linux/arch/hexagon/include/asm/pgtable.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 * Page table support for the Hexagon architecture
   4 *
   5 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
   6 */
   7
   8#ifndef _ASM_PGTABLE_H
   9#define _ASM_PGTABLE_H
  10
  11/*
  12 * Page table definitions for Qualcomm Hexagon processor.
  13 */
  14#include <asm/page.h>
  15#include <asm-generic/pgtable-nopmd.h>
  16
  17/* A handy thing to have if one has the RAM. Declared in head.S */
  18extern unsigned long empty_zero_page;
  19
  20/*
  21 * The PTE model described here is that of the Hexagon Virtual Machine,
  22 * which autonomously walks 2-level page tables.  At a lower level, we
  23 * also describe the RISCish software-loaded TLB entry structure of
  24 * the underlying Hexagon processor. A kernel built to run on the
  25 * virtual machine has no need to know about the underlying hardware.
  26 */
  27#include <asm/vm_mmu.h>
  28
  29/*
  30 * To maximize the comfort level for the PTE manipulation macros,
  31 * define the "well known" architecture-specific bits.
  32 */
  33#define _PAGE_READ      __HVM_PTE_R
  34#define _PAGE_WRITE     __HVM_PTE_W
  35#define _PAGE_EXECUTE   __HVM_PTE_X
  36#define _PAGE_USER      __HVM_PTE_U
  37
  38/*
  39 * We have a total of 4 "soft" bits available in the abstract PTE.
  40 * The two mandatory software bits are Dirty and Accessed.
  41 * To make nonlinear swap work according to the more recent
  42 * model, we want a low order "Present" bit to indicate whether
  43 * the PTE describes MMU programming or swap space.
  44 */
  45#define _PAGE_PRESENT   (1<<0)
  46#define _PAGE_DIRTY     (1<<1)
  47#define _PAGE_ACCESSED  (1<<2)
  48
  49/*
  50 * For now, let's say that Valid and Present are the same thing.
  51 * Alternatively, we could say that it's the "or" of R, W, and X
  52 * permissions.
  53 */
  54#define _PAGE_VALID     _PAGE_PRESENT
  55
  56/*
  57 * We're not defining _PAGE_GLOBAL here, since there's no concept
  58 * of global pages or ASIDs exposed to the Hexagon Virtual Machine,
  59 * and we want to use the same page table structures and macros in
  60 * the native kernel as we do in the virtual machine kernel.
  61 * So we'll put up with a bit of inefficiency for now...
  62 */
  63
  64/*
  65 * Top "FOURTH" level (pgd), which for the Hexagon VM is really
  66 * only the second from the bottom, pgd and pud both being collapsed.
  67 * Each entry represents 4MB of virtual address space, 4K of table
  68 * thus maps the full 4GB.
  69 */
  70#define PGDIR_SHIFT 22
  71#define PTRS_PER_PGD 1024
  72
  73#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  74#define PGDIR_MASK (~(PGDIR_SIZE-1))
  75
  76#ifdef CONFIG_PAGE_SIZE_4KB
  77#define PTRS_PER_PTE 1024
  78#endif
  79
  80#ifdef CONFIG_PAGE_SIZE_16KB
  81#define PTRS_PER_PTE 256
  82#endif
  83
  84#ifdef CONFIG_PAGE_SIZE_64KB
  85#define PTRS_PER_PTE 64
  86#endif
  87
  88#ifdef CONFIG_PAGE_SIZE_256KB
  89#define PTRS_PER_PTE 16
  90#endif
  91
  92#ifdef CONFIG_PAGE_SIZE_1MB
  93#define PTRS_PER_PTE 4
  94#endif
  95
  96/*  Any bigger and the PTE disappears.  */
  97#define pgd_ERROR(e) \
  98        printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
  99                pgd_val(e))
 100
 101/*
 102 * Page Protection Constants. Includes (in this variant) cache attributes.
 103 */
 104extern unsigned long _dflt_cache_att;
 105
 106#define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_USER | \
 107                                _dflt_cache_att)
 108#define PAGE_READONLY   __pgprot(_PAGE_PRESENT | _PAGE_USER | \
 109                                _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
 110#define PAGE_COPY       PAGE_READONLY
 111#define PAGE_EXEC       __pgprot(_PAGE_PRESENT | _PAGE_USER | \
 112                                _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
 113#define PAGE_COPY_EXEC  PAGE_EXEC
 114#define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
 115                                _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
 116#define PAGE_KERNEL     __pgprot(_PAGE_PRESENT | _PAGE_READ | \
 117                                _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
 118
 119
 120/*
 121 * Aliases for mapping mmap() protection bits to page protections.
 122 * These get used for static initialization, so using the _dflt_cache_att
 123 * variable for the default cache attribute isn't workable. If the
 124 * default gets changed at boot time, the boot option code has to
 125 * update data structures like the protaction_map[] array.
 126 */
 127#define CACHEDEF        (CACHE_DEFAULT << 6)
 128
 129/* Private (copy-on-write) page protections. */
 130#define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF)
 131#define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF)
 132#define __P010 __P000   /* Write-only copy-on-write */
 133#define __P011 __P001   /* Read/Write copy-on-write */
 134#define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
 135                        _PAGE_EXECUTE | CACHEDEF)
 136#define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \
 137                        _PAGE_READ | CACHEDEF)
 138#define __P110 __P100   /* Write/execute copy-on-write */
 139#define __P111 __P101   /* Read/Write/Execute, copy-on-write */
 140
 141/* Shared page protections. */
 142#define __S000 __P000
 143#define __S001 __P001
 144#define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
 145                        _PAGE_WRITE | CACHEDEF)
 146#define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
 147                        _PAGE_WRITE | CACHEDEF)
 148#define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
 149                        _PAGE_EXECUTE | CACHEDEF)
 150#define __S101 __P101
 151#define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
 152                        _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
 153#define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
 154                        _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
 155
 156extern pgd_t swapper_pg_dir[PTRS_PER_PGD];  /* located in head.S */
 157
 158/* Seems to be zero even in architectures where the zero page is firewalled? */
 159#define FIRST_USER_ADDRESS 0UL
 160
 161/*  HUGETLB not working currently  */
 162#ifdef CONFIG_HUGETLB_PAGE
 163#define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
 164#endif
 165
 166/*
 167 * For now, assume that higher-level code will do TLB/MMU invalidations
 168 * and don't insert that overhead into this low-level function.
 169 */
 170extern void sync_icache_dcache(pte_t pte);
 171
 172#define pte_present_exec_user(pte) \
 173        ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
 174        (_PAGE_EXECUTE | _PAGE_USER))
 175
 176static inline void set_pte(pte_t *ptep, pte_t pteval)
 177{
 178        /*  should really be using pte_exec, if it weren't declared later. */
 179        if (pte_present_exec_user(pteval))
 180                sync_icache_dcache(pteval);
 181
 182        *ptep = pteval;
 183}
 184
 185/*
 186 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
 187 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
 188 * (Linux PTE), the key is to have bits 11..9 all zero.  We'd use 0x7
 189 * as a universal null entry, but some of those least significant bits
 190 * are interpreted by software.
 191 */
 192#define _NULL_PMD       0x7
 193#define _NULL_PTE       0x0
 194
 195static inline void pmd_clear(pmd_t *pmd_entry_ptr)
 196{
 197         pmd_val(*pmd_entry_ptr) = _NULL_PMD;
 198}
 199
 200/*
 201 * Conveniently, a null PTE value is invalid.
 202 */
 203static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
 204                                pte_t *ptep)
 205{
 206        pte_val(*ptep) = _NULL_PTE;
 207}
 208
 209/**
 210 * pmd_none - check if pmd_entry is mapped
 211 * @pmd_entry:  pmd entry
 212 *
 213 * MIPS checks it against that "invalid pte table" thing.
 214 */
 215static inline int pmd_none(pmd_t pmd)
 216{
 217        return pmd_val(pmd) == _NULL_PMD;
 218}
 219
 220/**
 221 * pmd_present - is there a page table behind this?
 222 * Essentially the inverse of pmd_none.  We maybe
 223 * save an inline instruction by defining it this
 224 * way, instead of simply "!pmd_none".
 225 */
 226static inline int pmd_present(pmd_t pmd)
 227{
 228        return pmd_val(pmd) != (unsigned long)_NULL_PMD;
 229}
 230
 231/**
 232 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
 233 * As we have no known cause of badness, it's null, as it is for many
 234 * architectures.
 235 */
 236static inline int pmd_bad(pmd_t pmd)
 237{
 238        return 0;
 239}
 240
 241/*
 242 * pmd_page - converts a PMD entry to a page pointer
 243 */
 244#define pmd_page(pmd)  (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
 245#define pmd_pgtable(pmd) pmd_page(pmd)
 246
 247/**
 248 * pte_none - check if pte is mapped
 249 * @pte: pte_t entry
 250 */
 251static inline int pte_none(pte_t pte)
 252{
 253        return pte_val(pte) == _NULL_PTE;
 254};
 255
 256/*
 257 * pte_present - check if page is present
 258 */
 259static inline int pte_present(pte_t pte)
 260{
 261        return pte_val(pte) & _PAGE_PRESENT;
 262}
 263
 264/* mk_pte - make a PTE out of a page pointer and protection bits */
 265#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
 266
 267/* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
 268#define pte_page(x) pfn_to_page(pte_pfn(x))
 269
 270/* pte_mkold - mark PTE as not recently accessed */
 271static inline pte_t pte_mkold(pte_t pte)
 272{
 273        pte_val(pte) &= ~_PAGE_ACCESSED;
 274        return pte;
 275}
 276
 277/* pte_mkyoung - mark PTE as recently accessed */
 278static inline pte_t pte_mkyoung(pte_t pte)
 279{
 280        pte_val(pte) |= _PAGE_ACCESSED;
 281        return pte;
 282}
 283
 284/* pte_mkclean - mark page as in sync with backing store */
 285static inline pte_t pte_mkclean(pte_t pte)
 286{
 287        pte_val(pte) &= ~_PAGE_DIRTY;
 288        return pte;
 289}
 290
 291/* pte_mkdirty - mark page as modified */
 292static inline pte_t pte_mkdirty(pte_t pte)
 293{
 294        pte_val(pte) |= _PAGE_DIRTY;
 295        return pte;
 296}
 297
 298/* pte_young - "is PTE marked as accessed"? */
 299static inline int pte_young(pte_t pte)
 300{
 301        return pte_val(pte) & _PAGE_ACCESSED;
 302}
 303
 304/* pte_dirty - "is PTE dirty?" */
 305static inline int pte_dirty(pte_t pte)
 306{
 307        return pte_val(pte) & _PAGE_DIRTY;
 308}
 309
 310/* pte_modify - set protection bits on PTE */
 311static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
 312{
 313        pte_val(pte) &= PAGE_MASK;
 314        pte_val(pte) |= pgprot_val(prot);
 315        return pte;
 316}
 317
 318/* pte_wrprotect - mark page as not writable */
 319static inline pte_t pte_wrprotect(pte_t pte)
 320{
 321        pte_val(pte) &= ~_PAGE_WRITE;
 322        return pte;
 323}
 324
 325/* pte_mkwrite - mark page as writable */
 326static inline pte_t pte_mkwrite(pte_t pte)
 327{
 328        pte_val(pte) |= _PAGE_WRITE;
 329        return pte;
 330}
 331
 332/* pte_mkexec - mark PTE as executable */
 333static inline pte_t pte_mkexec(pte_t pte)
 334{
 335        pte_val(pte) |= _PAGE_EXECUTE;
 336        return pte;
 337}
 338
 339/* pte_read - "is PTE marked as readable?" */
 340static inline int pte_read(pte_t pte)
 341{
 342        return pte_val(pte) & _PAGE_READ;
 343}
 344
 345/* pte_write - "is PTE marked as writable?" */
 346static inline int pte_write(pte_t pte)
 347{
 348        return pte_val(pte) & _PAGE_WRITE;
 349}
 350
 351
 352/* pte_exec - "is PTE marked as executable?" */
 353static inline int pte_exec(pte_t pte)
 354{
 355        return pte_val(pte) & _PAGE_EXECUTE;
 356}
 357
 358/* __pte_to_swp_entry - extract swap entry from PTE */
 359#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
 360
 361/* __swp_entry_to_pte - extract PTE from swap entry */
 362#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
 363
 364/* pfn_pte - convert page number and protection value to page table entry */
 365#define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
 366
 367/* pte_pfn - convert pte to page frame number */
 368#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
 369#define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
 370
 371/*
 372 * set_pte_at - update page table and do whatever magic may be
 373 * necessary to make the underlying hardware/firmware take note.
 374 *
 375 * VM may require a virtual instruction to alert the MMU.
 376 */
 377#define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte)
 378
 379static inline unsigned long pmd_page_vaddr(pmd_t pmd)
 380{
 381        return (unsigned long)__va(pmd_val(pmd) & PAGE_MASK);
 382}
 383
 384/* ZERO_PAGE - returns the globally shared zero page */
 385#define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
 386
 387/*
 388 * Swap/file PTE definitions.  If _PAGE_PRESENT is zero, the rest of the PTE is
 389 * interpreted as swap information.  The remaining free bits are interpreted as
 390 * swap type/offset tuple.  Rather than have the TLB fill handler test
 391 * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to
 392 * all zeros for swap entries, which speeds up the miss handler at the cost of
 393 * 3 bits of offset.  That trade-off can be revisited if necessary, but Hexagon
 394 * processor architecture and target applications suggest a lot of TLB misses
 395 * and not much swap space.
 396 *
 397 * Format of swap PTE:
 398 *      bit     0:      Present (zero)
 399 *      bits    1-5:    swap type (arch independent layer uses 5 bits max)
 400 *      bits    6-9:    bits 3:0 of offset
 401 *      bits    10-12:  effectively _PAGE_PROTNONE (all zero)
 402 *      bits    13-31:  bits 22:4 of swap offset
 403 *
 404 * The split offset makes some of the following macros a little gnarly,
 405 * but there's plenty of precedent for this sort of thing.
 406 */
 407
 408/* Used for swap PTEs */
 409#define __swp_type(swp_pte)             (((swp_pte).val >> 1) & 0x1f)
 410
 411#define __swp_offset(swp_pte) \
 412        ((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0))
 413
 414#define __swp_entry(type, offset) \
 415        ((swp_entry_t)  { \
 416                ((type << 1) | \
 417                 ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) })
 418
 419#endif
 420