linux/arch/x86/kernel/cpu/sgx/main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*  Copyright(c) 2016-20 Intel Corporation. */
   3
   4#include <linux/file.h>
   5#include <linux/freezer.h>
   6#include <linux/highmem.h>
   7#include <linux/kthread.h>
   8#include <linux/miscdevice.h>
   9#include <linux/pagemap.h>
  10#include <linux/ratelimit.h>
  11#include <linux/sched/mm.h>
  12#include <linux/sched/signal.h>
  13#include <linux/slab.h>
  14#include <asm/sgx.h>
  15#include "driver.h"
  16#include "encl.h"
  17#include "encls.h"
  18
  19struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS];
  20static int sgx_nr_epc_sections;
  21static struct task_struct *ksgxd_tsk;
  22static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq);
  23
  24/*
  25 * These variables are part of the state of the reclaimer, and must be accessed
  26 * with sgx_reclaimer_lock acquired.
  27 */
  28static LIST_HEAD(sgx_active_page_list);
  29static DEFINE_SPINLOCK(sgx_reclaimer_lock);
  30
  31/* The free page list lock protected variables prepend the lock. */
  32static unsigned long sgx_nr_free_pages;
  33
  34/* Nodes with one or more EPC sections. */
  35static nodemask_t sgx_numa_mask;
  36
  37/*
  38 * Array with one list_head for each possible NUMA node.  Each
  39 * list contains all the sgx_epc_section's which are on that
  40 * node.
  41 */
  42static struct sgx_numa_node *sgx_numa_nodes;
  43
  44static LIST_HEAD(sgx_dirty_page_list);
  45
  46/*
  47 * Reset post-kexec EPC pages to the uninitialized state. The pages are removed
  48 * from the input list, and made available for the page allocator. SECS pages
  49 * prepending their children in the input list are left intact.
  50 */
  51static void __sgx_sanitize_pages(struct list_head *dirty_page_list)
  52{
  53        struct sgx_epc_page *page;
  54        LIST_HEAD(dirty);
  55        int ret;
  56
  57        /* dirty_page_list is thread-local, no need for a lock: */
  58        while (!list_empty(dirty_page_list)) {
  59                if (kthread_should_stop())
  60                        return;
  61
  62                page = list_first_entry(dirty_page_list, struct sgx_epc_page, list);
  63
  64                ret = __eremove(sgx_get_epc_virt_addr(page));
  65                if (!ret) {
  66                        /*
  67                         * page is now sanitized.  Make it available via the SGX
  68                         * page allocator:
  69                         */
  70                        list_del(&page->list);
  71                        sgx_free_epc_page(page);
  72                } else {
  73                        /* The page is not yet clean - move to the dirty list. */
  74                        list_move_tail(&page->list, &dirty);
  75                }
  76
  77                cond_resched();
  78        }
  79
  80        list_splice(&dirty, dirty_page_list);
  81}
  82
  83static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page)
  84{
  85        struct sgx_encl_page *page = epc_page->owner;
  86        struct sgx_encl *encl = page->encl;
  87        struct sgx_encl_mm *encl_mm;
  88        bool ret = true;
  89        int idx;
  90
  91        idx = srcu_read_lock(&encl->srcu);
  92
  93        list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
  94                if (!mmget_not_zero(encl_mm->mm))
  95                        continue;
  96
  97                mmap_read_lock(encl_mm->mm);
  98                ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page);
  99                mmap_read_unlock(encl_mm->mm);
 100
 101                mmput_async(encl_mm->mm);
 102
 103                if (!ret)
 104                        break;
 105        }
 106
 107        srcu_read_unlock(&encl->srcu, idx);
 108
 109        if (!ret)
 110                return false;
 111
 112        return true;
 113}
 114
 115static void sgx_reclaimer_block(struct sgx_epc_page *epc_page)
 116{
 117        struct sgx_encl_page *page = epc_page->owner;
 118        unsigned long addr = page->desc & PAGE_MASK;
 119        struct sgx_encl *encl = page->encl;
 120        unsigned long mm_list_version;
 121        struct sgx_encl_mm *encl_mm;
 122        struct vm_area_struct *vma;
 123        int idx, ret;
 124
 125        do {
 126                mm_list_version = encl->mm_list_version;
 127
 128                /* Pairs with smp_rmb() in sgx_encl_mm_add(). */
 129                smp_rmb();
 130
 131                idx = srcu_read_lock(&encl->srcu);
 132
 133                list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
 134                        if (!mmget_not_zero(encl_mm->mm))
 135                                continue;
 136
 137                        mmap_read_lock(encl_mm->mm);
 138
 139                        ret = sgx_encl_find(encl_mm->mm, addr, &vma);
 140                        if (!ret && encl == vma->vm_private_data)
 141                                zap_vma_ptes(vma, addr, PAGE_SIZE);
 142
 143                        mmap_read_unlock(encl_mm->mm);
 144
 145                        mmput_async(encl_mm->mm);
 146                }
 147
 148                srcu_read_unlock(&encl->srcu, idx);
 149        } while (unlikely(encl->mm_list_version != mm_list_version));
 150
 151        mutex_lock(&encl->lock);
 152
 153        ret = __eblock(sgx_get_epc_virt_addr(epc_page));
 154        if (encls_failed(ret))
 155                ENCLS_WARN(ret, "EBLOCK");
 156
 157        mutex_unlock(&encl->lock);
 158}
 159
 160static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot,
 161                          struct sgx_backing *backing)
 162{
 163        struct sgx_pageinfo pginfo;
 164        int ret;
 165
 166        pginfo.addr = 0;
 167        pginfo.secs = 0;
 168
 169        pginfo.contents = (unsigned long)kmap_atomic(backing->contents);
 170        pginfo.metadata = (unsigned long)kmap_atomic(backing->pcmd) +
 171                          backing->pcmd_offset;
 172
 173        ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot);
 174
 175        kunmap_atomic((void *)(unsigned long)(pginfo.metadata -
 176                                              backing->pcmd_offset));
 177        kunmap_atomic((void *)(unsigned long)pginfo.contents);
 178
 179        return ret;
 180}
 181
 182static void sgx_ipi_cb(void *info)
 183{
 184}
 185
 186static const cpumask_t *sgx_encl_ewb_cpumask(struct sgx_encl *encl)
 187{
 188        cpumask_t *cpumask = &encl->cpumask;
 189        struct sgx_encl_mm *encl_mm;
 190        int idx;
 191
 192        /*
 193         * Can race with sgx_encl_mm_add(), but ETRACK has already been
 194         * executed, which means that the CPUs running in the new mm will enter
 195         * into the enclave with a fresh epoch.
 196         */
 197        cpumask_clear(cpumask);
 198
 199        idx = srcu_read_lock(&encl->srcu);
 200
 201        list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
 202                if (!mmget_not_zero(encl_mm->mm))
 203                        continue;
 204
 205                cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm));
 206
 207                mmput_async(encl_mm->mm);
 208        }
 209
 210        srcu_read_unlock(&encl->srcu, idx);
 211
 212        return cpumask;
 213}
 214
 215/*
 216 * Swap page to the regular memory transformed to the blocked state by using
 217 * EBLOCK, which means that it can no longer be referenced (no new TLB entries).
 218 *
 219 * The first trial just tries to write the page assuming that some other thread
 220 * has reset the count for threads inside the enclave by using ETRACK, and
 221 * previous thread count has been zeroed out. The second trial calls ETRACK
 222 * before EWB. If that fails we kick all the HW threads out, and then do EWB,
 223 * which should be guaranteed the succeed.
 224 */
 225static void sgx_encl_ewb(struct sgx_epc_page *epc_page,
 226                         struct sgx_backing *backing)
 227{
 228        struct sgx_encl_page *encl_page = epc_page->owner;
 229        struct sgx_encl *encl = encl_page->encl;
 230        struct sgx_va_page *va_page;
 231        unsigned int va_offset;
 232        void *va_slot;
 233        int ret;
 234
 235        encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED;
 236
 237        va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
 238                                   list);
 239        va_offset = sgx_alloc_va_slot(va_page);
 240        va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset;
 241        if (sgx_va_page_full(va_page))
 242                list_move_tail(&va_page->list, &encl->va_pages);
 243
 244        ret = __sgx_encl_ewb(epc_page, va_slot, backing);
 245        if (ret == SGX_NOT_TRACKED) {
 246                ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page));
 247                if (ret) {
 248                        if (encls_failed(ret))
 249                                ENCLS_WARN(ret, "ETRACK");
 250                }
 251
 252                ret = __sgx_encl_ewb(epc_page, va_slot, backing);
 253                if (ret == SGX_NOT_TRACKED) {
 254                        /*
 255                         * Slow path, send IPIs to kick cpus out of the
 256                         * enclave.  Note, it's imperative that the cpu
 257                         * mask is generated *after* ETRACK, else we'll
 258                         * miss cpus that entered the enclave between
 259                         * generating the mask and incrementing epoch.
 260                         */
 261                        on_each_cpu_mask(sgx_encl_ewb_cpumask(encl),
 262                                         sgx_ipi_cb, NULL, 1);
 263                        ret = __sgx_encl_ewb(epc_page, va_slot, backing);
 264                }
 265        }
 266
 267        if (ret) {
 268                if (encls_failed(ret))
 269                        ENCLS_WARN(ret, "EWB");
 270
 271                sgx_free_va_slot(va_page, va_offset);
 272        } else {
 273                encl_page->desc |= va_offset;
 274                encl_page->va_page = va_page;
 275        }
 276}
 277
 278static void sgx_reclaimer_write(struct sgx_epc_page *epc_page,
 279                                struct sgx_backing *backing)
 280{
 281        struct sgx_encl_page *encl_page = epc_page->owner;
 282        struct sgx_encl *encl = encl_page->encl;
 283        struct sgx_backing secs_backing;
 284        int ret;
 285
 286        mutex_lock(&encl->lock);
 287
 288        sgx_encl_ewb(epc_page, backing);
 289        encl_page->epc_page = NULL;
 290        encl->secs_child_cnt--;
 291
 292        if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) {
 293                ret = sgx_encl_get_backing(encl, PFN_DOWN(encl->size),
 294                                           &secs_backing);
 295                if (ret)
 296                        goto out;
 297
 298                sgx_encl_ewb(encl->secs.epc_page, &secs_backing);
 299
 300                sgx_encl_free_epc_page(encl->secs.epc_page);
 301                encl->secs.epc_page = NULL;
 302
 303                sgx_encl_put_backing(&secs_backing, true);
 304        }
 305
 306out:
 307        mutex_unlock(&encl->lock);
 308}
 309
 310/*
 311 * Take a fixed number of pages from the head of the active page pool and
 312 * reclaim them to the enclave's private shmem files. Skip the pages, which have
 313 * been accessed since the last scan. Move those pages to the tail of active
 314 * page pool so that the pages get scanned in LRU like fashion.
 315 *
 316 * Batch process a chunk of pages (at the moment 16) in order to degrade amount
 317 * of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit
 318 * among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI
 319 * + EWB) but not sufficiently. Reclaiming one page at a time would also be
 320 * problematic as it would increase the lock contention too much, which would
 321 * halt forward progress.
 322 */
 323static void sgx_reclaim_pages(void)
 324{
 325        struct sgx_epc_page *chunk[SGX_NR_TO_SCAN];
 326        struct sgx_backing backing[SGX_NR_TO_SCAN];
 327        struct sgx_epc_section *section;
 328        struct sgx_encl_page *encl_page;
 329        struct sgx_epc_page *epc_page;
 330        struct sgx_numa_node *node;
 331        pgoff_t page_index;
 332        int cnt = 0;
 333        int ret;
 334        int i;
 335
 336        spin_lock(&sgx_reclaimer_lock);
 337        for (i = 0; i < SGX_NR_TO_SCAN; i++) {
 338                if (list_empty(&sgx_active_page_list))
 339                        break;
 340
 341                epc_page = list_first_entry(&sgx_active_page_list,
 342                                            struct sgx_epc_page, list);
 343                list_del_init(&epc_page->list);
 344                encl_page = epc_page->owner;
 345
 346                if (kref_get_unless_zero(&encl_page->encl->refcount) != 0)
 347                        chunk[cnt++] = epc_page;
 348                else
 349                        /* The owner is freeing the page. No need to add the
 350                         * page back to the list of reclaimable pages.
 351                         */
 352                        epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
 353        }
 354        spin_unlock(&sgx_reclaimer_lock);
 355
 356        for (i = 0; i < cnt; i++) {
 357                epc_page = chunk[i];
 358                encl_page = epc_page->owner;
 359
 360                if (!sgx_reclaimer_age(epc_page))
 361                        goto skip;
 362
 363                page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
 364                ret = sgx_encl_get_backing(encl_page->encl, page_index, &backing[i]);
 365                if (ret)
 366                        goto skip;
 367
 368                mutex_lock(&encl_page->encl->lock);
 369                encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED;
 370                mutex_unlock(&encl_page->encl->lock);
 371                continue;
 372
 373skip:
 374                spin_lock(&sgx_reclaimer_lock);
 375                list_add_tail(&epc_page->list, &sgx_active_page_list);
 376                spin_unlock(&sgx_reclaimer_lock);
 377
 378                kref_put(&encl_page->encl->refcount, sgx_encl_release);
 379
 380                chunk[i] = NULL;
 381        }
 382
 383        for (i = 0; i < cnt; i++) {
 384                epc_page = chunk[i];
 385                if (epc_page)
 386                        sgx_reclaimer_block(epc_page);
 387        }
 388
 389        for (i = 0; i < cnt; i++) {
 390                epc_page = chunk[i];
 391                if (!epc_page)
 392                        continue;
 393
 394                encl_page = epc_page->owner;
 395                sgx_reclaimer_write(epc_page, &backing[i]);
 396                sgx_encl_put_backing(&backing[i], true);
 397
 398                kref_put(&encl_page->encl->refcount, sgx_encl_release);
 399                epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
 400
 401                section = &sgx_epc_sections[epc_page->section];
 402                node = section->node;
 403
 404                spin_lock(&node->lock);
 405                list_add_tail(&epc_page->list, &node->free_page_list);
 406                sgx_nr_free_pages++;
 407                spin_unlock(&node->lock);
 408        }
 409}
 410
 411static bool sgx_should_reclaim(unsigned long watermark)
 412{
 413        return sgx_nr_free_pages < watermark && !list_empty(&sgx_active_page_list);
 414}
 415
 416static int ksgxd(void *p)
 417{
 418        set_freezable();
 419
 420        /*
 421         * Sanitize pages in order to recover from kexec(). The 2nd pass is
 422         * required for SECS pages, whose child pages blocked EREMOVE.
 423         */
 424        __sgx_sanitize_pages(&sgx_dirty_page_list);
 425        __sgx_sanitize_pages(&sgx_dirty_page_list);
 426
 427        /* sanity check: */
 428        WARN_ON(!list_empty(&sgx_dirty_page_list));
 429
 430        while (!kthread_should_stop()) {
 431                if (try_to_freeze())
 432                        continue;
 433
 434                wait_event_freezable(ksgxd_waitq,
 435                                     kthread_should_stop() ||
 436                                     sgx_should_reclaim(SGX_NR_HIGH_PAGES));
 437
 438                if (sgx_should_reclaim(SGX_NR_HIGH_PAGES))
 439                        sgx_reclaim_pages();
 440
 441                cond_resched();
 442        }
 443
 444        return 0;
 445}
 446
 447static bool __init sgx_page_reclaimer_init(void)
 448{
 449        struct task_struct *tsk;
 450
 451        tsk = kthread_run(ksgxd, NULL, "ksgxd");
 452        if (IS_ERR(tsk))
 453                return false;
 454
 455        ksgxd_tsk = tsk;
 456
 457        return true;
 458}
 459
 460static struct sgx_epc_page *__sgx_alloc_epc_page_from_node(int nid)
 461{
 462        struct sgx_numa_node *node = &sgx_numa_nodes[nid];
 463        struct sgx_epc_page *page = NULL;
 464
 465        spin_lock(&node->lock);
 466
 467        if (list_empty(&node->free_page_list)) {
 468                spin_unlock(&node->lock);
 469                return NULL;
 470        }
 471
 472        page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list);
 473        list_del_init(&page->list);
 474        sgx_nr_free_pages--;
 475
 476        spin_unlock(&node->lock);
 477
 478        return page;
 479}
 480
 481/**
 482 * __sgx_alloc_epc_page() - Allocate an EPC page
 483 *
 484 * Iterate through NUMA nodes and reserve ia free EPC page to the caller. Start
 485 * from the NUMA node, where the caller is executing.
 486 *
 487 * Return:
 488 * - an EPC page:       A borrowed EPC pages were available.
 489 * - NULL:              Out of EPC pages.
 490 */
 491struct sgx_epc_page *__sgx_alloc_epc_page(void)
 492{
 493        struct sgx_epc_page *page;
 494        int nid_of_current = numa_node_id();
 495        int nid = nid_of_current;
 496
 497        if (node_isset(nid_of_current, sgx_numa_mask)) {
 498                page = __sgx_alloc_epc_page_from_node(nid_of_current);
 499                if (page)
 500                        return page;
 501        }
 502
 503        /* Fall back to the non-local NUMA nodes: */
 504        while (true) {
 505                nid = next_node_in(nid, sgx_numa_mask);
 506                if (nid == nid_of_current)
 507                        break;
 508
 509                page = __sgx_alloc_epc_page_from_node(nid);
 510                if (page)
 511                        return page;
 512        }
 513
 514        return ERR_PTR(-ENOMEM);
 515}
 516
 517/**
 518 * sgx_mark_page_reclaimable() - Mark a page as reclaimable
 519 * @page:       EPC page
 520 *
 521 * Mark a page as reclaimable and add it to the active page list. Pages
 522 * are automatically removed from the active list when freed.
 523 */
 524void sgx_mark_page_reclaimable(struct sgx_epc_page *page)
 525{
 526        spin_lock(&sgx_reclaimer_lock);
 527        page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED;
 528        list_add_tail(&page->list, &sgx_active_page_list);
 529        spin_unlock(&sgx_reclaimer_lock);
 530}
 531
 532/**
 533 * sgx_unmark_page_reclaimable() - Remove a page from the reclaim list
 534 * @page:       EPC page
 535 *
 536 * Clear the reclaimable flag and remove the page from the active page list.
 537 *
 538 * Return:
 539 *   0 on success,
 540 *   -EBUSY if the page is in the process of being reclaimed
 541 */
 542int sgx_unmark_page_reclaimable(struct sgx_epc_page *page)
 543{
 544        spin_lock(&sgx_reclaimer_lock);
 545        if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) {
 546                /* The page is being reclaimed. */
 547                if (list_empty(&page->list)) {
 548                        spin_unlock(&sgx_reclaimer_lock);
 549                        return -EBUSY;
 550                }
 551
 552                list_del(&page->list);
 553                page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
 554        }
 555        spin_unlock(&sgx_reclaimer_lock);
 556
 557        return 0;
 558}
 559
 560/**
 561 * sgx_alloc_epc_page() - Allocate an EPC page
 562 * @owner:      the owner of the EPC page
 563 * @reclaim:    reclaim pages if necessary
 564 *
 565 * Iterate through EPC sections and borrow a free EPC page to the caller. When a
 566 * page is no longer needed it must be released with sgx_free_epc_page(). If
 567 * @reclaim is set to true, directly reclaim pages when we are out of pages. No
 568 * mm's can be locked when @reclaim is set to true.
 569 *
 570 * Finally, wake up ksgxd when the number of pages goes below the watermark
 571 * before returning back to the caller.
 572 *
 573 * Return:
 574 *   an EPC page,
 575 *   -errno on error
 576 */
 577struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim)
 578{
 579        struct sgx_epc_page *page;
 580
 581        for ( ; ; ) {
 582                page = __sgx_alloc_epc_page();
 583                if (!IS_ERR(page)) {
 584                        page->owner = owner;
 585                        break;
 586                }
 587
 588                if (list_empty(&sgx_active_page_list))
 589                        return ERR_PTR(-ENOMEM);
 590
 591                if (!reclaim) {
 592                        page = ERR_PTR(-EBUSY);
 593                        break;
 594                }
 595
 596                if (signal_pending(current)) {
 597                        page = ERR_PTR(-ERESTARTSYS);
 598                        break;
 599                }
 600
 601                sgx_reclaim_pages();
 602                cond_resched();
 603        }
 604
 605        if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
 606                wake_up(&ksgxd_waitq);
 607
 608        return page;
 609}
 610
 611/**
 612 * sgx_free_epc_page() - Free an EPC page
 613 * @page:       an EPC page
 614 *
 615 * Put the EPC page back to the list of free pages. It's the caller's
 616 * responsibility to make sure that the page is in uninitialized state. In other
 617 * words, do EREMOVE, EWB or whatever operation is necessary before calling
 618 * this function.
 619 */
 620void sgx_free_epc_page(struct sgx_epc_page *page)
 621{
 622        struct sgx_epc_section *section = &sgx_epc_sections[page->section];
 623        struct sgx_numa_node *node = section->node;
 624
 625        spin_lock(&node->lock);
 626
 627        list_add_tail(&page->list, &node->free_page_list);
 628        sgx_nr_free_pages++;
 629
 630        spin_unlock(&node->lock);
 631}
 632
 633static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size,
 634                                         unsigned long index,
 635                                         struct sgx_epc_section *section)
 636{
 637        unsigned long nr_pages = size >> PAGE_SHIFT;
 638        unsigned long i;
 639
 640        section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB);
 641        if (!section->virt_addr)
 642                return false;
 643
 644        section->pages = vmalloc(nr_pages * sizeof(struct sgx_epc_page));
 645        if (!section->pages) {
 646                memunmap(section->virt_addr);
 647                return false;
 648        }
 649
 650        section->phys_addr = phys_addr;
 651
 652        for (i = 0; i < nr_pages; i++) {
 653                section->pages[i].section = index;
 654                section->pages[i].flags = 0;
 655                section->pages[i].owner = NULL;
 656                list_add_tail(&section->pages[i].list, &sgx_dirty_page_list);
 657        }
 658
 659        return true;
 660}
 661
 662/**
 663 * A section metric is concatenated in a way that @low bits 12-31 define the
 664 * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the
 665 * metric.
 666 */
 667static inline u64 __init sgx_calc_section_metric(u64 low, u64 high)
 668{
 669        return (low & GENMASK_ULL(31, 12)) +
 670               ((high & GENMASK_ULL(19, 0)) << 32);
 671}
 672
 673static bool __init sgx_page_cache_init(void)
 674{
 675        u32 eax, ebx, ecx, edx, type;
 676        u64 pa, size;
 677        int nid;
 678        int i;
 679
 680        sgx_numa_nodes = kmalloc_array(num_possible_nodes(), sizeof(*sgx_numa_nodes), GFP_KERNEL);
 681        if (!sgx_numa_nodes)
 682                return false;
 683
 684        for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) {
 685                cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx);
 686
 687                type = eax & SGX_CPUID_EPC_MASK;
 688                if (type == SGX_CPUID_EPC_INVALID)
 689                        break;
 690
 691                if (type != SGX_CPUID_EPC_SECTION) {
 692                        pr_err_once("Unknown EPC section type: %u\n", type);
 693                        break;
 694                }
 695
 696                pa   = sgx_calc_section_metric(eax, ebx);
 697                size = sgx_calc_section_metric(ecx, edx);
 698
 699                pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1);
 700
 701                if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) {
 702                        pr_err("No free memory for an EPC section\n");
 703                        break;
 704                }
 705
 706                nid = numa_map_to_online_node(phys_to_target_node(pa));
 707                if (nid == NUMA_NO_NODE) {
 708                        /* The physical address is already printed above. */
 709                        pr_warn(FW_BUG "Unable to map EPC section to online node. Fallback to the NUMA node 0.\n");
 710                        nid = 0;
 711                }
 712
 713                if (!node_isset(nid, sgx_numa_mask)) {
 714                        spin_lock_init(&sgx_numa_nodes[nid].lock);
 715                        INIT_LIST_HEAD(&sgx_numa_nodes[nid].free_page_list);
 716                        node_set(nid, sgx_numa_mask);
 717                }
 718
 719                sgx_epc_sections[i].node =  &sgx_numa_nodes[nid];
 720
 721                sgx_nr_epc_sections++;
 722        }
 723
 724        if (!sgx_nr_epc_sections) {
 725                pr_err("There are zero EPC sections.\n");
 726                return false;
 727        }
 728
 729        return true;
 730}
 731
 732/*
 733 * Update the SGX_LEPUBKEYHASH MSRs to the values specified by caller.
 734 * Bare-metal driver requires to update them to hash of enclave's signer
 735 * before EINIT. KVM needs to update them to guest's virtual MSR values
 736 * before doing EINIT from guest.
 737 */
 738void sgx_update_lepubkeyhash(u64 *lepubkeyhash)
 739{
 740        int i;
 741
 742        WARN_ON_ONCE(preemptible());
 743
 744        for (i = 0; i < 4; i++)
 745                wrmsrl(MSR_IA32_SGXLEPUBKEYHASH0 + i, lepubkeyhash[i]);
 746}
 747
 748const struct file_operations sgx_provision_fops = {
 749        .owner                  = THIS_MODULE,
 750};
 751
 752static struct miscdevice sgx_dev_provision = {
 753        .minor = MISC_DYNAMIC_MINOR,
 754        .name = "sgx_provision",
 755        .nodename = "sgx_provision",
 756        .fops = &sgx_provision_fops,
 757};
 758
 759/**
 760 * sgx_set_attribute() - Update allowed attributes given file descriptor
 761 * @allowed_attributes:         Pointer to allowed enclave attributes
 762 * @attribute_fd:               File descriptor for specific attribute
 763 *
 764 * Append enclave attribute indicated by file descriptor to allowed
 765 * attributes. Currently only SGX_ATTR_PROVISIONKEY indicated by
 766 * /dev/sgx_provision is supported.
 767 *
 768 * Return:
 769 * -0:          SGX_ATTR_PROVISIONKEY is appended to allowed_attributes
 770 * -EINVAL:     Invalid, or not supported file descriptor
 771 */
 772int sgx_set_attribute(unsigned long *allowed_attributes,
 773                      unsigned int attribute_fd)
 774{
 775        struct file *file;
 776
 777        file = fget(attribute_fd);
 778        if (!file)
 779                return -EINVAL;
 780
 781        if (file->f_op != &sgx_provision_fops) {
 782                fput(file);
 783                return -EINVAL;
 784        }
 785
 786        *allowed_attributes |= SGX_ATTR_PROVISIONKEY;
 787
 788        fput(file);
 789        return 0;
 790}
 791EXPORT_SYMBOL_GPL(sgx_set_attribute);
 792
 793static int __init sgx_init(void)
 794{
 795        int ret;
 796        int i;
 797
 798        if (!cpu_feature_enabled(X86_FEATURE_SGX))
 799                return -ENODEV;
 800
 801        if (!sgx_page_cache_init())
 802                return -ENOMEM;
 803
 804        if (!sgx_page_reclaimer_init()) {
 805                ret = -ENOMEM;
 806                goto err_page_cache;
 807        }
 808
 809        ret = misc_register(&sgx_dev_provision);
 810        if (ret)
 811                goto err_kthread;
 812
 813        /*
 814         * Always try to initialize the native *and* KVM drivers.
 815         * The KVM driver is less picky than the native one and
 816         * can function if the native one is not supported on the
 817         * current system or fails to initialize.
 818         *
 819         * Error out only if both fail to initialize.
 820         */
 821        ret = sgx_drv_init();
 822
 823        if (sgx_vepc_init() && ret)
 824                goto err_provision;
 825
 826        return 0;
 827
 828err_provision:
 829        misc_deregister(&sgx_dev_provision);
 830
 831err_kthread:
 832        kthread_stop(ksgxd_tsk);
 833
 834err_page_cache:
 835        for (i = 0; i < sgx_nr_epc_sections; i++) {
 836                vfree(sgx_epc_sections[i].pages);
 837                memunmap(sgx_epc_sections[i].virt_addr);
 838        }
 839
 840        return ret;
 841}
 842
 843device_initcall(sgx_init);
 844