linux/arch/arm64/kvm/vgic/vgic-v3.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2
   3#include <linux/irqchip/arm-gic-v3.h>
   4#include <linux/irq.h>
   5#include <linux/irqdomain.h>
   6#include <linux/kvm.h>
   7#include <linux/kvm_host.h>
   8#include <kvm/arm_vgic.h>
   9#include <asm/kvm_hyp.h>
  10#include <asm/kvm_mmu.h>
  11#include <asm/kvm_asm.h>
  12
  13#include "vgic.h"
  14
  15static bool group0_trap;
  16static bool group1_trap;
  17static bool common_trap;
  18static bool gicv4_enable;
  19
  20void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
  21{
  22        struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
  23
  24        cpuif->vgic_hcr |= ICH_HCR_UIE;
  25}
  26
  27static bool lr_signals_eoi_mi(u64 lr_val)
  28{
  29        return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
  30               !(lr_val & ICH_LR_HW);
  31}
  32
  33void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
  34{
  35        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  36        struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
  37        u32 model = vcpu->kvm->arch.vgic.vgic_model;
  38        int lr;
  39
  40        DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
  41
  42        cpuif->vgic_hcr &= ~ICH_HCR_UIE;
  43
  44        for (lr = 0; lr < cpuif->used_lrs; lr++) {
  45                u64 val = cpuif->vgic_lr[lr];
  46                u32 intid, cpuid;
  47                struct vgic_irq *irq;
  48                bool is_v2_sgi = false;
  49
  50                cpuid = val & GICH_LR_PHYSID_CPUID;
  51                cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
  52
  53                if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
  54                        intid = val & ICH_LR_VIRTUAL_ID_MASK;
  55                } else {
  56                        intid = val & GICH_LR_VIRTUALID;
  57                        is_v2_sgi = vgic_irq_is_sgi(intid);
  58                }
  59
  60                /* Notify fds when the guest EOI'ed a level-triggered IRQ */
  61                if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
  62                        kvm_notify_acked_irq(vcpu->kvm, 0,
  63                                             intid - VGIC_NR_PRIVATE_IRQS);
  64
  65                irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
  66                if (!irq)       /* An LPI could have been unmapped. */
  67                        continue;
  68
  69                raw_spin_lock(&irq->irq_lock);
  70
  71                /* Always preserve the active bit */
  72                irq->active = !!(val & ICH_LR_ACTIVE_BIT);
  73
  74                if (irq->active && is_v2_sgi)
  75                        irq->active_source = cpuid;
  76
  77                /* Edge is the only case where we preserve the pending bit */
  78                if (irq->config == VGIC_CONFIG_EDGE &&
  79                    (val & ICH_LR_PENDING_BIT)) {
  80                        irq->pending_latch = true;
  81
  82                        if (is_v2_sgi)
  83                                irq->source |= (1 << cpuid);
  84                }
  85
  86                /*
  87                 * Clear soft pending state when level irqs have been acked.
  88                 */
  89                if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
  90                        irq->pending_latch = false;
  91
  92                /*
  93                 * Level-triggered mapped IRQs are special because we only
  94                 * observe rising edges as input to the VGIC.
  95                 *
  96                 * If the guest never acked the interrupt we have to sample
  97                 * the physical line and set the line level, because the
  98                 * device state could have changed or we simply need to
  99                 * process the still pending interrupt later.
 100                 *
 101                 * If this causes us to lower the level, we have to also clear
 102                 * the physical active state, since we will otherwise never be
 103                 * told when the interrupt becomes asserted again.
 104                 */
 105                if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) {
 106                        irq->line_level = vgic_get_phys_line_level(irq);
 107
 108                        if (!irq->line_level)
 109                                vgic_irq_set_phys_active(irq, false);
 110                }
 111
 112                raw_spin_unlock(&irq->irq_lock);
 113                vgic_put_irq(vcpu->kvm, irq);
 114        }
 115
 116        cpuif->used_lrs = 0;
 117}
 118
 119/* Requires the irq to be locked already */
 120void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
 121{
 122        u32 model = vcpu->kvm->arch.vgic.vgic_model;
 123        u64 val = irq->intid;
 124        bool allow_pending = true, is_v2_sgi;
 125
 126        is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
 127                     model == KVM_DEV_TYPE_ARM_VGIC_V2);
 128
 129        if (irq->active) {
 130                val |= ICH_LR_ACTIVE_BIT;
 131                if (is_v2_sgi)
 132                        val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
 133                if (vgic_irq_is_multi_sgi(irq)) {
 134                        allow_pending = false;
 135                        val |= ICH_LR_EOI;
 136                }
 137        }
 138
 139        if (irq->hw) {
 140                val |= ICH_LR_HW;
 141                val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
 142                /*
 143                 * Never set pending+active on a HW interrupt, as the
 144                 * pending state is kept at the physical distributor
 145                 * level.
 146                 */
 147                if (irq->active)
 148                        allow_pending = false;
 149        } else {
 150                if (irq->config == VGIC_CONFIG_LEVEL) {
 151                        val |= ICH_LR_EOI;
 152
 153                        /*
 154                         * Software resampling doesn't work very well
 155                         * if we allow P+A, so let's not do that.
 156                         */
 157                        if (irq->active)
 158                                allow_pending = false;
 159                }
 160        }
 161
 162        if (allow_pending && irq_is_pending(irq)) {
 163                val |= ICH_LR_PENDING_BIT;
 164
 165                if (irq->config == VGIC_CONFIG_EDGE)
 166                        irq->pending_latch = false;
 167
 168                if (vgic_irq_is_sgi(irq->intid) &&
 169                    model == KVM_DEV_TYPE_ARM_VGIC_V2) {
 170                        u32 src = ffs(irq->source);
 171
 172                        if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
 173                                           irq->intid))
 174                                return;
 175
 176                        val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
 177                        irq->source &= ~(1 << (src - 1));
 178                        if (irq->source) {
 179                                irq->pending_latch = true;
 180                                val |= ICH_LR_EOI;
 181                        }
 182                }
 183        }
 184
 185        /*
 186         * Level-triggered mapped IRQs are special because we only observe
 187         * rising edges as input to the VGIC.  We therefore lower the line
 188         * level here, so that we can take new virtual IRQs.  See
 189         * vgic_v3_fold_lr_state for more info.
 190         */
 191        if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
 192                irq->line_level = false;
 193
 194        if (irq->group)
 195                val |= ICH_LR_GROUP;
 196
 197        val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
 198
 199        vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
 200}
 201
 202void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
 203{
 204        vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
 205}
 206
 207void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
 208{
 209        struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
 210        u32 model = vcpu->kvm->arch.vgic.vgic_model;
 211        u32 vmcr;
 212
 213        if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
 214                vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
 215                        ICH_VMCR_ACK_CTL_MASK;
 216                vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
 217                        ICH_VMCR_FIQ_EN_MASK;
 218        } else {
 219                /*
 220                 * When emulating GICv3 on GICv3 with SRE=1 on the
 221                 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
 222                 */
 223                vmcr = ICH_VMCR_FIQ_EN_MASK;
 224        }
 225
 226        vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
 227        vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
 228        vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
 229        vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
 230        vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
 231        vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
 232        vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
 233
 234        cpu_if->vgic_vmcr = vmcr;
 235}
 236
 237void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
 238{
 239        struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
 240        u32 model = vcpu->kvm->arch.vgic.vgic_model;
 241        u32 vmcr;
 242
 243        vmcr = cpu_if->vgic_vmcr;
 244
 245        if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
 246                vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
 247                        ICH_VMCR_ACK_CTL_SHIFT;
 248                vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
 249                        ICH_VMCR_FIQ_EN_SHIFT;
 250        } else {
 251                /*
 252                 * When emulating GICv3 on GICv3 with SRE=1 on the
 253                 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
 254                 */
 255                vmcrp->fiqen = 1;
 256                vmcrp->ackctl = 0;
 257        }
 258
 259        vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
 260        vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
 261        vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
 262        vmcrp->bpr  = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
 263        vmcrp->pmr  = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
 264        vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
 265        vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
 266}
 267
 268#define INITIAL_PENDBASER_VALUE                                           \
 269        (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb)            | \
 270        GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner)      | \
 271        GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
 272
 273void vgic_v3_enable(struct kvm_vcpu *vcpu)
 274{
 275        struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
 276
 277        /*
 278         * By forcing VMCR to zero, the GIC will restore the binary
 279         * points to their reset values. Anything else resets to zero
 280         * anyway.
 281         */
 282        vgic_v3->vgic_vmcr = 0;
 283
 284        /*
 285         * If we are emulating a GICv3, we do it in an non-GICv2-compatible
 286         * way, so we force SRE to 1 to demonstrate this to the guest.
 287         * Also, we don't support any form of IRQ/FIQ bypass.
 288         * This goes with the spec allowing the value to be RAO/WI.
 289         */
 290        if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
 291                vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
 292                                     ICC_SRE_EL1_DFB |
 293                                     ICC_SRE_EL1_SRE);
 294                vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
 295        } else {
 296                vgic_v3->vgic_sre = 0;
 297        }
 298
 299        vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
 300                                           ICH_VTR_ID_BITS_MASK) >>
 301                                           ICH_VTR_ID_BITS_SHIFT;
 302        vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
 303                                            ICH_VTR_PRI_BITS_MASK) >>
 304                                            ICH_VTR_PRI_BITS_SHIFT) + 1;
 305
 306        /* Get the show on the road... */
 307        vgic_v3->vgic_hcr = ICH_HCR_EN;
 308        if (group0_trap)
 309                vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
 310        if (group1_trap)
 311                vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
 312        if (common_trap)
 313                vgic_v3->vgic_hcr |= ICH_HCR_TC;
 314}
 315
 316int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
 317{
 318        struct kvm_vcpu *vcpu;
 319        int byte_offset, bit_nr;
 320        gpa_t pendbase, ptr;
 321        bool status;
 322        u8 val;
 323        int ret;
 324        unsigned long flags;
 325
 326retry:
 327        vcpu = irq->target_vcpu;
 328        if (!vcpu)
 329                return 0;
 330
 331        pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
 332
 333        byte_offset = irq->intid / BITS_PER_BYTE;
 334        bit_nr = irq->intid % BITS_PER_BYTE;
 335        ptr = pendbase + byte_offset;
 336
 337        ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
 338        if (ret)
 339                return ret;
 340
 341        status = val & (1 << bit_nr);
 342
 343        raw_spin_lock_irqsave(&irq->irq_lock, flags);
 344        if (irq->target_vcpu != vcpu) {
 345                raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 346                goto retry;
 347        }
 348        irq->pending_latch = status;
 349        vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
 350
 351        if (status) {
 352                /* clear consumed data */
 353                val &= ~(1 << bit_nr);
 354                ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
 355                if (ret)
 356                        return ret;
 357        }
 358        return 0;
 359}
 360
 361/*
 362 * The deactivation of the doorbell interrupt will trigger the
 363 * unmapping of the associated vPE.
 364 */
 365static void unmap_all_vpes(struct vgic_dist *dist)
 366{
 367        struct irq_desc *desc;
 368        int i;
 369
 370        for (i = 0; i < dist->its_vm.nr_vpes; i++) {
 371                desc = irq_to_desc(dist->its_vm.vpes[i]->irq);
 372                irq_domain_deactivate_irq(irq_desc_get_irq_data(desc));
 373        }
 374}
 375
 376static void map_all_vpes(struct vgic_dist *dist)
 377{
 378        struct irq_desc *desc;
 379        int i;
 380
 381        for (i = 0; i < dist->its_vm.nr_vpes; i++) {
 382                desc = irq_to_desc(dist->its_vm.vpes[i]->irq);
 383                irq_domain_activate_irq(irq_desc_get_irq_data(desc), false);
 384        }
 385}
 386
 387/**
 388 * vgic_v3_save_pending_tables - Save the pending tables into guest RAM
 389 * kvm lock and all vcpu lock must be held
 390 */
 391int vgic_v3_save_pending_tables(struct kvm *kvm)
 392{
 393        struct vgic_dist *dist = &kvm->arch.vgic;
 394        struct vgic_irq *irq;
 395        gpa_t last_ptr = ~(gpa_t)0;
 396        bool vlpi_avail = false;
 397        int ret = 0;
 398        u8 val;
 399
 400        if (unlikely(!vgic_initialized(kvm)))
 401                return -ENXIO;
 402
 403        /*
 404         * A preparation for getting any VLPI states.
 405         * The above vgic initialized check also ensures that the allocation
 406         * and enabling of the doorbells have already been done.
 407         */
 408        if (kvm_vgic_global_state.has_gicv4_1) {
 409                unmap_all_vpes(dist);
 410                vlpi_avail = true;
 411        }
 412
 413        list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
 414                int byte_offset, bit_nr;
 415                struct kvm_vcpu *vcpu;
 416                gpa_t pendbase, ptr;
 417                bool is_pending;
 418                bool stored;
 419
 420                vcpu = irq->target_vcpu;
 421                if (!vcpu)
 422                        continue;
 423
 424                pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
 425
 426                byte_offset = irq->intid / BITS_PER_BYTE;
 427                bit_nr = irq->intid % BITS_PER_BYTE;
 428                ptr = pendbase + byte_offset;
 429
 430                if (ptr != last_ptr) {
 431                        ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
 432                        if (ret)
 433                                goto out;
 434                        last_ptr = ptr;
 435                }
 436
 437                stored = val & (1U << bit_nr);
 438
 439                is_pending = irq->pending_latch;
 440
 441                if (irq->hw && vlpi_avail)
 442                        vgic_v4_get_vlpi_state(irq, &is_pending);
 443
 444                if (stored == is_pending)
 445                        continue;
 446
 447                if (is_pending)
 448                        val |= 1 << bit_nr;
 449                else
 450                        val &= ~(1 << bit_nr);
 451
 452                ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
 453                if (ret)
 454                        goto out;
 455        }
 456
 457out:
 458        if (vlpi_avail)
 459                map_all_vpes(dist);
 460
 461        return ret;
 462}
 463
 464/**
 465 * vgic_v3_rdist_overlap - check if a region overlaps with any
 466 * existing redistributor region
 467 *
 468 * @kvm: kvm handle
 469 * @base: base of the region
 470 * @size: size of region
 471 *
 472 * Return: true if there is an overlap
 473 */
 474bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
 475{
 476        struct vgic_dist *d = &kvm->arch.vgic;
 477        struct vgic_redist_region *rdreg;
 478
 479        list_for_each_entry(rdreg, &d->rd_regions, list) {
 480                if ((base + size > rdreg->base) &&
 481                        (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
 482                        return true;
 483        }
 484        return false;
 485}
 486
 487/*
 488 * Check for overlapping regions and for regions crossing the end of memory
 489 * for base addresses which have already been set.
 490 */
 491bool vgic_v3_check_base(struct kvm *kvm)
 492{
 493        struct vgic_dist *d = &kvm->arch.vgic;
 494        struct vgic_redist_region *rdreg;
 495
 496        if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
 497            d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
 498                return false;
 499
 500        list_for_each_entry(rdreg, &d->rd_regions, list) {
 501                if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) <
 502                        rdreg->base)
 503                        return false;
 504        }
 505
 506        if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
 507                return true;
 508
 509        return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
 510                                      KVM_VGIC_V3_DIST_SIZE);
 511}
 512
 513/**
 514 * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
 515 * which has free space to put a new rdist region.
 516 *
 517 * @rd_regions: redistributor region list head
 518 *
 519 * A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
 520 * Stride between redistributors is 0 and regions are filled in the index order.
 521 *
 522 * Return: the redist region handle, if any, that has space to map a new rdist
 523 * region.
 524 */
 525struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
 526{
 527        struct vgic_redist_region *rdreg;
 528
 529        list_for_each_entry(rdreg, rd_regions, list) {
 530                if (!vgic_v3_redist_region_full(rdreg))
 531                        return rdreg;
 532        }
 533        return NULL;
 534}
 535
 536struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
 537                                                           u32 index)
 538{
 539        struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
 540        struct vgic_redist_region *rdreg;
 541
 542        list_for_each_entry(rdreg, rd_regions, list) {
 543                if (rdreg->index == index)
 544                        return rdreg;
 545        }
 546        return NULL;
 547}
 548
 549
 550int vgic_v3_map_resources(struct kvm *kvm)
 551{
 552        struct vgic_dist *dist = &kvm->arch.vgic;
 553        struct kvm_vcpu *vcpu;
 554        int ret = 0;
 555        int c;
 556
 557        kvm_for_each_vcpu(c, vcpu, kvm) {
 558                struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 559
 560                if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
 561                        kvm_debug("vcpu %d redistributor base not set\n", c);
 562                        return -ENXIO;
 563                }
 564        }
 565
 566        if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
 567                kvm_err("Need to set vgic distributor addresses first\n");
 568                return -ENXIO;
 569        }
 570
 571        if (!vgic_v3_check_base(kvm)) {
 572                kvm_err("VGIC redist and dist frames overlap\n");
 573                return -EINVAL;
 574        }
 575
 576        /*
 577         * For a VGICv3 we require the userland to explicitly initialize
 578         * the VGIC before we need to use it.
 579         */
 580        if (!vgic_initialized(kvm)) {
 581                return -EBUSY;
 582        }
 583
 584        ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
 585        if (ret) {
 586                kvm_err("Unable to register VGICv3 dist MMIO regions\n");
 587                return ret;
 588        }
 589
 590        if (kvm_vgic_global_state.has_gicv4_1)
 591                vgic_v4_configure_vsgis(kvm);
 592
 593        return 0;
 594}
 595
 596DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
 597
 598static int __init early_group0_trap_cfg(char *buf)
 599{
 600        return strtobool(buf, &group0_trap);
 601}
 602early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
 603
 604static int __init early_group1_trap_cfg(char *buf)
 605{
 606        return strtobool(buf, &group1_trap);
 607}
 608early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
 609
 610static int __init early_common_trap_cfg(char *buf)
 611{
 612        return strtobool(buf, &common_trap);
 613}
 614early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
 615
 616static int __init early_gicv4_enable(char *buf)
 617{
 618        return strtobool(buf, &gicv4_enable);
 619}
 620early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
 621
 622/**
 623 * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller
 624 * @info:       pointer to the GIC description
 625 *
 626 * Returns 0 if the VGICv3 has been probed successfully, returns an error code
 627 * otherwise
 628 */
 629int vgic_v3_probe(const struct gic_kvm_info *info)
 630{
 631        u64 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_gic_config);
 632        bool has_v2;
 633        int ret;
 634
 635        has_v2 = ich_vtr_el2 >> 63;
 636        ich_vtr_el2 = (u32)ich_vtr_el2;
 637
 638        /*
 639         * The ListRegs field is 5 bits, but there is an architectural
 640         * maximum of 16 list registers. Just ignore bit 4...
 641         */
 642        kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
 643        kvm_vgic_global_state.can_emulate_gicv2 = false;
 644        kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
 645
 646        /* GICv4 support? */
 647        if (info->has_v4) {
 648                kvm_vgic_global_state.has_gicv4 = gicv4_enable;
 649                kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable;
 650                kvm_info("GICv4%s support %sabled\n",
 651                         kvm_vgic_global_state.has_gicv4_1 ? ".1" : "",
 652                         gicv4_enable ? "en" : "dis");
 653        }
 654
 655        kvm_vgic_global_state.vcpu_base = 0;
 656
 657        if (!info->vcpu.start) {
 658                kvm_info("GICv3: no GICV resource entry\n");
 659        } else if (!has_v2) {
 660                pr_warn(FW_BUG "CPU interface incapable of MMIO access\n");
 661        } else if (!PAGE_ALIGNED(info->vcpu.start)) {
 662                pr_warn("GICV physical address 0x%llx not page aligned\n",
 663                        (unsigned long long)info->vcpu.start);
 664        } else {
 665                kvm_vgic_global_state.vcpu_base = info->vcpu.start;
 666                kvm_vgic_global_state.can_emulate_gicv2 = true;
 667                ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
 668                if (ret) {
 669                        kvm_err("Cannot register GICv2 KVM device.\n");
 670                        return ret;
 671                }
 672                kvm_info("vgic-v2@%llx\n", info->vcpu.start);
 673        }
 674        ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
 675        if (ret) {
 676                kvm_err("Cannot register GICv3 KVM device.\n");
 677                kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
 678                return ret;
 679        }
 680
 681        if (kvm_vgic_global_state.vcpu_base == 0)
 682                kvm_info("disabling GICv2 emulation\n");
 683
 684        if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
 685                group0_trap = true;
 686                group1_trap = true;
 687        }
 688
 689        if (group0_trap || group1_trap || common_trap) {
 690                kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n",
 691                         group0_trap ? "G0" : "",
 692                         group1_trap ? "G1" : "",
 693                         common_trap ? "C"  : "");
 694                static_branch_enable(&vgic_v3_cpuif_trap);
 695        }
 696
 697        kvm_vgic_global_state.vctrl_base = NULL;
 698        kvm_vgic_global_state.type = VGIC_V3;
 699        kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
 700
 701        return 0;
 702}
 703
 704void vgic_v3_load(struct kvm_vcpu *vcpu)
 705{
 706        struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
 707
 708        /*
 709         * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
 710         * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
 711         * VMCR_EL2 save/restore in the world switch.
 712         */
 713        if (likely(cpu_if->vgic_sre))
 714                kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
 715
 716        kvm_call_hyp(__vgic_v3_restore_aprs, cpu_if);
 717
 718        if (has_vhe())
 719                __vgic_v3_activate_traps(cpu_if);
 720
 721        WARN_ON(vgic_v4_load(vcpu));
 722}
 723
 724void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu)
 725{
 726        struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
 727
 728        if (likely(cpu_if->vgic_sre))
 729                cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr);
 730}
 731
 732void vgic_v3_put(struct kvm_vcpu *vcpu)
 733{
 734        struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
 735
 736        WARN_ON(vgic_v4_put(vcpu, false));
 737
 738        vgic_v3_vmcr_sync(vcpu);
 739
 740        kvm_call_hyp(__vgic_v3_save_aprs, cpu_if);
 741
 742        if (has_vhe())
 743                __vgic_v3_deactivate_traps(cpu_if);
 744}
 745