linux/arch/riscv/include/asm/pgtable.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 * Copyright (C) 2012 Regents of the University of California
   4 */
   5
   6#ifndef _ASM_RISCV_PGTABLE_H
   7#define _ASM_RISCV_PGTABLE_H
   8
   9#include <linux/mmzone.h>
  10#include <linux/sizes.h>
  11
  12#include <asm/pgtable-bits.h>
  13
  14#ifndef CONFIG_MMU
  15#define KERNEL_LINK_ADDR        PAGE_OFFSET
  16#else
  17
  18#define ADDRESS_SPACE_END       (UL(-1))
  19
  20#ifdef CONFIG_64BIT
  21/* Leave 2GB for kernel and BPF at the end of the address space */
  22#define KERNEL_LINK_ADDR        (ADDRESS_SPACE_END - SZ_2G + 1)
  23#else
  24#define KERNEL_LINK_ADDR        PAGE_OFFSET
  25#endif
  26
  27#define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
  28#define VMALLOC_END      (PAGE_OFFSET - 1)
  29#define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)
  30
  31#define BPF_JIT_REGION_SIZE     (SZ_128M)
  32#ifdef CONFIG_64BIT
  33#define BPF_JIT_REGION_START    (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
  34#define BPF_JIT_REGION_END      (MODULES_END)
  35#else
  36#define BPF_JIT_REGION_START    (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
  37#define BPF_JIT_REGION_END      (VMALLOC_END)
  38#endif
  39
  40/* Modules always live before the kernel */
  41#ifdef CONFIG_64BIT
  42#define MODULES_VADDR   (PFN_ALIGN((unsigned long)&_end) - SZ_2G)
  43#define MODULES_END     (PFN_ALIGN((unsigned long)&_start))
  44#endif
  45
  46/*
  47 * Roughly size the vmemmap space to be large enough to fit enough
  48 * struct pages to map half the virtual address space. Then
  49 * position vmemmap directly below the VMALLOC region.
  50 */
  51#define VMEMMAP_SHIFT \
  52        (CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
  53#define VMEMMAP_SIZE    BIT(VMEMMAP_SHIFT)
  54#define VMEMMAP_END     (VMALLOC_START - 1)
  55#define VMEMMAP_START   (VMALLOC_START - VMEMMAP_SIZE)
  56
  57/*
  58 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
  59 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
  60 */
  61#define vmemmap         ((struct page *)VMEMMAP_START)
  62
  63#define PCI_IO_SIZE      SZ_16M
  64#define PCI_IO_END       VMEMMAP_START
  65#define PCI_IO_START     (PCI_IO_END - PCI_IO_SIZE)
  66
  67#define FIXADDR_TOP      PCI_IO_START
  68#ifdef CONFIG_64BIT
  69#define FIXADDR_SIZE     PMD_SIZE
  70#else
  71#define FIXADDR_SIZE     PGDIR_SIZE
  72#endif
  73#define FIXADDR_START    (FIXADDR_TOP - FIXADDR_SIZE)
  74
  75#endif
  76
  77#ifdef CONFIG_XIP_KERNEL
  78#define XIP_OFFSET              SZ_8M
  79#endif
  80
  81#ifndef __ASSEMBLY__
  82
  83/* Page Upper Directory not used in RISC-V */
  84#include <asm-generic/pgtable-nopud.h>
  85#include <asm/page.h>
  86#include <asm/tlbflush.h>
  87#include <linux/mm_types.h>
  88
  89#ifdef CONFIG_64BIT
  90#include <asm/pgtable-64.h>
  91#else
  92#include <asm/pgtable-32.h>
  93#endif /* CONFIG_64BIT */
  94
  95#ifdef CONFIG_XIP_KERNEL
  96#define XIP_FIXUP(addr) ({                                                      \
  97        uintptr_t __a = (uintptr_t)(addr);                                      \
  98        (__a >= CONFIG_XIP_PHYS_ADDR && __a < CONFIG_XIP_PHYS_ADDR + SZ_16M) ?  \
  99                __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\
 100                __a;                                                            \
 101        })
 102#else
 103#define XIP_FIXUP(addr)         (addr)
 104#endif /* CONFIG_XIP_KERNEL */
 105
 106#ifdef CONFIG_MMU
 107/* Number of entries in the page global directory */
 108#define PTRS_PER_PGD    (PAGE_SIZE / sizeof(pgd_t))
 109/* Number of entries in the page table */
 110#define PTRS_PER_PTE    (PAGE_SIZE / sizeof(pte_t))
 111
 112/* Number of PGD entries that a user-mode program can use */
 113#define USER_PTRS_PER_PGD   (TASK_SIZE / PGDIR_SIZE)
 114
 115/* Page protection bits */
 116#define _PAGE_BASE      (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
 117
 118#define PAGE_NONE               __pgprot(_PAGE_PROT_NONE)
 119#define PAGE_READ               __pgprot(_PAGE_BASE | _PAGE_READ)
 120#define PAGE_WRITE              __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
 121#define PAGE_EXEC               __pgprot(_PAGE_BASE | _PAGE_EXEC)
 122#define PAGE_READ_EXEC          __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
 123#define PAGE_WRITE_EXEC         __pgprot(_PAGE_BASE | _PAGE_READ |      \
 124                                         _PAGE_EXEC | _PAGE_WRITE)
 125
 126#define PAGE_COPY               PAGE_READ
 127#define PAGE_COPY_EXEC          PAGE_EXEC
 128#define PAGE_COPY_READ_EXEC     PAGE_READ_EXEC
 129#define PAGE_SHARED             PAGE_WRITE
 130#define PAGE_SHARED_EXEC        PAGE_WRITE_EXEC
 131
 132#define _PAGE_KERNEL            (_PAGE_READ \
 133                                | _PAGE_WRITE \
 134                                | _PAGE_PRESENT \
 135                                | _PAGE_ACCESSED \
 136                                | _PAGE_DIRTY)
 137
 138#define PAGE_KERNEL             __pgprot(_PAGE_KERNEL)
 139#define PAGE_KERNEL_READ        __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
 140#define PAGE_KERNEL_EXEC        __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
 141#define PAGE_KERNEL_READ_EXEC   __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
 142                                         | _PAGE_EXEC)
 143
 144#define PAGE_TABLE              __pgprot(_PAGE_TABLE)
 145
 146/*
 147 * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't
 148 * change the properties of memory regions.
 149 */
 150#define _PAGE_IOREMAP _PAGE_KERNEL
 151
 152extern pgd_t swapper_pg_dir[];
 153
 154/* MAP_PRIVATE permissions: xwr (copy-on-write) */
 155#define __P000  PAGE_NONE
 156#define __P001  PAGE_READ
 157#define __P010  PAGE_COPY
 158#define __P011  PAGE_COPY
 159#define __P100  PAGE_EXEC
 160#define __P101  PAGE_READ_EXEC
 161#define __P110  PAGE_COPY_EXEC
 162#define __P111  PAGE_COPY_READ_EXEC
 163
 164/* MAP_SHARED permissions: xwr */
 165#define __S000  PAGE_NONE
 166#define __S001  PAGE_READ
 167#define __S010  PAGE_SHARED
 168#define __S011  PAGE_SHARED
 169#define __S100  PAGE_EXEC
 170#define __S101  PAGE_READ_EXEC
 171#define __S110  PAGE_SHARED_EXEC
 172#define __S111  PAGE_SHARED_EXEC
 173
 174static inline int pmd_present(pmd_t pmd)
 175{
 176        return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
 177}
 178
 179static inline int pmd_none(pmd_t pmd)
 180{
 181        return (pmd_val(pmd) == 0);
 182}
 183
 184static inline int pmd_bad(pmd_t pmd)
 185{
 186        return !pmd_present(pmd);
 187}
 188
 189#define pmd_leaf        pmd_leaf
 190static inline int pmd_leaf(pmd_t pmd)
 191{
 192        return pmd_present(pmd) &&
 193               (pmd_val(pmd) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC));
 194}
 195
 196static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
 197{
 198        *pmdp = pmd;
 199}
 200
 201static inline void pmd_clear(pmd_t *pmdp)
 202{
 203        set_pmd(pmdp, __pmd(0));
 204}
 205
 206static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
 207{
 208        return __pgd((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
 209}
 210
 211static inline unsigned long _pgd_pfn(pgd_t pgd)
 212{
 213        return pgd_val(pgd) >> _PAGE_PFN_SHIFT;
 214}
 215
 216static inline struct page *pmd_page(pmd_t pmd)
 217{
 218        return pfn_to_page(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
 219}
 220
 221static inline unsigned long pmd_page_vaddr(pmd_t pmd)
 222{
 223        return (unsigned long)pfn_to_virt(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
 224}
 225
 226static inline pte_t pmd_pte(pmd_t pmd)
 227{
 228        return __pte(pmd_val(pmd));
 229}
 230
 231/* Yields the page frame number (PFN) of a page table entry */
 232static inline unsigned long pte_pfn(pte_t pte)
 233{
 234        return (pte_val(pte) >> _PAGE_PFN_SHIFT);
 235}
 236
 237#define pte_page(x)     pfn_to_page(pte_pfn(x))
 238
 239/* Constructs a page table entry */
 240static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
 241{
 242        return __pte((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
 243}
 244
 245#define mk_pte(page, prot)       pfn_pte(page_to_pfn(page), prot)
 246
 247static inline int pte_present(pte_t pte)
 248{
 249        return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
 250}
 251
 252static inline int pte_none(pte_t pte)
 253{
 254        return (pte_val(pte) == 0);
 255}
 256
 257static inline int pte_write(pte_t pte)
 258{
 259        return pte_val(pte) & _PAGE_WRITE;
 260}
 261
 262static inline int pte_exec(pte_t pte)
 263{
 264        return pte_val(pte) & _PAGE_EXEC;
 265}
 266
 267static inline int pte_huge(pte_t pte)
 268{
 269        return pte_present(pte)
 270                && (pte_val(pte) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC));
 271}
 272
 273static inline int pte_dirty(pte_t pte)
 274{
 275        return pte_val(pte) & _PAGE_DIRTY;
 276}
 277
 278static inline int pte_young(pte_t pte)
 279{
 280        return pte_val(pte) & _PAGE_ACCESSED;
 281}
 282
 283static inline int pte_special(pte_t pte)
 284{
 285        return pte_val(pte) & _PAGE_SPECIAL;
 286}
 287
 288/* static inline pte_t pte_rdprotect(pte_t pte) */
 289
 290static inline pte_t pte_wrprotect(pte_t pte)
 291{
 292        return __pte(pte_val(pte) & ~(_PAGE_WRITE));
 293}
 294
 295/* static inline pte_t pte_mkread(pte_t pte) */
 296
 297static inline pte_t pte_mkwrite(pte_t pte)
 298{
 299        return __pte(pte_val(pte) | _PAGE_WRITE);
 300}
 301
 302/* static inline pte_t pte_mkexec(pte_t pte) */
 303
 304static inline pte_t pte_mkdirty(pte_t pte)
 305{
 306        return __pte(pte_val(pte) | _PAGE_DIRTY);
 307}
 308
 309static inline pte_t pte_mkclean(pte_t pte)
 310{
 311        return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
 312}
 313
 314static inline pte_t pte_mkyoung(pte_t pte)
 315{
 316        return __pte(pte_val(pte) | _PAGE_ACCESSED);
 317}
 318
 319static inline pte_t pte_mkold(pte_t pte)
 320{
 321        return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
 322}
 323
 324static inline pte_t pte_mkspecial(pte_t pte)
 325{
 326        return __pte(pte_val(pte) | _PAGE_SPECIAL);
 327}
 328
 329static inline pte_t pte_mkhuge(pte_t pte)
 330{
 331        return pte;
 332}
 333
 334#ifdef CONFIG_NUMA_BALANCING
 335/*
 336 * See the comment in include/asm-generic/pgtable.h
 337 */
 338static inline int pte_protnone(pte_t pte)
 339{
 340        return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
 341}
 342
 343static inline int pmd_protnone(pmd_t pmd)
 344{
 345        return pte_protnone(pmd_pte(pmd));
 346}
 347#endif
 348
 349/* Modify page protection bits */
 350static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 351{
 352        return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
 353}
 354
 355#define pgd_ERROR(e) \
 356        pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
 357
 358
 359/* Commit new configuration to MMU hardware */
 360static inline void update_mmu_cache(struct vm_area_struct *vma,
 361        unsigned long address, pte_t *ptep)
 362{
 363        /*
 364         * The kernel assumes that TLBs don't cache invalid entries, but
 365         * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
 366         * cache flush; it is necessary even after writing invalid entries.
 367         * Relying on flush_tlb_fix_spurious_fault would suffice, but
 368         * the extra traps reduce performance.  So, eagerly SFENCE.VMA.
 369         */
 370        local_flush_tlb_page(address);
 371}
 372
 373#define __HAVE_ARCH_PTE_SAME
 374static inline int pte_same(pte_t pte_a, pte_t pte_b)
 375{
 376        return pte_val(pte_a) == pte_val(pte_b);
 377}
 378
 379/*
 380 * Certain architectures need to do special things when PTEs within
 381 * a page table are directly modified.  Thus, the following hook is
 382 * made available.
 383 */
 384static inline void set_pte(pte_t *ptep, pte_t pteval)
 385{
 386        *ptep = pteval;
 387}
 388
 389void flush_icache_pte(pte_t pte);
 390
 391static inline void set_pte_at(struct mm_struct *mm,
 392        unsigned long addr, pte_t *ptep, pte_t pteval)
 393{
 394        if (pte_present(pteval) && pte_exec(pteval))
 395                flush_icache_pte(pteval);
 396
 397        set_pte(ptep, pteval);
 398}
 399
 400static inline void pte_clear(struct mm_struct *mm,
 401        unsigned long addr, pte_t *ptep)
 402{
 403        set_pte_at(mm, addr, ptep, __pte(0));
 404}
 405
 406#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 407static inline int ptep_set_access_flags(struct vm_area_struct *vma,
 408                                        unsigned long address, pte_t *ptep,
 409                                        pte_t entry, int dirty)
 410{
 411        if (!pte_same(*ptep, entry))
 412                set_pte_at(vma->vm_mm, address, ptep, entry);
 413        /*
 414         * update_mmu_cache will unconditionally execute, handling both
 415         * the case that the PTE changed and the spurious fault case.
 416         */
 417        return true;
 418}
 419
 420#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 421static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 422                                       unsigned long address, pte_t *ptep)
 423{
 424        return __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
 425}
 426
 427#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 428static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 429                                            unsigned long address,
 430                                            pte_t *ptep)
 431{
 432        if (!pte_young(*ptep))
 433                return 0;
 434        return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
 435}
 436
 437#define __HAVE_ARCH_PTEP_SET_WRPROTECT
 438static inline void ptep_set_wrprotect(struct mm_struct *mm,
 439                                      unsigned long address, pte_t *ptep)
 440{
 441        atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
 442}
 443
 444#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 445static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
 446                                         unsigned long address, pte_t *ptep)
 447{
 448        /*
 449         * This comment is borrowed from x86, but applies equally to RISC-V:
 450         *
 451         * Clearing the accessed bit without a TLB flush
 452         * doesn't cause data corruption. [ It could cause incorrect
 453         * page aging and the (mistaken) reclaim of hot pages, but the
 454         * chance of that should be relatively low. ]
 455         *
 456         * So as a performance optimization don't flush the TLB when
 457         * clearing the accessed bit, it will eventually be flushed by
 458         * a context switch or a VM operation anyway. [ In the rare
 459         * event of it not getting flushed for a long time the delay
 460         * shouldn't really matter because there's no real memory
 461         * pressure for swapout to react to. ]
 462         */
 463        return ptep_test_and_clear_young(vma, address, ptep);
 464}
 465
 466/*
 467 * Encode and decode a swap entry
 468 *
 469 * Format of swap PTE:
 470 *      bit            0:       _PAGE_PRESENT (zero)
 471 *      bit            1:       _PAGE_PROT_NONE (zero)
 472 *      bits      2 to 6:       swap type
 473 *      bits 7 to XLEN-1:       swap offset
 474 */
 475#define __SWP_TYPE_SHIFT        2
 476#define __SWP_TYPE_BITS         5
 477#define __SWP_TYPE_MASK         ((1UL << __SWP_TYPE_BITS) - 1)
 478#define __SWP_OFFSET_SHIFT      (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
 479
 480#define MAX_SWAPFILES_CHECK()   \
 481        BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
 482
 483#define __swp_type(x)   (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
 484#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
 485#define __swp_entry(type, offset) ((swp_entry_t) \
 486        { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
 487
 488#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
 489#define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
 490
 491/*
 492 * In the RV64 Linux scheme, we give the user half of the virtual-address space
 493 * and give the kernel the other (upper) half.
 494 */
 495#ifdef CONFIG_64BIT
 496#define KERN_VIRT_START (-(BIT(CONFIG_VA_BITS)) + TASK_SIZE)
 497#else
 498#define KERN_VIRT_START FIXADDR_START
 499#endif
 500
 501/*
 502 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
 503 * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
 504 */
 505#ifdef CONFIG_64BIT
 506#define TASK_SIZE (PGDIR_SIZE * PTRS_PER_PGD / 2)
 507#else
 508#define TASK_SIZE FIXADDR_START
 509#endif
 510
 511#else /* CONFIG_MMU */
 512
 513#define PAGE_SHARED             __pgprot(0)
 514#define PAGE_KERNEL             __pgprot(0)
 515#define swapper_pg_dir          NULL
 516#define TASK_SIZE               0xffffffffUL
 517#define VMALLOC_START           0
 518#define VMALLOC_END             TASK_SIZE
 519
 520#endif /* !CONFIG_MMU */
 521
 522#define kern_addr_valid(addr)   (1) /* FIXME */
 523
 524extern char _start[];
 525extern void *_dtb_early_va;
 526extern uintptr_t _dtb_early_pa;
 527#if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
 528#define dtb_early_va    (*(void **)XIP_FIXUP(&_dtb_early_va))
 529#define dtb_early_pa    (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
 530#else
 531#define dtb_early_va    _dtb_early_va
 532#define dtb_early_pa    _dtb_early_pa
 533#endif /* CONFIG_XIP_KERNEL */
 534
 535void setup_bootmem(void);
 536void paging_init(void);
 537void misc_mem_init(void);
 538
 539#define FIRST_USER_ADDRESS  0
 540
 541/*
 542 * ZERO_PAGE is a global shared page that is always zero,
 543 * used for zero-mapped memory areas, etc.
 544 */
 545extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
 546#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
 547
 548#endif /* !__ASSEMBLY__ */
 549
 550#endif /* _ASM_RISCV_PGTABLE_H */
 551