linux/arch/arm/vfp/vfp.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 *  linux/arch/arm/vfp/vfp.h
   4 *
   5 *  Copyright (C) 2004 ARM Limited.
   6 *  Written by Deep Blue Solutions Limited.
   7 */
   8
   9static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
  10{
  11        if (shift) {
  12                if (shift < 32)
  13                        val = val >> shift | ((val << (32 - shift)) != 0);
  14                else
  15                        val = val != 0;
  16        }
  17        return val;
  18}
  19
  20static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
  21{
  22        if (shift) {
  23                if (shift < 64)
  24                        val = val >> shift | ((val << (64 - shift)) != 0);
  25                else
  26                        val = val != 0;
  27        }
  28        return val;
  29}
  30
  31static inline u32 vfp_hi64to32jamming(u64 val)
  32{
  33        u32 v;
  34
  35        asm(
  36        "cmp    %Q1, #1         @ vfp_hi64to32jamming\n\t"
  37        "movcc  %0, %R1\n\t"
  38        "orrcs  %0, %R1, #1"
  39        : "=r" (v) : "r" (val) : "cc");
  40
  41        return v;
  42}
  43
  44static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
  45{
  46        asm(    "adds   %Q0, %Q2, %Q4\n\t"
  47                "adcs   %R0, %R2, %R4\n\t"
  48                "adcs   %Q1, %Q3, %Q5\n\t"
  49                "adc    %R1, %R3, %R5"
  50            : "=r" (nl), "=r" (nh)
  51            : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
  52            : "cc");
  53        *resh = nh;
  54        *resl = nl;
  55}
  56
  57static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
  58{
  59        asm(    "subs   %Q0, %Q2, %Q4\n\t"
  60                "sbcs   %R0, %R2, %R4\n\t"
  61                "sbcs   %Q1, %Q3, %Q5\n\t"
  62                "sbc    %R1, %R3, %R5\n\t"
  63            : "=r" (nl), "=r" (nh)
  64            : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
  65            : "cc");
  66        *resh = nh;
  67        *resl = nl;
  68}
  69
  70static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
  71{
  72        u32 nh, nl, mh, ml;
  73        u64 rh, rma, rmb, rl;
  74
  75        nl = n;
  76        ml = m;
  77        rl = (u64)nl * ml;
  78
  79        nh = n >> 32;
  80        rma = (u64)nh * ml;
  81
  82        mh = m >> 32;
  83        rmb = (u64)nl * mh;
  84        rma += rmb;
  85
  86        rh = (u64)nh * mh;
  87        rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
  88
  89        rma <<= 32;
  90        rl += rma;
  91        rh += (rl < rma);
  92
  93        *resl = rl;
  94        *resh = rh;
  95}
  96
  97static inline void shift64left(u64 *resh, u64 *resl, u64 n)
  98{
  99        *resh = n >> 63;
 100        *resl = n << 1;
 101}
 102
 103static inline u64 vfp_hi64multiply64(u64 n, u64 m)
 104{
 105        u64 rh, rl;
 106        mul64to128(&rh, &rl, n, m);
 107        return rh | (rl != 0);
 108}
 109
 110static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
 111{
 112        u64 mh, ml, remh, reml, termh, terml, z;
 113
 114        if (nh >= m)
 115                return ~0ULL;
 116        mh = m >> 32;
 117        if (mh << 32 <= nh) {
 118                z = 0xffffffff00000000ULL;
 119        } else {
 120                z = nh;
 121                do_div(z, mh);
 122                z <<= 32;
 123        }
 124        mul64to128(&termh, &terml, m, z);
 125        sub128(&remh, &reml, nh, nl, termh, terml);
 126        ml = m << 32;
 127        while ((s64)remh < 0) {
 128                z -= 0x100000000ULL;
 129                add128(&remh, &reml, remh, reml, mh, ml);
 130        }
 131        remh = (remh << 32) | (reml >> 32);
 132        if (mh << 32 <= remh) {
 133                z |= 0xffffffff;
 134        } else {
 135                do_div(remh, mh);
 136                z |= remh;
 137        }
 138        return z;
 139}
 140
 141/*
 142 * Operations on unpacked elements
 143 */
 144#define vfp_sign_negate(sign)   (sign ^ 0x8000)
 145
 146/*
 147 * Single-precision
 148 */
 149struct vfp_single {
 150        s16     exponent;
 151        u16     sign;
 152        u32     significand;
 153};
 154
 155asmlinkage s32 vfp_get_float(unsigned int reg);
 156asmlinkage void vfp_put_float(s32 val, unsigned int reg);
 157
 158/*
 159 * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
 160 * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
 161 * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
 162 *  which are not propagated to the float upon packing.
 163 */
 164#define VFP_SINGLE_MANTISSA_BITS        (23)
 165#define VFP_SINGLE_EXPONENT_BITS        (8)
 166#define VFP_SINGLE_LOW_BITS             (32 - VFP_SINGLE_MANTISSA_BITS - 2)
 167#define VFP_SINGLE_LOW_BITS_MASK        ((1 << VFP_SINGLE_LOW_BITS) - 1)
 168
 169/*
 170 * The bit in an unpacked float which indicates that it is a quiet NaN
 171 */
 172#define VFP_SINGLE_SIGNIFICAND_QNAN     (1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
 173
 174/*
 175 * Operations on packed single-precision numbers
 176 */
 177#define vfp_single_packed_sign(v)       ((v) & 0x80000000)
 178#define vfp_single_packed_negate(v)     ((v) ^ 0x80000000)
 179#define vfp_single_packed_abs(v)        ((v) & ~0x80000000)
 180#define vfp_single_packed_exponent(v)   (((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
 181#define vfp_single_packed_mantissa(v)   ((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
 182
 183/*
 184 * Unpack a single-precision float.  Note that this returns the magnitude
 185 * of the single-precision float mantissa with the 1. if necessary,
 186 * aligned to bit 30.
 187 */
 188static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
 189{
 190        u32 significand;
 191
 192        s->sign = vfp_single_packed_sign(val) >> 16,
 193        s->exponent = vfp_single_packed_exponent(val);
 194
 195        significand = (u32) val;
 196        significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
 197        if (s->exponent && s->exponent != 255)
 198                significand |= 0x40000000;
 199        s->significand = significand;
 200}
 201
 202/*
 203 * Re-pack a single-precision float.  This assumes that the float is
 204 * already normalised such that the MSB is bit 30, _not_ bit 31.
 205 */
 206static inline s32 vfp_single_pack(struct vfp_single *s)
 207{
 208        u32 val;
 209        val = (s->sign << 16) +
 210              (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
 211              (s->significand >> VFP_SINGLE_LOW_BITS);
 212        return (s32)val;
 213}
 214
 215#define VFP_NUMBER              (1<<0)
 216#define VFP_ZERO                (1<<1)
 217#define VFP_DENORMAL            (1<<2)
 218#define VFP_INFINITY            (1<<3)
 219#define VFP_NAN                 (1<<4)
 220#define VFP_NAN_SIGNAL          (1<<5)
 221
 222#define VFP_QNAN                (VFP_NAN)
 223#define VFP_SNAN                (VFP_NAN|VFP_NAN_SIGNAL)
 224
 225static inline int vfp_single_type(struct vfp_single *s)
 226{
 227        int type = VFP_NUMBER;
 228        if (s->exponent == 255) {
 229                if (s->significand == 0)
 230                        type = VFP_INFINITY;
 231                else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
 232                        type = VFP_QNAN;
 233                else
 234                        type = VFP_SNAN;
 235        } else if (s->exponent == 0) {
 236                if (s->significand == 0)
 237                        type |= VFP_ZERO;
 238                else
 239                        type |= VFP_DENORMAL;
 240        }
 241        return type;
 242}
 243
 244#ifndef DEBUG
 245#define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
 246u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);
 247#else
 248u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
 249#endif
 250
 251/*
 252 * Double-precision
 253 */
 254struct vfp_double {
 255        s16     exponent;
 256        u16     sign;
 257        u64     significand;
 258};
 259
 260/*
 261 * VFP_REG_ZERO is a special register number for vfp_get_double
 262 * which returns (double)0.0.  This is useful for the compare with
 263 * zero instructions.
 264 */
 265#ifdef CONFIG_VFPv3
 266#define VFP_REG_ZERO    32
 267#else
 268#define VFP_REG_ZERO    16
 269#endif
 270asmlinkage u64 vfp_get_double(unsigned int reg);
 271asmlinkage void vfp_put_double(u64 val, unsigned int reg);
 272
 273#define VFP_DOUBLE_MANTISSA_BITS        (52)
 274#define VFP_DOUBLE_EXPONENT_BITS        (11)
 275#define VFP_DOUBLE_LOW_BITS             (64 - VFP_DOUBLE_MANTISSA_BITS - 2)
 276#define VFP_DOUBLE_LOW_BITS_MASK        ((1 << VFP_DOUBLE_LOW_BITS) - 1)
 277
 278/*
 279 * The bit in an unpacked double which indicates that it is a quiet NaN
 280 */
 281#define VFP_DOUBLE_SIGNIFICAND_QNAN     (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
 282
 283/*
 284 * Operations on packed single-precision numbers
 285 */
 286#define vfp_double_packed_sign(v)       ((v) & (1ULL << 63))
 287#define vfp_double_packed_negate(v)     ((v) ^ (1ULL << 63))
 288#define vfp_double_packed_abs(v)        ((v) & ~(1ULL << 63))
 289#define vfp_double_packed_exponent(v)   (((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
 290#define vfp_double_packed_mantissa(v)   ((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
 291
 292/*
 293 * Unpack a double-precision float.  Note that this returns the magnitude
 294 * of the double-precision float mantissa with the 1. if necessary,
 295 * aligned to bit 62.
 296 */
 297static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
 298{
 299        u64 significand;
 300
 301        s->sign = vfp_double_packed_sign(val) >> 48;
 302        s->exponent = vfp_double_packed_exponent(val);
 303
 304        significand = (u64) val;
 305        significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
 306        if (s->exponent && s->exponent != 2047)
 307                significand |= (1ULL << 62);
 308        s->significand = significand;
 309}
 310
 311/*
 312 * Re-pack a double-precision float.  This assumes that the float is
 313 * already normalised such that the MSB is bit 30, _not_ bit 31.
 314 */
 315static inline s64 vfp_double_pack(struct vfp_double *s)
 316{
 317        u64 val;
 318        val = ((u64)s->sign << 48) +
 319              ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
 320              (s->significand >> VFP_DOUBLE_LOW_BITS);
 321        return (s64)val;
 322}
 323
 324static inline int vfp_double_type(struct vfp_double *s)
 325{
 326        int type = VFP_NUMBER;
 327        if (s->exponent == 2047) {
 328                if (s->significand == 0)
 329                        type = VFP_INFINITY;
 330                else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
 331                        type = VFP_QNAN;
 332                else
 333                        type = VFP_SNAN;
 334        } else if (s->exponent == 0) {
 335                if (s->significand == 0)
 336                        type |= VFP_ZERO;
 337                else
 338                        type |= VFP_DENORMAL;
 339        }
 340        return type;
 341}
 342
 343u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
 344
 345u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);
 346
 347/*
 348 * A special flag to tell the normalisation code not to normalise.
 349 */
 350#define VFP_NAN_FLAG    0x100
 351
 352/*
 353 * A bit pattern used to indicate the initial (unset) value of the
 354 * exception mask, in case nothing handles an instruction.  This
 355 * doesn't include the NAN flag, which get masked out before
 356 * we check for an error.
 357 */
 358#define VFP_EXCEPTION_ERROR     ((u32)-1 & ~VFP_NAN_FLAG)
 359
 360/*
 361 * A flag to tell vfp instruction type.
 362 *  OP_SCALAR - this operation always operates in scalar mode
 363 *  OP_SD - the instruction exceptionally writes to a single precision result.
 364 *  OP_DD - the instruction exceptionally writes to a double precision result.
 365 *  OP_SM - the instruction exceptionally reads from a single precision operand.
 366 */
 367#define OP_SCALAR       (1 << 0)
 368#define OP_SD           (1 << 1)
 369#define OP_DD           (1 << 1)
 370#define OP_SM           (1 << 2)
 371
 372struct op {
 373        u32 (* const fn)(int dd, int dn, int dm, u32 fpscr);
 374        u32 flags;
 375};
 376
 377asmlinkage void vfp_save_state(void *location, u32 fpexc);
 378