linux/arch/x86/include/uapi/asm/bootparam.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
   2#ifndef _ASM_X86_BOOTPARAM_H
   3#define _ASM_X86_BOOTPARAM_H
   4
   5/* setup_data/setup_indirect types */
   6#define SETUP_NONE                      0
   7#define SETUP_E820_EXT                  1
   8#define SETUP_DTB                       2
   9#define SETUP_PCI                       3
  10#define SETUP_EFI                       4
  11#define SETUP_APPLE_PROPERTIES          5
  12#define SETUP_JAILHOUSE                 6
  13
  14#define SETUP_INDIRECT                  (1<<31)
  15
  16/* SETUP_INDIRECT | max(SETUP_*) */
  17#define SETUP_TYPE_MAX                  (SETUP_INDIRECT | SETUP_JAILHOUSE)
  18
  19/* ram_size flags */
  20#define RAMDISK_IMAGE_START_MASK        0x07FF
  21#define RAMDISK_PROMPT_FLAG             0x8000
  22#define RAMDISK_LOAD_FLAG               0x4000
  23
  24/* loadflags */
  25#define LOADED_HIGH     (1<<0)
  26#define KASLR_FLAG      (1<<1)
  27#define QUIET_FLAG      (1<<5)
  28#define KEEP_SEGMENTS   (1<<6)
  29#define CAN_USE_HEAP    (1<<7)
  30
  31/* xloadflags */
  32#define XLF_KERNEL_64                   (1<<0)
  33#define XLF_CAN_BE_LOADED_ABOVE_4G      (1<<1)
  34#define XLF_EFI_HANDOVER_32             (1<<2)
  35#define XLF_EFI_HANDOVER_64             (1<<3)
  36#define XLF_EFI_KEXEC                   (1<<4)
  37#define XLF_5LEVEL                      (1<<5)
  38#define XLF_5LEVEL_ENABLED              (1<<6)
  39
  40#ifndef __ASSEMBLY__
  41
  42#include <linux/types.h>
  43#include <linux/screen_info.h>
  44#include <linux/apm_bios.h>
  45#include <linux/edd.h>
  46#include <asm/ist.h>
  47#include <video/edid.h>
  48
  49/* extensible setup data list node */
  50struct setup_data {
  51        __u64 next;
  52        __u32 type;
  53        __u32 len;
  54        __u8 data[0];
  55};
  56
  57/* extensible setup indirect data node */
  58struct setup_indirect {
  59        __u32 type;
  60        __u32 reserved;  /* Reserved, must be set to zero. */
  61        __u64 len;
  62        __u64 addr;
  63};
  64
  65struct setup_header {
  66        __u8    setup_sects;
  67        __u16   root_flags;
  68        __u32   syssize;
  69        __u16   ram_size;
  70        __u16   vid_mode;
  71        __u16   root_dev;
  72        __u16   boot_flag;
  73        __u16   jump;
  74        __u32   header;
  75        __u16   version;
  76        __u32   realmode_swtch;
  77        __u16   start_sys_seg;
  78        __u16   kernel_version;
  79        __u8    type_of_loader;
  80        __u8    loadflags;
  81        __u16   setup_move_size;
  82        __u32   code32_start;
  83        __u32   ramdisk_image;
  84        __u32   ramdisk_size;
  85        __u32   bootsect_kludge;
  86        __u16   heap_end_ptr;
  87        __u8    ext_loader_ver;
  88        __u8    ext_loader_type;
  89        __u32   cmd_line_ptr;
  90        __u32   initrd_addr_max;
  91        __u32   kernel_alignment;
  92        __u8    relocatable_kernel;
  93        __u8    min_alignment;
  94        __u16   xloadflags;
  95        __u32   cmdline_size;
  96        __u32   hardware_subarch;
  97        __u64   hardware_subarch_data;
  98        __u32   payload_offset;
  99        __u32   payload_length;
 100        __u64   setup_data;
 101        __u64   pref_address;
 102        __u32   init_size;
 103        __u32   handover_offset;
 104        __u32   kernel_info_offset;
 105} __attribute__((packed));
 106
 107struct sys_desc_table {
 108        __u16 length;
 109        __u8  table[14];
 110};
 111
 112/* Gleaned from OFW's set-parameters in cpu/x86/pc/linux.fth */
 113struct olpc_ofw_header {
 114        __u32 ofw_magic;        /* OFW signature */
 115        __u32 ofw_version;
 116        __u32 cif_handler;      /* callback into OFW */
 117        __u32 irq_desc_table;
 118} __attribute__((packed));
 119
 120struct efi_info {
 121        __u32 efi_loader_signature;
 122        __u32 efi_systab;
 123        __u32 efi_memdesc_size;
 124        __u32 efi_memdesc_version;
 125        __u32 efi_memmap;
 126        __u32 efi_memmap_size;
 127        __u32 efi_systab_hi;
 128        __u32 efi_memmap_hi;
 129};
 130
 131/*
 132 * This is the maximum number of entries in struct boot_params::e820_table
 133 * (the zeropage), which is part of the x86 boot protocol ABI:
 134 */
 135#define E820_MAX_ENTRIES_ZEROPAGE 128
 136
 137/*
 138 * The E820 memory region entry of the boot protocol ABI:
 139 */
 140struct boot_e820_entry {
 141        __u64 addr;
 142        __u64 size;
 143        __u32 type;
 144} __attribute__((packed));
 145
 146/*
 147 * Smallest compatible version of jailhouse_setup_data required by this kernel.
 148 */
 149#define JAILHOUSE_SETUP_REQUIRED_VERSION        1
 150
 151/*
 152 * The boot loader is passing platform information via this Jailhouse-specific
 153 * setup data structure.
 154 */
 155struct jailhouse_setup_data {
 156        struct {
 157                __u16   version;
 158                __u16   compatible_version;
 159        } __attribute__((packed)) hdr;
 160        struct {
 161                __u16   pm_timer_address;
 162                __u16   num_cpus;
 163                __u64   pci_mmconfig_base;
 164                __u32   tsc_khz;
 165                __u32   apic_khz;
 166                __u8    standard_ioapic;
 167                __u8    cpu_ids[255];
 168        } __attribute__((packed)) v1;
 169        struct {
 170                __u32   flags;
 171        } __attribute__((packed)) v2;
 172} __attribute__((packed));
 173
 174/* The so-called "zeropage" */
 175struct boot_params {
 176        struct screen_info screen_info;                 /* 0x000 */
 177        struct apm_bios_info apm_bios_info;             /* 0x040 */
 178        __u8  _pad2[4];                                 /* 0x054 */
 179        __u64  tboot_addr;                              /* 0x058 */
 180        struct ist_info ist_info;                       /* 0x060 */
 181        __u64 acpi_rsdp_addr;                           /* 0x070 */
 182        __u8  _pad3[8];                                 /* 0x078 */
 183        __u8  hd0_info[16];     /* obsolete! */         /* 0x080 */
 184        __u8  hd1_info[16];     /* obsolete! */         /* 0x090 */
 185        struct sys_desc_table sys_desc_table; /* obsolete! */   /* 0x0a0 */
 186        struct olpc_ofw_header olpc_ofw_header;         /* 0x0b0 */
 187        __u32 ext_ramdisk_image;                        /* 0x0c0 */
 188        __u32 ext_ramdisk_size;                         /* 0x0c4 */
 189        __u32 ext_cmd_line_ptr;                         /* 0x0c8 */
 190        __u8  _pad4[116];                               /* 0x0cc */
 191        struct edid_info edid_info;                     /* 0x140 */
 192        struct efi_info efi_info;                       /* 0x1c0 */
 193        __u32 alt_mem_k;                                /* 0x1e0 */
 194        __u32 scratch;          /* Scratch field! */    /* 0x1e4 */
 195        __u8  e820_entries;                             /* 0x1e8 */
 196        __u8  eddbuf_entries;                           /* 0x1e9 */
 197        __u8  edd_mbr_sig_buf_entries;                  /* 0x1ea */
 198        __u8  kbd_status;                               /* 0x1eb */
 199        __u8  secure_boot;                              /* 0x1ec */
 200        __u8  _pad5[2];                                 /* 0x1ed */
 201        /*
 202         * The sentinel is set to a nonzero value (0xff) in header.S.
 203         *
 204         * A bootloader is supposed to only take setup_header and put
 205         * it into a clean boot_params buffer. If it turns out that
 206         * it is clumsy or too generous with the buffer, it most
 207         * probably will pick up the sentinel variable too. The fact
 208         * that this variable then is still 0xff will let kernel
 209         * know that some variables in boot_params are invalid and
 210         * kernel should zero out certain portions of boot_params.
 211         */
 212        __u8  sentinel;                                 /* 0x1ef */
 213        __u8  _pad6[1];                                 /* 0x1f0 */
 214        struct setup_header hdr;    /* setup header */  /* 0x1f1 */
 215        __u8  _pad7[0x290-0x1f1-sizeof(struct setup_header)];
 216        __u32 edd_mbr_sig_buffer[EDD_MBR_SIG_MAX];      /* 0x290 */
 217        struct boot_e820_entry e820_table[E820_MAX_ENTRIES_ZEROPAGE]; /* 0x2d0 */
 218        __u8  _pad8[48];                                /* 0xcd0 */
 219        struct edd_info eddbuf[EDDMAXNR];               /* 0xd00 */
 220        __u8  _pad9[276];                               /* 0xeec */
 221} __attribute__((packed));
 222
 223/**
 224 * enum x86_hardware_subarch - x86 hardware subarchitecture
 225 *
 226 * The x86 hardware_subarch and hardware_subarch_data were added as of the x86
 227 * boot protocol 2.07 to help distinguish and support custom x86 boot
 228 * sequences. This enum represents accepted values for the x86
 229 * hardware_subarch.  Custom x86 boot sequences (not X86_SUBARCH_PC) do not
 230 * have or simply *cannot* make use of natural stubs like BIOS or EFI, the
 231 * hardware_subarch can be used on the Linux entry path to revector to a
 232 * subarchitecture stub when needed. This subarchitecture stub can be used to
 233 * set up Linux boot parameters or for special care to account for nonstandard
 234 * handling of page tables.
 235 *
 236 * These enums should only ever be used by x86 code, and the code that uses
 237 * it should be well contained and compartmentalized.
 238 *
 239 * KVM and Xen HVM do not have a subarch as these are expected to follow
 240 * standard x86 boot entries. If there is a genuine need for "hypervisor" type
 241 * that should be considered separately in the future. Future guest types
 242 * should seriously consider working with standard x86 boot stubs such as
 243 * the BIOS or EFI boot stubs.
 244 *
 245 * WARNING: this enum is only used for legacy hacks, for platform features that
 246 *          are not easily enumerated or discoverable. You should not ever use
 247 *          this for new features.
 248 *
 249 * @X86_SUBARCH_PC: Should be used if the hardware is enumerable using standard
 250 *      PC mechanisms (PCI, ACPI) and doesn't need a special boot flow.
 251 * @X86_SUBARCH_LGUEST: Used for x86 hypervisor demo, lguest, deprecated
 252 * @X86_SUBARCH_XEN: Used for Xen guest types which follow the PV boot path,
 253 *      which start at asm startup_xen() entry point and later jump to the C
 254 *      xen_start_kernel() entry point. Both domU and dom0 type of guests are
 255 *      currently supported through this PV boot path.
 256 * @X86_SUBARCH_INTEL_MID: Used for Intel MID (Mobile Internet Device) platform
 257 *      systems which do not have the PCI legacy interfaces.
 258 * @X86_SUBARCH_CE4100: Used for Intel CE media processor (CE4100) SoC
 259 *      for settop boxes and media devices, the use of a subarch for CE4100
 260 *      is more of a hack...
 261 */
 262enum x86_hardware_subarch {
 263        X86_SUBARCH_PC = 0,
 264        X86_SUBARCH_LGUEST,
 265        X86_SUBARCH_XEN,
 266        X86_SUBARCH_INTEL_MID,
 267        X86_SUBARCH_CE4100,
 268        X86_NR_SUBARCHS,
 269};
 270
 271#endif /* __ASSEMBLY__ */
 272
 273#endif /* _ASM_X86_BOOTPARAM_H */
 274