linux/arch/arm64/kvm/sys_regs.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012,2013 - ARM Ltd
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
   5 *
   6 * Derived from arch/arm/kvm/coproc.c:
   7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   8 * Authors: Rusty Russell <rusty@rustcorp.com.au>
   9 *          Christoffer Dall <c.dall@virtualopensystems.com>
  10 */
  11
  12#include <linux/bitfield.h>
  13#include <linux/bsearch.h>
  14#include <linux/kvm_host.h>
  15#include <linux/mm.h>
  16#include <linux/printk.h>
  17#include <linux/uaccess.h>
  18
  19#include <asm/cacheflush.h>
  20#include <asm/cputype.h>
  21#include <asm/debug-monitors.h>
  22#include <asm/esr.h>
  23#include <asm/kvm_arm.h>
  24#include <asm/kvm_emulate.h>
  25#include <asm/kvm_hyp.h>
  26#include <asm/kvm_mmu.h>
  27#include <asm/perf_event.h>
  28#include <asm/sysreg.h>
  29
  30#include <trace/events/kvm.h>
  31
  32#include "sys_regs.h"
  33
  34#include "trace.h"
  35
  36/*
  37 * All of this file is extremely similar to the ARM coproc.c, but the
  38 * types are different. My gut feeling is that it should be pretty
  39 * easy to merge, but that would be an ABI breakage -- again. VFP
  40 * would also need to be abstracted.
  41 *
  42 * For AArch32, we only take care of what is being trapped. Anything
  43 * that has to do with init and userspace access has to go via the
  44 * 64bit interface.
  45 */
  46
  47#define reg_to_encoding(x)                                              \
  48        sys_reg((u32)(x)->Op0, (u32)(x)->Op1,                           \
  49                (u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2)
  50
  51static bool read_from_write_only(struct kvm_vcpu *vcpu,
  52                                 struct sys_reg_params *params,
  53                                 const struct sys_reg_desc *r)
  54{
  55        WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
  56        print_sys_reg_instr(params);
  57        kvm_inject_undefined(vcpu);
  58        return false;
  59}
  60
  61static bool write_to_read_only(struct kvm_vcpu *vcpu,
  62                               struct sys_reg_params *params,
  63                               const struct sys_reg_desc *r)
  64{
  65        WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
  66        print_sys_reg_instr(params);
  67        kvm_inject_undefined(vcpu);
  68        return false;
  69}
  70
  71u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
  72{
  73        u64 val = 0x8badf00d8badf00d;
  74
  75        if (vcpu->arch.sysregs_loaded_on_cpu &&
  76            __vcpu_read_sys_reg_from_cpu(reg, &val))
  77                return val;
  78
  79        return __vcpu_sys_reg(vcpu, reg);
  80}
  81
  82void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
  83{
  84        if (vcpu->arch.sysregs_loaded_on_cpu &&
  85            __vcpu_write_sys_reg_to_cpu(val, reg))
  86                return;
  87
  88         __vcpu_sys_reg(vcpu, reg) = val;
  89}
  90
  91/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
  92static u32 cache_levels;
  93
  94/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
  95#define CSSELR_MAX 14
  96
  97/* Which cache CCSIDR represents depends on CSSELR value. */
  98static u32 get_ccsidr(u32 csselr)
  99{
 100        u32 ccsidr;
 101
 102        /* Make sure noone else changes CSSELR during this! */
 103        local_irq_disable();
 104        write_sysreg(csselr, csselr_el1);
 105        isb();
 106        ccsidr = read_sysreg(ccsidr_el1);
 107        local_irq_enable();
 108
 109        return ccsidr;
 110}
 111
 112/*
 113 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 114 */
 115static bool access_dcsw(struct kvm_vcpu *vcpu,
 116                        struct sys_reg_params *p,
 117                        const struct sys_reg_desc *r)
 118{
 119        if (!p->is_write)
 120                return read_from_write_only(vcpu, p, r);
 121
 122        /*
 123         * Only track S/W ops if we don't have FWB. It still indicates
 124         * that the guest is a bit broken (S/W operations should only
 125         * be done by firmware, knowing that there is only a single
 126         * CPU left in the system, and certainly not from non-secure
 127         * software).
 128         */
 129        if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
 130                kvm_set_way_flush(vcpu);
 131
 132        return true;
 133}
 134
 135static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
 136{
 137        switch (r->aarch32_map) {
 138        case AA32_LO:
 139                *mask = GENMASK_ULL(31, 0);
 140                *shift = 0;
 141                break;
 142        case AA32_HI:
 143                *mask = GENMASK_ULL(63, 32);
 144                *shift = 32;
 145                break;
 146        default:
 147                *mask = GENMASK_ULL(63, 0);
 148                *shift = 0;
 149                break;
 150        }
 151}
 152
 153/*
 154 * Generic accessor for VM registers. Only called as long as HCR_TVM
 155 * is set. If the guest enables the MMU, we stop trapping the VM
 156 * sys_regs and leave it in complete control of the caches.
 157 */
 158static bool access_vm_reg(struct kvm_vcpu *vcpu,
 159                          struct sys_reg_params *p,
 160                          const struct sys_reg_desc *r)
 161{
 162        bool was_enabled = vcpu_has_cache_enabled(vcpu);
 163        u64 val, mask, shift;
 164
 165        BUG_ON(!p->is_write);
 166
 167        get_access_mask(r, &mask, &shift);
 168
 169        if (~mask) {
 170                val = vcpu_read_sys_reg(vcpu, r->reg);
 171                val &= ~mask;
 172        } else {
 173                val = 0;
 174        }
 175
 176        val |= (p->regval & (mask >> shift)) << shift;
 177        vcpu_write_sys_reg(vcpu, val, r->reg);
 178
 179        kvm_toggle_cache(vcpu, was_enabled);
 180        return true;
 181}
 182
 183static bool access_actlr(struct kvm_vcpu *vcpu,
 184                         struct sys_reg_params *p,
 185                         const struct sys_reg_desc *r)
 186{
 187        u64 mask, shift;
 188
 189        if (p->is_write)
 190                return ignore_write(vcpu, p);
 191
 192        get_access_mask(r, &mask, &shift);
 193        p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
 194
 195        return true;
 196}
 197
 198/*
 199 * Trap handler for the GICv3 SGI generation system register.
 200 * Forward the request to the VGIC emulation.
 201 * The cp15_64 code makes sure this automatically works
 202 * for both AArch64 and AArch32 accesses.
 203 */
 204static bool access_gic_sgi(struct kvm_vcpu *vcpu,
 205                           struct sys_reg_params *p,
 206                           const struct sys_reg_desc *r)
 207{
 208        bool g1;
 209
 210        if (!p->is_write)
 211                return read_from_write_only(vcpu, p, r);
 212
 213        /*
 214         * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
 215         * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
 216         * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
 217         * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
 218         * group.
 219         */
 220        if (p->Op0 == 0) {              /* AArch32 */
 221                switch (p->Op1) {
 222                default:                /* Keep GCC quiet */
 223                case 0:                 /* ICC_SGI1R */
 224                        g1 = true;
 225                        break;
 226                case 1:                 /* ICC_ASGI1R */
 227                case 2:                 /* ICC_SGI0R */
 228                        g1 = false;
 229                        break;
 230                }
 231        } else {                        /* AArch64 */
 232                switch (p->Op2) {
 233                default:                /* Keep GCC quiet */
 234                case 5:                 /* ICC_SGI1R_EL1 */
 235                        g1 = true;
 236                        break;
 237                case 6:                 /* ICC_ASGI1R_EL1 */
 238                case 7:                 /* ICC_SGI0R_EL1 */
 239                        g1 = false;
 240                        break;
 241                }
 242        }
 243
 244        vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
 245
 246        return true;
 247}
 248
 249static bool access_gic_sre(struct kvm_vcpu *vcpu,
 250                           struct sys_reg_params *p,
 251                           const struct sys_reg_desc *r)
 252{
 253        if (p->is_write)
 254                return ignore_write(vcpu, p);
 255
 256        p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
 257        return true;
 258}
 259
 260static bool trap_raz_wi(struct kvm_vcpu *vcpu,
 261                        struct sys_reg_params *p,
 262                        const struct sys_reg_desc *r)
 263{
 264        if (p->is_write)
 265                return ignore_write(vcpu, p);
 266        else
 267                return read_zero(vcpu, p);
 268}
 269
 270/*
 271 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
 272 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
 273 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
 274 * treat it separately.
 275 */
 276static bool trap_loregion(struct kvm_vcpu *vcpu,
 277                          struct sys_reg_params *p,
 278                          const struct sys_reg_desc *r)
 279{
 280        u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
 281        u32 sr = reg_to_encoding(r);
 282
 283        if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
 284                kvm_inject_undefined(vcpu);
 285                return false;
 286        }
 287
 288        if (p->is_write && sr == SYS_LORID_EL1)
 289                return write_to_read_only(vcpu, p, r);
 290
 291        return trap_raz_wi(vcpu, p, r);
 292}
 293
 294static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
 295                           struct sys_reg_params *p,
 296                           const struct sys_reg_desc *r)
 297{
 298        if (p->is_write) {
 299                return ignore_write(vcpu, p);
 300        } else {
 301                p->regval = (1 << 3);
 302                return true;
 303        }
 304}
 305
 306static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
 307                                   struct sys_reg_params *p,
 308                                   const struct sys_reg_desc *r)
 309{
 310        if (p->is_write) {
 311                return ignore_write(vcpu, p);
 312        } else {
 313                p->regval = read_sysreg(dbgauthstatus_el1);
 314                return true;
 315        }
 316}
 317
 318/*
 319 * We want to avoid world-switching all the DBG registers all the
 320 * time:
 321 * 
 322 * - If we've touched any debug register, it is likely that we're
 323 *   going to touch more of them. It then makes sense to disable the
 324 *   traps and start doing the save/restore dance
 325 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
 326 *   then mandatory to save/restore the registers, as the guest
 327 *   depends on them.
 328 * 
 329 * For this, we use a DIRTY bit, indicating the guest has modified the
 330 * debug registers, used as follow:
 331 *
 332 * On guest entry:
 333 * - If the dirty bit is set (because we're coming back from trapping),
 334 *   disable the traps, save host registers, restore guest registers.
 335 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
 336 *   set the dirty bit, disable the traps, save host registers,
 337 *   restore guest registers.
 338 * - Otherwise, enable the traps
 339 *
 340 * On guest exit:
 341 * - If the dirty bit is set, save guest registers, restore host
 342 *   registers and clear the dirty bit. This ensure that the host can
 343 *   now use the debug registers.
 344 */
 345static bool trap_debug_regs(struct kvm_vcpu *vcpu,
 346                            struct sys_reg_params *p,
 347                            const struct sys_reg_desc *r)
 348{
 349        if (p->is_write) {
 350                vcpu_write_sys_reg(vcpu, p->regval, r->reg);
 351                vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
 352        } else {
 353                p->regval = vcpu_read_sys_reg(vcpu, r->reg);
 354        }
 355
 356        trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
 357
 358        return true;
 359}
 360
 361/*
 362 * reg_to_dbg/dbg_to_reg
 363 *
 364 * A 32 bit write to a debug register leave top bits alone
 365 * A 32 bit read from a debug register only returns the bottom bits
 366 *
 367 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
 368 * hyp.S code switches between host and guest values in future.
 369 */
 370static void reg_to_dbg(struct kvm_vcpu *vcpu,
 371                       struct sys_reg_params *p,
 372                       const struct sys_reg_desc *rd,
 373                       u64 *dbg_reg)
 374{
 375        u64 mask, shift, val;
 376
 377        get_access_mask(rd, &mask, &shift);
 378
 379        val = *dbg_reg;
 380        val &= ~mask;
 381        val |= (p->regval & (mask >> shift)) << shift;
 382        *dbg_reg = val;
 383
 384        vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
 385}
 386
 387static void dbg_to_reg(struct kvm_vcpu *vcpu,
 388                       struct sys_reg_params *p,
 389                       const struct sys_reg_desc *rd,
 390                       u64 *dbg_reg)
 391{
 392        u64 mask, shift;
 393
 394        get_access_mask(rd, &mask, &shift);
 395        p->regval = (*dbg_reg & mask) >> shift;
 396}
 397
 398static bool trap_bvr(struct kvm_vcpu *vcpu,
 399                     struct sys_reg_params *p,
 400                     const struct sys_reg_desc *rd)
 401{
 402        u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
 403
 404        if (p->is_write)
 405                reg_to_dbg(vcpu, p, rd, dbg_reg);
 406        else
 407                dbg_to_reg(vcpu, p, rd, dbg_reg);
 408
 409        trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
 410
 411        return true;
 412}
 413
 414static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 415                const struct kvm_one_reg *reg, void __user *uaddr)
 416{
 417        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
 418
 419        if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 420                return -EFAULT;
 421        return 0;
 422}
 423
 424static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 425        const struct kvm_one_reg *reg, void __user *uaddr)
 426{
 427        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
 428
 429        if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 430                return -EFAULT;
 431        return 0;
 432}
 433
 434static void reset_bvr(struct kvm_vcpu *vcpu,
 435                      const struct sys_reg_desc *rd)
 436{
 437        vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
 438}
 439
 440static bool trap_bcr(struct kvm_vcpu *vcpu,
 441                     struct sys_reg_params *p,
 442                     const struct sys_reg_desc *rd)
 443{
 444        u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
 445
 446        if (p->is_write)
 447                reg_to_dbg(vcpu, p, rd, dbg_reg);
 448        else
 449                dbg_to_reg(vcpu, p, rd, dbg_reg);
 450
 451        trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
 452
 453        return true;
 454}
 455
 456static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 457                const struct kvm_one_reg *reg, void __user *uaddr)
 458{
 459        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
 460
 461        if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 462                return -EFAULT;
 463
 464        return 0;
 465}
 466
 467static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 468        const struct kvm_one_reg *reg, void __user *uaddr)
 469{
 470        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
 471
 472        if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 473                return -EFAULT;
 474        return 0;
 475}
 476
 477static void reset_bcr(struct kvm_vcpu *vcpu,
 478                      const struct sys_reg_desc *rd)
 479{
 480        vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
 481}
 482
 483static bool trap_wvr(struct kvm_vcpu *vcpu,
 484                     struct sys_reg_params *p,
 485                     const struct sys_reg_desc *rd)
 486{
 487        u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
 488
 489        if (p->is_write)
 490                reg_to_dbg(vcpu, p, rd, dbg_reg);
 491        else
 492                dbg_to_reg(vcpu, p, rd, dbg_reg);
 493
 494        trace_trap_reg(__func__, rd->CRm, p->is_write,
 495                vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
 496
 497        return true;
 498}
 499
 500static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 501                const struct kvm_one_reg *reg, void __user *uaddr)
 502{
 503        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
 504
 505        if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 506                return -EFAULT;
 507        return 0;
 508}
 509
 510static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 511        const struct kvm_one_reg *reg, void __user *uaddr)
 512{
 513        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
 514
 515        if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 516                return -EFAULT;
 517        return 0;
 518}
 519
 520static void reset_wvr(struct kvm_vcpu *vcpu,
 521                      const struct sys_reg_desc *rd)
 522{
 523        vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
 524}
 525
 526static bool trap_wcr(struct kvm_vcpu *vcpu,
 527                     struct sys_reg_params *p,
 528                     const struct sys_reg_desc *rd)
 529{
 530        u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
 531
 532        if (p->is_write)
 533                reg_to_dbg(vcpu, p, rd, dbg_reg);
 534        else
 535                dbg_to_reg(vcpu, p, rd, dbg_reg);
 536
 537        trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
 538
 539        return true;
 540}
 541
 542static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 543                const struct kvm_one_reg *reg, void __user *uaddr)
 544{
 545        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
 546
 547        if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
 548                return -EFAULT;
 549        return 0;
 550}
 551
 552static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
 553        const struct kvm_one_reg *reg, void __user *uaddr)
 554{
 555        __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
 556
 557        if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
 558                return -EFAULT;
 559        return 0;
 560}
 561
 562static void reset_wcr(struct kvm_vcpu *vcpu,
 563                      const struct sys_reg_desc *rd)
 564{
 565        vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
 566}
 567
 568static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 569{
 570        u64 amair = read_sysreg(amair_el1);
 571        vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
 572}
 573
 574static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 575{
 576        u64 actlr = read_sysreg(actlr_el1);
 577        vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
 578}
 579
 580static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 581{
 582        u64 mpidr;
 583
 584        /*
 585         * Map the vcpu_id into the first three affinity level fields of
 586         * the MPIDR. We limit the number of VCPUs in level 0 due to a
 587         * limitation to 16 CPUs in that level in the ICC_SGIxR registers
 588         * of the GICv3 to be able to address each CPU directly when
 589         * sending IPIs.
 590         */
 591        mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
 592        mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
 593        mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
 594        vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
 595}
 596
 597static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
 598                                   const struct sys_reg_desc *r)
 599{
 600        if (kvm_vcpu_has_pmu(vcpu))
 601                return 0;
 602
 603        return REG_HIDDEN;
 604}
 605
 606static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
 607{
 608        u64 pmcr, val;
 609
 610        /* No PMU available, PMCR_EL0 may UNDEF... */
 611        if (!kvm_arm_support_pmu_v3())
 612                return;
 613
 614        pmcr = read_sysreg(pmcr_el0);
 615        /*
 616         * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
 617         * except PMCR.E resetting to zero.
 618         */
 619        val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
 620               | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
 621        if (!system_supports_32bit_el0())
 622                val |= ARMV8_PMU_PMCR_LC;
 623        __vcpu_sys_reg(vcpu, r->reg) = val;
 624}
 625
 626static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
 627{
 628        u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
 629        bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
 630
 631        if (!enabled)
 632                kvm_inject_undefined(vcpu);
 633
 634        return !enabled;
 635}
 636
 637static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
 638{
 639        return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
 640}
 641
 642static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
 643{
 644        return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
 645}
 646
 647static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
 648{
 649        return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
 650}
 651
 652static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
 653{
 654        return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
 655}
 656
 657static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 658                        const struct sys_reg_desc *r)
 659{
 660        u64 val;
 661
 662        if (pmu_access_el0_disabled(vcpu))
 663                return false;
 664
 665        if (p->is_write) {
 666                /* Only update writeable bits of PMCR */
 667                val = __vcpu_sys_reg(vcpu, PMCR_EL0);
 668                val &= ~ARMV8_PMU_PMCR_MASK;
 669                val |= p->regval & ARMV8_PMU_PMCR_MASK;
 670                if (!system_supports_32bit_el0())
 671                        val |= ARMV8_PMU_PMCR_LC;
 672                __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
 673                kvm_pmu_handle_pmcr(vcpu, val);
 674                kvm_vcpu_pmu_restore_guest(vcpu);
 675        } else {
 676                /* PMCR.P & PMCR.C are RAZ */
 677                val = __vcpu_sys_reg(vcpu, PMCR_EL0)
 678                      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
 679                p->regval = val;
 680        }
 681
 682        return true;
 683}
 684
 685static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 686                          const struct sys_reg_desc *r)
 687{
 688        if (pmu_access_event_counter_el0_disabled(vcpu))
 689                return false;
 690
 691        if (p->is_write)
 692                __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
 693        else
 694                /* return PMSELR.SEL field */
 695                p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
 696                            & ARMV8_PMU_COUNTER_MASK;
 697
 698        return true;
 699}
 700
 701static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 702                          const struct sys_reg_desc *r)
 703{
 704        u64 pmceid, mask, shift;
 705
 706        BUG_ON(p->is_write);
 707
 708        if (pmu_access_el0_disabled(vcpu))
 709                return false;
 710
 711        get_access_mask(r, &mask, &shift);
 712
 713        pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
 714        pmceid &= mask;
 715        pmceid >>= shift;
 716
 717        p->regval = pmceid;
 718
 719        return true;
 720}
 721
 722static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
 723{
 724        u64 pmcr, val;
 725
 726        pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
 727        val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
 728        if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
 729                kvm_inject_undefined(vcpu);
 730                return false;
 731        }
 732
 733        return true;
 734}
 735
 736static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
 737                              struct sys_reg_params *p,
 738                              const struct sys_reg_desc *r)
 739{
 740        u64 idx = ~0UL;
 741
 742        if (r->CRn == 9 && r->CRm == 13) {
 743                if (r->Op2 == 2) {
 744                        /* PMXEVCNTR_EL0 */
 745                        if (pmu_access_event_counter_el0_disabled(vcpu))
 746                                return false;
 747
 748                        idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
 749                              & ARMV8_PMU_COUNTER_MASK;
 750                } else if (r->Op2 == 0) {
 751                        /* PMCCNTR_EL0 */
 752                        if (pmu_access_cycle_counter_el0_disabled(vcpu))
 753                                return false;
 754
 755                        idx = ARMV8_PMU_CYCLE_IDX;
 756                }
 757        } else if (r->CRn == 0 && r->CRm == 9) {
 758                /* PMCCNTR */
 759                if (pmu_access_event_counter_el0_disabled(vcpu))
 760                        return false;
 761
 762                idx = ARMV8_PMU_CYCLE_IDX;
 763        } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
 764                /* PMEVCNTRn_EL0 */
 765                if (pmu_access_event_counter_el0_disabled(vcpu))
 766                        return false;
 767
 768                idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
 769        }
 770
 771        /* Catch any decoding mistake */
 772        WARN_ON(idx == ~0UL);
 773
 774        if (!pmu_counter_idx_valid(vcpu, idx))
 775                return false;
 776
 777        if (p->is_write) {
 778                if (pmu_access_el0_disabled(vcpu))
 779                        return false;
 780
 781                kvm_pmu_set_counter_value(vcpu, idx, p->regval);
 782        } else {
 783                p->regval = kvm_pmu_get_counter_value(vcpu, idx);
 784        }
 785
 786        return true;
 787}
 788
 789static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 790                               const struct sys_reg_desc *r)
 791{
 792        u64 idx, reg;
 793
 794        if (pmu_access_el0_disabled(vcpu))
 795                return false;
 796
 797        if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
 798                /* PMXEVTYPER_EL0 */
 799                idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
 800                reg = PMEVTYPER0_EL0 + idx;
 801        } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
 802                idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
 803                if (idx == ARMV8_PMU_CYCLE_IDX)
 804                        reg = PMCCFILTR_EL0;
 805                else
 806                        /* PMEVTYPERn_EL0 */
 807                        reg = PMEVTYPER0_EL0 + idx;
 808        } else {
 809                BUG();
 810        }
 811
 812        if (!pmu_counter_idx_valid(vcpu, idx))
 813                return false;
 814
 815        if (p->is_write) {
 816                kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
 817                __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
 818                kvm_vcpu_pmu_restore_guest(vcpu);
 819        } else {
 820                p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
 821        }
 822
 823        return true;
 824}
 825
 826static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 827                           const struct sys_reg_desc *r)
 828{
 829        u64 val, mask;
 830
 831        if (pmu_access_el0_disabled(vcpu))
 832                return false;
 833
 834        mask = kvm_pmu_valid_counter_mask(vcpu);
 835        if (p->is_write) {
 836                val = p->regval & mask;
 837                if (r->Op2 & 0x1) {
 838                        /* accessing PMCNTENSET_EL0 */
 839                        __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
 840                        kvm_pmu_enable_counter_mask(vcpu, val);
 841                        kvm_vcpu_pmu_restore_guest(vcpu);
 842                } else {
 843                        /* accessing PMCNTENCLR_EL0 */
 844                        __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
 845                        kvm_pmu_disable_counter_mask(vcpu, val);
 846                }
 847        } else {
 848                p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
 849        }
 850
 851        return true;
 852}
 853
 854static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 855                           const struct sys_reg_desc *r)
 856{
 857        u64 mask = kvm_pmu_valid_counter_mask(vcpu);
 858
 859        if (check_pmu_access_disabled(vcpu, 0))
 860                return false;
 861
 862        if (p->is_write) {
 863                u64 val = p->regval & mask;
 864
 865                if (r->Op2 & 0x1)
 866                        /* accessing PMINTENSET_EL1 */
 867                        __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
 868                else
 869                        /* accessing PMINTENCLR_EL1 */
 870                        __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
 871        } else {
 872                p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
 873        }
 874
 875        return true;
 876}
 877
 878static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 879                         const struct sys_reg_desc *r)
 880{
 881        u64 mask = kvm_pmu_valid_counter_mask(vcpu);
 882
 883        if (pmu_access_el0_disabled(vcpu))
 884                return false;
 885
 886        if (p->is_write) {
 887                if (r->CRm & 0x2)
 888                        /* accessing PMOVSSET_EL0 */
 889                        __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
 890                else
 891                        /* accessing PMOVSCLR_EL0 */
 892                        __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
 893        } else {
 894                p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
 895        }
 896
 897        return true;
 898}
 899
 900static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 901                           const struct sys_reg_desc *r)
 902{
 903        u64 mask;
 904
 905        if (!p->is_write)
 906                return read_from_write_only(vcpu, p, r);
 907
 908        if (pmu_write_swinc_el0_disabled(vcpu))
 909                return false;
 910
 911        mask = kvm_pmu_valid_counter_mask(vcpu);
 912        kvm_pmu_software_increment(vcpu, p->regval & mask);
 913        return true;
 914}
 915
 916static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 917                             const struct sys_reg_desc *r)
 918{
 919        if (p->is_write) {
 920                if (!vcpu_mode_priv(vcpu)) {
 921                        kvm_inject_undefined(vcpu);
 922                        return false;
 923                }
 924
 925                __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
 926                               p->regval & ARMV8_PMU_USERENR_MASK;
 927        } else {
 928                p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
 929                            & ARMV8_PMU_USERENR_MASK;
 930        }
 931
 932        return true;
 933}
 934
 935/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
 936#define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
 937        { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
 938          trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },                \
 939        { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
 940          trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },                \
 941        { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
 942          trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },               \
 943        { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
 944          trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
 945
 946#define PMU_SYS_REG(r)                                          \
 947        SYS_DESC(r), .reset = reset_unknown, .visibility = pmu_visibility
 948
 949/* Macro to expand the PMEVCNTRn_EL0 register */
 950#define PMU_PMEVCNTR_EL0(n)                                             \
 951        { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)),                            \
 952          .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
 953
 954/* Macro to expand the PMEVTYPERn_EL0 register */
 955#define PMU_PMEVTYPER_EL0(n)                                            \
 956        { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)),                           \
 957          .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
 958
 959static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
 960                         const struct sys_reg_desc *r)
 961{
 962        kvm_inject_undefined(vcpu);
 963
 964        return false;
 965}
 966
 967/* Macro to expand the AMU counter and type registers*/
 968#define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
 969#define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
 970#define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
 971#define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
 972
 973static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
 974                        const struct sys_reg_desc *rd)
 975{
 976        return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
 977}
 978
 979/*
 980 * If we land here on a PtrAuth access, that is because we didn't
 981 * fixup the access on exit by allowing the PtrAuth sysregs. The only
 982 * way this happens is when the guest does not have PtrAuth support
 983 * enabled.
 984 */
 985#define __PTRAUTH_KEY(k)                                                \
 986        { SYS_DESC(SYS_## k), undef_access, reset_unknown, k,           \
 987        .visibility = ptrauth_visibility}
 988
 989#define PTRAUTH_KEY(k)                                                  \
 990        __PTRAUTH_KEY(k ## KEYLO_EL1),                                  \
 991        __PTRAUTH_KEY(k ## KEYHI_EL1)
 992
 993static bool access_arch_timer(struct kvm_vcpu *vcpu,
 994                              struct sys_reg_params *p,
 995                              const struct sys_reg_desc *r)
 996{
 997        enum kvm_arch_timers tmr;
 998        enum kvm_arch_timer_regs treg;
 999        u64 reg = reg_to_encoding(r);
1000
1001        switch (reg) {
1002        case SYS_CNTP_TVAL_EL0:
1003        case SYS_AARCH32_CNTP_TVAL:
1004                tmr = TIMER_PTIMER;
1005                treg = TIMER_REG_TVAL;
1006                break;
1007        case SYS_CNTP_CTL_EL0:
1008        case SYS_AARCH32_CNTP_CTL:
1009                tmr = TIMER_PTIMER;
1010                treg = TIMER_REG_CTL;
1011                break;
1012        case SYS_CNTP_CVAL_EL0:
1013        case SYS_AARCH32_CNTP_CVAL:
1014                tmr = TIMER_PTIMER;
1015                treg = TIMER_REG_CVAL;
1016                break;
1017        default:
1018                BUG();
1019        }
1020
1021        if (p->is_write)
1022                kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1023        else
1024                p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1025
1026        return true;
1027}
1028
1029#define FEATURE(x)      (GENMASK_ULL(x##_SHIFT + 3, x##_SHIFT))
1030
1031/* Read a sanitised cpufeature ID register by sys_reg_desc */
1032static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1033                struct sys_reg_desc const *r, bool raz)
1034{
1035        u32 id = reg_to_encoding(r);
1036        u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1037
1038        switch (id) {
1039        case SYS_ID_AA64PFR0_EL1:
1040                if (!vcpu_has_sve(vcpu))
1041                        val &= ~FEATURE(ID_AA64PFR0_SVE);
1042                val &= ~FEATURE(ID_AA64PFR0_AMU);
1043                val &= ~FEATURE(ID_AA64PFR0_CSV2);
1044                val |= FIELD_PREP(FEATURE(ID_AA64PFR0_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1045                val &= ~FEATURE(ID_AA64PFR0_CSV3);
1046                val |= FIELD_PREP(FEATURE(ID_AA64PFR0_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
1047                break;
1048        case SYS_ID_AA64PFR1_EL1:
1049                val &= ~FEATURE(ID_AA64PFR1_MTE);
1050                break;
1051        case SYS_ID_AA64ISAR1_EL1:
1052                if (!vcpu_has_ptrauth(vcpu))
1053                        val &= ~(FEATURE(ID_AA64ISAR1_APA) |
1054                                 FEATURE(ID_AA64ISAR1_API) |
1055                                 FEATURE(ID_AA64ISAR1_GPA) |
1056                                 FEATURE(ID_AA64ISAR1_GPI));
1057                break;
1058        case SYS_ID_AA64DFR0_EL1:
1059                /* Limit debug to ARMv8.0 */
1060                val &= ~FEATURE(ID_AA64DFR0_DEBUGVER);
1061                val |= FIELD_PREP(FEATURE(ID_AA64DFR0_DEBUGVER), 6);
1062                /* Limit guests to PMUv3 for ARMv8.4 */
1063                val = cpuid_feature_cap_perfmon_field(val,
1064                                                      ID_AA64DFR0_PMUVER_SHIFT,
1065                                                      kvm_vcpu_has_pmu(vcpu) ? ID_AA64DFR0_PMUVER_8_4 : 0);
1066                /* Hide SPE from guests */
1067                val &= ~FEATURE(ID_AA64DFR0_PMSVER);
1068                break;
1069        case SYS_ID_DFR0_EL1:
1070                /* Limit guests to PMUv3 for ARMv8.4 */
1071                val = cpuid_feature_cap_perfmon_field(val,
1072                                                      ID_DFR0_PERFMON_SHIFT,
1073                                                      kvm_vcpu_has_pmu(vcpu) ? ID_DFR0_PERFMON_8_4 : 0);
1074                break;
1075        }
1076
1077        return val;
1078}
1079
1080static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1081                                  const struct sys_reg_desc *r)
1082{
1083        u32 id = reg_to_encoding(r);
1084
1085        switch (id) {
1086        case SYS_ID_AA64ZFR0_EL1:
1087                if (!vcpu_has_sve(vcpu))
1088                        return REG_RAZ;
1089                break;
1090        }
1091
1092        return 0;
1093}
1094
1095/* cpufeature ID register access trap handlers */
1096
1097static bool __access_id_reg(struct kvm_vcpu *vcpu,
1098                            struct sys_reg_params *p,
1099                            const struct sys_reg_desc *r,
1100                            bool raz)
1101{
1102        if (p->is_write)
1103                return write_to_read_only(vcpu, p, r);
1104
1105        p->regval = read_id_reg(vcpu, r, raz);
1106        return true;
1107}
1108
1109static bool access_id_reg(struct kvm_vcpu *vcpu,
1110                          struct sys_reg_params *p,
1111                          const struct sys_reg_desc *r)
1112{
1113        bool raz = sysreg_visible_as_raz(vcpu, r);
1114
1115        return __access_id_reg(vcpu, p, r, raz);
1116}
1117
1118static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1119                              struct sys_reg_params *p,
1120                              const struct sys_reg_desc *r)
1121{
1122        return __access_id_reg(vcpu, p, r, true);
1123}
1124
1125static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1126static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1127static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1128
1129/* Visibility overrides for SVE-specific control registers */
1130static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1131                                   const struct sys_reg_desc *rd)
1132{
1133        if (vcpu_has_sve(vcpu))
1134                return 0;
1135
1136        return REG_HIDDEN;
1137}
1138
1139static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1140                               const struct sys_reg_desc *rd,
1141                               const struct kvm_one_reg *reg, void __user *uaddr)
1142{
1143        const u64 id = sys_reg_to_index(rd);
1144        u8 csv2, csv3;
1145        int err;
1146        u64 val;
1147
1148        err = reg_from_user(&val, uaddr, id);
1149        if (err)
1150                return err;
1151
1152        /*
1153         * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1154         * it doesn't promise more than what is actually provided (the
1155         * guest could otherwise be covered in ectoplasmic residue).
1156         */
1157        csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1158        if (csv2 > 1 ||
1159            (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1160                return -EINVAL;
1161
1162        /* Same thing for CSV3 */
1163        csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1164        if (csv3 > 1 ||
1165            (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1166                return -EINVAL;
1167
1168        /* We can only differ with CSV[23], and anything else is an error */
1169        val ^= read_id_reg(vcpu, rd, false);
1170        val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1171                 (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
1172        if (val)
1173                return -EINVAL;
1174
1175        vcpu->kvm->arch.pfr0_csv2 = csv2;
1176        vcpu->kvm->arch.pfr0_csv3 = csv3 ;
1177
1178        return 0;
1179}
1180
1181/*
1182 * cpufeature ID register user accessors
1183 *
1184 * For now, these registers are immutable for userspace, so no values
1185 * are stored, and for set_id_reg() we don't allow the effective value
1186 * to be changed.
1187 */
1188static int __get_id_reg(const struct kvm_vcpu *vcpu,
1189                        const struct sys_reg_desc *rd, void __user *uaddr,
1190                        bool raz)
1191{
1192        const u64 id = sys_reg_to_index(rd);
1193        const u64 val = read_id_reg(vcpu, rd, raz);
1194
1195        return reg_to_user(uaddr, &val, id);
1196}
1197
1198static int __set_id_reg(const struct kvm_vcpu *vcpu,
1199                        const struct sys_reg_desc *rd, void __user *uaddr,
1200                        bool raz)
1201{
1202        const u64 id = sys_reg_to_index(rd);
1203        int err;
1204        u64 val;
1205
1206        err = reg_from_user(&val, uaddr, id);
1207        if (err)
1208                return err;
1209
1210        /* This is what we mean by invariant: you can't change it. */
1211        if (val != read_id_reg(vcpu, rd, raz))
1212                return -EINVAL;
1213
1214        return 0;
1215}
1216
1217static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1218                      const struct kvm_one_reg *reg, void __user *uaddr)
1219{
1220        bool raz = sysreg_visible_as_raz(vcpu, rd);
1221
1222        return __get_id_reg(vcpu, rd, uaddr, raz);
1223}
1224
1225static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1226                      const struct kvm_one_reg *reg, void __user *uaddr)
1227{
1228        bool raz = sysreg_visible_as_raz(vcpu, rd);
1229
1230        return __set_id_reg(vcpu, rd, uaddr, raz);
1231}
1232
1233static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1234                          const struct kvm_one_reg *reg, void __user *uaddr)
1235{
1236        return __get_id_reg(vcpu, rd, uaddr, true);
1237}
1238
1239static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1240                          const struct kvm_one_reg *reg, void __user *uaddr)
1241{
1242        return __set_id_reg(vcpu, rd, uaddr, true);
1243}
1244
1245static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1246                       const struct sys_reg_desc *r)
1247{
1248        if (p->is_write)
1249                return write_to_read_only(vcpu, p, r);
1250
1251        p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1252        return true;
1253}
1254
1255static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1256                         const struct sys_reg_desc *r)
1257{
1258        if (p->is_write)
1259                return write_to_read_only(vcpu, p, r);
1260
1261        p->regval = read_sysreg(clidr_el1);
1262        return true;
1263}
1264
1265static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1266                          const struct sys_reg_desc *r)
1267{
1268        int reg = r->reg;
1269
1270        if (p->is_write)
1271                vcpu_write_sys_reg(vcpu, p->regval, reg);
1272        else
1273                p->regval = vcpu_read_sys_reg(vcpu, reg);
1274        return true;
1275}
1276
1277static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1278                          const struct sys_reg_desc *r)
1279{
1280        u32 csselr;
1281
1282        if (p->is_write)
1283                return write_to_read_only(vcpu, p, r);
1284
1285        csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1286        p->regval = get_ccsidr(csselr);
1287
1288        /*
1289         * Guests should not be doing cache operations by set/way at all, and
1290         * for this reason, we trap them and attempt to infer the intent, so
1291         * that we can flush the entire guest's address space at the appropriate
1292         * time.
1293         * To prevent this trapping from causing performance problems, let's
1294         * expose the geometry of all data and unified caches (which are
1295         * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1296         * [If guests should attempt to infer aliasing properties from the
1297         * geometry (which is not permitted by the architecture), they would
1298         * only do so for virtually indexed caches.]
1299         */
1300        if (!(csselr & 1)) // data or unified cache
1301                p->regval &= ~GENMASK(27, 3);
1302        return true;
1303}
1304
1305/* sys_reg_desc initialiser for known cpufeature ID registers */
1306#define ID_SANITISED(name) {                    \
1307        SYS_DESC(SYS_##name),                   \
1308        .access = access_id_reg,                \
1309        .get_user = get_id_reg,                 \
1310        .set_user = set_id_reg,                 \
1311        .visibility = id_visibility,            \
1312}
1313
1314/*
1315 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1316 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1317 * (1 <= crm < 8, 0 <= Op2 < 8).
1318 */
1319#define ID_UNALLOCATED(crm, op2) {                      \
1320        Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1321        .access = access_raz_id_reg,                    \
1322        .get_user = get_raz_id_reg,                     \
1323        .set_user = set_raz_id_reg,                     \
1324}
1325
1326/*
1327 * sys_reg_desc initialiser for known ID registers that we hide from guests.
1328 * For now, these are exposed just like unallocated ID regs: they appear
1329 * RAZ for the guest.
1330 */
1331#define ID_HIDDEN(name) {                       \
1332        SYS_DESC(SYS_##name),                   \
1333        .access = access_raz_id_reg,            \
1334        .get_user = get_raz_id_reg,             \
1335        .set_user = set_raz_id_reg,             \
1336}
1337
1338/*
1339 * Architected system registers.
1340 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1341 *
1342 * Debug handling: We do trap most, if not all debug related system
1343 * registers. The implementation is good enough to ensure that a guest
1344 * can use these with minimal performance degradation. The drawback is
1345 * that we don't implement any of the external debug, none of the
1346 * OSlock protocol. This should be revisited if we ever encounter a
1347 * more demanding guest...
1348 */
1349static const struct sys_reg_desc sys_reg_descs[] = {
1350        { SYS_DESC(SYS_DC_ISW), access_dcsw },
1351        { SYS_DESC(SYS_DC_CSW), access_dcsw },
1352        { SYS_DESC(SYS_DC_CISW), access_dcsw },
1353
1354        DBG_BCR_BVR_WCR_WVR_EL1(0),
1355        DBG_BCR_BVR_WCR_WVR_EL1(1),
1356        { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1357        { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1358        DBG_BCR_BVR_WCR_WVR_EL1(2),
1359        DBG_BCR_BVR_WCR_WVR_EL1(3),
1360        DBG_BCR_BVR_WCR_WVR_EL1(4),
1361        DBG_BCR_BVR_WCR_WVR_EL1(5),
1362        DBG_BCR_BVR_WCR_WVR_EL1(6),
1363        DBG_BCR_BVR_WCR_WVR_EL1(7),
1364        DBG_BCR_BVR_WCR_WVR_EL1(8),
1365        DBG_BCR_BVR_WCR_WVR_EL1(9),
1366        DBG_BCR_BVR_WCR_WVR_EL1(10),
1367        DBG_BCR_BVR_WCR_WVR_EL1(11),
1368        DBG_BCR_BVR_WCR_WVR_EL1(12),
1369        DBG_BCR_BVR_WCR_WVR_EL1(13),
1370        DBG_BCR_BVR_WCR_WVR_EL1(14),
1371        DBG_BCR_BVR_WCR_WVR_EL1(15),
1372
1373        { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1374        { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1375        { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1376        { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1377        { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1378        { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1379        { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1380        { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1381
1382        { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1383        { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1384        // DBGDTR[TR]X_EL0 share the same encoding
1385        { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1386
1387        { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1388
1389        { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1390
1391        /*
1392         * ID regs: all ID_SANITISED() entries here must have corresponding
1393         * entries in arm64_ftr_regs[].
1394         */
1395
1396        /* AArch64 mappings of the AArch32 ID registers */
1397        /* CRm=1 */
1398        ID_SANITISED(ID_PFR0_EL1),
1399        ID_SANITISED(ID_PFR1_EL1),
1400        ID_SANITISED(ID_DFR0_EL1),
1401        ID_HIDDEN(ID_AFR0_EL1),
1402        ID_SANITISED(ID_MMFR0_EL1),
1403        ID_SANITISED(ID_MMFR1_EL1),
1404        ID_SANITISED(ID_MMFR2_EL1),
1405        ID_SANITISED(ID_MMFR3_EL1),
1406
1407        /* CRm=2 */
1408        ID_SANITISED(ID_ISAR0_EL1),
1409        ID_SANITISED(ID_ISAR1_EL1),
1410        ID_SANITISED(ID_ISAR2_EL1),
1411        ID_SANITISED(ID_ISAR3_EL1),
1412        ID_SANITISED(ID_ISAR4_EL1),
1413        ID_SANITISED(ID_ISAR5_EL1),
1414        ID_SANITISED(ID_MMFR4_EL1),
1415        ID_SANITISED(ID_ISAR6_EL1),
1416
1417        /* CRm=3 */
1418        ID_SANITISED(MVFR0_EL1),
1419        ID_SANITISED(MVFR1_EL1),
1420        ID_SANITISED(MVFR2_EL1),
1421        ID_UNALLOCATED(3,3),
1422        ID_SANITISED(ID_PFR2_EL1),
1423        ID_HIDDEN(ID_DFR1_EL1),
1424        ID_SANITISED(ID_MMFR5_EL1),
1425        ID_UNALLOCATED(3,7),
1426
1427        /* AArch64 ID registers */
1428        /* CRm=4 */
1429        { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1430          .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1431        ID_SANITISED(ID_AA64PFR1_EL1),
1432        ID_UNALLOCATED(4,2),
1433        ID_UNALLOCATED(4,3),
1434        ID_SANITISED(ID_AA64ZFR0_EL1),
1435        ID_UNALLOCATED(4,5),
1436        ID_UNALLOCATED(4,6),
1437        ID_UNALLOCATED(4,7),
1438
1439        /* CRm=5 */
1440        ID_SANITISED(ID_AA64DFR0_EL1),
1441        ID_SANITISED(ID_AA64DFR1_EL1),
1442        ID_UNALLOCATED(5,2),
1443        ID_UNALLOCATED(5,3),
1444        ID_HIDDEN(ID_AA64AFR0_EL1),
1445        ID_HIDDEN(ID_AA64AFR1_EL1),
1446        ID_UNALLOCATED(5,6),
1447        ID_UNALLOCATED(5,7),
1448
1449        /* CRm=6 */
1450        ID_SANITISED(ID_AA64ISAR0_EL1),
1451        ID_SANITISED(ID_AA64ISAR1_EL1),
1452        ID_UNALLOCATED(6,2),
1453        ID_UNALLOCATED(6,3),
1454        ID_UNALLOCATED(6,4),
1455        ID_UNALLOCATED(6,5),
1456        ID_UNALLOCATED(6,6),
1457        ID_UNALLOCATED(6,7),
1458
1459        /* CRm=7 */
1460        ID_SANITISED(ID_AA64MMFR0_EL1),
1461        ID_SANITISED(ID_AA64MMFR1_EL1),
1462        ID_SANITISED(ID_AA64MMFR2_EL1),
1463        ID_UNALLOCATED(7,3),
1464        ID_UNALLOCATED(7,4),
1465        ID_UNALLOCATED(7,5),
1466        ID_UNALLOCATED(7,6),
1467        ID_UNALLOCATED(7,7),
1468
1469        { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1470        { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1471        { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1472
1473        { SYS_DESC(SYS_RGSR_EL1), undef_access },
1474        { SYS_DESC(SYS_GCR_EL1), undef_access },
1475
1476        { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1477        { SYS_DESC(SYS_TRFCR_EL1), undef_access },
1478        { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1479        { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1480        { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1481
1482        PTRAUTH_KEY(APIA),
1483        PTRAUTH_KEY(APIB),
1484        PTRAUTH_KEY(APDA),
1485        PTRAUTH_KEY(APDB),
1486        PTRAUTH_KEY(APGA),
1487
1488        { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1489        { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1490        { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1491
1492        { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1493        { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1494        { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1495        { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1496        { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1497        { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1498        { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1499        { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1500
1501        { SYS_DESC(SYS_TFSR_EL1), undef_access },
1502        { SYS_DESC(SYS_TFSRE0_EL1), undef_access },
1503
1504        { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1505        { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1506
1507        { SYS_DESC(SYS_PMSCR_EL1), undef_access },
1508        { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
1509        { SYS_DESC(SYS_PMSICR_EL1), undef_access },
1510        { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
1511        { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
1512        { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
1513        { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
1514        { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
1515        { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
1516        { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
1517        { SYS_DESC(SYS_PMBSR_EL1), undef_access },
1518        /* PMBIDR_EL1 is not trapped */
1519
1520        { PMU_SYS_REG(SYS_PMINTENSET_EL1),
1521          .access = access_pminten, .reg = PMINTENSET_EL1 },
1522        { PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1523          .access = access_pminten, .reg = PMINTENSET_EL1 },
1524        { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
1525
1526        { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1527        { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1528
1529        { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1530        { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1531        { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1532        { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1533        { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1534
1535        { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1536        { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1537
1538        { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1539        { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1540        { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1541        { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1542        { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1543        { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1544        { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1545        { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1546        { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1547        { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1548        { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1549        { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1550
1551        { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1552        { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1553
1554        { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1555
1556        { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1557
1558        { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1559        { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1560        { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1561        { SYS_DESC(SYS_CTR_EL0), access_ctr },
1562
1563        { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1564          .reset = reset_pmcr, .reg = PMCR_EL0 },
1565        { PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1566          .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1567        { PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1568          .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1569        { PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1570          .access = access_pmovs, .reg = PMOVSSET_EL0 },
1571        { PMU_SYS_REG(SYS_PMSWINC_EL0),
1572          .access = access_pmswinc, .reg = PMSWINC_EL0 },
1573        { PMU_SYS_REG(SYS_PMSELR_EL0),
1574          .access = access_pmselr, .reg = PMSELR_EL0 },
1575        { PMU_SYS_REG(SYS_PMCEID0_EL0),
1576          .access = access_pmceid, .reset = NULL },
1577        { PMU_SYS_REG(SYS_PMCEID1_EL0),
1578          .access = access_pmceid, .reset = NULL },
1579        { PMU_SYS_REG(SYS_PMCCNTR_EL0),
1580          .access = access_pmu_evcntr, .reg = PMCCNTR_EL0 },
1581        { PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
1582          .access = access_pmu_evtyper, .reset = NULL },
1583        { PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
1584          .access = access_pmu_evcntr, .reset = NULL },
1585        /*
1586         * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1587         * in 32bit mode. Here we choose to reset it as zero for consistency.
1588         */
1589        { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
1590          .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
1591        { PMU_SYS_REG(SYS_PMOVSSET_EL0),
1592          .access = access_pmovs, .reg = PMOVSSET_EL0 },
1593
1594        { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1595        { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1596
1597        { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1598
1599        { SYS_DESC(SYS_AMCR_EL0), undef_access },
1600        { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1601        { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1602        { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1603        { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1604        { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1605        { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1606        { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1607        AMU_AMEVCNTR0_EL0(0),
1608        AMU_AMEVCNTR0_EL0(1),
1609        AMU_AMEVCNTR0_EL0(2),
1610        AMU_AMEVCNTR0_EL0(3),
1611        AMU_AMEVCNTR0_EL0(4),
1612        AMU_AMEVCNTR0_EL0(5),
1613        AMU_AMEVCNTR0_EL0(6),
1614        AMU_AMEVCNTR0_EL0(7),
1615        AMU_AMEVCNTR0_EL0(8),
1616        AMU_AMEVCNTR0_EL0(9),
1617        AMU_AMEVCNTR0_EL0(10),
1618        AMU_AMEVCNTR0_EL0(11),
1619        AMU_AMEVCNTR0_EL0(12),
1620        AMU_AMEVCNTR0_EL0(13),
1621        AMU_AMEVCNTR0_EL0(14),
1622        AMU_AMEVCNTR0_EL0(15),
1623        AMU_AMEVTYPER0_EL0(0),
1624        AMU_AMEVTYPER0_EL0(1),
1625        AMU_AMEVTYPER0_EL0(2),
1626        AMU_AMEVTYPER0_EL0(3),
1627        AMU_AMEVTYPER0_EL0(4),
1628        AMU_AMEVTYPER0_EL0(5),
1629        AMU_AMEVTYPER0_EL0(6),
1630        AMU_AMEVTYPER0_EL0(7),
1631        AMU_AMEVTYPER0_EL0(8),
1632        AMU_AMEVTYPER0_EL0(9),
1633        AMU_AMEVTYPER0_EL0(10),
1634        AMU_AMEVTYPER0_EL0(11),
1635        AMU_AMEVTYPER0_EL0(12),
1636        AMU_AMEVTYPER0_EL0(13),
1637        AMU_AMEVTYPER0_EL0(14),
1638        AMU_AMEVTYPER0_EL0(15),
1639        AMU_AMEVCNTR1_EL0(0),
1640        AMU_AMEVCNTR1_EL0(1),
1641        AMU_AMEVCNTR1_EL0(2),
1642        AMU_AMEVCNTR1_EL0(3),
1643        AMU_AMEVCNTR1_EL0(4),
1644        AMU_AMEVCNTR1_EL0(5),
1645        AMU_AMEVCNTR1_EL0(6),
1646        AMU_AMEVCNTR1_EL0(7),
1647        AMU_AMEVCNTR1_EL0(8),
1648        AMU_AMEVCNTR1_EL0(9),
1649        AMU_AMEVCNTR1_EL0(10),
1650        AMU_AMEVCNTR1_EL0(11),
1651        AMU_AMEVCNTR1_EL0(12),
1652        AMU_AMEVCNTR1_EL0(13),
1653        AMU_AMEVCNTR1_EL0(14),
1654        AMU_AMEVCNTR1_EL0(15),
1655        AMU_AMEVTYPER1_EL0(0),
1656        AMU_AMEVTYPER1_EL0(1),
1657        AMU_AMEVTYPER1_EL0(2),
1658        AMU_AMEVTYPER1_EL0(3),
1659        AMU_AMEVTYPER1_EL0(4),
1660        AMU_AMEVTYPER1_EL0(5),
1661        AMU_AMEVTYPER1_EL0(6),
1662        AMU_AMEVTYPER1_EL0(7),
1663        AMU_AMEVTYPER1_EL0(8),
1664        AMU_AMEVTYPER1_EL0(9),
1665        AMU_AMEVTYPER1_EL0(10),
1666        AMU_AMEVTYPER1_EL0(11),
1667        AMU_AMEVTYPER1_EL0(12),
1668        AMU_AMEVTYPER1_EL0(13),
1669        AMU_AMEVTYPER1_EL0(14),
1670        AMU_AMEVTYPER1_EL0(15),
1671
1672        { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1673        { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1674        { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1675
1676        /* PMEVCNTRn_EL0 */
1677        PMU_PMEVCNTR_EL0(0),
1678        PMU_PMEVCNTR_EL0(1),
1679        PMU_PMEVCNTR_EL0(2),
1680        PMU_PMEVCNTR_EL0(3),
1681        PMU_PMEVCNTR_EL0(4),
1682        PMU_PMEVCNTR_EL0(5),
1683        PMU_PMEVCNTR_EL0(6),
1684        PMU_PMEVCNTR_EL0(7),
1685        PMU_PMEVCNTR_EL0(8),
1686        PMU_PMEVCNTR_EL0(9),
1687        PMU_PMEVCNTR_EL0(10),
1688        PMU_PMEVCNTR_EL0(11),
1689        PMU_PMEVCNTR_EL0(12),
1690        PMU_PMEVCNTR_EL0(13),
1691        PMU_PMEVCNTR_EL0(14),
1692        PMU_PMEVCNTR_EL0(15),
1693        PMU_PMEVCNTR_EL0(16),
1694        PMU_PMEVCNTR_EL0(17),
1695        PMU_PMEVCNTR_EL0(18),
1696        PMU_PMEVCNTR_EL0(19),
1697        PMU_PMEVCNTR_EL0(20),
1698        PMU_PMEVCNTR_EL0(21),
1699        PMU_PMEVCNTR_EL0(22),
1700        PMU_PMEVCNTR_EL0(23),
1701        PMU_PMEVCNTR_EL0(24),
1702        PMU_PMEVCNTR_EL0(25),
1703        PMU_PMEVCNTR_EL0(26),
1704        PMU_PMEVCNTR_EL0(27),
1705        PMU_PMEVCNTR_EL0(28),
1706        PMU_PMEVCNTR_EL0(29),
1707        PMU_PMEVCNTR_EL0(30),
1708        /* PMEVTYPERn_EL0 */
1709        PMU_PMEVTYPER_EL0(0),
1710        PMU_PMEVTYPER_EL0(1),
1711        PMU_PMEVTYPER_EL0(2),
1712        PMU_PMEVTYPER_EL0(3),
1713        PMU_PMEVTYPER_EL0(4),
1714        PMU_PMEVTYPER_EL0(5),
1715        PMU_PMEVTYPER_EL0(6),
1716        PMU_PMEVTYPER_EL0(7),
1717        PMU_PMEVTYPER_EL0(8),
1718        PMU_PMEVTYPER_EL0(9),
1719        PMU_PMEVTYPER_EL0(10),
1720        PMU_PMEVTYPER_EL0(11),
1721        PMU_PMEVTYPER_EL0(12),
1722        PMU_PMEVTYPER_EL0(13),
1723        PMU_PMEVTYPER_EL0(14),
1724        PMU_PMEVTYPER_EL0(15),
1725        PMU_PMEVTYPER_EL0(16),
1726        PMU_PMEVTYPER_EL0(17),
1727        PMU_PMEVTYPER_EL0(18),
1728        PMU_PMEVTYPER_EL0(19),
1729        PMU_PMEVTYPER_EL0(20),
1730        PMU_PMEVTYPER_EL0(21),
1731        PMU_PMEVTYPER_EL0(22),
1732        PMU_PMEVTYPER_EL0(23),
1733        PMU_PMEVTYPER_EL0(24),
1734        PMU_PMEVTYPER_EL0(25),
1735        PMU_PMEVTYPER_EL0(26),
1736        PMU_PMEVTYPER_EL0(27),
1737        PMU_PMEVTYPER_EL0(28),
1738        PMU_PMEVTYPER_EL0(29),
1739        PMU_PMEVTYPER_EL0(30),
1740        /*
1741         * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1742         * in 32bit mode. Here we choose to reset it as zero for consistency.
1743         */
1744        { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
1745          .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
1746
1747        { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1748        { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1749        { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1750};
1751
1752static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
1753                        struct sys_reg_params *p,
1754                        const struct sys_reg_desc *r)
1755{
1756        if (p->is_write) {
1757                return ignore_write(vcpu, p);
1758        } else {
1759                u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1760                u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1761                u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1762
1763                p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1764                             (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1765                             (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1766                             | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
1767                return true;
1768        }
1769}
1770
1771/*
1772 * AArch32 debug register mappings
1773 *
1774 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1775 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1776 *
1777 * None of the other registers share their location, so treat them as
1778 * if they were 64bit.
1779 */
1780#define DBG_BCR_BVR_WCR_WVR(n)                                                \
1781        /* DBGBVRn */                                                         \
1782        { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1783        /* DBGBCRn */                                                         \
1784        { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },           \
1785        /* DBGWVRn */                                                         \
1786        { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },           \
1787        /* DBGWCRn */                                                         \
1788        { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1789
1790#define DBGBXVR(n)                                                            \
1791        { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1792
1793/*
1794 * Trapped cp14 registers. We generally ignore most of the external
1795 * debug, on the principle that they don't really make sense to a
1796 * guest. Revisit this one day, would this principle change.
1797 */
1798static const struct sys_reg_desc cp14_regs[] = {
1799        /* DBGDIDR */
1800        { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
1801        /* DBGDTRRXext */
1802        { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1803
1804        DBG_BCR_BVR_WCR_WVR(0),
1805        /* DBGDSCRint */
1806        { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1807        DBG_BCR_BVR_WCR_WVR(1),
1808        /* DBGDCCINT */
1809        { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1810        /* DBGDSCRext */
1811        { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1812        DBG_BCR_BVR_WCR_WVR(2),
1813        /* DBGDTR[RT]Xint */
1814        { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1815        /* DBGDTR[RT]Xext */
1816        { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1817        DBG_BCR_BVR_WCR_WVR(3),
1818        DBG_BCR_BVR_WCR_WVR(4),
1819        DBG_BCR_BVR_WCR_WVR(5),
1820        /* DBGWFAR */
1821        { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1822        /* DBGOSECCR */
1823        { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1824        DBG_BCR_BVR_WCR_WVR(6),
1825        /* DBGVCR */
1826        { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1827        DBG_BCR_BVR_WCR_WVR(7),
1828        DBG_BCR_BVR_WCR_WVR(8),
1829        DBG_BCR_BVR_WCR_WVR(9),
1830        DBG_BCR_BVR_WCR_WVR(10),
1831        DBG_BCR_BVR_WCR_WVR(11),
1832        DBG_BCR_BVR_WCR_WVR(12),
1833        DBG_BCR_BVR_WCR_WVR(13),
1834        DBG_BCR_BVR_WCR_WVR(14),
1835        DBG_BCR_BVR_WCR_WVR(15),
1836
1837        /* DBGDRAR (32bit) */
1838        { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1839
1840        DBGBXVR(0),
1841        /* DBGOSLAR */
1842        { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1843        DBGBXVR(1),
1844        /* DBGOSLSR */
1845        { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1846        DBGBXVR(2),
1847        DBGBXVR(3),
1848        /* DBGOSDLR */
1849        { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1850        DBGBXVR(4),
1851        /* DBGPRCR */
1852        { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1853        DBGBXVR(5),
1854        DBGBXVR(6),
1855        DBGBXVR(7),
1856        DBGBXVR(8),
1857        DBGBXVR(9),
1858        DBGBXVR(10),
1859        DBGBXVR(11),
1860        DBGBXVR(12),
1861        DBGBXVR(13),
1862        DBGBXVR(14),
1863        DBGBXVR(15),
1864
1865        /* DBGDSAR (32bit) */
1866        { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1867
1868        /* DBGDEVID2 */
1869        { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1870        /* DBGDEVID1 */
1871        { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1872        /* DBGDEVID */
1873        { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1874        /* DBGCLAIMSET */
1875        { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1876        /* DBGCLAIMCLR */
1877        { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1878        /* DBGAUTHSTATUS */
1879        { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1880};
1881
1882/* Trapped cp14 64bit registers */
1883static const struct sys_reg_desc cp14_64_regs[] = {
1884        /* DBGDRAR (64bit) */
1885        { Op1( 0), CRm( 1), .access = trap_raz_wi },
1886
1887        /* DBGDSAR (64bit) */
1888        { Op1( 0), CRm( 2), .access = trap_raz_wi },
1889};
1890
1891/* Macro to expand the PMEVCNTRn register */
1892#define PMU_PMEVCNTR(n)                                                 \
1893        /* PMEVCNTRn */                                                 \
1894        { Op1(0), CRn(0b1110),                                          \
1895          CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1896          access_pmu_evcntr }
1897
1898/* Macro to expand the PMEVTYPERn register */
1899#define PMU_PMEVTYPER(n)                                                \
1900        /* PMEVTYPERn */                                                \
1901        { Op1(0), CRn(0b1110),                                          \
1902          CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1903          access_pmu_evtyper }
1904
1905/*
1906 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1907 * depending on the way they are accessed (as a 32bit or a 64bit
1908 * register).
1909 */
1910static const struct sys_reg_desc cp15_regs[] = {
1911        { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1912        { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
1913        /* ACTLR */
1914        { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
1915        /* ACTLR2 */
1916        { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
1917        { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
1918        { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
1919        /* TTBCR */
1920        { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
1921        /* TTBCR2 */
1922        { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
1923        { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
1924        /* DFSR */
1925        { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
1926        { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
1927        /* ADFSR */
1928        { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
1929        /* AIFSR */
1930        { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
1931        /* DFAR */
1932        { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
1933        /* IFAR */
1934        { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
1935
1936        /*
1937         * DC{C,I,CI}SW operations:
1938         */
1939        { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1940        { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1941        { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1942
1943        /* PMU */
1944        { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1945        { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1946        { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1947        { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1948        { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1949        { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1950        { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1951        { AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1952        { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1953        { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1954        { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1955        { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1956        { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1957        { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1958        { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1959        { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 4), access_pmceid },
1960        { AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 5), access_pmceid },
1961        /* PMMIR */
1962        { Op1( 0), CRn( 9), CRm(14), Op2( 6), trap_raz_wi },
1963
1964        /* PRRR/MAIR0 */
1965        { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
1966        /* NMRR/MAIR1 */
1967        { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
1968        /* AMAIR0 */
1969        { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
1970        /* AMAIR1 */
1971        { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
1972
1973        /* ICC_SRE */
1974        { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1975
1976        { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
1977
1978        /* Arch Tmers */
1979        { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
1980        { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
1981
1982        /* PMEVCNTRn */
1983        PMU_PMEVCNTR(0),
1984        PMU_PMEVCNTR(1),
1985        PMU_PMEVCNTR(2),
1986        PMU_PMEVCNTR(3),
1987        PMU_PMEVCNTR(4),
1988        PMU_PMEVCNTR(5),
1989        PMU_PMEVCNTR(6),
1990        PMU_PMEVCNTR(7),
1991        PMU_PMEVCNTR(8),
1992        PMU_PMEVCNTR(9),
1993        PMU_PMEVCNTR(10),
1994        PMU_PMEVCNTR(11),
1995        PMU_PMEVCNTR(12),
1996        PMU_PMEVCNTR(13),
1997        PMU_PMEVCNTR(14),
1998        PMU_PMEVCNTR(15),
1999        PMU_PMEVCNTR(16),
2000        PMU_PMEVCNTR(17),
2001        PMU_PMEVCNTR(18),
2002        PMU_PMEVCNTR(19),
2003        PMU_PMEVCNTR(20),
2004        PMU_PMEVCNTR(21),
2005        PMU_PMEVCNTR(22),
2006        PMU_PMEVCNTR(23),
2007        PMU_PMEVCNTR(24),
2008        PMU_PMEVCNTR(25),
2009        PMU_PMEVCNTR(26),
2010        PMU_PMEVCNTR(27),
2011        PMU_PMEVCNTR(28),
2012        PMU_PMEVCNTR(29),
2013        PMU_PMEVCNTR(30),
2014        /* PMEVTYPERn */
2015        PMU_PMEVTYPER(0),
2016        PMU_PMEVTYPER(1),
2017        PMU_PMEVTYPER(2),
2018        PMU_PMEVTYPER(3),
2019        PMU_PMEVTYPER(4),
2020        PMU_PMEVTYPER(5),
2021        PMU_PMEVTYPER(6),
2022        PMU_PMEVTYPER(7),
2023        PMU_PMEVTYPER(8),
2024        PMU_PMEVTYPER(9),
2025        PMU_PMEVTYPER(10),
2026        PMU_PMEVTYPER(11),
2027        PMU_PMEVTYPER(12),
2028        PMU_PMEVTYPER(13),
2029        PMU_PMEVTYPER(14),
2030        PMU_PMEVTYPER(15),
2031        PMU_PMEVTYPER(16),
2032        PMU_PMEVTYPER(17),
2033        PMU_PMEVTYPER(18),
2034        PMU_PMEVTYPER(19),
2035        PMU_PMEVTYPER(20),
2036        PMU_PMEVTYPER(21),
2037        PMU_PMEVTYPER(22),
2038        PMU_PMEVTYPER(23),
2039        PMU_PMEVTYPER(24),
2040        PMU_PMEVTYPER(25),
2041        PMU_PMEVTYPER(26),
2042        PMU_PMEVTYPER(27),
2043        PMU_PMEVTYPER(28),
2044        PMU_PMEVTYPER(29),
2045        PMU_PMEVTYPER(30),
2046        /* PMCCFILTR */
2047        { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2048
2049        { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2050        { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2051        { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2052};
2053
2054static const struct sys_reg_desc cp15_64_regs[] = {
2055        { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2056        { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2057        { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2058        { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2059        { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2060        { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2061        { SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2062};
2063
2064static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2065                              bool is_32)
2066{
2067        unsigned int i;
2068
2069        for (i = 0; i < n; i++) {
2070                if (!is_32 && table[i].reg && !table[i].reset) {
2071                        kvm_err("sys_reg table %p entry %d has lacks reset\n",
2072                                table, i);
2073                        return 1;
2074                }
2075
2076                if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2077                        kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2078                        return 1;
2079                }
2080        }
2081
2082        return 0;
2083}
2084
2085static int match_sys_reg(const void *key, const void *elt)
2086{
2087        const unsigned long pval = (unsigned long)key;
2088        const struct sys_reg_desc *r = elt;
2089
2090        return pval - reg_to_encoding(r);
2091}
2092
2093static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2094                                         const struct sys_reg_desc table[],
2095                                         unsigned int num)
2096{
2097        unsigned long pval = reg_to_encoding(params);
2098
2099        return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2100}
2101
2102int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2103{
2104        kvm_inject_undefined(vcpu);
2105        return 1;
2106}
2107
2108static void perform_access(struct kvm_vcpu *vcpu,
2109                           struct sys_reg_params *params,
2110                           const struct sys_reg_desc *r)
2111{
2112        trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2113
2114        /* Check for regs disabled by runtime config */
2115        if (sysreg_hidden(vcpu, r)) {
2116                kvm_inject_undefined(vcpu);
2117                return;
2118        }
2119
2120        /*
2121         * Not having an accessor means that we have configured a trap
2122         * that we don't know how to handle. This certainly qualifies
2123         * as a gross bug that should be fixed right away.
2124         */
2125        BUG_ON(!r->access);
2126
2127        /* Skip instruction if instructed so */
2128        if (likely(r->access(vcpu, params, r)))
2129                kvm_incr_pc(vcpu);
2130}
2131
2132/*
2133 * emulate_cp --  tries to match a sys_reg access in a handling table, and
2134 *                call the corresponding trap handler.
2135 *
2136 * @params: pointer to the descriptor of the access
2137 * @table: array of trap descriptors
2138 * @num: size of the trap descriptor array
2139 *
2140 * Return 0 if the access has been handled, and -1 if not.
2141 */
2142static int emulate_cp(struct kvm_vcpu *vcpu,
2143                      struct sys_reg_params *params,
2144                      const struct sys_reg_desc *table,
2145                      size_t num)
2146{
2147        const struct sys_reg_desc *r;
2148
2149        if (!table)
2150                return -1;      /* Not handled */
2151
2152        r = find_reg(params, table, num);
2153
2154        if (r) {
2155                perform_access(vcpu, params, r);
2156                return 0;
2157        }
2158
2159        /* Not handled */
2160        return -1;
2161}
2162
2163static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2164                                struct sys_reg_params *params)
2165{
2166        u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2167        int cp = -1;
2168
2169        switch (esr_ec) {
2170        case ESR_ELx_EC_CP15_32:
2171        case ESR_ELx_EC_CP15_64:
2172                cp = 15;
2173                break;
2174        case ESR_ELx_EC_CP14_MR:
2175        case ESR_ELx_EC_CP14_64:
2176                cp = 14;
2177                break;
2178        default:
2179                WARN_ON(1);
2180        }
2181
2182        print_sys_reg_msg(params,
2183                          "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2184                          cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2185        kvm_inject_undefined(vcpu);
2186}
2187
2188/**
2189 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2190 * @vcpu: The VCPU pointer
2191 * @run:  The kvm_run struct
2192 */
2193static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2194                            const struct sys_reg_desc *global,
2195                            size_t nr_global)
2196{
2197        struct sys_reg_params params;
2198        u32 esr = kvm_vcpu_get_esr(vcpu);
2199        int Rt = kvm_vcpu_sys_get_rt(vcpu);
2200        int Rt2 = (esr >> 10) & 0x1f;
2201
2202        params.CRm = (esr >> 1) & 0xf;
2203        params.is_write = ((esr & 1) == 0);
2204
2205        params.Op0 = 0;
2206        params.Op1 = (esr >> 16) & 0xf;
2207        params.Op2 = 0;
2208        params.CRn = 0;
2209
2210        /*
2211         * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2212         * backends between AArch32 and AArch64, we get away with it.
2213         */
2214        if (params.is_write) {
2215                params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2216                params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2217        }
2218
2219        /*
2220         * If the table contains a handler, handle the
2221         * potential register operation in the case of a read and return
2222         * with success.
2223         */
2224        if (!emulate_cp(vcpu, &params, global, nr_global)) {
2225                /* Split up the value between registers for the read side */
2226                if (!params.is_write) {
2227                        vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2228                        vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2229                }
2230
2231                return 1;
2232        }
2233
2234        unhandled_cp_access(vcpu, &params);
2235        return 1;
2236}
2237
2238/**
2239 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2240 * @vcpu: The VCPU pointer
2241 * @run:  The kvm_run struct
2242 */
2243static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2244                            const struct sys_reg_desc *global,
2245                            size_t nr_global)
2246{
2247        struct sys_reg_params params;
2248        u32 esr = kvm_vcpu_get_esr(vcpu);
2249        int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2250
2251        params.CRm = (esr >> 1) & 0xf;
2252        params.regval = vcpu_get_reg(vcpu, Rt);
2253        params.is_write = ((esr & 1) == 0);
2254        params.CRn = (esr >> 10) & 0xf;
2255        params.Op0 = 0;
2256        params.Op1 = (esr >> 14) & 0x7;
2257        params.Op2 = (esr >> 17) & 0x7;
2258
2259        if (!emulate_cp(vcpu, &params, global, nr_global)) {
2260                if (!params.is_write)
2261                        vcpu_set_reg(vcpu, Rt, params.regval);
2262                return 1;
2263        }
2264
2265        unhandled_cp_access(vcpu, &params);
2266        return 1;
2267}
2268
2269int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2270{
2271        return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2272}
2273
2274int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2275{
2276        return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2277}
2278
2279int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2280{
2281        return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2282}
2283
2284int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2285{
2286        return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2287}
2288
2289static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2290{
2291        // See ARM DDI 0487E.a, section D12.3.2
2292        return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2293}
2294
2295static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2296                           struct sys_reg_params *params)
2297{
2298        const struct sys_reg_desc *r;
2299
2300        r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2301
2302        if (likely(r)) {
2303                perform_access(vcpu, params, r);
2304        } else if (is_imp_def_sys_reg(params)) {
2305                kvm_inject_undefined(vcpu);
2306        } else {
2307                print_sys_reg_msg(params,
2308                                  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2309                                  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2310                kvm_inject_undefined(vcpu);
2311        }
2312        return 1;
2313}
2314
2315/**
2316 * kvm_reset_sys_regs - sets system registers to reset value
2317 * @vcpu: The VCPU pointer
2318 *
2319 * This function finds the right table above and sets the registers on the
2320 * virtual CPU struct to their architecturally defined reset values.
2321 */
2322void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2323{
2324        unsigned long i;
2325
2326        for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2327                if (sys_reg_descs[i].reset)
2328                        sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2329}
2330
2331/**
2332 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2333 * @vcpu: The VCPU pointer
2334 */
2335int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2336{
2337        struct sys_reg_params params;
2338        unsigned long esr = kvm_vcpu_get_esr(vcpu);
2339        int Rt = kvm_vcpu_sys_get_rt(vcpu);
2340        int ret;
2341
2342        trace_kvm_handle_sys_reg(esr);
2343
2344        params.Op0 = (esr >> 20) & 3;
2345        params.Op1 = (esr >> 14) & 0x7;
2346        params.CRn = (esr >> 10) & 0xf;
2347        params.CRm = (esr >> 1) & 0xf;
2348        params.Op2 = (esr >> 17) & 0x7;
2349        params.regval = vcpu_get_reg(vcpu, Rt);
2350        params.is_write = !(esr & 1);
2351
2352        ret = emulate_sys_reg(vcpu, &params);
2353
2354        if (!params.is_write)
2355                vcpu_set_reg(vcpu, Rt, params.regval);
2356        return ret;
2357}
2358
2359/******************************************************************************
2360 * Userspace API
2361 *****************************************************************************/
2362
2363static bool index_to_params(u64 id, struct sys_reg_params *params)
2364{
2365        switch (id & KVM_REG_SIZE_MASK) {
2366        case KVM_REG_SIZE_U64:
2367                /* Any unused index bits means it's not valid. */
2368                if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2369                              | KVM_REG_ARM_COPROC_MASK
2370                              | KVM_REG_ARM64_SYSREG_OP0_MASK
2371                              | KVM_REG_ARM64_SYSREG_OP1_MASK
2372                              | KVM_REG_ARM64_SYSREG_CRN_MASK
2373                              | KVM_REG_ARM64_SYSREG_CRM_MASK
2374                              | KVM_REG_ARM64_SYSREG_OP2_MASK))
2375                        return false;
2376                params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2377                               >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2378                params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2379                               >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2380                params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2381                               >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2382                params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2383                               >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2384                params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2385                               >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2386                return true;
2387        default:
2388                return false;
2389        }
2390}
2391
2392const struct sys_reg_desc *find_reg_by_id(u64 id,
2393                                          struct sys_reg_params *params,
2394                                          const struct sys_reg_desc table[],
2395                                          unsigned int num)
2396{
2397        if (!index_to_params(id, params))
2398                return NULL;
2399
2400        return find_reg(params, table, num);
2401}
2402
2403/* Decode an index value, and find the sys_reg_desc entry. */
2404static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2405                                                    u64 id)
2406{
2407        const struct sys_reg_desc *r;
2408        struct sys_reg_params params;
2409
2410        /* We only do sys_reg for now. */
2411        if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2412                return NULL;
2413
2414        if (!index_to_params(id, &params))
2415                return NULL;
2416
2417        r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2418
2419        /* Not saved in the sys_reg array and not otherwise accessible? */
2420        if (r && !(r->reg || r->get_user))
2421                r = NULL;
2422
2423        return r;
2424}
2425
2426/*
2427 * These are the invariant sys_reg registers: we let the guest see the
2428 * host versions of these, so they're part of the guest state.
2429 *
2430 * A future CPU may provide a mechanism to present different values to
2431 * the guest, or a future kvm may trap them.
2432 */
2433
2434#define FUNCTION_INVARIANT(reg)                                         \
2435        static void get_##reg(struct kvm_vcpu *v,                       \
2436                              const struct sys_reg_desc *r)             \
2437        {                                                               \
2438                ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2439        }
2440
2441FUNCTION_INVARIANT(midr_el1)
2442FUNCTION_INVARIANT(revidr_el1)
2443FUNCTION_INVARIANT(clidr_el1)
2444FUNCTION_INVARIANT(aidr_el1)
2445
2446static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2447{
2448        ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2449}
2450
2451/* ->val is filled in by kvm_sys_reg_table_init() */
2452static struct sys_reg_desc invariant_sys_regs[] = {
2453        { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2454        { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2455        { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2456        { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2457        { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2458};
2459
2460static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2461{
2462        if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2463                return -EFAULT;
2464        return 0;
2465}
2466
2467static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2468{
2469        if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2470                return -EFAULT;
2471        return 0;
2472}
2473
2474static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2475{
2476        struct sys_reg_params params;
2477        const struct sys_reg_desc *r;
2478
2479        r = find_reg_by_id(id, &params, invariant_sys_regs,
2480                           ARRAY_SIZE(invariant_sys_regs));
2481        if (!r)
2482                return -ENOENT;
2483
2484        return reg_to_user(uaddr, &r->val, id);
2485}
2486
2487static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2488{
2489        struct sys_reg_params params;
2490        const struct sys_reg_desc *r;
2491        int err;
2492        u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2493
2494        r = find_reg_by_id(id, &params, invariant_sys_regs,
2495                           ARRAY_SIZE(invariant_sys_regs));
2496        if (!r)
2497                return -ENOENT;
2498
2499        err = reg_from_user(&val, uaddr, id);
2500        if (err)
2501                return err;
2502
2503        /* This is what we mean by invariant: you can't change it. */
2504        if (r->val != val)
2505                return -EINVAL;
2506
2507        return 0;
2508}
2509
2510static bool is_valid_cache(u32 val)
2511{
2512        u32 level, ctype;
2513
2514        if (val >= CSSELR_MAX)
2515                return false;
2516
2517        /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2518        level = (val >> 1);
2519        ctype = (cache_levels >> (level * 3)) & 7;
2520
2521        switch (ctype) {
2522        case 0: /* No cache */
2523                return false;
2524        case 1: /* Instruction cache only */
2525                return (val & 1);
2526        case 2: /* Data cache only */
2527        case 4: /* Unified cache */
2528                return !(val & 1);
2529        case 3: /* Separate instruction and data caches */
2530                return true;
2531        default: /* Reserved: we can't know instruction or data. */
2532                return false;
2533        }
2534}
2535
2536static int demux_c15_get(u64 id, void __user *uaddr)
2537{
2538        u32 val;
2539        u32 __user *uval = uaddr;
2540
2541        /* Fail if we have unknown bits set. */
2542        if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2543                   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2544                return -ENOENT;
2545
2546        switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2547        case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2548                if (KVM_REG_SIZE(id) != 4)
2549                        return -ENOENT;
2550                val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2551                        >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2552                if (!is_valid_cache(val))
2553                        return -ENOENT;
2554
2555                return put_user(get_ccsidr(val), uval);
2556        default:
2557                return -ENOENT;
2558        }
2559}
2560
2561static int demux_c15_set(u64 id, void __user *uaddr)
2562{
2563        u32 val, newval;
2564        u32 __user *uval = uaddr;
2565
2566        /* Fail if we have unknown bits set. */
2567        if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2568                   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2569                return -ENOENT;
2570
2571        switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2572        case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2573                if (KVM_REG_SIZE(id) != 4)
2574                        return -ENOENT;
2575                val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2576                        >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2577                if (!is_valid_cache(val))
2578                        return -ENOENT;
2579
2580                if (get_user(newval, uval))
2581                        return -EFAULT;
2582
2583                /* This is also invariant: you can't change it. */
2584                if (newval != get_ccsidr(val))
2585                        return -EINVAL;
2586                return 0;
2587        default:
2588                return -ENOENT;
2589        }
2590}
2591
2592int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2593{
2594        const struct sys_reg_desc *r;
2595        void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2596
2597        if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2598                return demux_c15_get(reg->id, uaddr);
2599
2600        if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2601                return -ENOENT;
2602
2603        r = index_to_sys_reg_desc(vcpu, reg->id);
2604        if (!r)
2605                return get_invariant_sys_reg(reg->id, uaddr);
2606
2607        /* Check for regs disabled by runtime config */
2608        if (sysreg_hidden(vcpu, r))
2609                return -ENOENT;
2610
2611        if (r->get_user)
2612                return (r->get_user)(vcpu, r, reg, uaddr);
2613
2614        return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2615}
2616
2617int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2618{
2619        const struct sys_reg_desc *r;
2620        void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2621
2622        if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2623                return demux_c15_set(reg->id, uaddr);
2624
2625        if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2626                return -ENOENT;
2627
2628        r = index_to_sys_reg_desc(vcpu, reg->id);
2629        if (!r)
2630                return set_invariant_sys_reg(reg->id, uaddr);
2631
2632        /* Check for regs disabled by runtime config */
2633        if (sysreg_hidden(vcpu, r))
2634                return -ENOENT;
2635
2636        if (r->set_user)
2637                return (r->set_user)(vcpu, r, reg, uaddr);
2638
2639        return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2640}
2641
2642static unsigned int num_demux_regs(void)
2643{
2644        unsigned int i, count = 0;
2645
2646        for (i = 0; i < CSSELR_MAX; i++)
2647                if (is_valid_cache(i))
2648                        count++;
2649
2650        return count;
2651}
2652
2653static int write_demux_regids(u64 __user *uindices)
2654{
2655        u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2656        unsigned int i;
2657
2658        val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2659        for (i = 0; i < CSSELR_MAX; i++) {
2660                if (!is_valid_cache(i))
2661                        continue;
2662                if (put_user(val | i, uindices))
2663                        return -EFAULT;
2664                uindices++;
2665        }
2666        return 0;
2667}
2668
2669static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2670{
2671        return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2672                KVM_REG_ARM64_SYSREG |
2673                (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2674                (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2675                (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2676                (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2677                (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2678}
2679
2680static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2681{
2682        if (!*uind)
2683                return true;
2684
2685        if (put_user(sys_reg_to_index(reg), *uind))
2686                return false;
2687
2688        (*uind)++;
2689        return true;
2690}
2691
2692static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2693                            const struct sys_reg_desc *rd,
2694                            u64 __user **uind,
2695                            unsigned int *total)
2696{
2697        /*
2698         * Ignore registers we trap but don't save,
2699         * and for which no custom user accessor is provided.
2700         */
2701        if (!(rd->reg || rd->get_user))
2702                return 0;
2703
2704        if (sysreg_hidden(vcpu, rd))
2705                return 0;
2706
2707        if (!copy_reg_to_user(rd, uind))
2708                return -EFAULT;
2709
2710        (*total)++;
2711        return 0;
2712}
2713
2714/* Assumed ordered tables, see kvm_sys_reg_table_init. */
2715static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2716{
2717        const struct sys_reg_desc *i2, *end2;
2718        unsigned int total = 0;
2719        int err;
2720
2721        i2 = sys_reg_descs;
2722        end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2723
2724        while (i2 != end2) {
2725                err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2726                if (err)
2727                        return err;
2728        }
2729        return total;
2730}
2731
2732unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2733{
2734        return ARRAY_SIZE(invariant_sys_regs)
2735                + num_demux_regs()
2736                + walk_sys_regs(vcpu, (u64 __user *)NULL);
2737}
2738
2739int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2740{
2741        unsigned int i;
2742        int err;
2743
2744        /* Then give them all the invariant registers' indices. */
2745        for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2746                if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2747                        return -EFAULT;
2748                uindices++;
2749        }
2750
2751        err = walk_sys_regs(vcpu, uindices);
2752        if (err < 0)
2753                return err;
2754        uindices += err;
2755
2756        return write_demux_regids(uindices);
2757}
2758
2759void kvm_sys_reg_table_init(void)
2760{
2761        unsigned int i;
2762        struct sys_reg_desc clidr;
2763
2764        /* Make sure tables are unique and in order. */
2765        BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2766        BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2767        BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2768        BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2769        BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2770        BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2771
2772        /* We abuse the reset function to overwrite the table itself. */
2773        for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2774                invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2775
2776        /*
2777         * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2778         *
2779         *   If software reads the Cache Type fields from Ctype1
2780         *   upwards, once it has seen a value of 0b000, no caches
2781         *   exist at further-out levels of the hierarchy. So, for
2782         *   example, if Ctype3 is the first Cache Type field with a
2783         *   value of 0b000, the values of Ctype4 to Ctype7 must be
2784         *   ignored.
2785         */
2786        get_clidr_el1(NULL, &clidr); /* Ugly... */
2787        cache_levels = clidr.val;
2788        for (i = 0; i < 7; i++)
2789                if (((cache_levels >> (i*3)) & 7) == 0)
2790                        break;
2791        /* Clear all higher bits. */
2792        cache_levels &= (1 << (i*3))-1;
2793}
2794