linux/arch/x86/kernel/setup.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *
   5 * This file contains the setup_arch() code, which handles the architecture-dependent
   6 * parts of early kernel initialization.
   7 */
   8#include <linux/console.h>
   9#include <linux/crash_dump.h>
  10#include <linux/dma-map-ops.h>
  11#include <linux/dmi.h>
  12#include <linux/efi.h>
  13#include <linux/init_ohci1394_dma.h>
  14#include <linux/initrd.h>
  15#include <linux/iscsi_ibft.h>
  16#include <linux/memblock.h>
  17#include <linux/pci.h>
  18#include <linux/root_dev.h>
  19#include <linux/hugetlb.h>
  20#include <linux/tboot.h>
  21#include <linux/usb/xhci-dbgp.h>
  22#include <linux/static_call.h>
  23#include <linux/swiotlb.h>
  24
  25#include <uapi/linux/mount.h>
  26
  27#include <xen/xen.h>
  28
  29#include <asm/apic.h>
  30#include <asm/numa.h>
  31#include <asm/bios_ebda.h>
  32#include <asm/bugs.h>
  33#include <asm/cpu.h>
  34#include <asm/efi.h>
  35#include <asm/gart.h>
  36#include <asm/hypervisor.h>
  37#include <asm/io_apic.h>
  38#include <asm/kasan.h>
  39#include <asm/kaslr.h>
  40#include <asm/mce.h>
  41#include <asm/mtrr.h>
  42#include <asm/realmode.h>
  43#include <asm/olpc_ofw.h>
  44#include <asm/pci-direct.h>
  45#include <asm/prom.h>
  46#include <asm/proto.h>
  47#include <asm/thermal.h>
  48#include <asm/unwind.h>
  49#include <asm/vsyscall.h>
  50#include <linux/vmalloc.h>
  51
  52/*
  53 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
  54 * max_pfn_mapped:     highest directly mapped pfn > 4 GB
  55 *
  56 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
  57 * represented by pfn_mapped[].
  58 */
  59unsigned long max_low_pfn_mapped;
  60unsigned long max_pfn_mapped;
  61
  62#ifdef CONFIG_DMI
  63RESERVE_BRK(dmi_alloc, 65536);
  64#endif
  65
  66
  67/*
  68 * Range of the BSS area. The size of the BSS area is determined
  69 * at link time, with RESERVE_BRK() facility reserving additional
  70 * chunks.
  71 */
  72unsigned long _brk_start = (unsigned long)__brk_base;
  73unsigned long _brk_end   = (unsigned long)__brk_base;
  74
  75struct boot_params boot_params;
  76
  77/*
  78 * These are the four main kernel memory regions, we put them into
  79 * the resource tree so that kdump tools and other debugging tools
  80 * recover it:
  81 */
  82
  83static struct resource rodata_resource = {
  84        .name   = "Kernel rodata",
  85        .start  = 0,
  86        .end    = 0,
  87        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  88};
  89
  90static struct resource data_resource = {
  91        .name   = "Kernel data",
  92        .start  = 0,
  93        .end    = 0,
  94        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  95};
  96
  97static struct resource code_resource = {
  98        .name   = "Kernel code",
  99        .start  = 0,
 100        .end    = 0,
 101        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 102};
 103
 104static struct resource bss_resource = {
 105        .name   = "Kernel bss",
 106        .start  = 0,
 107        .end    = 0,
 108        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 109};
 110
 111
 112#ifdef CONFIG_X86_32
 113/* CPU data as detected by the assembly code in head_32.S */
 114struct cpuinfo_x86 new_cpu_data;
 115
 116/* Common CPU data for all CPUs */
 117struct cpuinfo_x86 boot_cpu_data __read_mostly;
 118EXPORT_SYMBOL(boot_cpu_data);
 119
 120unsigned int def_to_bigsmp;
 121
 122struct apm_info apm_info;
 123EXPORT_SYMBOL(apm_info);
 124
 125#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 126        defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 127struct ist_info ist_info;
 128EXPORT_SYMBOL(ist_info);
 129#else
 130struct ist_info ist_info;
 131#endif
 132
 133#else
 134struct cpuinfo_x86 boot_cpu_data __read_mostly;
 135EXPORT_SYMBOL(boot_cpu_data);
 136#endif
 137
 138
 139#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 140__visible unsigned long mmu_cr4_features __ro_after_init;
 141#else
 142__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 143#endif
 144
 145/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 146int bootloader_type, bootloader_version;
 147
 148/*
 149 * Setup options
 150 */
 151struct screen_info screen_info;
 152EXPORT_SYMBOL(screen_info);
 153struct edid_info edid_info;
 154EXPORT_SYMBOL_GPL(edid_info);
 155
 156extern int root_mountflags;
 157
 158unsigned long saved_video_mode;
 159
 160#define RAMDISK_IMAGE_START_MASK        0x07FF
 161#define RAMDISK_PROMPT_FLAG             0x8000
 162#define RAMDISK_LOAD_FLAG               0x4000
 163
 164static char __initdata command_line[COMMAND_LINE_SIZE];
 165#ifdef CONFIG_CMDLINE_BOOL
 166static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 167#endif
 168
 169#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 170struct edd edd;
 171#ifdef CONFIG_EDD_MODULE
 172EXPORT_SYMBOL(edd);
 173#endif
 174/**
 175 * copy_edd() - Copy the BIOS EDD information
 176 *              from boot_params into a safe place.
 177 *
 178 */
 179static inline void __init copy_edd(void)
 180{
 181     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 182            sizeof(edd.mbr_signature));
 183     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 184     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 185     edd.edd_info_nr = boot_params.eddbuf_entries;
 186}
 187#else
 188static inline void __init copy_edd(void)
 189{
 190}
 191#endif
 192
 193void * __init extend_brk(size_t size, size_t align)
 194{
 195        size_t mask = align - 1;
 196        void *ret;
 197
 198        BUG_ON(_brk_start == 0);
 199        BUG_ON(align & mask);
 200
 201        _brk_end = (_brk_end + mask) & ~mask;
 202        BUG_ON((char *)(_brk_end + size) > __brk_limit);
 203
 204        ret = (void *)_brk_end;
 205        _brk_end += size;
 206
 207        memset(ret, 0, size);
 208
 209        return ret;
 210}
 211
 212#ifdef CONFIG_X86_32
 213static void __init cleanup_highmap(void)
 214{
 215}
 216#endif
 217
 218static void __init reserve_brk(void)
 219{
 220        if (_brk_end > _brk_start)
 221                memblock_reserve(__pa_symbol(_brk_start),
 222                                 _brk_end - _brk_start);
 223
 224        /* Mark brk area as locked down and no longer taking any
 225           new allocations */
 226        _brk_start = 0;
 227}
 228
 229u64 relocated_ramdisk;
 230
 231#ifdef CONFIG_BLK_DEV_INITRD
 232
 233static u64 __init get_ramdisk_image(void)
 234{
 235        u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 236
 237        ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 238
 239        if (ramdisk_image == 0)
 240                ramdisk_image = phys_initrd_start;
 241
 242        return ramdisk_image;
 243}
 244static u64 __init get_ramdisk_size(void)
 245{
 246        u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 247
 248        ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 249
 250        if (ramdisk_size == 0)
 251                ramdisk_size = phys_initrd_size;
 252
 253        return ramdisk_size;
 254}
 255
 256static void __init relocate_initrd(void)
 257{
 258        /* Assume only end is not page aligned */
 259        u64 ramdisk_image = get_ramdisk_image();
 260        u64 ramdisk_size  = get_ramdisk_size();
 261        u64 area_size     = PAGE_ALIGN(ramdisk_size);
 262
 263        /* We need to move the initrd down into directly mapped mem */
 264        relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
 265                                                      PFN_PHYS(max_pfn_mapped));
 266        if (!relocated_ramdisk)
 267                panic("Cannot find place for new RAMDISK of size %lld\n",
 268                      ramdisk_size);
 269
 270        initrd_start = relocated_ramdisk + PAGE_OFFSET;
 271        initrd_end   = initrd_start + ramdisk_size;
 272        printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 273               relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 274
 275        copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 276
 277        printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 278                " [mem %#010llx-%#010llx]\n",
 279                ramdisk_image, ramdisk_image + ramdisk_size - 1,
 280                relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 281}
 282
 283static void __init early_reserve_initrd(void)
 284{
 285        /* Assume only end is not page aligned */
 286        u64 ramdisk_image = get_ramdisk_image();
 287        u64 ramdisk_size  = get_ramdisk_size();
 288        u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 289
 290        if (!boot_params.hdr.type_of_loader ||
 291            !ramdisk_image || !ramdisk_size)
 292                return;         /* No initrd provided by bootloader */
 293
 294        memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 295}
 296
 297static void __init reserve_initrd(void)
 298{
 299        /* Assume only end is not page aligned */
 300        u64 ramdisk_image = get_ramdisk_image();
 301        u64 ramdisk_size  = get_ramdisk_size();
 302        u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 303
 304        if (!boot_params.hdr.type_of_loader ||
 305            !ramdisk_image || !ramdisk_size)
 306                return;         /* No initrd provided by bootloader */
 307
 308        initrd_start = 0;
 309
 310        printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 311                        ramdisk_end - 1);
 312
 313        if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 314                                PFN_DOWN(ramdisk_end))) {
 315                /* All are mapped, easy case */
 316                initrd_start = ramdisk_image + PAGE_OFFSET;
 317                initrd_end = initrd_start + ramdisk_size;
 318                return;
 319        }
 320
 321        relocate_initrd();
 322
 323        memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 324}
 325
 326#else
 327static void __init early_reserve_initrd(void)
 328{
 329}
 330static void __init reserve_initrd(void)
 331{
 332}
 333#endif /* CONFIG_BLK_DEV_INITRD */
 334
 335static void __init parse_setup_data(void)
 336{
 337        struct setup_data *data;
 338        u64 pa_data, pa_next;
 339
 340        pa_data = boot_params.hdr.setup_data;
 341        while (pa_data) {
 342                u32 data_len, data_type;
 343
 344                data = early_memremap(pa_data, sizeof(*data));
 345                data_len = data->len + sizeof(struct setup_data);
 346                data_type = data->type;
 347                pa_next = data->next;
 348                early_memunmap(data, sizeof(*data));
 349
 350                switch (data_type) {
 351                case SETUP_E820_EXT:
 352                        e820__memory_setup_extended(pa_data, data_len);
 353                        break;
 354                case SETUP_DTB:
 355                        add_dtb(pa_data);
 356                        break;
 357                case SETUP_EFI:
 358                        parse_efi_setup(pa_data, data_len);
 359                        break;
 360                default:
 361                        break;
 362                }
 363                pa_data = pa_next;
 364        }
 365}
 366
 367static void __init memblock_x86_reserve_range_setup_data(void)
 368{
 369        struct setup_data *data;
 370        u64 pa_data;
 371
 372        pa_data = boot_params.hdr.setup_data;
 373        while (pa_data) {
 374                data = early_memremap(pa_data, sizeof(*data));
 375                memblock_reserve(pa_data, sizeof(*data) + data->len);
 376
 377                if (data->type == SETUP_INDIRECT &&
 378                    ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
 379                        memblock_reserve(((struct setup_indirect *)data->data)->addr,
 380                                         ((struct setup_indirect *)data->data)->len);
 381
 382                pa_data = data->next;
 383                early_memunmap(data, sizeof(*data));
 384        }
 385}
 386
 387/*
 388 * --------- Crashkernel reservation ------------------------------
 389 */
 390
 391#ifdef CONFIG_KEXEC_CORE
 392
 393/* 16M alignment for crash kernel regions */
 394#define CRASH_ALIGN             SZ_16M
 395
 396/*
 397 * Keep the crash kernel below this limit.
 398 *
 399 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
 400 * due to mapping restrictions.
 401 *
 402 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
 403 * the upper limit of system RAM in 4-level paging mode. Since the kdump
 404 * jump could be from 5-level paging to 4-level paging, the jump will fail if
 405 * the kernel is put above 64 TB, and during the 1st kernel bootup there's
 406 * no good way to detect the paging mode of the target kernel which will be
 407 * loaded for dumping.
 408 */
 409#ifdef CONFIG_X86_32
 410# define CRASH_ADDR_LOW_MAX     SZ_512M
 411# define CRASH_ADDR_HIGH_MAX    SZ_512M
 412#else
 413# define CRASH_ADDR_LOW_MAX     SZ_4G
 414# define CRASH_ADDR_HIGH_MAX    SZ_64T
 415#endif
 416
 417static int __init reserve_crashkernel_low(void)
 418{
 419#ifdef CONFIG_X86_64
 420        unsigned long long base, low_base = 0, low_size = 0;
 421        unsigned long low_mem_limit;
 422        int ret;
 423
 424        low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
 425
 426        /* crashkernel=Y,low */
 427        ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
 428        if (ret) {
 429                /*
 430                 * two parts from kernel/dma/swiotlb.c:
 431                 * -swiotlb size: user-specified with swiotlb= or default.
 432                 *
 433                 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 434                 * to 8M for other buffers that may need to stay low too. Also
 435                 * make sure we allocate enough extra low memory so that we
 436                 * don't run out of DMA buffers for 32-bit devices.
 437                 */
 438                low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 439        } else {
 440                /* passed with crashkernel=0,low ? */
 441                if (!low_size)
 442                        return 0;
 443        }
 444
 445        low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
 446        if (!low_base) {
 447                pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 448                       (unsigned long)(low_size >> 20));
 449                return -ENOMEM;
 450        }
 451
 452        pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
 453                (unsigned long)(low_size >> 20),
 454                (unsigned long)(low_base >> 20),
 455                (unsigned long)(low_mem_limit >> 20));
 456
 457        crashk_low_res.start = low_base;
 458        crashk_low_res.end   = low_base + low_size - 1;
 459        insert_resource(&iomem_resource, &crashk_low_res);
 460#endif
 461        return 0;
 462}
 463
 464static void __init reserve_crashkernel(void)
 465{
 466        unsigned long long crash_size, crash_base, total_mem;
 467        bool high = false;
 468        int ret;
 469
 470        total_mem = memblock_phys_mem_size();
 471
 472        /* crashkernel=XM */
 473        ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 474        if (ret != 0 || crash_size <= 0) {
 475                /* crashkernel=X,high */
 476                ret = parse_crashkernel_high(boot_command_line, total_mem,
 477                                             &crash_size, &crash_base);
 478                if (ret != 0 || crash_size <= 0)
 479                        return;
 480                high = true;
 481        }
 482
 483        if (xen_pv_domain()) {
 484                pr_info("Ignoring crashkernel for a Xen PV domain\n");
 485                return;
 486        }
 487
 488        /* 0 means: find the address automatically */
 489        if (!crash_base) {
 490                /*
 491                 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
 492                 * crashkernel=x,high reserves memory over 4G, also allocates
 493                 * 256M extra low memory for DMA buffers and swiotlb.
 494                 * But the extra memory is not required for all machines.
 495                 * So try low memory first and fall back to high memory
 496                 * unless "crashkernel=size[KMG],high" is specified.
 497                 */
 498                if (!high)
 499                        crash_base = memblock_phys_alloc_range(crash_size,
 500                                                CRASH_ALIGN, CRASH_ALIGN,
 501                                                CRASH_ADDR_LOW_MAX);
 502                if (!crash_base)
 503                        crash_base = memblock_phys_alloc_range(crash_size,
 504                                                CRASH_ALIGN, CRASH_ALIGN,
 505                                                CRASH_ADDR_HIGH_MAX);
 506                if (!crash_base) {
 507                        pr_info("crashkernel reservation failed - No suitable area found.\n");
 508                        return;
 509                }
 510        } else {
 511                unsigned long long start;
 512
 513                start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
 514                                                  crash_base + crash_size);
 515                if (start != crash_base) {
 516                        pr_info("crashkernel reservation failed - memory is in use.\n");
 517                        return;
 518                }
 519        }
 520
 521        if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 522                memblock_free(crash_base, crash_size);
 523                return;
 524        }
 525
 526        pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 527                (unsigned long)(crash_size >> 20),
 528                (unsigned long)(crash_base >> 20),
 529                (unsigned long)(total_mem >> 20));
 530
 531        crashk_res.start = crash_base;
 532        crashk_res.end   = crash_base + crash_size - 1;
 533        insert_resource(&iomem_resource, &crashk_res);
 534}
 535#else
 536static void __init reserve_crashkernel(void)
 537{
 538}
 539#endif
 540
 541static struct resource standard_io_resources[] = {
 542        { .name = "dma1", .start = 0x00, .end = 0x1f,
 543                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 544        { .name = "pic1", .start = 0x20, .end = 0x21,
 545                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 546        { .name = "timer0", .start = 0x40, .end = 0x43,
 547                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 548        { .name = "timer1", .start = 0x50, .end = 0x53,
 549                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 550        { .name = "keyboard", .start = 0x60, .end = 0x60,
 551                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 552        { .name = "keyboard", .start = 0x64, .end = 0x64,
 553                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 554        { .name = "dma page reg", .start = 0x80, .end = 0x8f,
 555                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 556        { .name = "pic2", .start = 0xa0, .end = 0xa1,
 557                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 558        { .name = "dma2", .start = 0xc0, .end = 0xdf,
 559                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 560        { .name = "fpu", .start = 0xf0, .end = 0xff,
 561                .flags = IORESOURCE_BUSY | IORESOURCE_IO }
 562};
 563
 564void __init reserve_standard_io_resources(void)
 565{
 566        int i;
 567
 568        /* request I/O space for devices used on all i[345]86 PCs */
 569        for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 570                request_resource(&ioport_resource, &standard_io_resources[i]);
 571
 572}
 573
 574static __init void reserve_ibft_region(void)
 575{
 576        unsigned long addr, size = 0;
 577
 578        addr = find_ibft_region(&size);
 579
 580        if (size)
 581                memblock_reserve(addr, size);
 582}
 583
 584static bool __init snb_gfx_workaround_needed(void)
 585{
 586#ifdef CONFIG_PCI
 587        int i;
 588        u16 vendor, devid;
 589        static const __initconst u16 snb_ids[] = {
 590                0x0102,
 591                0x0112,
 592                0x0122,
 593                0x0106,
 594                0x0116,
 595                0x0126,
 596                0x010a,
 597        };
 598
 599        /* Assume no if something weird is going on with PCI */
 600        if (!early_pci_allowed())
 601                return false;
 602
 603        vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 604        if (vendor != 0x8086)
 605                return false;
 606
 607        devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 608        for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 609                if (devid == snb_ids[i])
 610                        return true;
 611#endif
 612
 613        return false;
 614}
 615
 616/*
 617 * Sandy Bridge graphics has trouble with certain ranges, exclude
 618 * them from allocation.
 619 */
 620static void __init trim_snb_memory(void)
 621{
 622        static const __initconst unsigned long bad_pages[] = {
 623                0x20050000,
 624                0x20110000,
 625                0x20130000,
 626                0x20138000,
 627                0x40004000,
 628        };
 629        int i;
 630
 631        if (!snb_gfx_workaround_needed())
 632                return;
 633
 634        printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 635
 636        /*
 637         * SandyBridge integrated graphics devices have a bug that prevents
 638         * them from accessing certain memory ranges, namely anything below
 639         * 1M and in the pages listed in bad_pages[] above.
 640         *
 641         * To avoid these pages being ever accessed by SNB gfx devices reserve
 642         * bad_pages that have not already been reserved at boot time.
 643         * All memory below the 1 MB mark is anyway reserved later during
 644         * setup_arch(), so there is no need to reserve it here.
 645         */
 646
 647        for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 648                if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 649                        printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 650                               bad_pages[i]);
 651        }
 652}
 653
 654static void __init trim_bios_range(void)
 655{
 656        /*
 657         * A special case is the first 4Kb of memory;
 658         * This is a BIOS owned area, not kernel ram, but generally
 659         * not listed as such in the E820 table.
 660         *
 661         * This typically reserves additional memory (64KiB by default)
 662         * since some BIOSes are known to corrupt low memory.  See the
 663         * Kconfig help text for X86_RESERVE_LOW.
 664         */
 665        e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 666
 667        /*
 668         * special case: Some BIOSes report the PC BIOS
 669         * area (640Kb -> 1Mb) as RAM even though it is not.
 670         * take them out.
 671         */
 672        e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 673
 674        e820__update_table(e820_table);
 675}
 676
 677/* called before trim_bios_range() to spare extra sanitize */
 678static void __init e820_add_kernel_range(void)
 679{
 680        u64 start = __pa_symbol(_text);
 681        u64 size = __pa_symbol(_end) - start;
 682
 683        /*
 684         * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 685         * attempt to fix it by adding the range. We may have a confused BIOS,
 686         * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 687         * exclude kernel range. If we really are running on top non-RAM,
 688         * we will crash later anyways.
 689         */
 690        if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 691                return;
 692
 693        pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 694        e820__range_remove(start, size, E820_TYPE_RAM, 0);
 695        e820__range_add(start, size, E820_TYPE_RAM);
 696}
 697
 698static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
 699
 700static int __init parse_reservelow(char *p)
 701{
 702        unsigned long long size;
 703
 704        if (!p)
 705                return -EINVAL;
 706
 707        size = memparse(p, &p);
 708
 709        if (size < 4096)
 710                size = 4096;
 711
 712        if (size > 640*1024)
 713                size = 640*1024;
 714
 715        reserve_low = size;
 716
 717        return 0;
 718}
 719
 720early_param("reservelow", parse_reservelow);
 721
 722static void __init early_reserve_memory(void)
 723{
 724        /*
 725         * Reserve the memory occupied by the kernel between _text and
 726         * __end_of_kernel_reserve symbols. Any kernel sections after the
 727         * __end_of_kernel_reserve symbol must be explicitly reserved with a
 728         * separate memblock_reserve() or they will be discarded.
 729         */
 730        memblock_reserve(__pa_symbol(_text),
 731                         (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
 732
 733        /*
 734         * The first 4Kb of memory is a BIOS owned area, but generally it is
 735         * not listed as such in the E820 table.
 736         *
 737         * Reserve the first 64K of memory since some BIOSes are known to
 738         * corrupt low memory. After the real mode trampoline is allocated the
 739         * rest of the memory below 640k is reserved.
 740         *
 741         * In addition, make sure page 0 is always reserved because on
 742         * systems with L1TF its contents can be leaked to user processes.
 743         */
 744        memblock_reserve(0, SZ_64K);
 745
 746        early_reserve_initrd();
 747
 748        if (efi_enabled(EFI_BOOT))
 749                efi_memblock_x86_reserve_range();
 750
 751        memblock_x86_reserve_range_setup_data();
 752
 753        reserve_ibft_region();
 754        reserve_bios_regions();
 755        trim_snb_memory();
 756}
 757
 758/*
 759 * Dump out kernel offset information on panic.
 760 */
 761static int
 762dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 763{
 764        if (kaslr_enabled()) {
 765                pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 766                         kaslr_offset(),
 767                         __START_KERNEL,
 768                         __START_KERNEL_map,
 769                         MODULES_VADDR-1);
 770        } else {
 771                pr_emerg("Kernel Offset: disabled\n");
 772        }
 773
 774        return 0;
 775}
 776
 777/*
 778 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 779 * passed the efi memmap, systab, etc., so we should use these data structures
 780 * for initialization.  Note, the efi init code path is determined by the
 781 * global efi_enabled. This allows the same kernel image to be used on existing
 782 * systems (with a traditional BIOS) as well as on EFI systems.
 783 */
 784/*
 785 * setup_arch - architecture-specific boot-time initializations
 786 *
 787 * Note: On x86_64, fixmaps are ready for use even before this is called.
 788 */
 789
 790void __init setup_arch(char **cmdline_p)
 791{
 792#ifdef CONFIG_X86_32
 793        memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 794
 795        /*
 796         * copy kernel address range established so far and switch
 797         * to the proper swapper page table
 798         */
 799        clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 800                        initial_page_table + KERNEL_PGD_BOUNDARY,
 801                        KERNEL_PGD_PTRS);
 802
 803        load_cr3(swapper_pg_dir);
 804        /*
 805         * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 806         * a cr3 based tlb flush, so the following __flush_tlb_all()
 807         * will not flush anything because the CPU quirk which clears
 808         * X86_FEATURE_PGE has not been invoked yet. Though due to the
 809         * load_cr3() above the TLB has been flushed already. The
 810         * quirk is invoked before subsequent calls to __flush_tlb_all()
 811         * so proper operation is guaranteed.
 812         */
 813        __flush_tlb_all();
 814#else
 815        printk(KERN_INFO "Command line: %s\n", boot_command_line);
 816        boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 817#endif
 818
 819        /*
 820         * If we have OLPC OFW, we might end up relocating the fixmap due to
 821         * reserve_top(), so do this before touching the ioremap area.
 822         */
 823        olpc_ofw_detect();
 824
 825        idt_setup_early_traps();
 826        early_cpu_init();
 827        jump_label_init();
 828        static_call_init();
 829        early_ioremap_init();
 830
 831        setup_olpc_ofw_pgd();
 832
 833        ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 834        screen_info = boot_params.screen_info;
 835        edid_info = boot_params.edid_info;
 836#ifdef CONFIG_X86_32
 837        apm_info.bios = boot_params.apm_bios_info;
 838        ist_info = boot_params.ist_info;
 839#endif
 840        saved_video_mode = boot_params.hdr.vid_mode;
 841        bootloader_type = boot_params.hdr.type_of_loader;
 842        if ((bootloader_type >> 4) == 0xe) {
 843                bootloader_type &= 0xf;
 844                bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 845        }
 846        bootloader_version  = bootloader_type & 0xf;
 847        bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 848
 849#ifdef CONFIG_BLK_DEV_RAM
 850        rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 851#endif
 852#ifdef CONFIG_EFI
 853        if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 854                     EFI32_LOADER_SIGNATURE, 4)) {
 855                set_bit(EFI_BOOT, &efi.flags);
 856        } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 857                     EFI64_LOADER_SIGNATURE, 4)) {
 858                set_bit(EFI_BOOT, &efi.flags);
 859                set_bit(EFI_64BIT, &efi.flags);
 860        }
 861#endif
 862
 863        x86_init.oem.arch_setup();
 864
 865        iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 866        e820__memory_setup();
 867        parse_setup_data();
 868
 869        copy_edd();
 870
 871        if (!boot_params.hdr.root_flags)
 872                root_mountflags &= ~MS_RDONLY;
 873        init_mm.start_code = (unsigned long) _text;
 874        init_mm.end_code = (unsigned long) _etext;
 875        init_mm.end_data = (unsigned long) _edata;
 876        init_mm.brk = _brk_end;
 877
 878        code_resource.start = __pa_symbol(_text);
 879        code_resource.end = __pa_symbol(_etext)-1;
 880        rodata_resource.start = __pa_symbol(__start_rodata);
 881        rodata_resource.end = __pa_symbol(__end_rodata)-1;
 882        data_resource.start = __pa_symbol(_sdata);
 883        data_resource.end = __pa_symbol(_edata)-1;
 884        bss_resource.start = __pa_symbol(__bss_start);
 885        bss_resource.end = __pa_symbol(__bss_stop)-1;
 886
 887#ifdef CONFIG_CMDLINE_BOOL
 888#ifdef CONFIG_CMDLINE_OVERRIDE
 889        strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 890#else
 891        if (builtin_cmdline[0]) {
 892                /* append boot loader cmdline to builtin */
 893                strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 894                strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 895                strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 896        }
 897#endif
 898#endif
 899
 900        strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 901        *cmdline_p = command_line;
 902
 903        /*
 904         * x86_configure_nx() is called before parse_early_param() to detect
 905         * whether hardware doesn't support NX (so that the early EHCI debug
 906         * console setup can safely call set_fixmap()). It may then be called
 907         * again from within noexec_setup() during parsing early parameters
 908         * to honor the respective command line option.
 909         */
 910        x86_configure_nx();
 911
 912        parse_early_param();
 913
 914        /*
 915         * Do some memory reservations *before* memory is added to
 916         * memblock, so memblock allocations won't overwrite it.
 917         * Do it after early param, so we could get (unlikely) panic from
 918         * serial.
 919         *
 920         * After this point everything still needed from the boot loader or
 921         * firmware or kernel text should be early reserved or marked not
 922         * RAM in e820. All other memory is free game.
 923         */
 924        early_reserve_memory();
 925
 926#ifdef CONFIG_MEMORY_HOTPLUG
 927        /*
 928         * Memory used by the kernel cannot be hot-removed because Linux
 929         * cannot migrate the kernel pages. When memory hotplug is
 930         * enabled, we should prevent memblock from allocating memory
 931         * for the kernel.
 932         *
 933         * ACPI SRAT records all hotpluggable memory ranges. But before
 934         * SRAT is parsed, we don't know about it.
 935         *
 936         * The kernel image is loaded into memory at very early time. We
 937         * cannot prevent this anyway. So on NUMA system, we set any
 938         * node the kernel resides in as un-hotpluggable.
 939         *
 940         * Since on modern servers, one node could have double-digit
 941         * gigabytes memory, we can assume the memory around the kernel
 942         * image is also un-hotpluggable. So before SRAT is parsed, just
 943         * allocate memory near the kernel image to try the best to keep
 944         * the kernel away from hotpluggable memory.
 945         */
 946        if (movable_node_is_enabled())
 947                memblock_set_bottom_up(true);
 948#endif
 949
 950        x86_report_nx();
 951
 952        if (acpi_mps_check()) {
 953#ifdef CONFIG_X86_LOCAL_APIC
 954                disable_apic = 1;
 955#endif
 956                setup_clear_cpu_cap(X86_FEATURE_APIC);
 957        }
 958
 959        e820__reserve_setup_data();
 960        e820__finish_early_params();
 961
 962        if (efi_enabled(EFI_BOOT))
 963                efi_init();
 964
 965        dmi_setup();
 966
 967        /*
 968         * VMware detection requires dmi to be available, so this
 969         * needs to be done after dmi_setup(), for the boot CPU.
 970         */
 971        init_hypervisor_platform();
 972
 973        tsc_early_init();
 974        x86_init.resources.probe_roms();
 975
 976        /* after parse_early_param, so could debug it */
 977        insert_resource(&iomem_resource, &code_resource);
 978        insert_resource(&iomem_resource, &rodata_resource);
 979        insert_resource(&iomem_resource, &data_resource);
 980        insert_resource(&iomem_resource, &bss_resource);
 981
 982        e820_add_kernel_range();
 983        trim_bios_range();
 984#ifdef CONFIG_X86_32
 985        if (ppro_with_ram_bug()) {
 986                e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
 987                                  E820_TYPE_RESERVED);
 988                e820__update_table(e820_table);
 989                printk(KERN_INFO "fixed physical RAM map:\n");
 990                e820__print_table("bad_ppro");
 991        }
 992#else
 993        early_gart_iommu_check();
 994#endif
 995
 996        /*
 997         * partially used pages are not usable - thus
 998         * we are rounding upwards:
 999         */
1000        max_pfn = e820__end_of_ram_pfn();
1001
1002        /* update e820 for memory not covered by WB MTRRs */
1003        mtrr_bp_init();
1004        if (mtrr_trim_uncached_memory(max_pfn))
1005                max_pfn = e820__end_of_ram_pfn();
1006
1007        max_possible_pfn = max_pfn;
1008
1009        /*
1010         * This call is required when the CPU does not support PAT. If
1011         * mtrr_bp_init() invoked it already via pat_init() the call has no
1012         * effect.
1013         */
1014        init_cache_modes();
1015
1016        /*
1017         * Define random base addresses for memory sections after max_pfn is
1018         * defined and before each memory section base is used.
1019         */
1020        kernel_randomize_memory();
1021
1022#ifdef CONFIG_X86_32
1023        /* max_low_pfn get updated here */
1024        find_low_pfn_range();
1025#else
1026        check_x2apic();
1027
1028        /* How many end-of-memory variables you have, grandma! */
1029        /* need this before calling reserve_initrd */
1030        if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1031                max_low_pfn = e820__end_of_low_ram_pfn();
1032        else
1033                max_low_pfn = max_pfn;
1034
1035        high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1036#endif
1037
1038        /*
1039         * Find and reserve possible boot-time SMP configuration:
1040         */
1041        find_smp_config();
1042
1043        early_alloc_pgt_buf();
1044
1045        /*
1046         * Need to conclude brk, before e820__memblock_setup()
1047         * it could use memblock_find_in_range, could overlap with
1048         * brk area.
1049         */
1050        reserve_brk();
1051
1052        cleanup_highmap();
1053
1054        memblock_set_current_limit(ISA_END_ADDRESS);
1055        e820__memblock_setup();
1056
1057        /*
1058         * Needs to run after memblock setup because it needs the physical
1059         * memory size.
1060         */
1061        sev_setup_arch();
1062
1063        efi_fake_memmap();
1064        efi_find_mirror();
1065        efi_esrt_init();
1066        efi_mokvar_table_init();
1067
1068        /*
1069         * The EFI specification says that boot service code won't be
1070         * called after ExitBootServices(). This is, in fact, a lie.
1071         */
1072        efi_reserve_boot_services();
1073
1074        /* preallocate 4k for mptable mpc */
1075        e820__memblock_alloc_reserved_mpc_new();
1076
1077#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1078        setup_bios_corruption_check();
1079#endif
1080
1081#ifdef CONFIG_X86_32
1082        printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1083                        (max_pfn_mapped<<PAGE_SHIFT) - 1);
1084#endif
1085
1086        /*
1087         * Find free memory for the real mode trampoline and place it
1088         * there.
1089         * If there is not enough free memory under 1M, on EFI-enabled
1090         * systems there will be additional attempt to reclaim the memory
1091         * for the real mode trampoline at efi_free_boot_services().
1092         *
1093         * Unconditionally reserve the entire first 1M of RAM because
1094         * BIOSes are know to corrupt low memory and several
1095         * hundred kilobytes are not worth complex detection what memory gets
1096         * clobbered. Moreover, on machines with SandyBridge graphics or in
1097         * setups that use crashkernel the entire 1M is reserved anyway.
1098         */
1099        reserve_real_mode();
1100
1101        init_mem_mapping();
1102
1103        idt_setup_early_pf();
1104
1105        /*
1106         * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1107         * with the current CR4 value.  This may not be necessary, but
1108         * auditing all the early-boot CR4 manipulation would be needed to
1109         * rule it out.
1110         *
1111         * Mask off features that don't work outside long mode (just
1112         * PCIDE for now).
1113         */
1114        mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1115
1116        memblock_set_current_limit(get_max_mapped());
1117
1118        /*
1119         * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1120         */
1121
1122#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1123        if (init_ohci1394_dma_early)
1124                init_ohci1394_dma_on_all_controllers();
1125#endif
1126        /* Allocate bigger log buffer */
1127        setup_log_buf(1);
1128
1129        if (efi_enabled(EFI_BOOT)) {
1130                switch (boot_params.secure_boot) {
1131                case efi_secureboot_mode_disabled:
1132                        pr_info("Secure boot disabled\n");
1133                        break;
1134                case efi_secureboot_mode_enabled:
1135                        pr_info("Secure boot enabled\n");
1136                        break;
1137                default:
1138                        pr_info("Secure boot could not be determined\n");
1139                        break;
1140                }
1141        }
1142
1143        reserve_initrd();
1144
1145        acpi_table_upgrade();
1146        /* Look for ACPI tables and reserve memory occupied by them. */
1147        acpi_boot_table_init();
1148
1149        vsmp_init();
1150
1151        io_delay_init();
1152
1153        early_platform_quirks();
1154
1155        early_acpi_boot_init();
1156
1157        initmem_init();
1158        dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1159
1160        if (boot_cpu_has(X86_FEATURE_GBPAGES))
1161                hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1162
1163        /*
1164         * Reserve memory for crash kernel after SRAT is parsed so that it
1165         * won't consume hotpluggable memory.
1166         */
1167        reserve_crashkernel();
1168
1169        memblock_find_dma_reserve();
1170
1171        if (!early_xdbc_setup_hardware())
1172                early_xdbc_register_console();
1173
1174        x86_init.paging.pagetable_init();
1175
1176        kasan_init();
1177
1178        /*
1179         * Sync back kernel address range.
1180         *
1181         * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1182         * this call?
1183         */
1184        sync_initial_page_table();
1185
1186        tboot_probe();
1187
1188        map_vsyscall();
1189
1190        generic_apic_probe();
1191
1192        early_quirks();
1193
1194        /*
1195         * Read APIC and some other early information from ACPI tables.
1196         */
1197        acpi_boot_init();
1198        x86_dtb_init();
1199
1200        /*
1201         * get boot-time SMP configuration:
1202         */
1203        get_smp_config();
1204
1205        /*
1206         * Systems w/o ACPI and mptables might not have it mapped the local
1207         * APIC yet, but prefill_possible_map() might need to access it.
1208         */
1209        init_apic_mappings();
1210
1211        prefill_possible_map();
1212
1213        init_cpu_to_node();
1214        init_gi_nodes();
1215
1216        io_apic_init_mappings();
1217
1218        x86_init.hyper.guest_late_init();
1219
1220        e820__reserve_resources();
1221        e820__register_nosave_regions(max_pfn);
1222
1223        x86_init.resources.reserve_resources();
1224
1225        e820__setup_pci_gap();
1226
1227#ifdef CONFIG_VT
1228#if defined(CONFIG_VGA_CONSOLE)
1229        if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1230                conswitchp = &vga_con;
1231#endif
1232#endif
1233        x86_init.oem.banner();
1234
1235        x86_init.timers.wallclock_init();
1236
1237        /*
1238         * This needs to run before setup_local_APIC() which soft-disables the
1239         * local APIC temporarily and that masks the thermal LVT interrupt,
1240         * leading to softlockups on machines which have configured SMI
1241         * interrupt delivery.
1242         */
1243        therm_lvt_init();
1244
1245        mcheck_init();
1246
1247        register_refined_jiffies(CLOCK_TICK_RATE);
1248
1249#ifdef CONFIG_EFI
1250        if (efi_enabled(EFI_BOOT))
1251                efi_apply_memmap_quirks();
1252#endif
1253
1254        unwind_init();
1255}
1256
1257#ifdef CONFIG_X86_32
1258
1259static struct resource video_ram_resource = {
1260        .name   = "Video RAM area",
1261        .start  = 0xa0000,
1262        .end    = 0xbffff,
1263        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1264};
1265
1266void __init i386_reserve_resources(void)
1267{
1268        request_resource(&iomem_resource, &video_ram_resource);
1269        reserve_standard_io_resources();
1270}
1271
1272#endif /* CONFIG_X86_32 */
1273
1274static struct notifier_block kernel_offset_notifier = {
1275        .notifier_call = dump_kernel_offset
1276};
1277
1278static int __init register_kernel_offset_dumper(void)
1279{
1280        atomic_notifier_chain_register(&panic_notifier_list,
1281                                        &kernel_offset_notifier);
1282        return 0;
1283}
1284__initcall(register_kernel_offset_dumper);
1285