1
2
3
4
5
6
7
8#include <asm/neon.h>
9#include <asm/hwcap.h>
10#include <asm/simd.h>
11#include <crypto/aes.h>
12#include <crypto/ctr.h>
13#include <crypto/sha2.h>
14#include <crypto/internal/hash.h>
15#include <crypto/internal/simd.h>
16#include <crypto/internal/skcipher.h>
17#include <crypto/scatterwalk.h>
18#include <linux/module.h>
19#include <linux/cpufeature.h>
20#include <crypto/xts.h>
21
22#include "aes-ce-setkey.h"
23
24#ifdef USE_V8_CRYPTO_EXTENSIONS
25#define MODE "ce"
26#define PRIO 300
27#define STRIDE 5
28#define aes_expandkey ce_aes_expandkey
29#define aes_ecb_encrypt ce_aes_ecb_encrypt
30#define aes_ecb_decrypt ce_aes_ecb_decrypt
31#define aes_cbc_encrypt ce_aes_cbc_encrypt
32#define aes_cbc_decrypt ce_aes_cbc_decrypt
33#define aes_cbc_cts_encrypt ce_aes_cbc_cts_encrypt
34#define aes_cbc_cts_decrypt ce_aes_cbc_cts_decrypt
35#define aes_essiv_cbc_encrypt ce_aes_essiv_cbc_encrypt
36#define aes_essiv_cbc_decrypt ce_aes_essiv_cbc_decrypt
37#define aes_ctr_encrypt ce_aes_ctr_encrypt
38#define aes_xts_encrypt ce_aes_xts_encrypt
39#define aes_xts_decrypt ce_aes_xts_decrypt
40#define aes_mac_update ce_aes_mac_update
41MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
42#else
43#define MODE "neon"
44#define PRIO 200
45#define STRIDE 4
46#define aes_ecb_encrypt neon_aes_ecb_encrypt
47#define aes_ecb_decrypt neon_aes_ecb_decrypt
48#define aes_cbc_encrypt neon_aes_cbc_encrypt
49#define aes_cbc_decrypt neon_aes_cbc_decrypt
50#define aes_cbc_cts_encrypt neon_aes_cbc_cts_encrypt
51#define aes_cbc_cts_decrypt neon_aes_cbc_cts_decrypt
52#define aes_essiv_cbc_encrypt neon_aes_essiv_cbc_encrypt
53#define aes_essiv_cbc_decrypt neon_aes_essiv_cbc_decrypt
54#define aes_ctr_encrypt neon_aes_ctr_encrypt
55#define aes_xts_encrypt neon_aes_xts_encrypt
56#define aes_xts_decrypt neon_aes_xts_decrypt
57#define aes_mac_update neon_aes_mac_update
58MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON");
59#endif
60#if defined(USE_V8_CRYPTO_EXTENSIONS) || !IS_ENABLED(CONFIG_CRYPTO_AES_ARM64_BS)
61MODULE_ALIAS_CRYPTO("ecb(aes)");
62MODULE_ALIAS_CRYPTO("cbc(aes)");
63MODULE_ALIAS_CRYPTO("ctr(aes)");
64MODULE_ALIAS_CRYPTO("xts(aes)");
65#endif
66MODULE_ALIAS_CRYPTO("cts(cbc(aes))");
67MODULE_ALIAS_CRYPTO("essiv(cbc(aes),sha256)");
68MODULE_ALIAS_CRYPTO("cmac(aes)");
69MODULE_ALIAS_CRYPTO("xcbc(aes)");
70MODULE_ALIAS_CRYPTO("cbcmac(aes)");
71
72MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
73MODULE_LICENSE("GPL v2");
74
75
76asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
77 int rounds, int blocks);
78asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[],
79 int rounds, int blocks);
80
81asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
82 int rounds, int blocks, u8 iv[]);
83asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[],
84 int rounds, int blocks, u8 iv[]);
85
86asmlinkage void aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[],
87 int rounds, int bytes, u8 const iv[]);
88asmlinkage void aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[],
89 int rounds, int bytes, u8 const iv[]);
90
91asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
92 int rounds, int bytes, u8 ctr[], u8 finalbuf[]);
93
94asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[],
95 int rounds, int bytes, u32 const rk2[], u8 iv[],
96 int first);
97asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[],
98 int rounds, int bytes, u32 const rk2[], u8 iv[],
99 int first);
100
101asmlinkage void aes_essiv_cbc_encrypt(u8 out[], u8 const in[], u32 const rk1[],
102 int rounds, int blocks, u8 iv[],
103 u32 const rk2[]);
104asmlinkage void aes_essiv_cbc_decrypt(u8 out[], u8 const in[], u32 const rk1[],
105 int rounds, int blocks, u8 iv[],
106 u32 const rk2[]);
107
108asmlinkage int aes_mac_update(u8 const in[], u32 const rk[], int rounds,
109 int blocks, u8 dg[], int enc_before,
110 int enc_after);
111
112struct crypto_aes_xts_ctx {
113 struct crypto_aes_ctx key1;
114 struct crypto_aes_ctx __aligned(8) key2;
115};
116
117struct crypto_aes_essiv_cbc_ctx {
118 struct crypto_aes_ctx key1;
119 struct crypto_aes_ctx __aligned(8) key2;
120 struct crypto_shash *hash;
121};
122
123struct mac_tfm_ctx {
124 struct crypto_aes_ctx key;
125 u8 __aligned(8) consts[];
126};
127
128struct mac_desc_ctx {
129 unsigned int len;
130 u8 dg[AES_BLOCK_SIZE];
131};
132
133static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
134 unsigned int key_len)
135{
136 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
137
138 return aes_expandkey(ctx, in_key, key_len);
139}
140
141static int __maybe_unused xts_set_key(struct crypto_skcipher *tfm,
142 const u8 *in_key, unsigned int key_len)
143{
144 struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
145 int ret;
146
147 ret = xts_verify_key(tfm, in_key, key_len);
148 if (ret)
149 return ret;
150
151 ret = aes_expandkey(&ctx->key1, in_key, key_len / 2);
152 if (!ret)
153 ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2],
154 key_len / 2);
155 return ret;
156}
157
158static int __maybe_unused essiv_cbc_set_key(struct crypto_skcipher *tfm,
159 const u8 *in_key,
160 unsigned int key_len)
161{
162 struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
163 u8 digest[SHA256_DIGEST_SIZE];
164 int ret;
165
166 ret = aes_expandkey(&ctx->key1, in_key, key_len);
167 if (ret)
168 return ret;
169
170 crypto_shash_tfm_digest(ctx->hash, in_key, key_len, digest);
171
172 return aes_expandkey(&ctx->key2, digest, sizeof(digest));
173}
174
175static int __maybe_unused ecb_encrypt(struct skcipher_request *req)
176{
177 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
178 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
179 int err, rounds = 6 + ctx->key_length / 4;
180 struct skcipher_walk walk;
181 unsigned int blocks;
182
183 err = skcipher_walk_virt(&walk, req, false);
184
185 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
186 kernel_neon_begin();
187 aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
188 ctx->key_enc, rounds, blocks);
189 kernel_neon_end();
190 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
191 }
192 return err;
193}
194
195static int __maybe_unused ecb_decrypt(struct skcipher_request *req)
196{
197 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
198 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
199 int err, rounds = 6 + ctx->key_length / 4;
200 struct skcipher_walk walk;
201 unsigned int blocks;
202
203 err = skcipher_walk_virt(&walk, req, false);
204
205 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
206 kernel_neon_begin();
207 aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
208 ctx->key_dec, rounds, blocks);
209 kernel_neon_end();
210 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
211 }
212 return err;
213}
214
215static int cbc_encrypt_walk(struct skcipher_request *req,
216 struct skcipher_walk *walk)
217{
218 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
219 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
220 int err = 0, rounds = 6 + ctx->key_length / 4;
221 unsigned int blocks;
222
223 while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
224 kernel_neon_begin();
225 aes_cbc_encrypt(walk->dst.virt.addr, walk->src.virt.addr,
226 ctx->key_enc, rounds, blocks, walk->iv);
227 kernel_neon_end();
228 err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
229 }
230 return err;
231}
232
233static int __maybe_unused cbc_encrypt(struct skcipher_request *req)
234{
235 struct skcipher_walk walk;
236 int err;
237
238 err = skcipher_walk_virt(&walk, req, false);
239 if (err)
240 return err;
241 return cbc_encrypt_walk(req, &walk);
242}
243
244static int cbc_decrypt_walk(struct skcipher_request *req,
245 struct skcipher_walk *walk)
246{
247 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
248 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
249 int err = 0, rounds = 6 + ctx->key_length / 4;
250 unsigned int blocks;
251
252 while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
253 kernel_neon_begin();
254 aes_cbc_decrypt(walk->dst.virt.addr, walk->src.virt.addr,
255 ctx->key_dec, rounds, blocks, walk->iv);
256 kernel_neon_end();
257 err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
258 }
259 return err;
260}
261
262static int __maybe_unused cbc_decrypt(struct skcipher_request *req)
263{
264 struct skcipher_walk walk;
265 int err;
266
267 err = skcipher_walk_virt(&walk, req, false);
268 if (err)
269 return err;
270 return cbc_decrypt_walk(req, &walk);
271}
272
273static int cts_cbc_encrypt(struct skcipher_request *req)
274{
275 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
276 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
277 int err, rounds = 6 + ctx->key_length / 4;
278 int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
279 struct scatterlist *src = req->src, *dst = req->dst;
280 struct scatterlist sg_src[2], sg_dst[2];
281 struct skcipher_request subreq;
282 struct skcipher_walk walk;
283
284 skcipher_request_set_tfm(&subreq, tfm);
285 skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
286 NULL, NULL);
287
288 if (req->cryptlen <= AES_BLOCK_SIZE) {
289 if (req->cryptlen < AES_BLOCK_SIZE)
290 return -EINVAL;
291 cbc_blocks = 1;
292 }
293
294 if (cbc_blocks > 0) {
295 skcipher_request_set_crypt(&subreq, req->src, req->dst,
296 cbc_blocks * AES_BLOCK_SIZE,
297 req->iv);
298
299 err = skcipher_walk_virt(&walk, &subreq, false) ?:
300 cbc_encrypt_walk(&subreq, &walk);
301 if (err)
302 return err;
303
304 if (req->cryptlen == AES_BLOCK_SIZE)
305 return 0;
306
307 dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
308 if (req->dst != req->src)
309 dst = scatterwalk_ffwd(sg_dst, req->dst,
310 subreq.cryptlen);
311 }
312
313
314 skcipher_request_set_crypt(&subreq, src, dst,
315 req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
316 req->iv);
317
318 err = skcipher_walk_virt(&walk, &subreq, false);
319 if (err)
320 return err;
321
322 kernel_neon_begin();
323 aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
324 ctx->key_enc, rounds, walk.nbytes, walk.iv);
325 kernel_neon_end();
326
327 return skcipher_walk_done(&walk, 0);
328}
329
330static int cts_cbc_decrypt(struct skcipher_request *req)
331{
332 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
333 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
334 int err, rounds = 6 + ctx->key_length / 4;
335 int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
336 struct scatterlist *src = req->src, *dst = req->dst;
337 struct scatterlist sg_src[2], sg_dst[2];
338 struct skcipher_request subreq;
339 struct skcipher_walk walk;
340
341 skcipher_request_set_tfm(&subreq, tfm);
342 skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
343 NULL, NULL);
344
345 if (req->cryptlen <= AES_BLOCK_SIZE) {
346 if (req->cryptlen < AES_BLOCK_SIZE)
347 return -EINVAL;
348 cbc_blocks = 1;
349 }
350
351 if (cbc_blocks > 0) {
352 skcipher_request_set_crypt(&subreq, req->src, req->dst,
353 cbc_blocks * AES_BLOCK_SIZE,
354 req->iv);
355
356 err = skcipher_walk_virt(&walk, &subreq, false) ?:
357 cbc_decrypt_walk(&subreq, &walk);
358 if (err)
359 return err;
360
361 if (req->cryptlen == AES_BLOCK_SIZE)
362 return 0;
363
364 dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
365 if (req->dst != req->src)
366 dst = scatterwalk_ffwd(sg_dst, req->dst,
367 subreq.cryptlen);
368 }
369
370
371 skcipher_request_set_crypt(&subreq, src, dst,
372 req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
373 req->iv);
374
375 err = skcipher_walk_virt(&walk, &subreq, false);
376 if (err)
377 return err;
378
379 kernel_neon_begin();
380 aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
381 ctx->key_dec, rounds, walk.nbytes, walk.iv);
382 kernel_neon_end();
383
384 return skcipher_walk_done(&walk, 0);
385}
386
387static int __maybe_unused essiv_cbc_init_tfm(struct crypto_skcipher *tfm)
388{
389 struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
390
391 ctx->hash = crypto_alloc_shash("sha256", 0, 0);
392
393 return PTR_ERR_OR_ZERO(ctx->hash);
394}
395
396static void __maybe_unused essiv_cbc_exit_tfm(struct crypto_skcipher *tfm)
397{
398 struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
399
400 crypto_free_shash(ctx->hash);
401}
402
403static int __maybe_unused essiv_cbc_encrypt(struct skcipher_request *req)
404{
405 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
406 struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
407 int err, rounds = 6 + ctx->key1.key_length / 4;
408 struct skcipher_walk walk;
409 unsigned int blocks;
410
411 err = skcipher_walk_virt(&walk, req, false);
412
413 blocks = walk.nbytes / AES_BLOCK_SIZE;
414 if (blocks) {
415 kernel_neon_begin();
416 aes_essiv_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
417 ctx->key1.key_enc, rounds, blocks,
418 req->iv, ctx->key2.key_enc);
419 kernel_neon_end();
420 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
421 }
422 return err ?: cbc_encrypt_walk(req, &walk);
423}
424
425static int __maybe_unused essiv_cbc_decrypt(struct skcipher_request *req)
426{
427 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
428 struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
429 int err, rounds = 6 + ctx->key1.key_length / 4;
430 struct skcipher_walk walk;
431 unsigned int blocks;
432
433 err = skcipher_walk_virt(&walk, req, false);
434
435 blocks = walk.nbytes / AES_BLOCK_SIZE;
436 if (blocks) {
437 kernel_neon_begin();
438 aes_essiv_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
439 ctx->key1.key_dec, rounds, blocks,
440 req->iv, ctx->key2.key_enc);
441 kernel_neon_end();
442 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
443 }
444 return err ?: cbc_decrypt_walk(req, &walk);
445}
446
447static int ctr_encrypt(struct skcipher_request *req)
448{
449 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
450 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
451 int err, rounds = 6 + ctx->key_length / 4;
452 struct skcipher_walk walk;
453
454 err = skcipher_walk_virt(&walk, req, false);
455
456 while (walk.nbytes > 0) {
457 const u8 *src = walk.src.virt.addr;
458 unsigned int nbytes = walk.nbytes;
459 u8 *dst = walk.dst.virt.addr;
460 u8 buf[AES_BLOCK_SIZE];
461 unsigned int tail;
462
463 if (unlikely(nbytes < AES_BLOCK_SIZE))
464 src = memcpy(buf, src, nbytes);
465 else if (nbytes < walk.total)
466 nbytes &= ~(AES_BLOCK_SIZE - 1);
467
468 kernel_neon_begin();
469 aes_ctr_encrypt(dst, src, ctx->key_enc, rounds, nbytes,
470 walk.iv, buf);
471 kernel_neon_end();
472
473 tail = nbytes % (STRIDE * AES_BLOCK_SIZE);
474 if (tail > 0 && tail < AES_BLOCK_SIZE)
475
476
477
478
479
480 memcpy(dst + nbytes - tail, buf, tail);
481
482 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
483 }
484
485 return err;
486}
487
488static void ctr_encrypt_one(struct crypto_skcipher *tfm, const u8 *src, u8 *dst)
489{
490 const struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
491 unsigned long flags;
492
493
494
495
496
497
498 local_irq_save(flags);
499 aes_encrypt(ctx, dst, src);
500 local_irq_restore(flags);
501}
502
503static int __maybe_unused ctr_encrypt_sync(struct skcipher_request *req)
504{
505 if (!crypto_simd_usable())
506 return crypto_ctr_encrypt_walk(req, ctr_encrypt_one);
507
508 return ctr_encrypt(req);
509}
510
511static int __maybe_unused xts_encrypt(struct skcipher_request *req)
512{
513 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
514 struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
515 int err, first, rounds = 6 + ctx->key1.key_length / 4;
516 int tail = req->cryptlen % AES_BLOCK_SIZE;
517 struct scatterlist sg_src[2], sg_dst[2];
518 struct skcipher_request subreq;
519 struct scatterlist *src, *dst;
520 struct skcipher_walk walk;
521
522 if (req->cryptlen < AES_BLOCK_SIZE)
523 return -EINVAL;
524
525 err = skcipher_walk_virt(&walk, req, false);
526
527 if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
528 int xts_blocks = DIV_ROUND_UP(req->cryptlen,
529 AES_BLOCK_SIZE) - 2;
530
531 skcipher_walk_abort(&walk);
532
533 skcipher_request_set_tfm(&subreq, tfm);
534 skcipher_request_set_callback(&subreq,
535 skcipher_request_flags(req),
536 NULL, NULL);
537 skcipher_request_set_crypt(&subreq, req->src, req->dst,
538 xts_blocks * AES_BLOCK_SIZE,
539 req->iv);
540 req = &subreq;
541 err = skcipher_walk_virt(&walk, req, false);
542 } else {
543 tail = 0;
544 }
545
546 for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
547 int nbytes = walk.nbytes;
548
549 if (walk.nbytes < walk.total)
550 nbytes &= ~(AES_BLOCK_SIZE - 1);
551
552 kernel_neon_begin();
553 aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
554 ctx->key1.key_enc, rounds, nbytes,
555 ctx->key2.key_enc, walk.iv, first);
556 kernel_neon_end();
557 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
558 }
559
560 if (err || likely(!tail))
561 return err;
562
563 dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
564 if (req->dst != req->src)
565 dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
566
567 skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
568 req->iv);
569
570 err = skcipher_walk_virt(&walk, &subreq, false);
571 if (err)
572 return err;
573
574 kernel_neon_begin();
575 aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
576 ctx->key1.key_enc, rounds, walk.nbytes,
577 ctx->key2.key_enc, walk.iv, first);
578 kernel_neon_end();
579
580 return skcipher_walk_done(&walk, 0);
581}
582
583static int __maybe_unused xts_decrypt(struct skcipher_request *req)
584{
585 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
586 struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
587 int err, first, rounds = 6 + ctx->key1.key_length / 4;
588 int tail = req->cryptlen % AES_BLOCK_SIZE;
589 struct scatterlist sg_src[2], sg_dst[2];
590 struct skcipher_request subreq;
591 struct scatterlist *src, *dst;
592 struct skcipher_walk walk;
593
594 if (req->cryptlen < AES_BLOCK_SIZE)
595 return -EINVAL;
596
597 err = skcipher_walk_virt(&walk, req, false);
598
599 if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
600 int xts_blocks = DIV_ROUND_UP(req->cryptlen,
601 AES_BLOCK_SIZE) - 2;
602
603 skcipher_walk_abort(&walk);
604
605 skcipher_request_set_tfm(&subreq, tfm);
606 skcipher_request_set_callback(&subreq,
607 skcipher_request_flags(req),
608 NULL, NULL);
609 skcipher_request_set_crypt(&subreq, req->src, req->dst,
610 xts_blocks * AES_BLOCK_SIZE,
611 req->iv);
612 req = &subreq;
613 err = skcipher_walk_virt(&walk, req, false);
614 } else {
615 tail = 0;
616 }
617
618 for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
619 int nbytes = walk.nbytes;
620
621 if (walk.nbytes < walk.total)
622 nbytes &= ~(AES_BLOCK_SIZE - 1);
623
624 kernel_neon_begin();
625 aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
626 ctx->key1.key_dec, rounds, nbytes,
627 ctx->key2.key_enc, walk.iv, first);
628 kernel_neon_end();
629 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
630 }
631
632 if (err || likely(!tail))
633 return err;
634
635 dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
636 if (req->dst != req->src)
637 dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
638
639 skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
640 req->iv);
641
642 err = skcipher_walk_virt(&walk, &subreq, false);
643 if (err)
644 return err;
645
646
647 kernel_neon_begin();
648 aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
649 ctx->key1.key_dec, rounds, walk.nbytes,
650 ctx->key2.key_enc, walk.iv, first);
651 kernel_neon_end();
652
653 return skcipher_walk_done(&walk, 0);
654}
655
656static struct skcipher_alg aes_algs[] = { {
657#if defined(USE_V8_CRYPTO_EXTENSIONS) || !IS_ENABLED(CONFIG_CRYPTO_AES_ARM64_BS)
658 .base = {
659 .cra_name = "__ecb(aes)",
660 .cra_driver_name = "__ecb-aes-" MODE,
661 .cra_priority = PRIO,
662 .cra_flags = CRYPTO_ALG_INTERNAL,
663 .cra_blocksize = AES_BLOCK_SIZE,
664 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
665 .cra_module = THIS_MODULE,
666 },
667 .min_keysize = AES_MIN_KEY_SIZE,
668 .max_keysize = AES_MAX_KEY_SIZE,
669 .setkey = skcipher_aes_setkey,
670 .encrypt = ecb_encrypt,
671 .decrypt = ecb_decrypt,
672}, {
673 .base = {
674 .cra_name = "__cbc(aes)",
675 .cra_driver_name = "__cbc-aes-" MODE,
676 .cra_priority = PRIO,
677 .cra_flags = CRYPTO_ALG_INTERNAL,
678 .cra_blocksize = AES_BLOCK_SIZE,
679 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
680 .cra_module = THIS_MODULE,
681 },
682 .min_keysize = AES_MIN_KEY_SIZE,
683 .max_keysize = AES_MAX_KEY_SIZE,
684 .ivsize = AES_BLOCK_SIZE,
685 .setkey = skcipher_aes_setkey,
686 .encrypt = cbc_encrypt,
687 .decrypt = cbc_decrypt,
688}, {
689 .base = {
690 .cra_name = "__ctr(aes)",
691 .cra_driver_name = "__ctr-aes-" MODE,
692 .cra_priority = PRIO,
693 .cra_flags = CRYPTO_ALG_INTERNAL,
694 .cra_blocksize = 1,
695 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
696 .cra_module = THIS_MODULE,
697 },
698 .min_keysize = AES_MIN_KEY_SIZE,
699 .max_keysize = AES_MAX_KEY_SIZE,
700 .ivsize = AES_BLOCK_SIZE,
701 .chunksize = AES_BLOCK_SIZE,
702 .setkey = skcipher_aes_setkey,
703 .encrypt = ctr_encrypt,
704 .decrypt = ctr_encrypt,
705}, {
706 .base = {
707 .cra_name = "ctr(aes)",
708 .cra_driver_name = "ctr-aes-" MODE,
709 .cra_priority = PRIO - 1,
710 .cra_blocksize = 1,
711 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
712 .cra_module = THIS_MODULE,
713 },
714 .min_keysize = AES_MIN_KEY_SIZE,
715 .max_keysize = AES_MAX_KEY_SIZE,
716 .ivsize = AES_BLOCK_SIZE,
717 .chunksize = AES_BLOCK_SIZE,
718 .setkey = skcipher_aes_setkey,
719 .encrypt = ctr_encrypt_sync,
720 .decrypt = ctr_encrypt_sync,
721}, {
722 .base = {
723 .cra_name = "__xts(aes)",
724 .cra_driver_name = "__xts-aes-" MODE,
725 .cra_priority = PRIO,
726 .cra_flags = CRYPTO_ALG_INTERNAL,
727 .cra_blocksize = AES_BLOCK_SIZE,
728 .cra_ctxsize = sizeof(struct crypto_aes_xts_ctx),
729 .cra_module = THIS_MODULE,
730 },
731 .min_keysize = 2 * AES_MIN_KEY_SIZE,
732 .max_keysize = 2 * AES_MAX_KEY_SIZE,
733 .ivsize = AES_BLOCK_SIZE,
734 .walksize = 2 * AES_BLOCK_SIZE,
735 .setkey = xts_set_key,
736 .encrypt = xts_encrypt,
737 .decrypt = xts_decrypt,
738}, {
739#endif
740 .base = {
741 .cra_name = "__cts(cbc(aes))",
742 .cra_driver_name = "__cts-cbc-aes-" MODE,
743 .cra_priority = PRIO,
744 .cra_flags = CRYPTO_ALG_INTERNAL,
745 .cra_blocksize = AES_BLOCK_SIZE,
746 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
747 .cra_module = THIS_MODULE,
748 },
749 .min_keysize = AES_MIN_KEY_SIZE,
750 .max_keysize = AES_MAX_KEY_SIZE,
751 .ivsize = AES_BLOCK_SIZE,
752 .walksize = 2 * AES_BLOCK_SIZE,
753 .setkey = skcipher_aes_setkey,
754 .encrypt = cts_cbc_encrypt,
755 .decrypt = cts_cbc_decrypt,
756}, {
757 .base = {
758 .cra_name = "__essiv(cbc(aes),sha256)",
759 .cra_driver_name = "__essiv-cbc-aes-sha256-" MODE,
760 .cra_priority = PRIO + 1,
761 .cra_flags = CRYPTO_ALG_INTERNAL,
762 .cra_blocksize = AES_BLOCK_SIZE,
763 .cra_ctxsize = sizeof(struct crypto_aes_essiv_cbc_ctx),
764 .cra_module = THIS_MODULE,
765 },
766 .min_keysize = AES_MIN_KEY_SIZE,
767 .max_keysize = AES_MAX_KEY_SIZE,
768 .ivsize = AES_BLOCK_SIZE,
769 .setkey = essiv_cbc_set_key,
770 .encrypt = essiv_cbc_encrypt,
771 .decrypt = essiv_cbc_decrypt,
772 .init = essiv_cbc_init_tfm,
773 .exit = essiv_cbc_exit_tfm,
774} };
775
776static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
777 unsigned int key_len)
778{
779 struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
780
781 return aes_expandkey(&ctx->key, in_key, key_len);
782}
783
784static void cmac_gf128_mul_by_x(be128 *y, const be128 *x)
785{
786 u64 a = be64_to_cpu(x->a);
787 u64 b = be64_to_cpu(x->b);
788
789 y->a = cpu_to_be64((a << 1) | (b >> 63));
790 y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
791}
792
793static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
794 unsigned int key_len)
795{
796 struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
797 be128 *consts = (be128 *)ctx->consts;
798 int rounds = 6 + key_len / 4;
799 int err;
800
801 err = cbcmac_setkey(tfm, in_key, key_len);
802 if (err)
803 return err;
804
805
806 kernel_neon_begin();
807 aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, ctx->key.key_enc,
808 rounds, 1);
809 kernel_neon_end();
810
811 cmac_gf128_mul_by_x(consts, consts);
812 cmac_gf128_mul_by_x(consts + 1, consts);
813
814 return 0;
815}
816
817static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key,
818 unsigned int key_len)
819{
820 static u8 const ks[3][AES_BLOCK_SIZE] = {
821 { [0 ... AES_BLOCK_SIZE - 1] = 0x1 },
822 { [0 ... AES_BLOCK_SIZE - 1] = 0x2 },
823 { [0 ... AES_BLOCK_SIZE - 1] = 0x3 },
824 };
825
826 struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
827 int rounds = 6 + key_len / 4;
828 u8 key[AES_BLOCK_SIZE];
829 int err;
830
831 err = cbcmac_setkey(tfm, in_key, key_len);
832 if (err)
833 return err;
834
835 kernel_neon_begin();
836 aes_ecb_encrypt(key, ks[0], ctx->key.key_enc, rounds, 1);
837 aes_ecb_encrypt(ctx->consts, ks[1], ctx->key.key_enc, rounds, 2);
838 kernel_neon_end();
839
840 return cbcmac_setkey(tfm, key, sizeof(key));
841}
842
843static int mac_init(struct shash_desc *desc)
844{
845 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
846
847 memset(ctx->dg, 0, AES_BLOCK_SIZE);
848 ctx->len = 0;
849
850 return 0;
851}
852
853static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
854 u8 dg[], int enc_before, int enc_after)
855{
856 int rounds = 6 + ctx->key_length / 4;
857
858 if (crypto_simd_usable()) {
859 int rem;
860
861 do {
862 kernel_neon_begin();
863 rem = aes_mac_update(in, ctx->key_enc, rounds, blocks,
864 dg, enc_before, enc_after);
865 kernel_neon_end();
866 in += (blocks - rem) * AES_BLOCK_SIZE;
867 blocks = rem;
868 enc_before = 0;
869 } while (blocks);
870 } else {
871 if (enc_before)
872 aes_encrypt(ctx, dg, dg);
873
874 while (blocks--) {
875 crypto_xor(dg, in, AES_BLOCK_SIZE);
876 in += AES_BLOCK_SIZE;
877
878 if (blocks || enc_after)
879 aes_encrypt(ctx, dg, dg);
880 }
881 }
882}
883
884static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
885{
886 struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
887 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
888
889 while (len > 0) {
890 unsigned int l;
891
892 if ((ctx->len % AES_BLOCK_SIZE) == 0 &&
893 (ctx->len + len) > AES_BLOCK_SIZE) {
894
895 int blocks = len / AES_BLOCK_SIZE;
896
897 len %= AES_BLOCK_SIZE;
898
899 mac_do_update(&tctx->key, p, blocks, ctx->dg,
900 (ctx->len != 0), (len != 0));
901
902 p += blocks * AES_BLOCK_SIZE;
903
904 if (!len) {
905 ctx->len = AES_BLOCK_SIZE;
906 break;
907 }
908 ctx->len = 0;
909 }
910
911 l = min(len, AES_BLOCK_SIZE - ctx->len);
912
913 if (l <= AES_BLOCK_SIZE) {
914 crypto_xor(ctx->dg + ctx->len, p, l);
915 ctx->len += l;
916 len -= l;
917 p += l;
918 }
919 }
920
921 return 0;
922}
923
924static int cbcmac_final(struct shash_desc *desc, u8 *out)
925{
926 struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
927 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
928
929 mac_do_update(&tctx->key, NULL, 0, ctx->dg, (ctx->len != 0), 0);
930
931 memcpy(out, ctx->dg, AES_BLOCK_SIZE);
932
933 return 0;
934}
935
936static int cmac_final(struct shash_desc *desc, u8 *out)
937{
938 struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
939 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
940 u8 *consts = tctx->consts;
941
942 if (ctx->len != AES_BLOCK_SIZE) {
943 ctx->dg[ctx->len] ^= 0x80;
944 consts += AES_BLOCK_SIZE;
945 }
946
947 mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
948
949 memcpy(out, ctx->dg, AES_BLOCK_SIZE);
950
951 return 0;
952}
953
954static struct shash_alg mac_algs[] = { {
955 .base.cra_name = "cmac(aes)",
956 .base.cra_driver_name = "cmac-aes-" MODE,
957 .base.cra_priority = PRIO,
958 .base.cra_blocksize = AES_BLOCK_SIZE,
959 .base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
960 2 * AES_BLOCK_SIZE,
961 .base.cra_module = THIS_MODULE,
962
963 .digestsize = AES_BLOCK_SIZE,
964 .init = mac_init,
965 .update = mac_update,
966 .final = cmac_final,
967 .setkey = cmac_setkey,
968 .descsize = sizeof(struct mac_desc_ctx),
969}, {
970 .base.cra_name = "xcbc(aes)",
971 .base.cra_driver_name = "xcbc-aes-" MODE,
972 .base.cra_priority = PRIO,
973 .base.cra_blocksize = AES_BLOCK_SIZE,
974 .base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
975 2 * AES_BLOCK_SIZE,
976 .base.cra_module = THIS_MODULE,
977
978 .digestsize = AES_BLOCK_SIZE,
979 .init = mac_init,
980 .update = mac_update,
981 .final = cmac_final,
982 .setkey = xcbc_setkey,
983 .descsize = sizeof(struct mac_desc_ctx),
984}, {
985 .base.cra_name = "cbcmac(aes)",
986 .base.cra_driver_name = "cbcmac-aes-" MODE,
987 .base.cra_priority = PRIO,
988 .base.cra_blocksize = 1,
989 .base.cra_ctxsize = sizeof(struct mac_tfm_ctx),
990 .base.cra_module = THIS_MODULE,
991
992 .digestsize = AES_BLOCK_SIZE,
993 .init = mac_init,
994 .update = mac_update,
995 .final = cbcmac_final,
996 .setkey = cbcmac_setkey,
997 .descsize = sizeof(struct mac_desc_ctx),
998} };
999
1000static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
1001
1002static void aes_exit(void)
1003{
1004 int i;
1005
1006 for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
1007 if (aes_simd_algs[i])
1008 simd_skcipher_free(aes_simd_algs[i]);
1009
1010 crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs));
1011 crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
1012}
1013
1014static int __init aes_init(void)
1015{
1016 struct simd_skcipher_alg *simd;
1017 const char *basename;
1018 const char *algname;
1019 const char *drvname;
1020 int err;
1021 int i;
1022
1023 err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
1024 if (err)
1025 return err;
1026
1027 err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs));
1028 if (err)
1029 goto unregister_ciphers;
1030
1031 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
1032 if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
1033 continue;
1034
1035 algname = aes_algs[i].base.cra_name + 2;
1036 drvname = aes_algs[i].base.cra_driver_name + 2;
1037 basename = aes_algs[i].base.cra_driver_name;
1038 simd = simd_skcipher_create_compat(algname, drvname, basename);
1039 err = PTR_ERR(simd);
1040 if (IS_ERR(simd))
1041 goto unregister_simds;
1042
1043 aes_simd_algs[i] = simd;
1044 }
1045
1046 return 0;
1047
1048unregister_simds:
1049 aes_exit();
1050 return err;
1051unregister_ciphers:
1052 crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
1053 return err;
1054}
1055
1056#ifdef USE_V8_CRYPTO_EXTENSIONS
1057module_cpu_feature_match(AES, aes_init);
1058#else
1059module_init(aes_init);
1060EXPORT_SYMBOL(neon_aes_ecb_encrypt);
1061EXPORT_SYMBOL(neon_aes_cbc_encrypt);
1062EXPORT_SYMBOL(neon_aes_xts_encrypt);
1063EXPORT_SYMBOL(neon_aes_xts_decrypt);
1064#endif
1065module_exit(aes_exit);
1066