linux/arch/s390/include/asm/pgtable.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *  S390 version
   4 *    Copyright IBM Corp. 1999, 2000
   5 *    Author(s): Hartmut Penner (hp@de.ibm.com)
   6 *               Ulrich Weigand (weigand@de.ibm.com)
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 *
   9 *  Derived from "include/asm-i386/pgtable.h"
  10 */
  11
  12#ifndef _ASM_S390_PGTABLE_H
  13#define _ASM_S390_PGTABLE_H
  14
  15#include <linux/sched.h>
  16#include <linux/mm_types.h>
  17#include <linux/page-flags.h>
  18#include <linux/radix-tree.h>
  19#include <linux/atomic.h>
  20#include <asm/bug.h>
  21#include <asm/page.h>
  22#include <asm/uv.h>
  23
  24extern pgd_t swapper_pg_dir[];
  25extern void paging_init(void);
  26extern unsigned long s390_invalid_asce;
  27
  28enum {
  29        PG_DIRECT_MAP_4K = 0,
  30        PG_DIRECT_MAP_1M,
  31        PG_DIRECT_MAP_2G,
  32        PG_DIRECT_MAP_MAX
  33};
  34
  35extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
  36
  37static inline void update_page_count(int level, long count)
  38{
  39        if (IS_ENABLED(CONFIG_PROC_FS))
  40                atomic_long_add(count, &direct_pages_count[level]);
  41}
  42
  43struct seq_file;
  44void arch_report_meminfo(struct seq_file *m);
  45
  46/*
  47 * The S390 doesn't have any external MMU info: the kernel page
  48 * tables contain all the necessary information.
  49 */
  50#define update_mmu_cache(vma, address, ptep)     do { } while (0)
  51#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  52
  53/*
  54 * ZERO_PAGE is a global shared page that is always zero; used
  55 * for zero-mapped memory areas etc..
  56 */
  57
  58extern unsigned long empty_zero_page;
  59extern unsigned long zero_page_mask;
  60
  61#define ZERO_PAGE(vaddr) \
  62        (virt_to_page((void *)(empty_zero_page + \
  63         (((unsigned long)(vaddr)) &zero_page_mask))))
  64#define __HAVE_COLOR_ZERO_PAGE
  65
  66/* TODO: s390 cannot support io_remap_pfn_range... */
  67
  68#define FIRST_USER_ADDRESS  0UL
  69
  70#define pte_ERROR(e) \
  71        printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
  72#define pmd_ERROR(e) \
  73        printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
  74#define pud_ERROR(e) \
  75        printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
  76#define p4d_ERROR(e) \
  77        printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
  78#define pgd_ERROR(e) \
  79        printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
  80
  81/*
  82 * The vmalloc and module area will always be on the topmost area of the
  83 * kernel mapping. 512GB are reserved for vmalloc by default.
  84 * At the top of the vmalloc area a 2GB area is reserved where modules
  85 * will reside. That makes sure that inter module branches always
  86 * happen without trampolines and in addition the placement within a
  87 * 2GB frame is branch prediction unit friendly.
  88 */
  89extern unsigned long VMALLOC_START;
  90extern unsigned long VMALLOC_END;
  91#define VMALLOC_DEFAULT_SIZE    ((512UL << 30) - MODULES_LEN)
  92extern struct page *vmemmap;
  93extern unsigned long vmemmap_size;
  94
  95#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
  96
  97extern unsigned long MODULES_VADDR;
  98extern unsigned long MODULES_END;
  99#define MODULES_VADDR   MODULES_VADDR
 100#define MODULES_END     MODULES_END
 101#define MODULES_LEN     (1UL << 31)
 102
 103static inline int is_module_addr(void *addr)
 104{
 105        BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
 106        if (addr < (void *)MODULES_VADDR)
 107                return 0;
 108        if (addr > (void *)MODULES_END)
 109                return 0;
 110        return 1;
 111}
 112
 113/*
 114 * A 64 bit pagetable entry of S390 has following format:
 115 * |                     PFRA                         |0IPC|  OS  |
 116 * 0000000000111111111122222222223333333333444444444455555555556666
 117 * 0123456789012345678901234567890123456789012345678901234567890123
 118 *
 119 * I Page-Invalid Bit:    Page is not available for address-translation
 120 * P Page-Protection Bit: Store access not possible for page
 121 * C Change-bit override: HW is not required to set change bit
 122 *
 123 * A 64 bit segmenttable entry of S390 has following format:
 124 * |        P-table origin                              |      TT
 125 * 0000000000111111111122222222223333333333444444444455555555556666
 126 * 0123456789012345678901234567890123456789012345678901234567890123
 127 *
 128 * I Segment-Invalid Bit:    Segment is not available for address-translation
 129 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 130 * P Page-Protection Bit: Store access not possible for page
 131 * TT Type 00
 132 *
 133 * A 64 bit region table entry of S390 has following format:
 134 * |        S-table origin                             |   TF  TTTL
 135 * 0000000000111111111122222222223333333333444444444455555555556666
 136 * 0123456789012345678901234567890123456789012345678901234567890123
 137 *
 138 * I Segment-Invalid Bit:    Segment is not available for address-translation
 139 * TT Type 01
 140 * TF
 141 * TL Table length
 142 *
 143 * The 64 bit regiontable origin of S390 has following format:
 144 * |      region table origon                          |       DTTL
 145 * 0000000000111111111122222222223333333333444444444455555555556666
 146 * 0123456789012345678901234567890123456789012345678901234567890123
 147 *
 148 * X Space-Switch event:
 149 * G Segment-Invalid Bit:  
 150 * P Private-Space Bit:    
 151 * S Storage-Alteration:
 152 * R Real space
 153 * TL Table-Length:
 154 *
 155 * A storage key has the following format:
 156 * | ACC |F|R|C|0|
 157 *  0   3 4 5 6 7
 158 * ACC: access key
 159 * F  : fetch protection bit
 160 * R  : referenced bit
 161 * C  : changed bit
 162 */
 163
 164/* Hardware bits in the page table entry */
 165#define _PAGE_NOEXEC    0x100           /* HW no-execute bit  */
 166#define _PAGE_PROTECT   0x200           /* HW read-only bit  */
 167#define _PAGE_INVALID   0x400           /* HW invalid bit    */
 168#define _PAGE_LARGE     0x800           /* Bit to mark a large pte */
 169
 170/* Software bits in the page table entry */
 171#define _PAGE_PRESENT   0x001           /* SW pte present bit */
 172#define _PAGE_YOUNG     0x004           /* SW pte young bit */
 173#define _PAGE_DIRTY     0x008           /* SW pte dirty bit */
 174#define _PAGE_READ      0x010           /* SW pte read bit */
 175#define _PAGE_WRITE     0x020           /* SW pte write bit */
 176#define _PAGE_SPECIAL   0x040           /* SW associated with special page */
 177#define _PAGE_UNUSED    0x080           /* SW bit for pgste usage state */
 178
 179#ifdef CONFIG_MEM_SOFT_DIRTY
 180#define _PAGE_SOFT_DIRTY 0x002          /* SW pte soft dirty bit */
 181#else
 182#define _PAGE_SOFT_DIRTY 0x000
 183#endif
 184
 185/* Set of bits not changed in pte_modify */
 186#define _PAGE_CHG_MASK          (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
 187                                 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
 188
 189/*
 190 * handle_pte_fault uses pte_present and pte_none to find out the pte type
 191 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
 192 * distinguish present from not-present ptes. It is changed only with the page
 193 * table lock held.
 194 *
 195 * The following table gives the different possible bit combinations for
 196 * the pte hardware and software bits in the last 12 bits of a pte
 197 * (. unassigned bit, x don't care, t swap type):
 198 *
 199 *                              842100000000
 200 *                              000084210000
 201 *                              000000008421
 202 *                              .IR.uswrdy.p
 203 * empty                        .10.00000000
 204 * swap                         .11..ttttt.0
 205 * prot-none, clean, old        .11.xx0000.1
 206 * prot-none, clean, young      .11.xx0001.1
 207 * prot-none, dirty, old        .11.xx0010.1
 208 * prot-none, dirty, young      .11.xx0011.1
 209 * read-only, clean, old        .11.xx0100.1
 210 * read-only, clean, young      .01.xx0101.1
 211 * read-only, dirty, old        .11.xx0110.1
 212 * read-only, dirty, young      .01.xx0111.1
 213 * read-write, clean, old       .11.xx1100.1
 214 * read-write, clean, young     .01.xx1101.1
 215 * read-write, dirty, old       .10.xx1110.1
 216 * read-write, dirty, young     .00.xx1111.1
 217 * HW-bits: R read-only, I invalid
 218 * SW-bits: p present, y young, d dirty, r read, w write, s special,
 219 *          u unused, l large
 220 *
 221 * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
 222 * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
 223 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
 224 */
 225
 226/* Bits in the segment/region table address-space-control-element */
 227#define _ASCE_ORIGIN            ~0xfffUL/* region/segment table origin      */
 228#define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
 229#define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
 230#define _ASCE_SPACE_SWITCH      0x40    /* space switch event               */
 231#define _ASCE_REAL_SPACE        0x20    /* real space control               */
 232#define _ASCE_TYPE_MASK         0x0c    /* asce table type mask             */
 233#define _ASCE_TYPE_REGION1      0x0c    /* region first table type          */
 234#define _ASCE_TYPE_REGION2      0x08    /* region second table type         */
 235#define _ASCE_TYPE_REGION3      0x04    /* region third table type          */
 236#define _ASCE_TYPE_SEGMENT      0x00    /* segment table type               */
 237#define _ASCE_TABLE_LENGTH      0x03    /* region table length              */
 238
 239/* Bits in the region table entry */
 240#define _REGION_ENTRY_ORIGIN    ~0xfffUL/* region/segment table origin      */
 241#define _REGION_ENTRY_PROTECT   0x200   /* region protection bit            */
 242#define _REGION_ENTRY_NOEXEC    0x100   /* region no-execute bit            */
 243#define _REGION_ENTRY_OFFSET    0xc0    /* region table offset              */
 244#define _REGION_ENTRY_INVALID   0x20    /* invalid region table entry       */
 245#define _REGION_ENTRY_TYPE_MASK 0x0c    /* region table type mask           */
 246#define _REGION_ENTRY_TYPE_R1   0x0c    /* region first table type          */
 247#define _REGION_ENTRY_TYPE_R2   0x08    /* region second table type         */
 248#define _REGION_ENTRY_TYPE_R3   0x04    /* region third table type          */
 249#define _REGION_ENTRY_LENGTH    0x03    /* region third length              */
 250
 251#define _REGION1_ENTRY          (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
 252#define _REGION1_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
 253#define _REGION2_ENTRY          (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
 254#define _REGION2_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
 255#define _REGION3_ENTRY          (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
 256#define _REGION3_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
 257
 258#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address      */
 259#define _REGION3_ENTRY_DIRTY    0x2000  /* SW region dirty bit */
 260#define _REGION3_ENTRY_YOUNG    0x1000  /* SW region young bit */
 261#define _REGION3_ENTRY_LARGE    0x0400  /* RTTE-format control, large page  */
 262#define _REGION3_ENTRY_READ     0x0002  /* SW region read bit */
 263#define _REGION3_ENTRY_WRITE    0x0001  /* SW region write bit */
 264
 265#ifdef CONFIG_MEM_SOFT_DIRTY
 266#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
 267#else
 268#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
 269#endif
 270
 271#define _REGION_ENTRY_BITS       0xfffffffffffff22fUL
 272
 273/* Bits in the segment table entry */
 274#define _SEGMENT_ENTRY_BITS                     0xfffffffffffffe33UL
 275#define _SEGMENT_ENTRY_HARDWARE_BITS            0xfffffffffffffe30UL
 276#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE      0xfffffffffff00730UL
 277#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address        */
 278#define _SEGMENT_ENTRY_ORIGIN   ~0x7ffUL/* page table origin                */
 279#define _SEGMENT_ENTRY_PROTECT  0x200   /* segment protection bit           */
 280#define _SEGMENT_ENTRY_NOEXEC   0x100   /* segment no-execute bit           */
 281#define _SEGMENT_ENTRY_INVALID  0x20    /* invalid segment table entry      */
 282#define _SEGMENT_ENTRY_TYPE_MASK 0x0c   /* segment table type mask          */
 283
 284#define _SEGMENT_ENTRY          (0)
 285#define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INVALID)
 286
 287#define _SEGMENT_ENTRY_DIRTY    0x2000  /* SW segment dirty bit */
 288#define _SEGMENT_ENTRY_YOUNG    0x1000  /* SW segment young bit */
 289#define _SEGMENT_ENTRY_LARGE    0x0400  /* STE-format control, large page */
 290#define _SEGMENT_ENTRY_WRITE    0x0002  /* SW segment write bit */
 291#define _SEGMENT_ENTRY_READ     0x0001  /* SW segment read bit */
 292
 293#ifdef CONFIG_MEM_SOFT_DIRTY
 294#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
 295#else
 296#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
 297#endif
 298
 299#define _CRST_ENTRIES   2048    /* number of region/segment table entries */
 300#define _PAGE_ENTRIES   256     /* number of page table entries */
 301
 302#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
 303#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
 304
 305#define _REGION1_SHIFT  53
 306#define _REGION2_SHIFT  42
 307#define _REGION3_SHIFT  31
 308#define _SEGMENT_SHIFT  20
 309
 310#define _REGION1_INDEX  (0x7ffUL << _REGION1_SHIFT)
 311#define _REGION2_INDEX  (0x7ffUL << _REGION2_SHIFT)
 312#define _REGION3_INDEX  (0x7ffUL << _REGION3_SHIFT)
 313#define _SEGMENT_INDEX  (0x7ffUL << _SEGMENT_SHIFT)
 314#define _PAGE_INDEX     (0xffUL  << _PAGE_SHIFT)
 315
 316#define _REGION1_SIZE   (1UL << _REGION1_SHIFT)
 317#define _REGION2_SIZE   (1UL << _REGION2_SHIFT)
 318#define _REGION3_SIZE   (1UL << _REGION3_SHIFT)
 319#define _SEGMENT_SIZE   (1UL << _SEGMENT_SHIFT)
 320
 321#define _REGION1_MASK   (~(_REGION1_SIZE - 1))
 322#define _REGION2_MASK   (~(_REGION2_SIZE - 1))
 323#define _REGION3_MASK   (~(_REGION3_SIZE - 1))
 324#define _SEGMENT_MASK   (~(_SEGMENT_SIZE - 1))
 325
 326#define PMD_SHIFT       _SEGMENT_SHIFT
 327#define PUD_SHIFT       _REGION3_SHIFT
 328#define P4D_SHIFT       _REGION2_SHIFT
 329#define PGDIR_SHIFT     _REGION1_SHIFT
 330
 331#define PMD_SIZE        _SEGMENT_SIZE
 332#define PUD_SIZE        _REGION3_SIZE
 333#define P4D_SIZE        _REGION2_SIZE
 334#define PGDIR_SIZE      _REGION1_SIZE
 335
 336#define PMD_MASK        _SEGMENT_MASK
 337#define PUD_MASK        _REGION3_MASK
 338#define P4D_MASK        _REGION2_MASK
 339#define PGDIR_MASK      _REGION1_MASK
 340
 341#define PTRS_PER_PTE    _PAGE_ENTRIES
 342#define PTRS_PER_PMD    _CRST_ENTRIES
 343#define PTRS_PER_PUD    _CRST_ENTRIES
 344#define PTRS_PER_P4D    _CRST_ENTRIES
 345#define PTRS_PER_PGD    _CRST_ENTRIES
 346
 347#define MAX_PTRS_PER_P4D        PTRS_PER_P4D
 348
 349/*
 350 * Segment table and region3 table entry encoding
 351 * (R = read-only, I = invalid, y = young bit):
 352 *                              dy..R...I...wr
 353 * prot-none, clean, old        00..1...1...00
 354 * prot-none, clean, young      01..1...1...00
 355 * prot-none, dirty, old        10..1...1...00
 356 * prot-none, dirty, young      11..1...1...00
 357 * read-only, clean, old        00..1...1...01
 358 * read-only, clean, young      01..1...0...01
 359 * read-only, dirty, old        10..1...1...01
 360 * read-only, dirty, young      11..1...0...01
 361 * read-write, clean, old       00..1...1...11
 362 * read-write, clean, young     01..1...0...11
 363 * read-write, dirty, old       10..0...1...11
 364 * read-write, dirty, young     11..0...0...11
 365 * The segment table origin is used to distinguish empty (origin==0) from
 366 * read-write, old segment table entries (origin!=0)
 367 * HW-bits: R read-only, I invalid
 368 * SW-bits: y young, d dirty, r read, w write
 369 */
 370
 371/* Page status table bits for virtualization */
 372#define PGSTE_ACC_BITS  0xf000000000000000UL
 373#define PGSTE_FP_BIT    0x0800000000000000UL
 374#define PGSTE_PCL_BIT   0x0080000000000000UL
 375#define PGSTE_HR_BIT    0x0040000000000000UL
 376#define PGSTE_HC_BIT    0x0020000000000000UL
 377#define PGSTE_GR_BIT    0x0004000000000000UL
 378#define PGSTE_GC_BIT    0x0002000000000000UL
 379#define PGSTE_UC_BIT    0x0000800000000000UL    /* user dirty (migration) */
 380#define PGSTE_IN_BIT    0x0000400000000000UL    /* IPTE notify bit */
 381#define PGSTE_VSIE_BIT  0x0000200000000000UL    /* ref'd in a shadow table */
 382
 383/* Guest Page State used for virtualization */
 384#define _PGSTE_GPS_ZERO                 0x0000000080000000UL
 385#define _PGSTE_GPS_NODAT                0x0000000040000000UL
 386#define _PGSTE_GPS_USAGE_MASK           0x0000000003000000UL
 387#define _PGSTE_GPS_USAGE_STABLE         0x0000000000000000UL
 388#define _PGSTE_GPS_USAGE_UNUSED         0x0000000001000000UL
 389#define _PGSTE_GPS_USAGE_POT_VOLATILE   0x0000000002000000UL
 390#define _PGSTE_GPS_USAGE_VOLATILE       _PGSTE_GPS_USAGE_MASK
 391
 392/*
 393 * A user page table pointer has the space-switch-event bit, the
 394 * private-space-control bit and the storage-alteration-event-control
 395 * bit set. A kernel page table pointer doesn't need them.
 396 */
 397#define _ASCE_USER_BITS         (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
 398                                 _ASCE_ALT_EVENT)
 399
 400/*
 401 * Page protection definitions.
 402 */
 403#define PAGE_NONE       __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
 404#define PAGE_RO         __pgprot(_PAGE_PRESENT | _PAGE_READ | \
 405                                 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
 406#define PAGE_RX         __pgprot(_PAGE_PRESENT | _PAGE_READ | \
 407                                 _PAGE_INVALID | _PAGE_PROTECT)
 408#define PAGE_RW         __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 409                                 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
 410#define PAGE_RWX        __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 411                                 _PAGE_INVALID | _PAGE_PROTECT)
 412
 413#define PAGE_SHARED     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 414                                 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
 415#define PAGE_KERNEL     __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 416                                 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
 417#define PAGE_KERNEL_RO  __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
 418                                 _PAGE_PROTECT | _PAGE_NOEXEC)
 419#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
 420                                  _PAGE_YOUNG | _PAGE_DIRTY)
 421
 422/*
 423 * On s390 the page table entry has an invalid bit and a read-only bit.
 424 * Read permission implies execute permission and write permission
 425 * implies read permission.
 426 */
 427         /*xwr*/
 428#define __P000  PAGE_NONE
 429#define __P001  PAGE_RO
 430#define __P010  PAGE_RO
 431#define __P011  PAGE_RO
 432#define __P100  PAGE_RX
 433#define __P101  PAGE_RX
 434#define __P110  PAGE_RX
 435#define __P111  PAGE_RX
 436
 437#define __S000  PAGE_NONE
 438#define __S001  PAGE_RO
 439#define __S010  PAGE_RW
 440#define __S011  PAGE_RW
 441#define __S100  PAGE_RX
 442#define __S101  PAGE_RX
 443#define __S110  PAGE_RWX
 444#define __S111  PAGE_RWX
 445
 446/*
 447 * Segment entry (large page) protection definitions.
 448 */
 449#define SEGMENT_NONE    __pgprot(_SEGMENT_ENTRY_INVALID | \
 450                                 _SEGMENT_ENTRY_PROTECT)
 451#define SEGMENT_RO      __pgprot(_SEGMENT_ENTRY_PROTECT | \
 452                                 _SEGMENT_ENTRY_READ | \
 453                                 _SEGMENT_ENTRY_NOEXEC)
 454#define SEGMENT_RX      __pgprot(_SEGMENT_ENTRY_PROTECT | \
 455                                 _SEGMENT_ENTRY_READ)
 456#define SEGMENT_RW      __pgprot(_SEGMENT_ENTRY_READ | \
 457                                 _SEGMENT_ENTRY_WRITE | \
 458                                 _SEGMENT_ENTRY_NOEXEC)
 459#define SEGMENT_RWX     __pgprot(_SEGMENT_ENTRY_READ | \
 460                                 _SEGMENT_ENTRY_WRITE)
 461#define SEGMENT_KERNEL  __pgprot(_SEGMENT_ENTRY |       \
 462                                 _SEGMENT_ENTRY_LARGE | \
 463                                 _SEGMENT_ENTRY_READ |  \
 464                                 _SEGMENT_ENTRY_WRITE | \
 465                                 _SEGMENT_ENTRY_YOUNG | \
 466                                 _SEGMENT_ENTRY_DIRTY | \
 467                                 _SEGMENT_ENTRY_NOEXEC)
 468#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |     \
 469                                 _SEGMENT_ENTRY_LARGE | \
 470                                 _SEGMENT_ENTRY_READ |  \
 471                                 _SEGMENT_ENTRY_YOUNG | \
 472                                 _SEGMENT_ENTRY_PROTECT | \
 473                                 _SEGMENT_ENTRY_NOEXEC)
 474#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |   \
 475                                 _SEGMENT_ENTRY_LARGE | \
 476                                 _SEGMENT_ENTRY_READ |  \
 477                                 _SEGMENT_ENTRY_WRITE | \
 478                                 _SEGMENT_ENTRY_YOUNG | \
 479                                 _SEGMENT_ENTRY_DIRTY)
 480
 481/*
 482 * Region3 entry (large page) protection definitions.
 483 */
 484
 485#define REGION3_KERNEL  __pgprot(_REGION_ENTRY_TYPE_R3 | \
 486                                 _REGION3_ENTRY_LARGE |  \
 487                                 _REGION3_ENTRY_READ |   \
 488                                 _REGION3_ENTRY_WRITE |  \
 489                                 _REGION3_ENTRY_YOUNG |  \
 490                                 _REGION3_ENTRY_DIRTY | \
 491                                 _REGION_ENTRY_NOEXEC)
 492#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
 493                                   _REGION3_ENTRY_LARGE |  \
 494                                   _REGION3_ENTRY_READ |   \
 495                                   _REGION3_ENTRY_YOUNG |  \
 496                                   _REGION_ENTRY_PROTECT | \
 497                                   _REGION_ENTRY_NOEXEC)
 498
 499static inline bool mm_p4d_folded(struct mm_struct *mm)
 500{
 501        return mm->context.asce_limit <= _REGION1_SIZE;
 502}
 503#define mm_p4d_folded(mm) mm_p4d_folded(mm)
 504
 505static inline bool mm_pud_folded(struct mm_struct *mm)
 506{
 507        return mm->context.asce_limit <= _REGION2_SIZE;
 508}
 509#define mm_pud_folded(mm) mm_pud_folded(mm)
 510
 511static inline bool mm_pmd_folded(struct mm_struct *mm)
 512{
 513        return mm->context.asce_limit <= _REGION3_SIZE;
 514}
 515#define mm_pmd_folded(mm) mm_pmd_folded(mm)
 516
 517static inline int mm_has_pgste(struct mm_struct *mm)
 518{
 519#ifdef CONFIG_PGSTE
 520        if (unlikely(mm->context.has_pgste))
 521                return 1;
 522#endif
 523        return 0;
 524}
 525
 526static inline int mm_is_protected(struct mm_struct *mm)
 527{
 528#ifdef CONFIG_PGSTE
 529        if (unlikely(atomic_read(&mm->context.is_protected)))
 530                return 1;
 531#endif
 532        return 0;
 533}
 534
 535static inline int mm_alloc_pgste(struct mm_struct *mm)
 536{
 537#ifdef CONFIG_PGSTE
 538        if (unlikely(mm->context.alloc_pgste))
 539                return 1;
 540#endif
 541        return 0;
 542}
 543
 544/*
 545 * In the case that a guest uses storage keys
 546 * faults should no longer be backed by zero pages
 547 */
 548#define mm_forbids_zeropage mm_has_pgste
 549static inline int mm_uses_skeys(struct mm_struct *mm)
 550{
 551#ifdef CONFIG_PGSTE
 552        if (mm->context.uses_skeys)
 553                return 1;
 554#endif
 555        return 0;
 556}
 557
 558static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
 559{
 560        register unsigned long reg2 asm("2") = old;
 561        register unsigned long reg3 asm("3") = new;
 562        unsigned long address = (unsigned long)ptr | 1;
 563
 564        asm volatile(
 565                "       csp     %0,%3"
 566                : "+d" (reg2), "+m" (*ptr)
 567                : "d" (reg3), "d" (address)
 568                : "cc");
 569}
 570
 571static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
 572{
 573        register unsigned long reg2 asm("2") = old;
 574        register unsigned long reg3 asm("3") = new;
 575        unsigned long address = (unsigned long)ptr | 1;
 576
 577        asm volatile(
 578                "       .insn   rre,0xb98a0000,%0,%3"
 579                : "+d" (reg2), "+m" (*ptr)
 580                : "d" (reg3), "d" (address)
 581                : "cc");
 582}
 583
 584#define CRDTE_DTT_PAGE          0x00UL
 585#define CRDTE_DTT_SEGMENT       0x10UL
 586#define CRDTE_DTT_REGION3       0x14UL
 587#define CRDTE_DTT_REGION2       0x18UL
 588#define CRDTE_DTT_REGION1       0x1cUL
 589
 590static inline void crdte(unsigned long old, unsigned long new,
 591                         unsigned long table, unsigned long dtt,
 592                         unsigned long address, unsigned long asce)
 593{
 594        register unsigned long reg2 asm("2") = old;
 595        register unsigned long reg3 asm("3") = new;
 596        register unsigned long reg4 asm("4") = table | dtt;
 597        register unsigned long reg5 asm("5") = address;
 598
 599        asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
 600                     : "+d" (reg2)
 601                     : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
 602                     : "memory", "cc");
 603}
 604
 605/*
 606 * pgd/p4d/pud/pmd/pte query functions
 607 */
 608static inline int pgd_folded(pgd_t pgd)
 609{
 610        return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
 611}
 612
 613static inline int pgd_present(pgd_t pgd)
 614{
 615        if (pgd_folded(pgd))
 616                return 1;
 617        return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
 618}
 619
 620static inline int pgd_none(pgd_t pgd)
 621{
 622        if (pgd_folded(pgd))
 623                return 0;
 624        return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
 625}
 626
 627static inline int pgd_bad(pgd_t pgd)
 628{
 629        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
 630                return 0;
 631        return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
 632}
 633
 634static inline unsigned long pgd_pfn(pgd_t pgd)
 635{
 636        unsigned long origin_mask;
 637
 638        origin_mask = _REGION_ENTRY_ORIGIN;
 639        return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
 640}
 641
 642static inline int p4d_folded(p4d_t p4d)
 643{
 644        return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
 645}
 646
 647static inline int p4d_present(p4d_t p4d)
 648{
 649        if (p4d_folded(p4d))
 650                return 1;
 651        return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
 652}
 653
 654static inline int p4d_none(p4d_t p4d)
 655{
 656        if (p4d_folded(p4d))
 657                return 0;
 658        return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
 659}
 660
 661static inline unsigned long p4d_pfn(p4d_t p4d)
 662{
 663        unsigned long origin_mask;
 664
 665        origin_mask = _REGION_ENTRY_ORIGIN;
 666        return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
 667}
 668
 669static inline int pud_folded(pud_t pud)
 670{
 671        return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
 672}
 673
 674static inline int pud_present(pud_t pud)
 675{
 676        if (pud_folded(pud))
 677                return 1;
 678        return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
 679}
 680
 681static inline int pud_none(pud_t pud)
 682{
 683        if (pud_folded(pud))
 684                return 0;
 685        return pud_val(pud) == _REGION3_ENTRY_EMPTY;
 686}
 687
 688#define pud_leaf        pud_large
 689static inline int pud_large(pud_t pud)
 690{
 691        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
 692                return 0;
 693        return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
 694}
 695
 696#define pmd_leaf        pmd_large
 697static inline int pmd_large(pmd_t pmd)
 698{
 699        return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
 700}
 701
 702static inline int pmd_bad(pmd_t pmd)
 703{
 704        if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
 705                return 1;
 706        return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
 707}
 708
 709static inline int pud_bad(pud_t pud)
 710{
 711        unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
 712
 713        if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
 714                return 1;
 715        if (type < _REGION_ENTRY_TYPE_R3)
 716                return 0;
 717        return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
 718}
 719
 720static inline int p4d_bad(p4d_t p4d)
 721{
 722        unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
 723
 724        if (type > _REGION_ENTRY_TYPE_R2)
 725                return 1;
 726        if (type < _REGION_ENTRY_TYPE_R2)
 727                return 0;
 728        return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
 729}
 730
 731static inline int pmd_present(pmd_t pmd)
 732{
 733        return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
 734}
 735
 736static inline int pmd_none(pmd_t pmd)
 737{
 738        return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
 739}
 740
 741#define pmd_write pmd_write
 742static inline int pmd_write(pmd_t pmd)
 743{
 744        return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
 745}
 746
 747#define pud_write pud_write
 748static inline int pud_write(pud_t pud)
 749{
 750        return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
 751}
 752
 753static inline int pmd_dirty(pmd_t pmd)
 754{
 755        return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
 756}
 757
 758static inline int pmd_young(pmd_t pmd)
 759{
 760        return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
 761}
 762
 763static inline int pte_present(pte_t pte)
 764{
 765        /* Bit pattern: (pte & 0x001) == 0x001 */
 766        return (pte_val(pte) & _PAGE_PRESENT) != 0;
 767}
 768
 769static inline int pte_none(pte_t pte)
 770{
 771        /* Bit pattern: pte == 0x400 */
 772        return pte_val(pte) == _PAGE_INVALID;
 773}
 774
 775static inline int pte_swap(pte_t pte)
 776{
 777        /* Bit pattern: (pte & 0x201) == 0x200 */
 778        return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
 779                == _PAGE_PROTECT;
 780}
 781
 782static inline int pte_special(pte_t pte)
 783{
 784        return (pte_val(pte) & _PAGE_SPECIAL);
 785}
 786
 787#define __HAVE_ARCH_PTE_SAME
 788static inline int pte_same(pte_t a, pte_t b)
 789{
 790        return pte_val(a) == pte_val(b);
 791}
 792
 793#ifdef CONFIG_NUMA_BALANCING
 794static inline int pte_protnone(pte_t pte)
 795{
 796        return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
 797}
 798
 799static inline int pmd_protnone(pmd_t pmd)
 800{
 801        /* pmd_large(pmd) implies pmd_present(pmd) */
 802        return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
 803}
 804#endif
 805
 806static inline int pte_soft_dirty(pte_t pte)
 807{
 808        return pte_val(pte) & _PAGE_SOFT_DIRTY;
 809}
 810#define pte_swp_soft_dirty pte_soft_dirty
 811
 812static inline pte_t pte_mksoft_dirty(pte_t pte)
 813{
 814        pte_val(pte) |= _PAGE_SOFT_DIRTY;
 815        return pte;
 816}
 817#define pte_swp_mksoft_dirty pte_mksoft_dirty
 818
 819static inline pte_t pte_clear_soft_dirty(pte_t pte)
 820{
 821        pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
 822        return pte;
 823}
 824#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
 825
 826static inline int pmd_soft_dirty(pmd_t pmd)
 827{
 828        return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
 829}
 830
 831static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
 832{
 833        pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
 834        return pmd;
 835}
 836
 837static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
 838{
 839        pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
 840        return pmd;
 841}
 842
 843/*
 844 * query functions pte_write/pte_dirty/pte_young only work if
 845 * pte_present() is true. Undefined behaviour if not..
 846 */
 847static inline int pte_write(pte_t pte)
 848{
 849        return (pte_val(pte) & _PAGE_WRITE) != 0;
 850}
 851
 852static inline int pte_dirty(pte_t pte)
 853{
 854        return (pte_val(pte) & _PAGE_DIRTY) != 0;
 855}
 856
 857static inline int pte_young(pte_t pte)
 858{
 859        return (pte_val(pte) & _PAGE_YOUNG) != 0;
 860}
 861
 862#define __HAVE_ARCH_PTE_UNUSED
 863static inline int pte_unused(pte_t pte)
 864{
 865        return pte_val(pte) & _PAGE_UNUSED;
 866}
 867
 868/*
 869 * pgd/pmd/pte modification functions
 870 */
 871
 872static inline void pgd_clear(pgd_t *pgd)
 873{
 874        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
 875                pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
 876}
 877
 878static inline void p4d_clear(p4d_t *p4d)
 879{
 880        if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
 881                p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
 882}
 883
 884static inline void pud_clear(pud_t *pud)
 885{
 886        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
 887                pud_val(*pud) = _REGION3_ENTRY_EMPTY;
 888}
 889
 890static inline void pmd_clear(pmd_t *pmdp)
 891{
 892        pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
 893}
 894
 895static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 896{
 897        pte_val(*ptep) = _PAGE_INVALID;
 898}
 899
 900/*
 901 * The following pte modification functions only work if
 902 * pte_present() is true. Undefined behaviour if not..
 903 */
 904static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 905{
 906        pte_val(pte) &= _PAGE_CHG_MASK;
 907        pte_val(pte) |= pgprot_val(newprot);
 908        /*
 909         * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
 910         * has the invalid bit set, clear it again for readable, young pages
 911         */
 912        if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
 913                pte_val(pte) &= ~_PAGE_INVALID;
 914        /*
 915         * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
 916         * protection bit set, clear it again for writable, dirty pages
 917         */
 918        if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
 919                pte_val(pte) &= ~_PAGE_PROTECT;
 920        return pte;
 921}
 922
 923static inline pte_t pte_wrprotect(pte_t pte)
 924{
 925        pte_val(pte) &= ~_PAGE_WRITE;
 926        pte_val(pte) |= _PAGE_PROTECT;
 927        return pte;
 928}
 929
 930static inline pte_t pte_mkwrite(pte_t pte)
 931{
 932        pte_val(pte) |= _PAGE_WRITE;
 933        if (pte_val(pte) & _PAGE_DIRTY)
 934                pte_val(pte) &= ~_PAGE_PROTECT;
 935        return pte;
 936}
 937
 938static inline pte_t pte_mkclean(pte_t pte)
 939{
 940        pte_val(pte) &= ~_PAGE_DIRTY;
 941        pte_val(pte) |= _PAGE_PROTECT;
 942        return pte;
 943}
 944
 945static inline pte_t pte_mkdirty(pte_t pte)
 946{
 947        pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
 948        if (pte_val(pte) & _PAGE_WRITE)
 949                pte_val(pte) &= ~_PAGE_PROTECT;
 950        return pte;
 951}
 952
 953static inline pte_t pte_mkold(pte_t pte)
 954{
 955        pte_val(pte) &= ~_PAGE_YOUNG;
 956        pte_val(pte) |= _PAGE_INVALID;
 957        return pte;
 958}
 959
 960static inline pte_t pte_mkyoung(pte_t pte)
 961{
 962        pte_val(pte) |= _PAGE_YOUNG;
 963        if (pte_val(pte) & _PAGE_READ)
 964                pte_val(pte) &= ~_PAGE_INVALID;
 965        return pte;
 966}
 967
 968static inline pte_t pte_mkspecial(pte_t pte)
 969{
 970        pte_val(pte) |= _PAGE_SPECIAL;
 971        return pte;
 972}
 973
 974#ifdef CONFIG_HUGETLB_PAGE
 975static inline pte_t pte_mkhuge(pte_t pte)
 976{
 977        pte_val(pte) |= _PAGE_LARGE;
 978        return pte;
 979}
 980#endif
 981
 982#define IPTE_GLOBAL     0
 983#define IPTE_LOCAL      1
 984
 985#define IPTE_NODAT      0x400
 986#define IPTE_GUEST_ASCE 0x800
 987
 988static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
 989                                        unsigned long opt, unsigned long asce,
 990                                        int local)
 991{
 992        unsigned long pto = (unsigned long) ptep;
 993
 994        if (__builtin_constant_p(opt) && opt == 0) {
 995                /* Invalidation + TLB flush for the pte */
 996                asm volatile(
 997                        "       .insn   rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
 998                        : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
 999                          [m4] "i" (local));
1000                return;
1001        }
1002
1003        /* Invalidate ptes with options + TLB flush of the ptes */
1004        opt = opt | (asce & _ASCE_ORIGIN);
1005        asm volatile(
1006                "       .insn   rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1007                : [r2] "+a" (address), [r3] "+a" (opt)
1008                : [r1] "a" (pto), [m4] "i" (local) : "memory");
1009}
1010
1011static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1012                                              pte_t *ptep, int local)
1013{
1014        unsigned long pto = (unsigned long) ptep;
1015
1016        /* Invalidate a range of ptes + TLB flush of the ptes */
1017        do {
1018                asm volatile(
1019                        "       .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1020                        : [r2] "+a" (address), [r3] "+a" (nr)
1021                        : [r1] "a" (pto), [m4] "i" (local) : "memory");
1022        } while (nr != 255);
1023}
1024
1025/*
1026 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1027 * both clear the TLB for the unmapped pte. The reason is that
1028 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1029 * to modify an active pte. The sequence is
1030 *   1) ptep_get_and_clear
1031 *   2) set_pte_at
1032 *   3) flush_tlb_range
1033 * On s390 the tlb needs to get flushed with the modification of the pte
1034 * if the pte is active. The only way how this can be implemented is to
1035 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1036 * is a nop.
1037 */
1038pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1039pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1040
1041#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1042static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1043                                            unsigned long addr, pte_t *ptep)
1044{
1045        pte_t pte = *ptep;
1046
1047        pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1048        return pte_young(pte);
1049}
1050
1051#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1052static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1053                                         unsigned long address, pte_t *ptep)
1054{
1055        return ptep_test_and_clear_young(vma, address, ptep);
1056}
1057
1058#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1059static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1060                                       unsigned long addr, pte_t *ptep)
1061{
1062        pte_t res;
1063
1064        res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1065        if (mm_is_protected(mm) && pte_present(res))
1066                uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1067        return res;
1068}
1069
1070#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1071pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1072void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1073                             pte_t *, pte_t, pte_t);
1074
1075#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1076static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1077                                     unsigned long addr, pte_t *ptep)
1078{
1079        pte_t res;
1080
1081        res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1082        if (mm_is_protected(vma->vm_mm) && pte_present(res))
1083                uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1084        return res;
1085}
1086
1087/*
1088 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1089 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1090 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1091 * cannot be accessed while the batched unmap is running. In this case
1092 * full==1 and a simple pte_clear is enough. See tlb.h.
1093 */
1094#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1095static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1096                                            unsigned long addr,
1097                                            pte_t *ptep, int full)
1098{
1099        pte_t res;
1100
1101        if (full) {
1102                res = *ptep;
1103                *ptep = __pte(_PAGE_INVALID);
1104        } else {
1105                res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1106        }
1107        if (mm_is_protected(mm) && pte_present(res))
1108                uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1109        return res;
1110}
1111
1112#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1113static inline void ptep_set_wrprotect(struct mm_struct *mm,
1114                                      unsigned long addr, pte_t *ptep)
1115{
1116        pte_t pte = *ptep;
1117
1118        if (pte_write(pte))
1119                ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1120}
1121
1122#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1123static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1124                                        unsigned long addr, pte_t *ptep,
1125                                        pte_t entry, int dirty)
1126{
1127        if (pte_same(*ptep, entry))
1128                return 0;
1129        ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1130        return 1;
1131}
1132
1133/*
1134 * Additional functions to handle KVM guest page tables
1135 */
1136void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1137                     pte_t *ptep, pte_t entry);
1138void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1139void ptep_notify(struct mm_struct *mm, unsigned long addr,
1140                 pte_t *ptep, unsigned long bits);
1141int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1142                    pte_t *ptep, int prot, unsigned long bit);
1143void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1144                     pte_t *ptep , int reset);
1145void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1146int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1147                    pte_t *sptep, pte_t *tptep, pte_t pte);
1148void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1149
1150bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1151                            pte_t *ptep);
1152int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1153                          unsigned char key, bool nq);
1154int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1155                               unsigned char key, unsigned char *oldkey,
1156                               bool nq, bool mr, bool mc);
1157int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1158int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1159                          unsigned char *key);
1160
1161int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1162                                unsigned long bits, unsigned long value);
1163int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1164int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1165                        unsigned long *oldpte, unsigned long *oldpgste);
1166void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1167void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1168void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1169void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1170
1171#define pgprot_writecombine     pgprot_writecombine
1172pgprot_t pgprot_writecombine(pgprot_t prot);
1173
1174#define pgprot_writethrough     pgprot_writethrough
1175pgprot_t pgprot_writethrough(pgprot_t prot);
1176
1177/*
1178 * Certain architectures need to do special things when PTEs
1179 * within a page table are directly modified.  Thus, the following
1180 * hook is made available.
1181 */
1182static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1183                              pte_t *ptep, pte_t entry)
1184{
1185        if (pte_present(entry))
1186                pte_val(entry) &= ~_PAGE_UNUSED;
1187        if (mm_has_pgste(mm))
1188                ptep_set_pte_at(mm, addr, ptep, entry);
1189        else
1190                *ptep = entry;
1191}
1192
1193/*
1194 * Conversion functions: convert a page and protection to a page entry,
1195 * and a page entry and page directory to the page they refer to.
1196 */
1197static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1198{
1199        pte_t __pte;
1200
1201        pte_val(__pte) = physpage | pgprot_val(pgprot);
1202        if (!MACHINE_HAS_NX)
1203                pte_val(__pte) &= ~_PAGE_NOEXEC;
1204        return pte_mkyoung(__pte);
1205}
1206
1207static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1208{
1209        unsigned long physpage = page_to_phys(page);
1210        pte_t __pte = mk_pte_phys(physpage, pgprot);
1211
1212        if (pte_write(__pte) && PageDirty(page))
1213                __pte = pte_mkdirty(__pte);
1214        return __pte;
1215}
1216
1217#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1218#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1219#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1220#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1221
1222#define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1223#define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1224
1225static inline unsigned long pmd_deref(pmd_t pmd)
1226{
1227        unsigned long origin_mask;
1228
1229        origin_mask = _SEGMENT_ENTRY_ORIGIN;
1230        if (pmd_large(pmd))
1231                origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1232        return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1233}
1234
1235static inline unsigned long pmd_pfn(pmd_t pmd)
1236{
1237        return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1238}
1239
1240static inline unsigned long pud_deref(pud_t pud)
1241{
1242        unsigned long origin_mask;
1243
1244        origin_mask = _REGION_ENTRY_ORIGIN;
1245        if (pud_large(pud))
1246                origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1247        return (unsigned long)__va(pud_val(pud) & origin_mask);
1248}
1249
1250static inline unsigned long pud_pfn(pud_t pud)
1251{
1252        return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1253}
1254
1255/*
1256 * The pgd_offset function *always* adds the index for the top-level
1257 * region/segment table. This is done to get a sequence like the
1258 * following to work:
1259 *      pgdp = pgd_offset(current->mm, addr);
1260 *      pgd = READ_ONCE(*pgdp);
1261 *      p4dp = p4d_offset(&pgd, addr);
1262 *      ...
1263 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1264 * only add an index if they dereferenced the pointer.
1265 */
1266static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1267{
1268        unsigned long rste;
1269        unsigned int shift;
1270
1271        /* Get the first entry of the top level table */
1272        rste = pgd_val(*pgd);
1273        /* Pick up the shift from the table type of the first entry */
1274        shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1275        return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1276}
1277
1278#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1279
1280static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1281{
1282        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1283                return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1284        return (p4d_t *) pgdp;
1285}
1286#define p4d_offset_lockless p4d_offset_lockless
1287
1288static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1289{
1290        return p4d_offset_lockless(pgdp, *pgdp, address);
1291}
1292
1293static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1294{
1295        if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1296                return (pud_t *) p4d_deref(p4d) + pud_index(address);
1297        return (pud_t *) p4dp;
1298}
1299#define pud_offset_lockless pud_offset_lockless
1300
1301static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1302{
1303        return pud_offset_lockless(p4dp, *p4dp, address);
1304}
1305#define pud_offset pud_offset
1306
1307static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1308{
1309        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1310                return (pmd_t *) pud_deref(pud) + pmd_index(address);
1311        return (pmd_t *) pudp;
1312}
1313#define pmd_offset_lockless pmd_offset_lockless
1314
1315static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1316{
1317        return pmd_offset_lockless(pudp, *pudp, address);
1318}
1319#define pmd_offset pmd_offset
1320
1321static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1322{
1323        return (unsigned long) pmd_deref(pmd);
1324}
1325
1326static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1327{
1328        return end <= current->mm->context.asce_limit;
1329}
1330#define gup_fast_permitted gup_fast_permitted
1331
1332#define pfn_pte(pfn, pgprot)    mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1333#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1334#define pte_page(x) pfn_to_page(pte_pfn(x))
1335
1336#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1337#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1338#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1339#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1340
1341static inline pmd_t pmd_wrprotect(pmd_t pmd)
1342{
1343        pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1344        pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1345        return pmd;
1346}
1347
1348static inline pmd_t pmd_mkwrite(pmd_t pmd)
1349{
1350        pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1351        if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1352                pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1353        return pmd;
1354}
1355
1356static inline pmd_t pmd_mkclean(pmd_t pmd)
1357{
1358        pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1359        pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1360        return pmd;
1361}
1362
1363static inline pmd_t pmd_mkdirty(pmd_t pmd)
1364{
1365        pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY;
1366        if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1367                pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1368        return pmd;
1369}
1370
1371static inline pud_t pud_wrprotect(pud_t pud)
1372{
1373        pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1374        pud_val(pud) |= _REGION_ENTRY_PROTECT;
1375        return pud;
1376}
1377
1378static inline pud_t pud_mkwrite(pud_t pud)
1379{
1380        pud_val(pud) |= _REGION3_ENTRY_WRITE;
1381        if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1382                pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1383        return pud;
1384}
1385
1386static inline pud_t pud_mkclean(pud_t pud)
1387{
1388        pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1389        pud_val(pud) |= _REGION_ENTRY_PROTECT;
1390        return pud;
1391}
1392
1393static inline pud_t pud_mkdirty(pud_t pud)
1394{
1395        pud_val(pud) |= _REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY;
1396        if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1397                pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1398        return pud;
1399}
1400
1401#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1402static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1403{
1404        /*
1405         * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1406         * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1407         */
1408        if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1409                return pgprot_val(SEGMENT_NONE);
1410        if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1411                return pgprot_val(SEGMENT_RO);
1412        if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1413                return pgprot_val(SEGMENT_RX);
1414        if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1415                return pgprot_val(SEGMENT_RW);
1416        return pgprot_val(SEGMENT_RWX);
1417}
1418
1419static inline pmd_t pmd_mkyoung(pmd_t pmd)
1420{
1421        pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1422        if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1423                pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1424        return pmd;
1425}
1426
1427static inline pmd_t pmd_mkold(pmd_t pmd)
1428{
1429        pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1430        pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1431        return pmd;
1432}
1433
1434static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1435{
1436        pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1437                _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1438                _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1439        pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1440        if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1441                pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1442        if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1443                pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1444        return pmd;
1445}
1446
1447static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1448{
1449        pmd_t __pmd;
1450        pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1451        return __pmd;
1452}
1453
1454#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1455
1456static inline void __pmdp_csp(pmd_t *pmdp)
1457{
1458        csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1459            pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1460}
1461
1462#define IDTE_GLOBAL     0
1463#define IDTE_LOCAL      1
1464
1465#define IDTE_PTOA       0x0800
1466#define IDTE_NODAT      0x1000
1467#define IDTE_GUEST_ASCE 0x2000
1468
1469static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1470                                        unsigned long opt, unsigned long asce,
1471                                        int local)
1472{
1473        unsigned long sto;
1474
1475        sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1476        if (__builtin_constant_p(opt) && opt == 0) {
1477                /* flush without guest asce */
1478                asm volatile(
1479                        "       .insn   rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1480                        : "+m" (*pmdp)
1481                        : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1482                          [m4] "i" (local)
1483                        : "cc" );
1484        } else {
1485                /* flush with guest asce */
1486                asm volatile(
1487                        "       .insn   rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1488                        : "+m" (*pmdp)
1489                        : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1490                          [r3] "a" (asce), [m4] "i" (local)
1491                        : "cc" );
1492        }
1493}
1494
1495static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1496                                        unsigned long opt, unsigned long asce,
1497                                        int local)
1498{
1499        unsigned long r3o;
1500
1501        r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1502        r3o |= _ASCE_TYPE_REGION3;
1503        if (__builtin_constant_p(opt) && opt == 0) {
1504                /* flush without guest asce */
1505                asm volatile(
1506                        "       .insn   rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1507                        : "+m" (*pudp)
1508                        : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1509                          [m4] "i" (local)
1510                        : "cc");
1511        } else {
1512                /* flush with guest asce */
1513                asm volatile(
1514                        "       .insn   rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1515                        : "+m" (*pudp)
1516                        : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1517                          [r3] "a" (asce), [m4] "i" (local)
1518                        : "cc" );
1519        }
1520}
1521
1522pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1523pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1524pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1525
1526#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1527
1528#define __HAVE_ARCH_PGTABLE_DEPOSIT
1529void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1530                                pgtable_t pgtable);
1531
1532#define __HAVE_ARCH_PGTABLE_WITHDRAW
1533pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1534
1535#define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1536static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1537                                        unsigned long addr, pmd_t *pmdp,
1538                                        pmd_t entry, int dirty)
1539{
1540        VM_BUG_ON(addr & ~HPAGE_MASK);
1541
1542        entry = pmd_mkyoung(entry);
1543        if (dirty)
1544                entry = pmd_mkdirty(entry);
1545        if (pmd_val(*pmdp) == pmd_val(entry))
1546                return 0;
1547        pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1548        return 1;
1549}
1550
1551#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1552static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1553                                            unsigned long addr, pmd_t *pmdp)
1554{
1555        pmd_t pmd = *pmdp;
1556
1557        pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1558        return pmd_young(pmd);
1559}
1560
1561#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1562static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1563                                         unsigned long addr, pmd_t *pmdp)
1564{
1565        VM_BUG_ON(addr & ~HPAGE_MASK);
1566        return pmdp_test_and_clear_young(vma, addr, pmdp);
1567}
1568
1569static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1570                              pmd_t *pmdp, pmd_t entry)
1571{
1572        if (!MACHINE_HAS_NX)
1573                pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1574        *pmdp = entry;
1575}
1576
1577static inline pmd_t pmd_mkhuge(pmd_t pmd)
1578{
1579        pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1580        pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1581        pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1582        return pmd;
1583}
1584
1585#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1586static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1587                                            unsigned long addr, pmd_t *pmdp)
1588{
1589        return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1590}
1591
1592#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1593static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1594                                                 unsigned long addr,
1595                                                 pmd_t *pmdp, int full)
1596{
1597        if (full) {
1598                pmd_t pmd = *pmdp;
1599                *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1600                return pmd;
1601        }
1602        return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1603}
1604
1605#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1606static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1607                                          unsigned long addr, pmd_t *pmdp)
1608{
1609        return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1610}
1611
1612#define __HAVE_ARCH_PMDP_INVALIDATE
1613static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1614                                   unsigned long addr, pmd_t *pmdp)
1615{
1616        pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1617
1618        return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1619}
1620
1621#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1622static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1623                                      unsigned long addr, pmd_t *pmdp)
1624{
1625        pmd_t pmd = *pmdp;
1626
1627        if (pmd_write(pmd))
1628                pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1629}
1630
1631static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1632                                        unsigned long address,
1633                                        pmd_t *pmdp)
1634{
1635        return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1636}
1637#define pmdp_collapse_flush pmdp_collapse_flush
1638
1639#define pfn_pmd(pfn, pgprot)    mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1640#define mk_pmd(page, pgprot)    pfn_pmd(page_to_pfn(page), (pgprot))
1641
1642static inline int pmd_trans_huge(pmd_t pmd)
1643{
1644        return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1645}
1646
1647#define has_transparent_hugepage has_transparent_hugepage
1648static inline int has_transparent_hugepage(void)
1649{
1650        return MACHINE_HAS_EDAT1 ? 1 : 0;
1651}
1652#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1653
1654/*
1655 * 64 bit swap entry format:
1656 * A page-table entry has some bits we have to treat in a special way.
1657 * Bits 52 and bit 55 have to be zero, otherwise a specification
1658 * exception will occur instead of a page translation exception. The
1659 * specification exception has the bad habit not to store necessary
1660 * information in the lowcore.
1661 * Bits 54 and 63 are used to indicate the page type.
1662 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1663 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1664 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1665 * for the offset.
1666 * |                      offset                        |01100|type |00|
1667 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1668 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1669 */
1670
1671#define __SWP_OFFSET_MASK       ((1UL << 52) - 1)
1672#define __SWP_OFFSET_SHIFT      12
1673#define __SWP_TYPE_MASK         ((1UL << 5) - 1)
1674#define __SWP_TYPE_SHIFT        2
1675
1676static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1677{
1678        pte_t pte;
1679
1680        pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1681        pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1682        pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1683        return pte;
1684}
1685
1686static inline unsigned long __swp_type(swp_entry_t entry)
1687{
1688        return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1689}
1690
1691static inline unsigned long __swp_offset(swp_entry_t entry)
1692{
1693        return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1694}
1695
1696static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1697{
1698        return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1699}
1700
1701#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1702#define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
1703
1704#define kern_addr_valid(addr)   (1)
1705
1706extern int vmem_add_mapping(unsigned long start, unsigned long size);
1707extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1708extern int s390_enable_sie(void);
1709extern int s390_enable_skey(void);
1710extern void s390_reset_cmma(struct mm_struct *mm);
1711
1712/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1713#define HAVE_ARCH_UNMAPPED_AREA
1714#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1715
1716#endif /* _S390_PAGE_H */
1717