linux/arch/x86/kernel/traps.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
   4 *
   5 *  Pentium III FXSR, SSE support
   6 *      Gareth Hughes <gareth@valinux.com>, May 2000
   7 */
   8
   9/*
  10 * Handle hardware traps and faults.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/context_tracking.h>
  16#include <linux/interrupt.h>
  17#include <linux/kallsyms.h>
  18#include <linux/spinlock.h>
  19#include <linux/kprobes.h>
  20#include <linux/uaccess.h>
  21#include <linux/kdebug.h>
  22#include <linux/kgdb.h>
  23#include <linux/kernel.h>
  24#include <linux/export.h>
  25#include <linux/ptrace.h>
  26#include <linux/uprobes.h>
  27#include <linux/string.h>
  28#include <linux/delay.h>
  29#include <linux/errno.h>
  30#include <linux/kexec.h>
  31#include <linux/sched.h>
  32#include <linux/sched/task_stack.h>
  33#include <linux/timer.h>
  34#include <linux/init.h>
  35#include <linux/bug.h>
  36#include <linux/nmi.h>
  37#include <linux/mm.h>
  38#include <linux/smp.h>
  39#include <linux/io.h>
  40#include <linux/hardirq.h>
  41#include <linux/atomic.h>
  42
  43#include <asm/stacktrace.h>
  44#include <asm/processor.h>
  45#include <asm/debugreg.h>
  46#include <asm/realmode.h>
  47#include <asm/text-patching.h>
  48#include <asm/ftrace.h>
  49#include <asm/traps.h>
  50#include <asm/desc.h>
  51#include <asm/fpu/internal.h>
  52#include <asm/cpu.h>
  53#include <asm/cpu_entry_area.h>
  54#include <asm/mce.h>
  55#include <asm/fixmap.h>
  56#include <asm/mach_traps.h>
  57#include <asm/alternative.h>
  58#include <asm/fpu/xstate.h>
  59#include <asm/vm86.h>
  60#include <asm/umip.h>
  61#include <asm/insn.h>
  62#include <asm/insn-eval.h>
  63#include <asm/vdso.h>
  64
  65#ifdef CONFIG_X86_64
  66#include <asm/x86_init.h>
  67#include <asm/proto.h>
  68#else
  69#include <asm/processor-flags.h>
  70#include <asm/setup.h>
  71#include <asm/proto.h>
  72#endif
  73
  74DECLARE_BITMAP(system_vectors, NR_VECTORS);
  75
  76static inline void cond_local_irq_enable(struct pt_regs *regs)
  77{
  78        if (regs->flags & X86_EFLAGS_IF)
  79                local_irq_enable();
  80}
  81
  82static inline void cond_local_irq_disable(struct pt_regs *regs)
  83{
  84        if (regs->flags & X86_EFLAGS_IF)
  85                local_irq_disable();
  86}
  87
  88__always_inline int is_valid_bugaddr(unsigned long addr)
  89{
  90        if (addr < TASK_SIZE_MAX)
  91                return 0;
  92
  93        /*
  94         * We got #UD, if the text isn't readable we'd have gotten
  95         * a different exception.
  96         */
  97        return *(unsigned short *)addr == INSN_UD2;
  98}
  99
 100static nokprobe_inline int
 101do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
 102                  struct pt_regs *regs, long error_code)
 103{
 104        if (v8086_mode(regs)) {
 105                /*
 106                 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
 107                 * On nmi (interrupt 2), do_trap should not be called.
 108                 */
 109                if (trapnr < X86_TRAP_UD) {
 110                        if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
 111                                                error_code, trapnr))
 112                                return 0;
 113                }
 114        } else if (!user_mode(regs)) {
 115                if (fixup_exception(regs, trapnr, error_code, 0))
 116                        return 0;
 117
 118                tsk->thread.error_code = error_code;
 119                tsk->thread.trap_nr = trapnr;
 120                die(str, regs, error_code);
 121        } else {
 122                if (fixup_vdso_exception(regs, trapnr, error_code, 0))
 123                        return 0;
 124        }
 125
 126        /*
 127         * We want error_code and trap_nr set for userspace faults and
 128         * kernelspace faults which result in die(), but not
 129         * kernelspace faults which are fixed up.  die() gives the
 130         * process no chance to handle the signal and notice the
 131         * kernel fault information, so that won't result in polluting
 132         * the information about previously queued, but not yet
 133         * delivered, faults.  See also exc_general_protection below.
 134         */
 135        tsk->thread.error_code = error_code;
 136        tsk->thread.trap_nr = trapnr;
 137
 138        return -1;
 139}
 140
 141static void show_signal(struct task_struct *tsk, int signr,
 142                        const char *type, const char *desc,
 143                        struct pt_regs *regs, long error_code)
 144{
 145        if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
 146            printk_ratelimit()) {
 147                pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
 148                        tsk->comm, task_pid_nr(tsk), type, desc,
 149                        regs->ip, regs->sp, error_code);
 150                print_vma_addr(KERN_CONT " in ", regs->ip);
 151                pr_cont("\n");
 152        }
 153}
 154
 155static void
 156do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
 157        long error_code, int sicode, void __user *addr)
 158{
 159        struct task_struct *tsk = current;
 160
 161        if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
 162                return;
 163
 164        show_signal(tsk, signr, "trap ", str, regs, error_code);
 165
 166        if (!sicode)
 167                force_sig(signr);
 168        else
 169                force_sig_fault(signr, sicode, addr);
 170}
 171NOKPROBE_SYMBOL(do_trap);
 172
 173static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
 174        unsigned long trapnr, int signr, int sicode, void __user *addr)
 175{
 176        RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
 177
 178        if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
 179                        NOTIFY_STOP) {
 180                cond_local_irq_enable(regs);
 181                do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
 182                cond_local_irq_disable(regs);
 183        }
 184}
 185
 186/*
 187 * Posix requires to provide the address of the faulting instruction for
 188 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
 189 *
 190 * This address is usually regs->ip, but when an uprobe moved the code out
 191 * of line then regs->ip points to the XOL code which would confuse
 192 * anything which analyzes the fault address vs. the unmodified binary. If
 193 * a trap happened in XOL code then uprobe maps regs->ip back to the
 194 * original instruction address.
 195 */
 196static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
 197{
 198        return (void __user *)uprobe_get_trap_addr(regs);
 199}
 200
 201DEFINE_IDTENTRY(exc_divide_error)
 202{
 203        do_error_trap(regs, 0, "divide error", X86_TRAP_DE, SIGFPE,
 204                      FPE_INTDIV, error_get_trap_addr(regs));
 205}
 206
 207DEFINE_IDTENTRY(exc_overflow)
 208{
 209        do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
 210}
 211
 212#ifdef CONFIG_X86_F00F_BUG
 213void handle_invalid_op(struct pt_regs *regs)
 214#else
 215static inline void handle_invalid_op(struct pt_regs *regs)
 216#endif
 217{
 218        do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
 219                      ILL_ILLOPN, error_get_trap_addr(regs));
 220}
 221
 222static noinstr bool handle_bug(struct pt_regs *regs)
 223{
 224        bool handled = false;
 225
 226        if (!is_valid_bugaddr(regs->ip))
 227                return handled;
 228
 229        /*
 230         * All lies, just get the WARN/BUG out.
 231         */
 232        instrumentation_begin();
 233        /*
 234         * Since we're emulating a CALL with exceptions, restore the interrupt
 235         * state to what it was at the exception site.
 236         */
 237        if (regs->flags & X86_EFLAGS_IF)
 238                raw_local_irq_enable();
 239        if (report_bug(regs->ip, regs) == BUG_TRAP_TYPE_WARN) {
 240                regs->ip += LEN_UD2;
 241                handled = true;
 242        }
 243        if (regs->flags & X86_EFLAGS_IF)
 244                raw_local_irq_disable();
 245        instrumentation_end();
 246
 247        return handled;
 248}
 249
 250DEFINE_IDTENTRY_RAW(exc_invalid_op)
 251{
 252        irqentry_state_t state;
 253
 254        /*
 255         * We use UD2 as a short encoding for 'CALL __WARN', as such
 256         * handle it before exception entry to avoid recursive WARN
 257         * in case exception entry is the one triggering WARNs.
 258         */
 259        if (!user_mode(regs) && handle_bug(regs))
 260                return;
 261
 262        state = irqentry_enter(regs);
 263        instrumentation_begin();
 264        handle_invalid_op(regs);
 265        instrumentation_end();
 266        irqentry_exit(regs, state);
 267}
 268
 269DEFINE_IDTENTRY(exc_coproc_segment_overrun)
 270{
 271        do_error_trap(regs, 0, "coprocessor segment overrun",
 272                      X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
 273}
 274
 275DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
 276{
 277        do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
 278                      0, NULL);
 279}
 280
 281DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
 282{
 283        do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
 284                      SIGBUS, 0, NULL);
 285}
 286
 287DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
 288{
 289        do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
 290                      0, NULL);
 291}
 292
 293DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
 294{
 295        char *str = "alignment check";
 296
 297        if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
 298                return;
 299
 300        if (!user_mode(regs))
 301                die("Split lock detected\n", regs, error_code);
 302
 303        local_irq_enable();
 304
 305        if (handle_user_split_lock(regs, error_code))
 306                goto out;
 307
 308        do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
 309                error_code, BUS_ADRALN, NULL);
 310
 311out:
 312        local_irq_disable();
 313}
 314
 315#ifdef CONFIG_VMAP_STACK
 316__visible void __noreturn handle_stack_overflow(const char *message,
 317                                                struct pt_regs *regs,
 318                                                unsigned long fault_address)
 319{
 320        printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
 321                 (void *)fault_address, current->stack,
 322                 (char *)current->stack + THREAD_SIZE - 1);
 323        die(message, regs, 0);
 324
 325        /* Be absolutely certain we don't return. */
 326        panic("%s", message);
 327}
 328#endif
 329
 330/*
 331 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
 332 *
 333 * On x86_64, this is more or less a normal kernel entry.  Notwithstanding the
 334 * SDM's warnings about double faults being unrecoverable, returning works as
 335 * expected.  Presumably what the SDM actually means is that the CPU may get
 336 * the register state wrong on entry, so returning could be a bad idea.
 337 *
 338 * Various CPU engineers have promised that double faults due to an IRET fault
 339 * while the stack is read-only are, in fact, recoverable.
 340 *
 341 * On x86_32, this is entered through a task gate, and regs are synthesized
 342 * from the TSS.  Returning is, in principle, okay, but changes to regs will
 343 * be lost.  If, for some reason, we need to return to a context with modified
 344 * regs, the shim code could be adjusted to synchronize the registers.
 345 *
 346 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
 347 * to be read before doing anything else.
 348 */
 349DEFINE_IDTENTRY_DF(exc_double_fault)
 350{
 351        static const char str[] = "double fault";
 352        struct task_struct *tsk = current;
 353
 354#ifdef CONFIG_VMAP_STACK
 355        unsigned long address = read_cr2();
 356#endif
 357
 358#ifdef CONFIG_X86_ESPFIX64
 359        extern unsigned char native_irq_return_iret[];
 360
 361        /*
 362         * If IRET takes a non-IST fault on the espfix64 stack, then we
 363         * end up promoting it to a doublefault.  In that case, take
 364         * advantage of the fact that we're not using the normal (TSS.sp0)
 365         * stack right now.  We can write a fake #GP(0) frame at TSS.sp0
 366         * and then modify our own IRET frame so that, when we return,
 367         * we land directly at the #GP(0) vector with the stack already
 368         * set up according to its expectations.
 369         *
 370         * The net result is that our #GP handler will think that we
 371         * entered from usermode with the bad user context.
 372         *
 373         * No need for nmi_enter() here because we don't use RCU.
 374         */
 375        if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
 376                regs->cs == __KERNEL_CS &&
 377                regs->ip == (unsigned long)native_irq_return_iret)
 378        {
 379                struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 380                unsigned long *p = (unsigned long *)regs->sp;
 381
 382                /*
 383                 * regs->sp points to the failing IRET frame on the
 384                 * ESPFIX64 stack.  Copy it to the entry stack.  This fills
 385                 * in gpregs->ss through gpregs->ip.
 386                 *
 387                 */
 388                gpregs->ip      = p[0];
 389                gpregs->cs      = p[1];
 390                gpregs->flags   = p[2];
 391                gpregs->sp      = p[3];
 392                gpregs->ss      = p[4];
 393                gpregs->orig_ax = 0;  /* Missing (lost) #GP error code */
 394
 395                /*
 396                 * Adjust our frame so that we return straight to the #GP
 397                 * vector with the expected RSP value.  This is safe because
 398                 * we won't enable interrupts or schedule before we invoke
 399                 * general_protection, so nothing will clobber the stack
 400                 * frame we just set up.
 401                 *
 402                 * We will enter general_protection with kernel GSBASE,
 403                 * which is what the stub expects, given that the faulting
 404                 * RIP will be the IRET instruction.
 405                 */
 406                regs->ip = (unsigned long)asm_exc_general_protection;
 407                regs->sp = (unsigned long)&gpregs->orig_ax;
 408
 409                return;
 410        }
 411#endif
 412
 413        irqentry_nmi_enter(regs);
 414        instrumentation_begin();
 415        notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
 416
 417        tsk->thread.error_code = error_code;
 418        tsk->thread.trap_nr = X86_TRAP_DF;
 419
 420#ifdef CONFIG_VMAP_STACK
 421        /*
 422         * If we overflow the stack into a guard page, the CPU will fail
 423         * to deliver #PF and will send #DF instead.  Similarly, if we
 424         * take any non-IST exception while too close to the bottom of
 425         * the stack, the processor will get a page fault while
 426         * delivering the exception and will generate a double fault.
 427         *
 428         * According to the SDM (footnote in 6.15 under "Interrupt 14 -
 429         * Page-Fault Exception (#PF):
 430         *
 431         *   Processors update CR2 whenever a page fault is detected. If a
 432         *   second page fault occurs while an earlier page fault is being
 433         *   delivered, the faulting linear address of the second fault will
 434         *   overwrite the contents of CR2 (replacing the previous
 435         *   address). These updates to CR2 occur even if the page fault
 436         *   results in a double fault or occurs during the delivery of a
 437         *   double fault.
 438         *
 439         * The logic below has a small possibility of incorrectly diagnosing
 440         * some errors as stack overflows.  For example, if the IDT or GDT
 441         * gets corrupted such that #GP delivery fails due to a bad descriptor
 442         * causing #GP and we hit this condition while CR2 coincidentally
 443         * points to the stack guard page, we'll think we overflowed the
 444         * stack.  Given that we're going to panic one way or another
 445         * if this happens, this isn't necessarily worth fixing.
 446         *
 447         * If necessary, we could improve the test by only diagnosing
 448         * a stack overflow if the saved RSP points within 47 bytes of
 449         * the bottom of the stack: if RSP == tsk_stack + 48 and we
 450         * take an exception, the stack is already aligned and there
 451         * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
 452         * possible error code, so a stack overflow would *not* double
 453         * fault.  With any less space left, exception delivery could
 454         * fail, and, as a practical matter, we've overflowed the
 455         * stack even if the actual trigger for the double fault was
 456         * something else.
 457         */
 458        if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) {
 459                handle_stack_overflow("kernel stack overflow (double-fault)",
 460                                      regs, address);
 461        }
 462#endif
 463
 464        pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
 465        die("double fault", regs, error_code);
 466        panic("Machine halted.");
 467        instrumentation_end();
 468}
 469
 470DEFINE_IDTENTRY(exc_bounds)
 471{
 472        if (notify_die(DIE_TRAP, "bounds", regs, 0,
 473                        X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
 474                return;
 475        cond_local_irq_enable(regs);
 476
 477        if (!user_mode(regs))
 478                die("bounds", regs, 0);
 479
 480        do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
 481
 482        cond_local_irq_disable(regs);
 483}
 484
 485enum kernel_gp_hint {
 486        GP_NO_HINT,
 487        GP_NON_CANONICAL,
 488        GP_CANONICAL
 489};
 490
 491/*
 492 * When an uncaught #GP occurs, try to determine the memory address accessed by
 493 * the instruction and return that address to the caller. Also, try to figure
 494 * out whether any part of the access to that address was non-canonical.
 495 */
 496static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
 497                                                 unsigned long *addr)
 498{
 499        u8 insn_buf[MAX_INSN_SIZE];
 500        struct insn insn;
 501        int ret;
 502
 503        if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
 504                        MAX_INSN_SIZE))
 505                return GP_NO_HINT;
 506
 507        ret = insn_decode_kernel(&insn, insn_buf);
 508        if (ret < 0)
 509                return GP_NO_HINT;
 510
 511        *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
 512        if (*addr == -1UL)
 513                return GP_NO_HINT;
 514
 515#ifdef CONFIG_X86_64
 516        /*
 517         * Check that:
 518         *  - the operand is not in the kernel half
 519         *  - the last byte of the operand is not in the user canonical half
 520         */
 521        if (*addr < ~__VIRTUAL_MASK &&
 522            *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
 523                return GP_NON_CANONICAL;
 524#endif
 525
 526        return GP_CANONICAL;
 527}
 528
 529#define GPFSTR "general protection fault"
 530
 531DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
 532{
 533        char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
 534        enum kernel_gp_hint hint = GP_NO_HINT;
 535        struct task_struct *tsk;
 536        unsigned long gp_addr;
 537        int ret;
 538
 539        cond_local_irq_enable(regs);
 540
 541        if (static_cpu_has(X86_FEATURE_UMIP)) {
 542                if (user_mode(regs) && fixup_umip_exception(regs))
 543                        goto exit;
 544        }
 545
 546        if (v8086_mode(regs)) {
 547                local_irq_enable();
 548                handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
 549                local_irq_disable();
 550                return;
 551        }
 552
 553        tsk = current;
 554
 555        if (user_mode(regs)) {
 556                tsk->thread.error_code = error_code;
 557                tsk->thread.trap_nr = X86_TRAP_GP;
 558
 559                if (fixup_vdso_exception(regs, X86_TRAP_GP, error_code, 0))
 560                        goto exit;
 561
 562                show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
 563                force_sig(SIGSEGV);
 564                goto exit;
 565        }
 566
 567        if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
 568                goto exit;
 569
 570        tsk->thread.error_code = error_code;
 571        tsk->thread.trap_nr = X86_TRAP_GP;
 572
 573        /*
 574         * To be potentially processing a kprobe fault and to trust the result
 575         * from kprobe_running(), we have to be non-preemptible.
 576         */
 577        if (!preemptible() &&
 578            kprobe_running() &&
 579            kprobe_fault_handler(regs, X86_TRAP_GP))
 580                goto exit;
 581
 582        ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
 583        if (ret == NOTIFY_STOP)
 584                goto exit;
 585
 586        if (error_code)
 587                snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
 588        else
 589                hint = get_kernel_gp_address(regs, &gp_addr);
 590
 591        if (hint != GP_NO_HINT)
 592                snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
 593                         (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
 594                                                    : "maybe for address",
 595                         gp_addr);
 596
 597        /*
 598         * KASAN is interested only in the non-canonical case, clear it
 599         * otherwise.
 600         */
 601        if (hint != GP_NON_CANONICAL)
 602                gp_addr = 0;
 603
 604        die_addr(desc, regs, error_code, gp_addr);
 605
 606exit:
 607        cond_local_irq_disable(regs);
 608}
 609
 610static bool do_int3(struct pt_regs *regs)
 611{
 612        int res;
 613
 614#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 615        if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
 616                         SIGTRAP) == NOTIFY_STOP)
 617                return true;
 618#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 619
 620#ifdef CONFIG_KPROBES
 621        if (kprobe_int3_handler(regs))
 622                return true;
 623#endif
 624        res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
 625
 626        return res == NOTIFY_STOP;
 627}
 628
 629static void do_int3_user(struct pt_regs *regs)
 630{
 631        if (do_int3(regs))
 632                return;
 633
 634        cond_local_irq_enable(regs);
 635        do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
 636        cond_local_irq_disable(regs);
 637}
 638
 639DEFINE_IDTENTRY_RAW(exc_int3)
 640{
 641        /*
 642         * poke_int3_handler() is completely self contained code; it does (and
 643         * must) *NOT* call out to anything, lest it hits upon yet another
 644         * INT3.
 645         */
 646        if (poke_int3_handler(regs))
 647                return;
 648
 649        /*
 650         * irqentry_enter_from_user_mode() uses static_branch_{,un}likely()
 651         * and therefore can trigger INT3, hence poke_int3_handler() must
 652         * be done before. If the entry came from kernel mode, then use
 653         * nmi_enter() because the INT3 could have been hit in any context
 654         * including NMI.
 655         */
 656        if (user_mode(regs)) {
 657                irqentry_enter_from_user_mode(regs);
 658                instrumentation_begin();
 659                do_int3_user(regs);
 660                instrumentation_end();
 661                irqentry_exit_to_user_mode(regs);
 662        } else {
 663                irqentry_state_t irq_state = irqentry_nmi_enter(regs);
 664
 665                instrumentation_begin();
 666                if (!do_int3(regs))
 667                        die("int3", regs, 0);
 668                instrumentation_end();
 669                irqentry_nmi_exit(regs, irq_state);
 670        }
 671}
 672
 673#ifdef CONFIG_X86_64
 674/*
 675 * Help handler running on a per-cpu (IST or entry trampoline) stack
 676 * to switch to the normal thread stack if the interrupted code was in
 677 * user mode. The actual stack switch is done in entry_64.S
 678 */
 679asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
 680{
 681        struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
 682        if (regs != eregs)
 683                *regs = *eregs;
 684        return regs;
 685}
 686
 687#ifdef CONFIG_AMD_MEM_ENCRYPT
 688asmlinkage __visible noinstr struct pt_regs *vc_switch_off_ist(struct pt_regs *regs)
 689{
 690        unsigned long sp, *stack;
 691        struct stack_info info;
 692        struct pt_regs *regs_ret;
 693
 694        /*
 695         * In the SYSCALL entry path the RSP value comes from user-space - don't
 696         * trust it and switch to the current kernel stack
 697         */
 698        if (ip_within_syscall_gap(regs)) {
 699                sp = this_cpu_read(cpu_current_top_of_stack);
 700                goto sync;
 701        }
 702
 703        /*
 704         * From here on the RSP value is trusted. Now check whether entry
 705         * happened from a safe stack. Not safe are the entry or unknown stacks,
 706         * use the fall-back stack instead in this case.
 707         */
 708        sp    = regs->sp;
 709        stack = (unsigned long *)sp;
 710
 711        if (!get_stack_info_noinstr(stack, current, &info) || info.type == STACK_TYPE_ENTRY ||
 712            info.type >= STACK_TYPE_EXCEPTION_LAST)
 713                sp = __this_cpu_ist_top_va(VC2);
 714
 715sync:
 716        /*
 717         * Found a safe stack - switch to it as if the entry didn't happen via
 718         * IST stack. The code below only copies pt_regs, the real switch happens
 719         * in assembly code.
 720         */
 721        sp = ALIGN_DOWN(sp, 8) - sizeof(*regs_ret);
 722
 723        regs_ret = (struct pt_regs *)sp;
 724        *regs_ret = *regs;
 725
 726        return regs_ret;
 727}
 728#endif
 729
 730struct bad_iret_stack {
 731        void *error_entry_ret;
 732        struct pt_regs regs;
 733};
 734
 735asmlinkage __visible noinstr
 736struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
 737{
 738        /*
 739         * This is called from entry_64.S early in handling a fault
 740         * caused by a bad iret to user mode.  To handle the fault
 741         * correctly, we want to move our stack frame to where it would
 742         * be had we entered directly on the entry stack (rather than
 743         * just below the IRET frame) and we want to pretend that the
 744         * exception came from the IRET target.
 745         */
 746        struct bad_iret_stack tmp, *new_stack =
 747                (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
 748
 749        /* Copy the IRET target to the temporary storage. */
 750        __memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
 751
 752        /* Copy the remainder of the stack from the current stack. */
 753        __memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
 754
 755        /* Update the entry stack */
 756        __memcpy(new_stack, &tmp, sizeof(tmp));
 757
 758        BUG_ON(!user_mode(&new_stack->regs));
 759        return new_stack;
 760}
 761#endif
 762
 763static bool is_sysenter_singlestep(struct pt_regs *regs)
 764{
 765        /*
 766         * We don't try for precision here.  If we're anywhere in the region of
 767         * code that can be single-stepped in the SYSENTER entry path, then
 768         * assume that this is a useless single-step trap due to SYSENTER
 769         * being invoked with TF set.  (We don't know in advance exactly
 770         * which instructions will be hit because BTF could plausibly
 771         * be set.)
 772         */
 773#ifdef CONFIG_X86_32
 774        return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
 775                (unsigned long)__end_SYSENTER_singlestep_region -
 776                (unsigned long)__begin_SYSENTER_singlestep_region;
 777#elif defined(CONFIG_IA32_EMULATION)
 778        return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
 779                (unsigned long)__end_entry_SYSENTER_compat -
 780                (unsigned long)entry_SYSENTER_compat;
 781#else
 782        return false;
 783#endif
 784}
 785
 786static __always_inline unsigned long debug_read_clear_dr6(void)
 787{
 788        unsigned long dr6;
 789
 790        /*
 791         * The Intel SDM says:
 792         *
 793         *   Certain debug exceptions may clear bits 0-3. The remaining
 794         *   contents of the DR6 register are never cleared by the
 795         *   processor. To avoid confusion in identifying debug
 796         *   exceptions, debug handlers should clear the register before
 797         *   returning to the interrupted task.
 798         *
 799         * Keep it simple: clear DR6 immediately.
 800         */
 801        get_debugreg(dr6, 6);
 802        set_debugreg(DR6_RESERVED, 6);
 803        dr6 ^= DR6_RESERVED; /* Flip to positive polarity */
 804
 805        return dr6;
 806}
 807
 808/*
 809 * Our handling of the processor debug registers is non-trivial.
 810 * We do not clear them on entry and exit from the kernel. Therefore
 811 * it is possible to get a watchpoint trap here from inside the kernel.
 812 * However, the code in ./ptrace.c has ensured that the user can
 813 * only set watchpoints on userspace addresses. Therefore the in-kernel
 814 * watchpoint trap can only occur in code which is reading/writing
 815 * from user space. Such code must not hold kernel locks (since it
 816 * can equally take a page fault), therefore it is safe to call
 817 * force_sig_info even though that claims and releases locks.
 818 *
 819 * Code in ./signal.c ensures that the debug control register
 820 * is restored before we deliver any signal, and therefore that
 821 * user code runs with the correct debug control register even though
 822 * we clear it here.
 823 *
 824 * Being careful here means that we don't have to be as careful in a
 825 * lot of more complicated places (task switching can be a bit lazy
 826 * about restoring all the debug state, and ptrace doesn't have to
 827 * find every occurrence of the TF bit that could be saved away even
 828 * by user code)
 829 *
 830 * May run on IST stack.
 831 */
 832
 833static bool notify_debug(struct pt_regs *regs, unsigned long *dr6)
 834{
 835        /*
 836         * Notifiers will clear bits in @dr6 to indicate the event has been
 837         * consumed - hw_breakpoint_handler(), single_stop_cont().
 838         *
 839         * Notifiers will set bits in @virtual_dr6 to indicate the desire
 840         * for signals - ptrace_triggered(), kgdb_hw_overflow_handler().
 841         */
 842        if (notify_die(DIE_DEBUG, "debug", regs, (long)dr6, 0, SIGTRAP) == NOTIFY_STOP)
 843                return true;
 844
 845        return false;
 846}
 847
 848static __always_inline void exc_debug_kernel(struct pt_regs *regs,
 849                                             unsigned long dr6)
 850{
 851        /*
 852         * Disable breakpoints during exception handling; recursive exceptions
 853         * are exceedingly 'fun'.
 854         *
 855         * Since this function is NOKPROBE, and that also applies to
 856         * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
 857         * HW_BREAKPOINT_W on our stack)
 858         *
 859         * Entry text is excluded for HW_BP_X and cpu_entry_area, which
 860         * includes the entry stack is excluded for everything.
 861         */
 862        unsigned long dr7 = local_db_save();
 863        irqentry_state_t irq_state = irqentry_nmi_enter(regs);
 864        instrumentation_begin();
 865
 866        /*
 867         * If something gets miswired and we end up here for a user mode
 868         * #DB, we will malfunction.
 869         */
 870        WARN_ON_ONCE(user_mode(regs));
 871
 872        if (test_thread_flag(TIF_BLOCKSTEP)) {
 873                /*
 874                 * The SDM says "The processor clears the BTF flag when it
 875                 * generates a debug exception." but PTRACE_BLOCKSTEP requested
 876                 * it for userspace, but we just took a kernel #DB, so re-set
 877                 * BTF.
 878                 */
 879                unsigned long debugctl;
 880
 881                rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 882                debugctl |= DEBUGCTLMSR_BTF;
 883                wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
 884        }
 885
 886        /*
 887         * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
 888         * watchpoint at the same time then that will still be handled.
 889         */
 890        if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
 891                dr6 &= ~DR_STEP;
 892
 893        /*
 894         * The kernel doesn't use INT1
 895         */
 896        if (!dr6)
 897                goto out;
 898
 899        if (notify_debug(regs, &dr6))
 900                goto out;
 901
 902        /*
 903         * The kernel doesn't use TF single-step outside of:
 904         *
 905         *  - Kprobes, consumed through kprobe_debug_handler()
 906         *  - KGDB, consumed through notify_debug()
 907         *
 908         * So if we get here with DR_STEP set, something is wonky.
 909         *
 910         * A known way to trigger this is through QEMU's GDB stub,
 911         * which leaks #DB into the guest and causes IST recursion.
 912         */
 913        if (WARN_ON_ONCE(dr6 & DR_STEP))
 914                regs->flags &= ~X86_EFLAGS_TF;
 915out:
 916        instrumentation_end();
 917        irqentry_nmi_exit(regs, irq_state);
 918
 919        local_db_restore(dr7);
 920}
 921
 922static __always_inline void exc_debug_user(struct pt_regs *regs,
 923                                           unsigned long dr6)
 924{
 925        bool icebp;
 926
 927        /*
 928         * If something gets miswired and we end up here for a kernel mode
 929         * #DB, we will malfunction.
 930         */
 931        WARN_ON_ONCE(!user_mode(regs));
 932
 933        /*
 934         * NB: We can't easily clear DR7 here because
 935         * irqentry_exit_to_usermode() can invoke ptrace, schedule, access
 936         * user memory, etc.  This means that a recursive #DB is possible.  If
 937         * this happens, that #DB will hit exc_debug_kernel() and clear DR7.
 938         * Since we're not on the IST stack right now, everything will be
 939         * fine.
 940         */
 941
 942        irqentry_enter_from_user_mode(regs);
 943        instrumentation_begin();
 944
 945        /*
 946         * Start the virtual/ptrace DR6 value with just the DR_STEP mask
 947         * of the real DR6. ptrace_triggered() will set the DR_TRAPn bits.
 948         *
 949         * Userspace expects DR_STEP to be visible in ptrace_get_debugreg(6)
 950         * even if it is not the result of PTRACE_SINGLESTEP.
 951         */
 952        current->thread.virtual_dr6 = (dr6 & DR_STEP);
 953
 954        /*
 955         * The SDM says "The processor clears the BTF flag when it
 956         * generates a debug exception."  Clear TIF_BLOCKSTEP to keep
 957         * TIF_BLOCKSTEP in sync with the hardware BTF flag.
 958         */
 959        clear_thread_flag(TIF_BLOCKSTEP);
 960
 961        /*
 962         * If dr6 has no reason to give us about the origin of this trap,
 963         * then it's very likely the result of an icebp/int01 trap.
 964         * User wants a sigtrap for that.
 965         */
 966        icebp = !dr6;
 967
 968        if (notify_debug(regs, &dr6))
 969                goto out;
 970
 971        /* It's safe to allow irq's after DR6 has been saved */
 972        local_irq_enable();
 973
 974        if (v8086_mode(regs)) {
 975                handle_vm86_trap((struct kernel_vm86_regs *)regs, 0, X86_TRAP_DB);
 976                goto out_irq;
 977        }
 978
 979        /* #DB for bus lock can only be triggered from userspace. */
 980        if (dr6 & DR_BUS_LOCK)
 981                handle_bus_lock(regs);
 982
 983        /* Add the virtual_dr6 bits for signals. */
 984        dr6 |= current->thread.virtual_dr6;
 985        if (dr6 & (DR_STEP | DR_TRAP_BITS) || icebp)
 986                send_sigtrap(regs, 0, get_si_code(dr6));
 987
 988out_irq:
 989        local_irq_disable();
 990out:
 991        instrumentation_end();
 992        irqentry_exit_to_user_mode(regs);
 993}
 994
 995#ifdef CONFIG_X86_64
 996/* IST stack entry */
 997DEFINE_IDTENTRY_DEBUG(exc_debug)
 998{
 999        exc_debug_kernel(regs, debug_read_clear_dr6());
1000}
1001
1002/* User entry, runs on regular task stack */
1003DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
1004{
1005        exc_debug_user(regs, debug_read_clear_dr6());
1006}
1007#else
1008/* 32 bit does not have separate entry points. */
1009DEFINE_IDTENTRY_RAW(exc_debug)
1010{
1011        unsigned long dr6 = debug_read_clear_dr6();
1012
1013        if (user_mode(regs))
1014                exc_debug_user(regs, dr6);
1015        else
1016                exc_debug_kernel(regs, dr6);
1017}
1018#endif
1019
1020/*
1021 * Note that we play around with the 'TS' bit in an attempt to get
1022 * the correct behaviour even in the presence of the asynchronous
1023 * IRQ13 behaviour
1024 */
1025static void math_error(struct pt_regs *regs, int trapnr)
1026{
1027        struct task_struct *task = current;
1028        struct fpu *fpu = &task->thread.fpu;
1029        int si_code;
1030        char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
1031                                                "simd exception";
1032
1033        cond_local_irq_enable(regs);
1034
1035        if (!user_mode(regs)) {
1036                if (fixup_exception(regs, trapnr, 0, 0))
1037                        goto exit;
1038
1039                task->thread.error_code = 0;
1040                task->thread.trap_nr = trapnr;
1041
1042                if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
1043                               SIGFPE) != NOTIFY_STOP)
1044                        die(str, regs, 0);
1045                goto exit;
1046        }
1047
1048        /*
1049         * Save the info for the exception handler and clear the error.
1050         */
1051        fpu__save(fpu);
1052
1053        task->thread.trap_nr    = trapnr;
1054        task->thread.error_code = 0;
1055
1056        si_code = fpu__exception_code(fpu, trapnr);
1057        /* Retry when we get spurious exceptions: */
1058        if (!si_code)
1059                goto exit;
1060
1061        if (fixup_vdso_exception(regs, trapnr, 0, 0))
1062                goto exit;
1063
1064        force_sig_fault(SIGFPE, si_code,
1065                        (void __user *)uprobe_get_trap_addr(regs));
1066exit:
1067        cond_local_irq_disable(regs);
1068}
1069
1070DEFINE_IDTENTRY(exc_coprocessor_error)
1071{
1072        math_error(regs, X86_TRAP_MF);
1073}
1074
1075DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1076{
1077        if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
1078                /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
1079                if (!static_cpu_has(X86_FEATURE_XMM)) {
1080                        __exc_general_protection(regs, 0);
1081                        return;
1082                }
1083        }
1084        math_error(regs, X86_TRAP_XF);
1085}
1086
1087DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1088{
1089        /*
1090         * This addresses a Pentium Pro Erratum:
1091         *
1092         * PROBLEM: If the APIC subsystem is configured in mixed mode with
1093         * Virtual Wire mode implemented through the local APIC, an
1094         * interrupt vector of 0Fh (Intel reserved encoding) may be
1095         * generated by the local APIC (Int 15).  This vector may be
1096         * generated upon receipt of a spurious interrupt (an interrupt
1097         * which is removed before the system receives the INTA sequence)
1098         * instead of the programmed 8259 spurious interrupt vector.
1099         *
1100         * IMPLICATION: The spurious interrupt vector programmed in the
1101         * 8259 is normally handled by an operating system's spurious
1102         * interrupt handler. However, a vector of 0Fh is unknown to some
1103         * operating systems, which would crash if this erratum occurred.
1104         *
1105         * In theory this could be limited to 32bit, but the handler is not
1106         * hurting and who knows which other CPUs suffer from this.
1107         */
1108}
1109
1110DEFINE_IDTENTRY(exc_device_not_available)
1111{
1112        unsigned long cr0 = read_cr0();
1113
1114#ifdef CONFIG_MATH_EMULATION
1115        if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
1116                struct math_emu_info info = { };
1117
1118                cond_local_irq_enable(regs);
1119
1120                info.regs = regs;
1121                math_emulate(&info);
1122
1123                cond_local_irq_disable(regs);
1124                return;
1125        }
1126#endif
1127
1128        /* This should not happen. */
1129        if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1130                /* Try to fix it up and carry on. */
1131                write_cr0(cr0 & ~X86_CR0_TS);
1132        } else {
1133                /*
1134                 * Something terrible happened, and we're better off trying
1135                 * to kill the task than getting stuck in a never-ending
1136                 * loop of #NM faults.
1137                 */
1138                die("unexpected #NM exception", regs, 0);
1139        }
1140}
1141
1142#ifdef CONFIG_X86_32
1143DEFINE_IDTENTRY_SW(iret_error)
1144{
1145        local_irq_enable();
1146        if (notify_die(DIE_TRAP, "iret exception", regs, 0,
1147                        X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
1148                do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
1149                        ILL_BADSTK, (void __user *)NULL);
1150        }
1151        local_irq_disable();
1152}
1153#endif
1154
1155void __init trap_init(void)
1156{
1157        /* Init cpu_entry_area before IST entries are set up */
1158        setup_cpu_entry_areas();
1159
1160        /* Init GHCB memory pages when running as an SEV-ES guest */
1161        sev_es_init_vc_handling();
1162
1163        idt_setup_traps();
1164
1165        /*
1166         * Should be a barrier for any external CPU state:
1167         */
1168        cpu_init();
1169
1170        idt_setup_ist_traps();
1171}
1172