816         * thinks it should not be set it won't.
 817         */
 818        hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
 819                rc = hp->hook.vm_enough_memory(mm, pages);
 820                if (rc <= 0) {
 821                        cap_sys_admin = 0;
 822                        break;
 823                }
 824        }
 825        return __vm_enough_memory(mm, pages, cap_sys_admin);
 826}
 827
 828int security_bprm_creds_for_exec(struct linux_binprm *bprm)
 829{
 830        return call_int_hook(bprm_creds_for_exec, 0, bprm);
 831}
 832
 833int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
 834{
 835        return call_int_hook(bprm_creds_from_file, 0, bprm, file);
 836}
 837
 838int security_bprm_check(struct linux_binprm *bprm)
 839{
 840        int ret;
 841
 842        ret = call_int_hook(bprm_check_security, 0, bprm);
 843        if (ret)
 844                return ret;
 845        return ima_bprm_check(bprm);
 846}
 847
 848void security_bprm_committing_creds(struct linux_binprm *bprm)
 849{
 850        call_void_hook(bprm_committing_creds, bprm);
 851}
 852
 853void security_bprm_committed_creds(struct linux_binprm *bprm)
 854{
 855        call_void_hook(bprm_committed_creds, bprm);
 856}
 857
 858int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
 859{
 860        return call_int_hook(fs_context_dup, 0, fc, src_fc);
 861}
 862
 863int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
 864{
 865        return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
 866}
 867
 868int security_sb_alloc(struct super_block *sb)
 869{
 870        return call_int_hook(sb_alloc_security, 0, sb);
 871}
 872
 873void security_sb_free(struct super_block *sb)
 874{
 875        call_void_hook(sb_free_security, sb);
 876}
 877
 878void security_free_mnt_opts(void **mnt_opts)
 879{
 880        if (!*mnt_opts)
 881                return;
 882        call_void_hook(sb_free_mnt_opts, *mnt_opts);
 883        *mnt_opts = NULL;
 884}
 885EXPORT_SYMBOL(security_free_mnt_opts);
 886
 887int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
 888{
 889        return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
 890}
 891EXPORT_SYMBOL(security_sb_eat_lsm_opts);
 892
 893int security_sb_remount(struct super_block *sb,
 894                        void *mnt_opts)
 895{
 896        return call_int_hook(sb_remount, 0, sb, mnt_opts);
 897}
 898EXPORT_SYMBOL(security_sb_remount);
 899
 900int security_sb_kern_mount(struct super_block *sb)
 901{
 902        return call_int_hook(sb_kern_mount, 0, sb);
 903}
 904
 905int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 906{
 907        return call_int_hook(sb_show_options, 0, m, sb);
 908}
 909
 910int security_sb_statfs(struct dentry *dentry)
 911{
 912        return call_int_hook(sb_statfs, 0, dentry);
 913}
 914
 915int security_sb_mount(const char *dev_name, const struct path *path,
 916                       const char *type, unsigned long flags, void *data)
 917{
 918        return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
 919}
 920
 921int security_sb_umount(struct vfsmount *mnt, int flags)
 922{
 923        return call_int_hook(sb_umount, 0, mnt, flags);
 924}
 925
 926int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
 927{
 928        return call_int_hook(sb_pivotroot, 0, old_path, new_path);
 929}
 930
 931int security_sb_set_mnt_opts(struct super_block *sb,
 932                                void *mnt_opts,
 933                                unsigned long kern_flags,
 934                                unsigned long *set_kern_flags)
 935{
 936        return call_int_hook(sb_set_mnt_opts,
 937                                mnt_opts ? -EOPNOTSUPP : 0, sb,
 938                                mnt_opts, kern_flags, set_kern_flags);
 939}
 940EXPORT_SYMBOL(security_sb_set_mnt_opts);
 941
 942int security_sb_clone_mnt_opts(const struct super_block *oldsb,
 943                                struct super_block *newsb,
 944                                unsigned long kern_flags,
 945                                unsigned long *set_kern_flags)
 946{
 947        return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
 948                                kern_flags, set_kern_flags);
 949}
 950EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 951
 952int security_add_mnt_opt(const char *option, const char *val, int len,
 953                         void **mnt_opts)
 954{
 955        return call_int_hook(sb_add_mnt_opt, -EINVAL,
 956                                        option, val, len, mnt_opts);
 957}
 958EXPORT_SYMBOL(security_add_mnt_opt);
 959
 960int security_move_mount(const struct path *from_path, const struct path *to_path)
 961{
 962        return call_int_hook(move_mount, 0, from_path, to_path);
 963}
 964
 965int security_path_notify(const struct path *path, u64 mask,
 966                                unsigned int obj_type)
 967{
 968        return call_int_hook(path_notify, 0, path, mask, obj_type);
 969}
 970
 971int security_inode_alloc(struct inode *inode)
 972{
 973        int rc = lsm_inode_alloc(inode);
 974
 975        if (unlikely(rc))
 976                return rc;
 977        rc = call_int_hook(inode_alloc_security, 0, inode);
 978        if (unlikely(rc))
 979                security_inode_free(inode);
 980        return rc;
 981}
 982
 983static void inode_free_by_rcu(struct rcu_head *head)
 984{
 985        /*
 986         * The rcu head is at the start of the inode blob
 987         */
 988        kmem_cache_free(lsm_inode_cache, head);
 989}
 990
 991void security_inode_free(struct inode *inode)
 992{
 993        integrity_inode_free(inode);
 994        call_void_hook(inode_free_security, inode);
 995        /*
 996         * The inode may still be referenced in a path walk and
 997         * a call to security_inode_permission() can be made
 998         * after inode_free_security() is called. Ideally, the VFS
 999         * wouldn't do this, but fixing that is a much harder
1000         * job. For now, simply free the i_security via RCU, and
1001         * leave the current inode->i_security pointer intact.
1002         * The inode will be freed after the RCU grace period too.
1003         */
1004        if (inode->i_security)
1005                call_rcu((struct rcu_head *)inode->i_security,
1006                                inode_free_by_rcu);
1007}
1008
1009int security_dentry_init_security(struct dentry *dentry, int mode,
1010                                        const struct qstr *name, void **ctx,
1011                                        u32 *ctxlen)
1012{
1013        return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1014                                name, ctx, ctxlen);
1015}
1016EXPORT_SYMBOL(security_dentry_init_security);
1017
1018int security_dentry_create_files_as(struct dentry *dentry, int mode,
1019                                    struct qstr *name,
1020                                    const struct cred *old, struct cred *new)
1021{
1022        return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1023                                name, old, new);
1024}
1025EXPORT_SYMBOL(security_dentry_create_files_as);
1026
1027int security_inode_init_security(struct inode *inode, struct inode *dir,
1028                                 const struct qstr *qstr,
1029                                 const initxattrs initxattrs, void *fs_data)
1030{
1031        struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1032        struct xattr *lsm_xattr, *evm_xattr, *xattr;
1033        int ret;
1034
1035        if (unlikely(IS_PRIVATE(inode)))
1036                return 0;
1037
1038        if (!initxattrs)
1039                return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1040                                     dir, qstr, NULL, NULL, NULL);
1041        memset(new_xattrs, 0, sizeof(new_xattrs));
1042        lsm_xattr = new_xattrs;
1043        ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1044                                                &lsm_xattr->name,
1045                                                &lsm_xattr->value,
1046                                                &lsm_xattr->value_len);
1047        if (ret)
1048                goto out;
1049
1050        evm_xattr = lsm_xattr + 1;
1051        ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1052        if (ret)
1053                goto out;
1054        ret = initxattrs(inode, new_xattrs, fs_data);
1055out:
1056        for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1057                kfree(xattr->value);
1058        return (ret == -EOPNOTSUPP) ? 0 : ret;
1059}
1060EXPORT_SYMBOL(security_inode_init_security);
1061
1062int security_inode_init_security_anon(struct inode *inode,
1063                                      const struct qstr *name,
1064                                      const struct inode *context_inode)
1065{
1066        return call_int_hook(inode_init_security_anon, 0, inode, name,
1067                             context_inode);
1068}
1069
1070int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1071                                     const struct qstr *qstr, const char **name,
1072                                     void **value, size_t *len)
1073{
1074        if (unlikely(IS_PRIVATE(inode)))
1075                return -EOPNOTSUPP;
1076        return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1077                             qstr, name, value, len);
1078}
1079EXPORT_SYMBOL(security_old_inode_init_security);
1080
1081#ifdef CONFIG_SECURITY_PATH
1082int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1083                        unsigned int dev)
1084{
1085        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1086                return 0;
1087        return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1088}
1089EXPORT_SYMBOL(security_path_mknod);
1090
1091int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1092{
1093        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1094                return 0;
1095        return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1096}
1097EXPORT_SYMBOL(security_path_mkdir);
1098
1099int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1100{
1101        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1102                return 0;
1103        return call_int_hook(path_rmdir, 0, dir, dentry);
1104}
1105
1106int security_path_unlink(const struct path *dir, struct dentry *dentry)
1107{
1108        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1109                return 0;
1110        return call_int_hook(path_unlink, 0, dir, dentry);
1111}
1112EXPORT_SYMBOL(security_path_unlink);
1113
1114int security_path_symlink(const struct path *dir, struct dentry *dentry,
1115                          const char *old_name)
1116{
1117        if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1118                return 0;
1119        return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1120}
1121
1122int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1123                       struct dentry *new_dentry)
1124{
1125        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1126                return 0;
1127        return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1128}
1129
1130int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1131                         const struct path *new_dir, struct dentry *new_dentry,
1132                         unsigned int flags)
1133{
1134        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1135                     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1136                return 0;
1137
1138        if (flags & RENAME_EXCHANGE) {
1139                int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1140                                        old_dir, old_dentry);
1141                if (err)
1142                        return err;
1143        }
1144
1145        return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1146                                new_dentry);
1147}
1148EXPORT_SYMBOL(security_path_rename);
1149
1150int security_path_truncate(const struct path *path)
1151{
1152        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1153                return 0;
1154        return call_int_hook(path_truncate, 0, path);
1155}
1156
1157int security_path_chmod(const struct path *path, umode_t mode)
1158{
1159        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1160                return 0;
1161        return call_int_hook(path_chmod, 0, path, mode);
1162}
1163
1164int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1165{
1166        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1167                return 0;
1168        return call_int_hook(path_chown, 0, path, uid, gid);
1169}
1170
1171int security_path_chroot(const struct path *path)
1172{
1173        return call_int_hook(path_chroot, 0, path);
1174}
1175#endif
1176
1177int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1178{
1179        if (unlikely(IS_PRIVATE(dir)))
1180                return 0;
1181        return call_int_hook(inode_create, 0, dir, dentry, mode);
1182}
1183EXPORT_SYMBOL_GPL(security_inode_create);
1184
1185int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1186                         struct dentry *new_dentry)
1187{
1188        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1189                return 0;
1190        return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1191}
1192
1193int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1194{
1195        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1196                return 0;
1197        return call_int_hook(inode_unlink, 0, dir, dentry);
1198}
1199
1200int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1201                            const char *old_name)
1202{
1203        if (unlikely(IS_PRIVATE(dir)))
1204                return 0;
1205        return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1206}
1207
1208int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1209{
1210        if (unlikely(IS_PRIVATE(dir)))
1211                return 0;
1212        return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1213}
1214EXPORT_SYMBOL_GPL(security_inode_mkdir);
1215
1216int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1217{
1218        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1219                return 0;
1220        return call_int_hook(inode_rmdir, 0, dir, dentry);
1221}
1222
1223int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1224{
1225        if (unlikely(IS_PRIVATE(dir)))
1226                return 0;
1227        return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1228}
1229
1230int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1231                           struct inode *new_dir, struct dentry *new_dentry,
1232                           unsigned int flags)
1233{
1234        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1235            (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1236                return 0;
1237
1238        if (flags & RENAME_EXCHANGE) {
1239                int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1240                                                     old_dir, old_dentry);
1241                if (err)
1242                        return err;
1243        }
1244
1245        return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1246                                           new_dir, new_dentry);
1247}
1248
1249int security_inode_readlink(struct dentry *dentry)
1250{
1251        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1252                return 0;
1253        return call_int_hook(inode_readlink, 0, dentry);
1254}
1255
1256int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1257                               bool rcu)
1258{
1259        if (unlikely(IS_PRIVATE(inode)))
1260                return 0;
1261        return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1262}
1263
1264int security_inode_permission(struct inode *inode, int mask)
1265{
1266        if (unlikely(IS_PRIVATE(inode)))
1267                return 0;
1268        return call_int_hook(inode_permission, 0, inode, mask);
1269}
1270
1271int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1272{
1273        int ret;
1274
1275        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1276                return 0;
1277        ret = call_int_hook(inode_setattr, 0, dentry, attr);
1278        if (ret)
1279                return ret;
1280        return evm_inode_setattr(dentry, attr);
1281}
1282EXPORT_SYMBOL_GPL(security_inode_setattr);
1283
1284int security_inode_getattr(const struct path *path)
1285{
1286        if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1287                return 0;
1288        return call_int_hook(inode_getattr, 0, path);
1289}
1290
1291int security_inode_setxattr(struct user_namespace *mnt_userns,
1292                            struct dentry *dentry, const char *name,
1293                            const void *value, size_t size, int flags)
1294{
1295        int ret;
1296
1297        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1298                return 0;
1299        /*
1300         * SELinux and Smack integrate the cap call,
1301         * so assume that all LSMs supplying this call do so.
1302         */
1303        ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1304                            size, flags);
1305
1306        if (ret == 1)
1307                ret = cap_inode_setxattr(dentry, name, value, size, flags);
1308        if (ret)
1309                return ret;
1310        ret = ima_inode_setxattr(dentry, name, value, size);
1311        if (ret)
1312                return ret;
1313        return evm_inode_setxattr(dentry, name, value, size);
1314}
1315
1316void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1317                                  const void *value, size_t size, int flags)
1318{
1319        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1320                return;
1321        call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1322        evm_inode_post_setxattr(dentry, name, value, size);
1323}
1324
1325int security_inode_getxattr(struct dentry *dentry, const char *name)
1326{
1327        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1328                return 0;
1329        return call_int_hook(inode_getxattr, 0, dentry, name);
1330}
1331
1332int security_inode_listxattr(struct dentry *dentry)
1333{
1334        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1335                return 0;
1336        return call_int_hook(inode_listxattr, 0, dentry);
1337}
1338
1339int security_inode_removexattr(struct user_namespace *mnt_userns,
1340                               struct dentry *dentry, const char *name)
1341{
1342        int ret;
1343
1344        if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1345                return 0;
1346        /*
1347         * SELinux and Smack integrate the cap call,
1348         * so assume that all LSMs supplying this call do so.
1349         */
1350        ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1351        if (ret == 1)
1352                ret = cap_inode_removexattr(mnt_userns, dentry, name);
1353        if (ret)
1354                return ret;
1355        ret = ima_inode_removexattr(dentry, name);
1356        if (ret)
1357                return ret;
1358        return evm_inode_removexattr(dentry, name);
1359}
1360
1361int security_inode_need_killpriv(struct dentry *dentry)
1362{
1363        return call_int_hook(inode_need_killpriv, 0, dentry);
1364}
1365
1366int security_inode_killpriv(struct user_namespace *mnt_userns,
1367                            struct dentry *dentry)
1368{
1369        return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1370}
1371
1372int security_inode_getsecurity(struct user_namespace *mnt_userns,
1373                               struct inode *inode, const char *name,
1374                               void **buffer, bool alloc)
1375{
1376        struct security_hook_list *hp;
1377        int rc;
1378
1379        if (unlikely(IS_PRIVATE(inode)))
1380                return LSM_RET_DEFAULT(inode_getsecurity);
1381        /*
1382         * Only one module will provide an attribute with a given name.
1383         */
1384        hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1385                rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1386                if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1387                        return rc;
1388        }
1389        return LSM_RET_DEFAULT(inode_getsecurity);
1390}
1391
1392int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1393{
1394        struct security_hook_list *hp;
1395        int rc;
1396
1397        if (unlikely(IS_PRIVATE(inode)))
1398                return LSM_RET_DEFAULT(inode_setsecurity);
1399        /*
1400         * Only one module will provide an attribute with a given name.
1401         */
1402        hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1403                rc = hp->hook.inode_setsecurity(inode, name, value, size,
1404                                                                flags);
1405                if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1406                        return rc;
1407        }
1408        return LSM_RET_DEFAULT(inode_setsecurity);
1409}
1410
1411int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1412{
1413        if (unlikely(IS_PRIVATE(inode)))
1414                return 0;
1415        return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1416}
1417EXPORT_SYMBOL(security_inode_listsecurity);
1418
1419void security_inode_getsecid(struct inode *inode, u32 *secid)
1420{
1421        call_void_hook(inode_getsecid, inode, secid);
1422}
1423
1424int security_inode_copy_up(struct dentry *src, struct cred **new)
1425{
1426        return call_int_hook(inode_copy_up, 0, src, new);
1427}
1428EXPORT_SYMBOL(security_inode_copy_up);
1429
1430int security_inode_copy_up_xattr(const char *name)
1431{
1432        struct security_hook_list *hp;
1433        int rc;
1434
1435        /*
1436         * The implementation can return 0 (accept the xattr), 1 (discard the
1437         * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1438         * any other error code incase of an error.
1439         */
1440        hlist_for_each_entry(hp,
1441                &security_hook_heads.inode_copy_up_xattr, list) {
1442                rc = hp->hook.inode_copy_up_xattr(name);
1443                if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1444                        return rc;
1445        }
1446
1447        return LSM_RET_DEFAULT(inode_copy_up_xattr);
1448}
1449EXPORT_SYMBOL(security_inode_copy_up_xattr);
1450
1451int security_kernfs_init_security(struct kernfs_node *kn_dir,
1452                                  struct kernfs_node *kn)
1453{
1454        return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1455}
1456
1457int security_file_permission(struct file *file, int mask)
1458{
1459        int ret;
1460
1461        ret = call_int_hook(file_permission, 0, file, mask);
1462        if (ret)
1463                return ret;
1464
1465        return fsnotify_perm(file, mask);
1466}
1467
1468int security_file_alloc(struct file *file)
1469{
1470        int rc = lsm_file_alloc(file);
1471
1472        if (rc)
1473                return rc;
1474        rc = call_int_hook(file_alloc_security, 0, file);
1475        if (unlikely(rc))
1476                security_file_free(file);
1477        return rc;
1478}
1479
1480void security_file_free(struct file *file)
1481{
1482        void *blob;
1483
1484        call_void_hook(file_free_security, file);
1485
1486        blob = file->f_security;
1487        if (blob) {
1488                file->f_security = NULL;
1489                kmem_cache_free(lsm_file_cache, blob);
1490        }
1491}
1492
1493int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1494{
1495        return call_int_hook(file_ioctl, 0, file, cmd, arg);
1496}
1497EXPORT_SYMBOL_GPL(security_file_ioctl);
1498
1499static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1500{
1501        /*
1502         * Does we have PROT_READ and does the application expect
1503         * it to imply PROT_EXEC?  If not, nothing to talk about...
1504         */
1505        if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1506                return prot;
1507        if (!(current->personality & READ_IMPLIES_EXEC))
1508                return prot;
1509        /*
1510         * if that's an anonymous mapping, let it.
1511         */
1512        if (!file)
1513                return prot | PROT_EXEC;
1514        /*
1515         * ditto if it's not on noexec mount, except that on !MMU we need
1516         * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1517         */
1518        if (!path_noexec(&file->f_path)) {
1519#ifndef CONFIG_MMU
1520                if (file->f_op->mmap_capabilities) {
1521                        unsigned caps = file->f_op->mmap_capabilities(file);
1522                        if (!(caps & NOMMU_MAP_EXEC))
1523                                return prot;
1524                }
1525#endif
1526                return prot | PROT_EXEC;
1527        }
1528        /* anything on noexec mount won't get PROT_EXEC */
1529        return prot;
1530}
1531
1532int security_mmap_file(struct file *file, unsigned long prot,
1533                        unsigned long flags)
1534{
1535        int ret;
1536        ret = call_int_hook(mmap_file, 0, file, prot,
1537                                        mmap_prot(file, prot), flags);
1538        if (ret)
1539                return ret;
1540        return ima_file_mmap(file, prot);
1541}
1542
1543int security_mmap_addr(unsigned long addr)
1544{
1545        return call_int_hook(mmap_addr, 0, addr);
1546}
1547
1548int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1549                            unsigned long prot)
1550{
1551        int ret;
1552
1553        ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1554        if (ret)
1555                return ret;
1556        return ima_file_mprotect(vma, prot);
1557}
1558
1559int security_file_lock(struct file *file, unsigned int cmd)
1560{
1561        return call_int_hook(file_lock, 0, file, cmd);
1562}
1563
1564int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1565{
1566        return call_int_hook(file_fcntl, 0, file, cmd, arg);
1567}
1568
1569void security_file_set_fowner(struct file *file)
1570{
1571        call_void_hook(file_set_fowner, file);
1572}
1573
1574int security_file_send_sigiotask(struct task_struct *tsk,
1575                                  struct fown_struct *fown, int sig)
1576{
1577        return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1578}
1579
1580int security_file_receive(struct file *file)
1581{
1582        return call_int_hook(file_receive, 0, file);
1583}
1584
1585int security_file_open(struct file *file)
1586{
1587        int ret;
1588
1589        ret = call_int_hook(file_open, 0, file);
1590        if (ret)
1591                return ret;
1592
1593        return fsnotify_perm(file, MAY_OPEN);
1594}
1595
1596int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1597{
1598        int rc = lsm_task_alloc(task);
1599
1600        if (rc)
1601                return rc;
1602        rc = call_int_hook(task_alloc, 0, task, clone_flags);
1603        if (unlikely(rc))
1604                security_task_free(task);
1605        return rc;
1606}
1607
1608void security_task_free(struct task_struct *task)
1609{
1610        call_void_hook(task_free, task);
1611
1612        kfree(task->security);
1613        task->security = NULL;
1614}
1615
1616int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1617{
1618        int rc = lsm_cred_alloc(cred, gfp);
1619
1620        if (rc)
1621                return rc;
1622
1623        rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1624        if (unlikely(rc))
1625                security_cred_free(cred);
1626        return rc;
1627}
1628
1629void security_cred_free(struct cred *cred)
1630{
1631        /*
1632         * There is a failure case in prepare_creds() that
1633         * may result in a call here with ->security being NULL.
1634         */
1635        if (unlikely(cred->security == NULL))
1636                return;
1637
1638        call_void_hook(cred_free, cred);
1639
1640        kfree(cred->security);
1641        cred->security = NULL;
1642}
1643
1644int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1645{
1646        int rc = lsm_cred_alloc(new, gfp);
1647
1648        if (rc)
1649                return rc;
1650
1651        rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1652        if (unlikely(rc))
1653                security_cred_free(new);
1654        return rc;
1655}
1656
1657void security_transfer_creds(struct cred *new, const struct cred *old)
1658{
1659        call_void_hook(cred_transfer, new, old);
1660}
1661
1662void security_cred_getsecid(const struct cred *c, u32 *secid)
1663{
1664        *secid = 0;
1665        call_void_hook(cred_getsecid, c, secid);
1666}
1667EXPORT_SYMBOL(security_cred_getsecid);
1668
1669int security_kernel_act_as(struct cred *new, u32 secid)
1670{
1671        return call_int_hook(kernel_act_as, 0, new, secid);
1672}
1673
1674int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1675{
1676        return call_int_hook(kernel_create_files_as, 0, new, inode);
1677}
1678
1679int security_kernel_module_request(char *kmod_name)
1680{
1681        int ret;
1682
1683        ret = call_int_hook(kernel_module_request, 0, kmod_name);
1684        if (ret)
1685                return ret;
1686        return integrity_kernel_module_request(kmod_name);
1687}
1688
1689int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1690                              bool contents)
1691{
1692        int ret;
1693
1694        ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1695        if (ret)
1696                return ret;
1697        return ima_read_file(file, id, contents);
1698}
1699EXPORT_SYMBOL_GPL(security_kernel_read_file);
1700
1701int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1702                                   enum kernel_read_file_id id)
1703{
1704        int ret;
1705
1706        ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1707        if (ret)
1708                return ret;
1709        return ima_post_read_file(file, buf, size, id);
1710}
1711EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1712
1713int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1714{
1715        int ret;
1716
1717        ret = call_int_hook(kernel_load_data, 0, id, contents);
1718        if (ret)
1719                return ret;
1720        return ima_load_data(id, contents);
1721}
1722EXPORT_SYMBOL_GPL(security_kernel_load_data);
1723
1724int security_kernel_post_load_data(char *buf, loff_t size,
1725                                   enum kernel_load_data_id id,
1726                                   char *description)
1727{
1728        int ret;
1729
1730        ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1731                            description);
1732        if (ret)
1733                return ret;
1734        return ima_post_load_data(buf, size, id, description);
1735}
1736EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1737
1738int security_task_fix_setuid(struct cred *new, const struct cred *old,
1739                             int flags)
1740{
1741        return call_int_hook(task_fix_setuid, 0, new, old, flags);
1742}
1743
1744int security_task_fix_setgid(struct cred *new, const struct cred *old,
1745                                 int flags)
1746{
1747        return call_int_hook(task_fix_setgid, 0, new, old, flags);
1748}
1749
1750int security_task_setpgid(struct task_struct *p, pid_t pgid)
1751{
1752        return call_int_hook(task_setpgid, 0, p, pgid);
1753}
1754
1755int security_task_getpgid(struct task_struct *p)
1756{
1757        return call_int_hook(task_getpgid, 0, p);
1758}
1759
1760int security_task_getsid(struct task_struct *p)
1761{
1762        return call_int_hook(task_getsid, 0, p);
1763}
1764
1765void security_task_getsecid(struct task_struct *p, u32 *secid)
1766{
1767        *secid = 0;
1768        call_void_hook(task_getsecid, p, secid);
1769}
1770EXPORT_SYMBOL(security_task_getsecid);
1771
1772int security_task_setnice(struct task_struct *p, int nice)
1773{
1774        return call_int_hook(task_setnice, 0, p, nice);
1775}
1776
1777int security_task_setioprio(struct task_struct *p, int ioprio)
1778{
1779        return call_int_hook(task_setioprio, 0, p, ioprio);
1780}
1781
1782int security_task_getioprio(struct task_struct *p)
1783{
1784        return call_int_hook(task_getioprio, 0, p);
1785}
1786
1787int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1788                          unsigned int flags)
1789{
1790        return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1791}
1792
1793int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1794                struct rlimit *new_rlim)
1795{
1796        return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1797}
1798
1799int security_task_setscheduler(struct task_struct *p)
1800{
1801        return call_int_hook(task_setscheduler, 0, p);
1802}
1803
1804int security_task_getscheduler(struct task_struct *p)
1805{
1806        return call_int_hook(task_getscheduler, 0, p);
1807}
1808
1809int security_task_movememory(struct task_struct *p)
1810{
1811        return call_int_hook(task_movememory, 0, p);
1812}
1813
1814int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1815                        int sig, const struct cred *cred)
1816{
1817        return call_int_hook(task_kill, 0, p, info, sig, cred);
1818}
1819
1820int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1821                         unsigned long arg4, unsigned long arg5)
1822{
1823        int thisrc;
1824        int rc = LSM_RET_DEFAULT(task_prctl);
1825        struct security_hook_list *hp;
1826
1827        hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1828                thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1829                if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1830                        rc = thisrc;
1831                        if (thisrc != 0)
1832                                break;
1833                }
1834        }
1835        return rc;
1836}
1837
1838void security_task_to_inode(struct task_struct *p, struct inode *inode)
1839{
1840        call_void_hook(task_to_inode, p, inode);
1841}
1842
1843int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1844{
1845        return call_int_hook(ipc_permission, 0, ipcp, flag);
1846}
1847
1848void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1849{
1850        *secid = 0;
1851        call_void_hook(ipc_getsecid, ipcp, secid);
1852}
1853
1854int security_msg_msg_alloc(struct msg_msg *msg)
1855{
1856        int rc = lsm_msg_msg_alloc(msg);
1857
1858        if (unlikely(rc))
1859                return rc;
1860        rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1861        if (unlikely(rc))
1862                security_msg_msg_free(msg);
1863        return rc;
1864}
1865
1866void security_msg_msg_free(struct msg_msg *msg)
1867{
1868        call_void_hook(msg_msg_free_security, msg);
1869        kfree(msg->security);
1870        msg->security = NULL;
1871}
1872
1873int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1874{
1875        int rc = lsm_ipc_alloc(msq);
1876
1877        if (unlikely(rc))
1878                return rc;
1879        rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1880        if (unlikely(rc))
1881                security_msg_queue_free(msq);
1882        return rc;
1883}
1884
1885void security_msg_queue_free(struct kern_ipc_perm *msq)
1886{
1887        call_void_hook(msg_queue_free_security, msq);
1888        kfree(msq->security);
1889        msq->security = NULL;
1890}
1891
1892int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1893{
1894        return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1895}
1896
1897int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1898{
1899        return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1900}
1901
1902int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1903                               struct msg_msg *msg, int msqflg)
1904{
1905        return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1906}
1907
1908int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1909                               struct task_struct *target, long type, int mode)
1910{
1911        return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1912}
1913
1914int security_shm_alloc(struct kern_ipc_perm *shp)
1915{
1916        int rc = lsm_ipc_alloc(shp);
1917
1918        if (unlikely(rc))
1919                return rc;
1920        rc = call_int_hook(shm_alloc_security, 0, shp);
1921        if (unlikely(rc))
1922                security_shm_free(shp);
1923        return rc;
1924}
1925
1926void security_shm_free(struct kern_ipc_perm *shp)
1927{
1928        call_void_hook(shm_free_security, shp);
1929        kfree(shp->security);
1930        shp->security = NULL;
1931}
1932
1933int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1934{
1935        return call_int_hook(shm_associate, 0, shp, shmflg);
1936}
1937
1938int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1939{
1940        return call_int_hook(shm_shmctl, 0, shp, cmd);
1941}
1942
1943int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1944{
1945        return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1946}
1947
1948int security_sem_alloc(struct kern_ipc_perm *sma)
1949{
1950        int rc = lsm_ipc_alloc(sma);
1951
1952        if (unlikely(rc))
1953                return rc;
1954        rc = call_int_hook(sem_alloc_security, 0, sma);
1955        if (unlikely(rc))
1956                security_sem_free(sma);
1957        return rc;
1958}
1959
1960void security_sem_free(struct kern_ipc_perm *sma)
1961{
1962        call_void_hook(sem_free_security, sma);
1963        kfree(sma->security);
1964        sma->security = NULL;
1965}
1966
1967int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1968{
1969        return call_int_hook(sem_associate, 0, sma, semflg);
1970}
1971
1972int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1973{
1974        return call_int_hook(sem_semctl, 0, sma, cmd);
1975}
1976
1977int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1978                        unsigned nsops, int alter)
1979{
1980        return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1981}
1982
1983void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1984{
1985        if (unlikely(inode && IS_PRIVATE(inode)))
1986                return;
1987        call_void_hook(d_instantiate, dentry, inode);
1988}
1989EXPORT_SYMBOL(security_d_instantiate);
1990
1991int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1992                                char **value)
1993{
1994        struct security_hook_list *hp;
1995
1996        hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1997                if (lsm != NULL && strcmp(lsm, hp->lsm))
1998                        continue;
1999                return hp->hook.getprocattr(p, name, value);
2000        }
2001        return LSM_RET_DEFAULT(getprocattr);
2002}
2003
2004int security_setprocattr(const char *lsm, const char *name, void *value,
2005                         size_t size)
2006{
2007        struct security_hook_list *hp;
2008
2009        hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2010                if (lsm != NULL && strcmp(lsm, hp->lsm))
2011                        continue;
2012                return hp->hook.setprocattr(name, value, size);
2013        }
2014        return LSM_RET_DEFAULT(setprocattr);
2015}
2016
2017int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2018{
2019        return call_int_hook(netlink_send, 0, sk, skb);
2020}
2021
2022int security_ismaclabel(const char *name)
2023{
2024        return call_int_hook(ismaclabel, 0, name);
2025}
2026EXPORT_SYMBOL(security_ismaclabel);
2027
2028int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2029{
2030        struct security_hook_list *hp;
2031        int rc;
2032
2033        /*
2034         * Currently, only one LSM can implement secid_to_secctx (i.e this
2035         * LSM hook is not "stackable").
2036         */
2037        hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2038                rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2039                if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2040                        return rc;
2041        }
2042
2043        return LSM_RET_DEFAULT(secid_to_secctx);
2044}
2045EXPORT_SYMBOL(security_secid_to_secctx);
2046
2047int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2048{
2049        *secid = 0;
2050        return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2051}
2052EXPORT_SYMBOL(security_secctx_to_secid);
2053
2054void security_release_secctx(char *secdata, u32 seclen)
2055{
2056        call_void_hook(release_secctx, secdata, seclen);
2057}
2058EXPORT_SYMBOL(security_release_secctx);
2059
2060void security_inode_invalidate_secctx(struct inode *inode)
2061{
2062        call_void_hook(inode_invalidate_secctx, inode);
2063}
2064EXPORT_SYMBOL(security_inode_invalidate_secctx);
2065
2066int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2067{
2068        return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2069}
2070EXPORT_SYMBOL(security_inode_notifysecctx);
2071
2072int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2073{
2074        return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2075}
2076EXPORT_SYMBOL(security_inode_setsecctx);
2077
2078int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2079{
2080        return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2081}
2082EXPORT_SYMBOL(security_inode_getsecctx);
2083
2084#ifdef CONFIG_WATCH_QUEUE
2085int security_post_notification(const struct cred *w_cred,
2086                               const struct cred *cred,
2087                               struct watch_notification *n)
2088{
2089        return call_int_hook(post_notification, 0, w_cred, cred, n);
2090}
2091#endif /* CONFIG_WATCH_QUEUE */
2092
2093#ifdef CONFIG_KEY_NOTIFICATIONS
2094int security_watch_key(struct key *key)
2095{
2096        return call_int_hook(watch_key, 0, key);
2097}
2098#endif
2099
2100#ifdef CONFIG_SECURITY_NETWORK
2101
2102int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2103{
2104        return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2105}
2106EXPORT_SYMBOL(security_unix_stream_connect);
2107
2108int security_unix_may_send(struct socket *sock,  struct socket *other)
2109{
2110        return call_int_hook(unix_may_send, 0, sock, other);
2111}
2112EXPORT_SYMBOL(security_unix_may_send);
2113
2114int security_socket_create(int family, int type, int protocol, int kern)
2115{
2116        return call_int_hook(socket_create, 0, family, type, protocol, kern);
2117}
2118
2119int security_socket_post_create(struct socket *sock, int family,
2120                                int type, int protocol, int kern)
2121{
2122        return call_int_hook(socket_post_create, 0, sock, family, type,
2123                                                protocol, kern);
2124}
2125
2126int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2127{
2128        return call_int_hook(socket_socketpair, 0, socka, sockb);
2129}
2130EXPORT_SYMBOL(security_socket_socketpair);
2131
2132int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2133{
2134        return call_int_hook(socket_bind, 0, sock, address, addrlen);
2135}
2136
2137int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2138{
2139        return call_int_hook(socket_connect, 0, sock, address, addrlen);
2140}
2141
2142int security_socket_listen(struct socket *sock, int backlog)
2143{
2144        return call_int_hook(socket_listen, 0, sock, backlog);
2145}
2146
2147int security_socket_accept(struct socket *sock, struct socket *newsock)
2148{
2149        return call_int_hook(socket_accept, 0, sock, newsock);
2150}
2151
2152int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2153{
2154        return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2155}
2156
2157int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2158                            int size, int flags)
2159{
2160        return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2161}
2162
2163int security_socket_getsockname(struct socket *sock)
2164{
2165        return call_int_hook(socket_getsockname, 0, sock);
2166}
2167
2168int security_socket_getpeername(struct socket *sock)
2169{
2170        return call_int_hook(socket_getpeername, 0, sock);
2171}
2172
2173int security_socket_getsockopt(struct socket *sock, int level, int optname)
2174{
2175        return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2176}
2177
2178int security_socket_setsockopt(struct socket *sock, int level, int optname)
2179{
2180        return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2181}
2182
2183int security_socket_shutdown(struct socket *sock, int how)
2184{
2185        return call_int_hook(socket_shutdown, 0, sock, how);
2186}
2187
2188int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2189{
2190        return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2191}
2192EXPORT_SYMBOL(security_sock_rcv_skb);
2193
2194int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2195                                      int __user *optlen, unsigned len)
2196{
2197        return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2198                                optval, optlen, len);
2199}
2200
2201int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2202{
2203        return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2204                             skb, secid);
2205}
2206EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2207
2208int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2209{
2210        return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2211}
2212
2213void security_sk_free(struct sock *sk)
2214{
2215        call_void_hook(sk_free_security, sk);
2216}
2217
2218void security_sk_clone(const struct sock *sk, struct sock *newsk)
2219{
2220        call_void_hook(sk_clone_security, sk, newsk);
2221}
2222EXPORT_SYMBOL(security_sk_clone);
2223
2224void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2225{
2226        call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2227}
2228EXPORT_SYMBOL(security_sk_classify_flow);
2229
2230void security_req_classify_flow(const struct request_sock *req,
2231                                struct flowi_common *flic)
2232{
2233        call_void_hook(req_classify_flow, req, flic);
2234}
2235EXPORT_SYMBOL(security_req_classify_flow);
2236
2237void security_sock_graft(struct sock *sk, struct socket *parent)
2238{
2239        call_void_hook(sock_graft, sk, parent);
2240}
2241EXPORT_SYMBOL(security_sock_graft);
2242
2243int security_inet_conn_request(const struct sock *sk,
2244                        struct sk_buff *skb, struct request_sock *req)
2245{
2246        return call_int_hook(inet_conn_request, 0, sk, skb, req);
2247}
2248EXPORT_SYMBOL(security_inet_conn_request);
2249
2250void security_inet_csk_clone(struct sock *newsk,
2251                        const struct request_sock *req)
2252{
2253        call_void_hook(inet_csk_clone, newsk, req);
2254}
2255
2256void security_inet_conn_established(struct sock *sk,
2257                        struct sk_buff *skb)
2258{
2259        call_void_hook(inet_conn_established, sk, skb);
2260}
2261EXPORT_SYMBOL(security_inet_conn_established);
2262
2263int security_secmark_relabel_packet(u32 secid)
2264{
2265        return call_int_hook(secmark_relabel_packet, 0, secid);
2266}
2267EXPORT_SYMBOL(security_secmark_relabel_packet);
2268
2269void security_secmark_refcount_inc(void)
2270{
2271        call_void_hook(secmark_refcount_inc);
2272}
2273EXPORT_SYMBOL(security_secmark_refcount_inc);
2274
2275void security_secmark_refcount_dec(void)
2276{
2277        call_void_hook(secmark_refcount_dec);
2278}
2279EXPORT_SYMBOL(security_secmark_refcount_dec);
2280
2281int security_tun_dev_alloc_security(void **security)
2282{
2283        return call_int_hook(tun_dev_alloc_security, 0, security);
2284}
2285EXPORT_SYMBOL(security_tun_dev_alloc_security);
2286
2287void security_tun_dev_free_security(void *security)
2288{
2289        call_void_hook(tun_dev_free_security, security);
2290}
2291EXPORT_SYMBOL(security_tun_dev_free_security);
2292
2293int security_tun_dev_create(void)
2294{
2295        return call_int_hook(tun_dev_create, 0);
2296}
2297EXPORT_SYMBOL(security_tun_dev_create);
2298
2299int security_tun_dev_attach_queue(void *security)
2300{
2301        return call_int_hook(tun_dev_attach_queue, 0, security);
2302}
2303EXPORT_SYMBOL(security_tun_dev_attach_queue);
2304
2305int security_tun_dev_attach(struct sock *sk, void *security)
2306{
2307        return call_int_hook(tun_dev_attach, 0, sk, security);
2308}
2309EXPORT_SYMBOL(security_tun_dev_attach);
2310
2311int security_tun_dev_open(void *security)
2312{
2313        return call_int_hook(tun_dev_open, 0, security);
2314}
2315EXPORT_SYMBOL(security_tun_dev_open);
2316
2317int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2318{
2319        return call_int_hook(sctp_assoc_request, 0, ep, skb);
2320}
2321EXPORT_SYMBOL(security_sctp_assoc_request);
2322
2323int security_sctp_bind_connect(struct sock *sk, int optname,
2324                               struct sockaddr *address, int addrlen)
2325{
2326        return call_int_hook(sctp_bind_connect, 0, sk, optname,
2327                             address, addrlen);
2328}
2329EXPORT_SYMBOL(security_sctp_bind_connect);
2330
2331void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2332                            struct sock *newsk)
2333{
2334        call_void_hook(sctp_sk_clone, ep, sk, newsk);
2335}
2336EXPORT_SYMBOL(security_sctp_sk_clone);
2337
2338#endif  /* CONFIG_SECURITY_NETWORK */
2339
2340#ifdef CONFIG_SECURITY_INFINIBAND
2341
2342int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2343{
2344        return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2345}
2346EXPORT_SYMBOL(security_ib_pkey_access);
2347
2348int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2349{
2350        return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2351}
2352EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2353
2354int security_ib_alloc_security(void **sec)
2355{
2356        return call_int_hook(ib_alloc_security, 0, sec);
2357}
2358EXPORT_SYMBOL(security_ib_alloc_security);
2359
2360void security_ib_free_security(void *sec)
2361{
2362        call_void_hook(ib_free_security, sec);
2363}
2364EXPORT_SYMBOL(security_ib_free_security);
2365#endif  /* CONFIG_SECURITY_INFINIBAND */
2366
2367#ifdef CONFIG_SECURITY_NETWORK_XFRM
2368
2369int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2370                               struct xfrm_user_sec_ctx *sec_ctx,
2371                               gfp_t gfp)
2372{
2373        return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2374}
2375EXPORT_SYMBOL(security_xfrm_policy_alloc);
2376
2377int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2378                              struct xfrm_sec_ctx **new_ctxp)
2379{
2380        return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2381}
2382
2383void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2384{
2385        call_void_hook(xfrm_policy_free_security, ctx);
2386}
2387EXPORT_SYMBOL(security_xfrm_policy_free);
2388
2389int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2390{
2391        return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2392}
2393
2394int security_xfrm_state_alloc(struct xfrm_state *x,
2395                              struct xfrm_user_sec_ctx *sec_ctx)
2396{
2397        return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2398}
2399EXPORT_SYMBOL(security_xfrm_state_alloc);
2400
2401int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2402                                      struct xfrm_sec_ctx *polsec, u32 secid)
2403{
2404        return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2405}
2406
2407int security_xfrm_state_delete(struct xfrm_state *x)
2408{
2409        return call_int_hook(xfrm_state_delete_security, 0, x);
2410}
2411EXPORT_SYMBOL(security_xfrm_state_delete);
2412
2413void security_xfrm_state_free(struct xfrm_state *x)
2414{
2415        call_void_hook(xfrm_state_free_security, x);
2416}
2417
2418int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2419{
2420        return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2421}
2422
2423int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2424                                       struct xfrm_policy *xp,
2425                                       const struct flowi_common *flic)
2426{
2427        struct security_hook_list *hp;
2428        int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2429
2430        /*
2431         * Since this function is expected to return 0 or 1, the judgment
2432         * becomes difficult if multiple LSMs supply this call. Fortunately,
2433         * we can use the first LSM's judgment because currently only SELinux
2434         * supplies this call.
2435         *
2436         * For speed optimization, we explicitly break the loop rather than
2437         * using the macro
2438         */
2439        hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2440                                list) {
2441                rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2442                break;
2443        }
2444        return rc;
2445}
2446
2447int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2448{
2449        return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2450}
2451
2452void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2453{
2454        int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2455                                0);
2456
2457        BUG_ON(rc);
2458}
2459EXPORT_SYMBOL(security_skb_classify_flow);
2460
2461#endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2462
2463#ifdef CONFIG_KEYS
2464
2465int security_key_alloc(struct key *key, const struct cred *cred,
2466                       unsigned long flags)
2467{
2468        return call_int_hook(key_alloc, 0, key, cred, flags);
2469}
2470
2471void security_key_free(struct key *key)
2472{
2473        call_void_hook(key_free, key);
2474}
2475
2476int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2477                            enum key_need_perm need_perm)
2478{
2479        return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2480}
2481
2482int security_key_getsecurity(struct key *key, char **_buffer)
2483{
2484        *_buffer = NULL;
2485        return call_int_hook(key_getsecurity, 0, key, _buffer);
2486}
2487
2488#endif  /* CONFIG_KEYS */
2489
2490#ifdef CONFIG_AUDIT
2491
2492int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2493{
2494        return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2495}
2496
2497int security_audit_rule_known(struct audit_krule *krule)
2498{
2499        return call_int_hook(audit_rule_known, 0, krule);
2500}
2501
2502void security_audit_rule_free(void *lsmrule)
2503{
2504        call_void_hook(audit_rule_free, lsmrule);
2505}
2506
2507int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2508{
2509        return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2510}
2511#endif /* CONFIG_AUDIT */
2512
2513#ifdef CONFIG_BPF_SYSCALL
2514int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2515{
2516        return call_int_hook(bpf, 0, cmd, attr, size);
2517}
2518int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2519{
2520        return call_int_hook(bpf_map, 0, map, fmode);
2521}
2522int security_bpf_prog(struct bpf_prog *prog)
2523{
2524        return call_int_hook(bpf_prog, 0, prog);
2525}
2526int security_bpf_map_alloc(struct bpf_map *map)
2527{
2528        return call_int_hook(bpf_map_alloc_security, 0, map);
2529}
2530int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2531{
2532        return call_int_hook(bpf_prog_alloc_security, 0, aux);
2533}
2534void security_bpf_map_free(struct bpf_map *map)
2535{
2536        call_void_hook(bpf_map_free_security, map);
2537}
2538void security_bpf_prog_free(struct bpf_prog_aux *aux)
2539{
2540        call_void_hook(bpf_prog_free_security, aux);
2541}
2542#endif /* CONFIG_BPF_SYSCALL */
2543
2544int security_locked_down(enum lockdown_reason what)
2545{
2546        return call_int_hook(locked_down, 0, what);
2547}
2548EXPORT_SYMBOL(security_locked_down);
2549
2550#ifdef CONFIG_PERF_EVENTS
2551int security_perf_event_open(struct perf_event_attr *attr, int type)
2552{
2553        return call_int_hook(perf_event_open, 0, attr, type);
2554}
2555
2556int security_perf_event_alloc(struct perf_event *event)
2557{
2558        return call_int_hook(perf_event_alloc, 0, event);
2559}
2560
2561void security_perf_event_free(struct perf_event *event)
2562{
2563        call_void_hook(perf_event_free, event);
2564}
2565
2566int security_perf_event_read(struct perf_event *event)
2567{
2568        return call_int_hook(perf_event_read, 0, event);
2569}
2570
2571int security_perf_event_write(struct perf_event *event)
2572{
2573        return call_int_hook(perf_event_write, 0, event);
2574}
2575#endif /* CONFIG_PERF_EVENTS */
2576