linux/arch/mips/kernel/smp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 * Copyright (C) 2000, 2001 Kanoj Sarcar
   5 * Copyright (C) 2000, 2001 Ralf Baechle
   6 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
   7 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
   8 */
   9#include <linux/cache.h>
  10#include <linux/delay.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/smp.h>
  14#include <linux/spinlock.h>
  15#include <linux/threads.h>
  16#include <linux/export.h>
  17#include <linux/time.h>
  18#include <linux/timex.h>
  19#include <linux/sched/mm.h>
  20#include <linux/cpumask.h>
  21#include <linux/cpu.h>
  22#include <linux/err.h>
  23#include <linux/ftrace.h>
  24#include <linux/irqdomain.h>
  25#include <linux/of.h>
  26#include <linux/of_irq.h>
  27
  28#include <linux/atomic.h>
  29#include <asm/cpu.h>
  30#include <asm/ginvt.h>
  31#include <asm/processor.h>
  32#include <asm/idle.h>
  33#include <asm/r4k-timer.h>
  34#include <asm/mips-cps.h>
  35#include <asm/mmu_context.h>
  36#include <asm/time.h>
  37#include <asm/setup.h>
  38#include <asm/maar.h>
  39
  40int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP];   /* Map physical to logical */
  41EXPORT_SYMBOL(__cpu_number_map);
  42
  43int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
  44EXPORT_SYMBOL(__cpu_logical_map);
  45
  46/* Number of TCs (or siblings in Intel speak) per CPU core */
  47int smp_num_siblings = 1;
  48EXPORT_SYMBOL(smp_num_siblings);
  49
  50/* representing the TCs (or siblings in Intel speak) of each logical CPU */
  51cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
  52EXPORT_SYMBOL(cpu_sibling_map);
  53
  54/* representing the core map of multi-core chips of each logical CPU */
  55cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
  56EXPORT_SYMBOL(cpu_core_map);
  57
  58static DECLARE_COMPLETION(cpu_starting);
  59static DECLARE_COMPLETION(cpu_running);
  60
  61/*
  62 * A logical cpu mask containing only one VPE per core to
  63 * reduce the number of IPIs on large MT systems.
  64 */
  65cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
  66EXPORT_SYMBOL(cpu_foreign_map);
  67
  68/* representing cpus for which sibling maps can be computed */
  69static cpumask_t cpu_sibling_setup_map;
  70
  71/* representing cpus for which core maps can be computed */
  72static cpumask_t cpu_core_setup_map;
  73
  74cpumask_t cpu_coherent_mask;
  75
  76#ifdef CONFIG_GENERIC_IRQ_IPI
  77static struct irq_desc *call_desc;
  78static struct irq_desc *sched_desc;
  79#endif
  80
  81static inline void set_cpu_sibling_map(int cpu)
  82{
  83        int i;
  84
  85        cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
  86
  87        if (smp_num_siblings > 1) {
  88                for_each_cpu(i, &cpu_sibling_setup_map) {
  89                        if (cpus_are_siblings(cpu, i)) {
  90                                cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
  91                                cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
  92                        }
  93                }
  94        } else
  95                cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
  96}
  97
  98static inline void set_cpu_core_map(int cpu)
  99{
 100        int i;
 101
 102        cpumask_set_cpu(cpu, &cpu_core_setup_map);
 103
 104        for_each_cpu(i, &cpu_core_setup_map) {
 105                if (cpu_data[cpu].package == cpu_data[i].package) {
 106                        cpumask_set_cpu(i, &cpu_core_map[cpu]);
 107                        cpumask_set_cpu(cpu, &cpu_core_map[i]);
 108                }
 109        }
 110}
 111
 112/*
 113 * Calculate a new cpu_foreign_map mask whenever a
 114 * new cpu appears or disappears.
 115 */
 116void calculate_cpu_foreign_map(void)
 117{
 118        int i, k, core_present;
 119        cpumask_t temp_foreign_map;
 120
 121        /* Re-calculate the mask */
 122        cpumask_clear(&temp_foreign_map);
 123        for_each_online_cpu(i) {
 124                core_present = 0;
 125                for_each_cpu(k, &temp_foreign_map)
 126                        if (cpus_are_siblings(i, k))
 127                                core_present = 1;
 128                if (!core_present)
 129                        cpumask_set_cpu(i, &temp_foreign_map);
 130        }
 131
 132        for_each_online_cpu(i)
 133                cpumask_andnot(&cpu_foreign_map[i],
 134                               &temp_foreign_map, &cpu_sibling_map[i]);
 135}
 136
 137const struct plat_smp_ops *mp_ops;
 138EXPORT_SYMBOL(mp_ops);
 139
 140void register_smp_ops(const struct plat_smp_ops *ops)
 141{
 142        if (mp_ops)
 143                printk(KERN_WARNING "Overriding previously set SMP ops\n");
 144
 145        mp_ops = ops;
 146}
 147
 148#ifdef CONFIG_GENERIC_IRQ_IPI
 149void mips_smp_send_ipi_single(int cpu, unsigned int action)
 150{
 151        mips_smp_send_ipi_mask(cpumask_of(cpu), action);
 152}
 153
 154void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
 155{
 156        unsigned long flags;
 157        unsigned int core;
 158        int cpu;
 159
 160        local_irq_save(flags);
 161
 162        switch (action) {
 163        case SMP_CALL_FUNCTION:
 164                __ipi_send_mask(call_desc, mask);
 165                break;
 166
 167        case SMP_RESCHEDULE_YOURSELF:
 168                __ipi_send_mask(sched_desc, mask);
 169                break;
 170
 171        default:
 172                BUG();
 173        }
 174
 175        if (mips_cpc_present()) {
 176                for_each_cpu(cpu, mask) {
 177                        if (cpus_are_siblings(cpu, smp_processor_id()))
 178                                continue;
 179
 180                        core = cpu_core(&cpu_data[cpu]);
 181
 182                        while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
 183                                mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
 184                                mips_cpc_lock_other(core);
 185                                write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
 186                                mips_cpc_unlock_other();
 187                                mips_cm_unlock_other();
 188                        }
 189                }
 190        }
 191
 192        local_irq_restore(flags);
 193}
 194
 195
 196static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
 197{
 198        scheduler_ipi();
 199
 200        return IRQ_HANDLED;
 201}
 202
 203static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
 204{
 205        generic_smp_call_function_interrupt();
 206
 207        return IRQ_HANDLED;
 208}
 209
 210static void smp_ipi_init_one(unsigned int virq, const char *name,
 211                             irq_handler_t handler)
 212{
 213        int ret;
 214
 215        irq_set_handler(virq, handle_percpu_irq);
 216        ret = request_irq(virq, handler, IRQF_PERCPU, name, NULL);
 217        BUG_ON(ret);
 218}
 219
 220static unsigned int call_virq, sched_virq;
 221
 222int mips_smp_ipi_allocate(const struct cpumask *mask)
 223{
 224        int virq;
 225        struct irq_domain *ipidomain;
 226        struct device_node *node;
 227
 228        node = of_irq_find_parent(of_root);
 229        ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
 230
 231        /*
 232         * Some platforms have half DT setup. So if we found irq node but
 233         * didn't find an ipidomain, try to search for one that is not in the
 234         * DT.
 235         */
 236        if (node && !ipidomain)
 237                ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
 238
 239        /*
 240         * There are systems which use IPI IRQ domains, but only have one
 241         * registered when some runtime condition is met. For example a Malta
 242         * kernel may include support for GIC & CPU interrupt controller IPI
 243         * IRQ domains, but if run on a system with no GIC & no MT ASE then
 244         * neither will be supported or registered.
 245         *
 246         * We only have a problem if we're actually using multiple CPUs so fail
 247         * loudly if that is the case. Otherwise simply return, skipping IPI
 248         * setup, if we're running with only a single CPU.
 249         */
 250        if (!ipidomain) {
 251                BUG_ON(num_present_cpus() > 1);
 252                return 0;
 253        }
 254
 255        virq = irq_reserve_ipi(ipidomain, mask);
 256        BUG_ON(!virq);
 257        if (!call_virq)
 258                call_virq = virq;
 259
 260        virq = irq_reserve_ipi(ipidomain, mask);
 261        BUG_ON(!virq);
 262        if (!sched_virq)
 263                sched_virq = virq;
 264
 265        if (irq_domain_is_ipi_per_cpu(ipidomain)) {
 266                int cpu;
 267
 268                for_each_cpu(cpu, mask) {
 269                        smp_ipi_init_one(call_virq + cpu, "IPI call",
 270                                         ipi_call_interrupt);
 271                        smp_ipi_init_one(sched_virq + cpu, "IPI resched",
 272                                         ipi_resched_interrupt);
 273                }
 274        } else {
 275                smp_ipi_init_one(call_virq, "IPI call", ipi_call_interrupt);
 276                smp_ipi_init_one(sched_virq, "IPI resched",
 277                                 ipi_resched_interrupt);
 278        }
 279
 280        return 0;
 281}
 282
 283int mips_smp_ipi_free(const struct cpumask *mask)
 284{
 285        struct irq_domain *ipidomain;
 286        struct device_node *node;
 287
 288        node = of_irq_find_parent(of_root);
 289        ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
 290
 291        /*
 292         * Some platforms have half DT setup. So if we found irq node but
 293         * didn't find an ipidomain, try to search for one that is not in the
 294         * DT.
 295         */
 296        if (node && !ipidomain)
 297                ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
 298
 299        BUG_ON(!ipidomain);
 300
 301        if (irq_domain_is_ipi_per_cpu(ipidomain)) {
 302                int cpu;
 303
 304                for_each_cpu(cpu, mask) {
 305                        free_irq(call_virq + cpu, NULL);
 306                        free_irq(sched_virq + cpu, NULL);
 307                }
 308        }
 309        irq_destroy_ipi(call_virq, mask);
 310        irq_destroy_ipi(sched_virq, mask);
 311        return 0;
 312}
 313
 314
 315static int __init mips_smp_ipi_init(void)
 316{
 317        if (num_possible_cpus() == 1)
 318                return 0;
 319
 320        mips_smp_ipi_allocate(cpu_possible_mask);
 321
 322        call_desc = irq_to_desc(call_virq);
 323        sched_desc = irq_to_desc(sched_virq);
 324
 325        return 0;
 326}
 327early_initcall(mips_smp_ipi_init);
 328#endif
 329
 330/*
 331 * First C code run on the secondary CPUs after being started up by
 332 * the master.
 333 */
 334asmlinkage void start_secondary(void)
 335{
 336        unsigned int cpu;
 337
 338        cpu_probe();
 339        per_cpu_trap_init(false);
 340        mips_clockevent_init();
 341        mp_ops->init_secondary();
 342        cpu_report();
 343        maar_init();
 344
 345        /*
 346         * XXX parity protection should be folded in here when it's converted
 347         * to an option instead of something based on .cputype
 348         */
 349
 350        calibrate_delay();
 351        preempt_disable();
 352        cpu = smp_processor_id();
 353        cpu_data[cpu].udelay_val = loops_per_jiffy;
 354
 355        cpumask_set_cpu(cpu, &cpu_coherent_mask);
 356        notify_cpu_starting(cpu);
 357
 358        /* Notify boot CPU that we're starting & ready to sync counters */
 359        complete(&cpu_starting);
 360
 361        synchronise_count_slave(cpu);
 362
 363        /* The CPU is running and counters synchronised, now mark it online */
 364        set_cpu_online(cpu, true);
 365
 366        set_cpu_sibling_map(cpu);
 367        set_cpu_core_map(cpu);
 368
 369        calculate_cpu_foreign_map();
 370
 371        /*
 372         * Notify boot CPU that we're up & online and it can safely return
 373         * from __cpu_up
 374         */
 375        complete(&cpu_running);
 376
 377        /*
 378         * irq will be enabled in ->smp_finish(), enabling it too early
 379         * is dangerous.
 380         */
 381        WARN_ON_ONCE(!irqs_disabled());
 382        mp_ops->smp_finish();
 383
 384        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 385}
 386
 387static void stop_this_cpu(void *dummy)
 388{
 389        /*
 390         * Remove this CPU:
 391         */
 392
 393        set_cpu_online(smp_processor_id(), false);
 394        calculate_cpu_foreign_map();
 395        local_irq_disable();
 396        while (1);
 397}
 398
 399void smp_send_stop(void)
 400{
 401        smp_call_function(stop_this_cpu, NULL, 0);
 402}
 403
 404void __init smp_cpus_done(unsigned int max_cpus)
 405{
 406}
 407
 408/* called from main before smp_init() */
 409void __init smp_prepare_cpus(unsigned int max_cpus)
 410{
 411        init_new_context(current, &init_mm);
 412        current_thread_info()->cpu = 0;
 413        mp_ops->prepare_cpus(max_cpus);
 414        set_cpu_sibling_map(0);
 415        set_cpu_core_map(0);
 416        calculate_cpu_foreign_map();
 417#ifndef CONFIG_HOTPLUG_CPU
 418        init_cpu_present(cpu_possible_mask);
 419#endif
 420        cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
 421}
 422
 423/* preload SMP state for boot cpu */
 424void smp_prepare_boot_cpu(void)
 425{
 426        if (mp_ops->prepare_boot_cpu)
 427                mp_ops->prepare_boot_cpu();
 428        set_cpu_possible(0, true);
 429        set_cpu_online(0, true);
 430}
 431
 432int __cpu_up(unsigned int cpu, struct task_struct *tidle)
 433{
 434        int err;
 435
 436        err = mp_ops->boot_secondary(cpu, tidle);
 437        if (err)
 438                return err;
 439
 440        /* Wait for CPU to start and be ready to sync counters */
 441        if (!wait_for_completion_timeout(&cpu_starting,
 442                                         msecs_to_jiffies(1000))) {
 443                pr_crit("CPU%u: failed to start\n", cpu);
 444                return -EIO;
 445        }
 446
 447        synchronise_count_master(cpu);
 448
 449        /* Wait for CPU to finish startup & mark itself online before return */
 450        wait_for_completion(&cpu_running);
 451        return 0;
 452}
 453
 454/* Not really SMP stuff ... */
 455int setup_profiling_timer(unsigned int multiplier)
 456{
 457        return 0;
 458}
 459
 460static void flush_tlb_all_ipi(void *info)
 461{
 462        local_flush_tlb_all();
 463}
 464
 465void flush_tlb_all(void)
 466{
 467        if (cpu_has_mmid) {
 468                htw_stop();
 469                ginvt_full();
 470                sync_ginv();
 471                instruction_hazard();
 472                htw_start();
 473                return;
 474        }
 475
 476        on_each_cpu(flush_tlb_all_ipi, NULL, 1);
 477}
 478
 479static void flush_tlb_mm_ipi(void *mm)
 480{
 481        drop_mmu_context((struct mm_struct *)mm);
 482}
 483
 484/*
 485 * Special Variant of smp_call_function for use by TLB functions:
 486 *
 487 *  o No return value
 488 *  o collapses to normal function call on UP kernels
 489 *  o collapses to normal function call on systems with a single shared
 490 *    primary cache.
 491 */
 492static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
 493{
 494        smp_call_function(func, info, 1);
 495}
 496
 497static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
 498{
 499        preempt_disable();
 500
 501        smp_on_other_tlbs(func, info);
 502        func(info);
 503
 504        preempt_enable();
 505}
 506
 507/*
 508 * The following tlb flush calls are invoked when old translations are
 509 * being torn down, or pte attributes are changing. For single threaded
 510 * address spaces, a new context is obtained on the current cpu, and tlb
 511 * context on other cpus are invalidated to force a new context allocation
 512 * at switch_mm time, should the mm ever be used on other cpus. For
 513 * multithreaded address spaces, inter-CPU interrupts have to be sent.
 514 * Another case where inter-CPU interrupts are required is when the target
 515 * mm might be active on another cpu (eg debuggers doing the flushes on
 516 * behalf of debugees, kswapd stealing pages from another process etc).
 517 * Kanoj 07/00.
 518 */
 519
 520void flush_tlb_mm(struct mm_struct *mm)
 521{
 522        preempt_disable();
 523
 524        if (cpu_has_mmid) {
 525                /*
 526                 * No need to worry about other CPUs - the ginvt in
 527                 * drop_mmu_context() will be globalized.
 528                 */
 529        } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
 530                smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
 531        } else {
 532                unsigned int cpu;
 533
 534                for_each_online_cpu(cpu) {
 535                        if (cpu != smp_processor_id() && cpu_context(cpu, mm))
 536                                set_cpu_context(cpu, mm, 0);
 537                }
 538        }
 539        drop_mmu_context(mm);
 540
 541        preempt_enable();
 542}
 543
 544struct flush_tlb_data {
 545        struct vm_area_struct *vma;
 546        unsigned long addr1;
 547        unsigned long addr2;
 548};
 549
 550static void flush_tlb_range_ipi(void *info)
 551{
 552        struct flush_tlb_data *fd = info;
 553
 554        local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
 555}
 556
 557void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
 558{
 559        struct mm_struct *mm = vma->vm_mm;
 560        unsigned long addr;
 561        u32 old_mmid;
 562
 563        preempt_disable();
 564        if (cpu_has_mmid) {
 565                htw_stop();
 566                old_mmid = read_c0_memorymapid();
 567                write_c0_memorymapid(cpu_asid(0, mm));
 568                mtc0_tlbw_hazard();
 569                addr = round_down(start, PAGE_SIZE * 2);
 570                end = round_up(end, PAGE_SIZE * 2);
 571                do {
 572                        ginvt_va_mmid(addr);
 573                        sync_ginv();
 574                        addr += PAGE_SIZE * 2;
 575                } while (addr < end);
 576                write_c0_memorymapid(old_mmid);
 577                instruction_hazard();
 578                htw_start();
 579        } else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
 580                struct flush_tlb_data fd = {
 581                        .vma = vma,
 582                        .addr1 = start,
 583                        .addr2 = end,
 584                };
 585
 586                smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
 587                local_flush_tlb_range(vma, start, end);
 588        } else {
 589                unsigned int cpu;
 590                int exec = vma->vm_flags & VM_EXEC;
 591
 592                for_each_online_cpu(cpu) {
 593                        /*
 594                         * flush_cache_range() will only fully flush icache if
 595                         * the VMA is executable, otherwise we must invalidate
 596                         * ASID without it appearing to has_valid_asid() as if
 597                         * mm has been completely unused by that CPU.
 598                         */
 599                        if (cpu != smp_processor_id() && cpu_context(cpu, mm))
 600                                set_cpu_context(cpu, mm, !exec);
 601                }
 602                local_flush_tlb_range(vma, start, end);
 603        }
 604        preempt_enable();
 605}
 606
 607static void flush_tlb_kernel_range_ipi(void *info)
 608{
 609        struct flush_tlb_data *fd = info;
 610
 611        local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
 612}
 613
 614void flush_tlb_kernel_range(unsigned long start, unsigned long end)
 615{
 616        struct flush_tlb_data fd = {
 617                .addr1 = start,
 618                .addr2 = end,
 619        };
 620
 621        on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
 622}
 623
 624static void flush_tlb_page_ipi(void *info)
 625{
 626        struct flush_tlb_data *fd = info;
 627
 628        local_flush_tlb_page(fd->vma, fd->addr1);
 629}
 630
 631void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 632{
 633        u32 old_mmid;
 634
 635        preempt_disable();
 636        if (cpu_has_mmid) {
 637                htw_stop();
 638                old_mmid = read_c0_memorymapid();
 639                write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
 640                mtc0_tlbw_hazard();
 641                ginvt_va_mmid(page);
 642                sync_ginv();
 643                write_c0_memorymapid(old_mmid);
 644                instruction_hazard();
 645                htw_start();
 646        } else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
 647                   (current->mm != vma->vm_mm)) {
 648                struct flush_tlb_data fd = {
 649                        .vma = vma,
 650                        .addr1 = page,
 651                };
 652
 653                smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
 654                local_flush_tlb_page(vma, page);
 655        } else {
 656                unsigned int cpu;
 657
 658                for_each_online_cpu(cpu) {
 659                        /*
 660                         * flush_cache_page() only does partial flushes, so
 661                         * invalidate ASID without it appearing to
 662                         * has_valid_asid() as if mm has been completely unused
 663                         * by that CPU.
 664                         */
 665                        if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
 666                                set_cpu_context(cpu, vma->vm_mm, 1);
 667                }
 668                local_flush_tlb_page(vma, page);
 669        }
 670        preempt_enable();
 671}
 672
 673static void flush_tlb_one_ipi(void *info)
 674{
 675        unsigned long vaddr = (unsigned long) info;
 676
 677        local_flush_tlb_one(vaddr);
 678}
 679
 680void flush_tlb_one(unsigned long vaddr)
 681{
 682        smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
 683}
 684
 685EXPORT_SYMBOL(flush_tlb_page);
 686EXPORT_SYMBOL(flush_tlb_one);
 687
 688#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
 689
 690static void tick_broadcast_callee(void *info)
 691{
 692        tick_receive_broadcast();
 693}
 694
 695static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd) =
 696        CSD_INIT(tick_broadcast_callee, NULL);
 697
 698void tick_broadcast(const struct cpumask *mask)
 699{
 700        call_single_data_t *csd;
 701        int cpu;
 702
 703        for_each_cpu(cpu, mask) {
 704                csd = &per_cpu(tick_broadcast_csd, cpu);
 705                smp_call_function_single_async(cpu, csd);
 706        }
 707}
 708
 709#endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
 710