linux/arch/x86/kvm/vmx/vmx.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef __KVM_X86_VMX_H
   3#define __KVM_X86_VMX_H
   4
   5#include <linux/kvm_host.h>
   6
   7#include <asm/kvm.h>
   8#include <asm/intel_pt.h>
   9
  10#include "capabilities.h"
  11#include "kvm_cache_regs.h"
  12#include "posted_intr.h"
  13#include "vmcs.h"
  14#include "vmx_ops.h"
  15#include "cpuid.h"
  16
  17extern const u32 vmx_msr_index[];
  18
  19#define MSR_TYPE_R      1
  20#define MSR_TYPE_W      2
  21#define MSR_TYPE_RW     3
  22
  23#define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
  24
  25#ifdef CONFIG_X86_64
  26#define MAX_NR_USER_RETURN_MSRS 7
  27#else
  28#define MAX_NR_USER_RETURN_MSRS 4
  29#endif
  30
  31#define MAX_NR_LOADSTORE_MSRS   8
  32
  33struct vmx_msrs {
  34        unsigned int            nr;
  35        struct vmx_msr_entry    val[MAX_NR_LOADSTORE_MSRS];
  36};
  37
  38struct vmx_uret_msr {
  39        bool load_into_hardware;
  40        u64 data;
  41        u64 mask;
  42};
  43
  44enum segment_cache_field {
  45        SEG_FIELD_SEL = 0,
  46        SEG_FIELD_BASE = 1,
  47        SEG_FIELD_LIMIT = 2,
  48        SEG_FIELD_AR = 3,
  49
  50        SEG_FIELD_NR = 4
  51};
  52
  53#define RTIT_ADDR_RANGE         4
  54
  55struct pt_ctx {
  56        u64 ctl;
  57        u64 status;
  58        u64 output_base;
  59        u64 output_mask;
  60        u64 cr3_match;
  61        u64 addr_a[RTIT_ADDR_RANGE];
  62        u64 addr_b[RTIT_ADDR_RANGE];
  63};
  64
  65struct pt_desc {
  66        u64 ctl_bitmask;
  67        u32 addr_range;
  68        u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
  69        struct pt_ctx host;
  70        struct pt_ctx guest;
  71};
  72
  73union vmx_exit_reason {
  74        struct {
  75                u32     basic                   : 16;
  76                u32     reserved16              : 1;
  77                u32     reserved17              : 1;
  78                u32     reserved18              : 1;
  79                u32     reserved19              : 1;
  80                u32     reserved20              : 1;
  81                u32     reserved21              : 1;
  82                u32     reserved22              : 1;
  83                u32     reserved23              : 1;
  84                u32     reserved24              : 1;
  85                u32     reserved25              : 1;
  86                u32     bus_lock_detected       : 1;
  87                u32     enclave_mode            : 1;
  88                u32     smi_pending_mtf         : 1;
  89                u32     smi_from_vmx_root       : 1;
  90                u32     reserved30              : 1;
  91                u32     failed_vmentry          : 1;
  92        };
  93        u32 full;
  94};
  95
  96#define vcpu_to_lbr_desc(vcpu) (&to_vmx(vcpu)->lbr_desc)
  97#define vcpu_to_lbr_records(vcpu) (&to_vmx(vcpu)->lbr_desc.records)
  98
  99bool intel_pmu_lbr_is_compatible(struct kvm_vcpu *vcpu);
 100bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu);
 101
 102int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
 103void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
 104
 105struct lbr_desc {
 106        /* Basic info about guest LBR records. */
 107        struct x86_pmu_lbr records;
 108
 109        /*
 110         * Emulate LBR feature via passthrough LBR registers when the
 111         * per-vcpu guest LBR event is scheduled on the current pcpu.
 112         *
 113         * The records may be inaccurate if the host reclaims the LBR.
 114         */
 115        struct perf_event *event;
 116
 117        /* True if LBRs are marked as not intercepted in the MSR bitmap */
 118        bool msr_passthrough;
 119};
 120
 121/*
 122 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
 123 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
 124 */
 125struct nested_vmx {
 126        /* Has the level1 guest done vmxon? */
 127        bool vmxon;
 128        gpa_t vmxon_ptr;
 129        bool pml_full;
 130
 131        /* The guest-physical address of the current VMCS L1 keeps for L2 */
 132        gpa_t current_vmptr;
 133        /*
 134         * Cache of the guest's VMCS, existing outside of guest memory.
 135         * Loaded from guest memory during VMPTRLD. Flushed to guest
 136         * memory during VMCLEAR and VMPTRLD.
 137         */
 138        struct vmcs12 *cached_vmcs12;
 139        /*
 140         * Cache of the guest's shadow VMCS, existing outside of guest
 141         * memory. Loaded from guest memory during VM entry. Flushed
 142         * to guest memory during VM exit.
 143         */
 144        struct vmcs12 *cached_shadow_vmcs12;
 145
 146        /*
 147         * Indicates if the shadow vmcs or enlightened vmcs must be updated
 148         * with the data held by struct vmcs12.
 149         */
 150        bool need_vmcs12_to_shadow_sync;
 151        bool dirty_vmcs12;
 152
 153        /*
 154         * Indicates lazily loaded guest state has not yet been decached from
 155         * vmcs02.
 156         */
 157        bool need_sync_vmcs02_to_vmcs12_rare;
 158
 159        /*
 160         * vmcs02 has been initialized, i.e. state that is constant for
 161         * vmcs02 has been written to the backing VMCS.  Initialization
 162         * is delayed until L1 actually attempts to run a nested VM.
 163         */
 164        bool vmcs02_initialized;
 165
 166        bool change_vmcs01_virtual_apic_mode;
 167        bool reload_vmcs01_apic_access_page;
 168        bool update_vmcs01_cpu_dirty_logging;
 169
 170        /*
 171         * Enlightened VMCS has been enabled. It does not mean that L1 has to
 172         * use it. However, VMX features available to L1 will be limited based
 173         * on what the enlightened VMCS supports.
 174         */
 175        bool enlightened_vmcs_enabled;
 176
 177        /* L2 must run next, and mustn't decide to exit to L1. */
 178        bool nested_run_pending;
 179
 180        /* Pending MTF VM-exit into L1.  */
 181        bool mtf_pending;
 182
 183        struct loaded_vmcs vmcs02;
 184
 185        /*
 186         * Guest pages referred to in the vmcs02 with host-physical
 187         * pointers, so we must keep them pinned while L2 runs.
 188         */
 189        struct page *apic_access_page;
 190        struct kvm_host_map virtual_apic_map;
 191        struct kvm_host_map pi_desc_map;
 192
 193        struct kvm_host_map msr_bitmap_map;
 194
 195        struct pi_desc *pi_desc;
 196        bool pi_pending;
 197        u16 posted_intr_nv;
 198
 199        struct hrtimer preemption_timer;
 200        u64 preemption_timer_deadline;
 201        bool has_preemption_timer_deadline;
 202        bool preemption_timer_expired;
 203
 204        /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
 205        u64 vmcs01_debugctl;
 206        u64 vmcs01_guest_bndcfgs;
 207
 208        /* to migrate it to L1 if L2 writes to L1's CR8 directly */
 209        int l1_tpr_threshold;
 210
 211        u16 vpid02;
 212        u16 last_vpid;
 213
 214        struct nested_vmx_msrs msrs;
 215
 216        /* SMM related state */
 217        struct {
 218                /* in VMX operation on SMM entry? */
 219                bool vmxon;
 220                /* in guest mode on SMM entry? */
 221                bool guest_mode;
 222        } smm;
 223
 224        gpa_t hv_evmcs_vmptr;
 225        struct kvm_host_map hv_evmcs_map;
 226        struct hv_enlightened_vmcs *hv_evmcs;
 227};
 228
 229struct vcpu_vmx {
 230        struct kvm_vcpu       vcpu;
 231        u8                    fail;
 232        u8                    msr_bitmap_mode;
 233
 234        /*
 235         * If true, host state has been stored in vmx->loaded_vmcs for
 236         * the CPU registers that only need to be switched when transitioning
 237         * to/from the kernel, and the registers have been loaded with guest
 238         * values.  If false, host state is loaded in the CPU registers
 239         * and vmx->loaded_vmcs->host_state is invalid.
 240         */
 241        bool                  guest_state_loaded;
 242
 243        unsigned long         exit_qualification;
 244        u32                   exit_intr_info;
 245        u32                   idt_vectoring_info;
 246        ulong                 rflags;
 247
 248        /*
 249         * User return MSRs are always emulated when enabled in the guest, but
 250         * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
 251         * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
 252         * be loaded into hardware if those conditions aren't met.
 253         * nr_active_uret_msrs tracks the number of MSRs that need to be loaded
 254         * into hardware when running the guest.  guest_uret_msrs[] is resorted
 255         * whenever the number of "active" uret MSRs is modified.
 256         */
 257        struct vmx_uret_msr   guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
 258        int                   nr_active_uret_msrs;
 259        bool                  guest_uret_msrs_loaded;
 260#ifdef CONFIG_X86_64
 261        u64                   msr_host_kernel_gs_base;
 262        u64                   msr_guest_kernel_gs_base;
 263#endif
 264
 265        u64                   spec_ctrl;
 266        u32                   msr_ia32_umwait_control;
 267
 268        u32 secondary_exec_control;
 269
 270        /*
 271         * loaded_vmcs points to the VMCS currently used in this vcpu. For a
 272         * non-nested (L1) guest, it always points to vmcs01. For a nested
 273         * guest (L2), it points to a different VMCS.
 274         */
 275        struct loaded_vmcs    vmcs01;
 276        struct loaded_vmcs   *loaded_vmcs;
 277
 278        struct msr_autoload {
 279                struct vmx_msrs guest;
 280                struct vmx_msrs host;
 281        } msr_autoload;
 282
 283        struct msr_autostore {
 284                struct vmx_msrs guest;
 285        } msr_autostore;
 286
 287        struct {
 288                int vm86_active;
 289                ulong save_rflags;
 290                struct kvm_segment segs[8];
 291        } rmode;
 292        struct {
 293                u32 bitmask; /* 4 bits per segment (1 bit per field) */
 294                struct kvm_save_segment {
 295                        u16 selector;
 296                        unsigned long base;
 297                        u32 limit;
 298                        u32 ar;
 299                } seg[8];
 300        } segment_cache;
 301        int vpid;
 302        bool emulation_required;
 303
 304        union vmx_exit_reason exit_reason;
 305
 306        /* Posted interrupt descriptor */
 307        struct pi_desc pi_desc;
 308
 309        /* Support for a guest hypervisor (nested VMX) */
 310        struct nested_vmx nested;
 311
 312        /* Dynamic PLE window. */
 313        unsigned int ple_window;
 314        bool ple_window_dirty;
 315
 316        bool req_immediate_exit;
 317
 318        /* Support for PML */
 319#define PML_ENTITY_NUM          512
 320        struct page *pml_pg;
 321
 322        /* apic deadline value in host tsc */
 323        u64 hv_deadline_tsc;
 324
 325        u64 current_tsc_ratio;
 326
 327        unsigned long host_debugctlmsr;
 328
 329        /*
 330         * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
 331         * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
 332         * in msr_ia32_feature_control_valid_bits.
 333         */
 334        u64 msr_ia32_feature_control;
 335        u64 msr_ia32_feature_control_valid_bits;
 336        /* SGX Launch Control public key hash */
 337        u64 msr_ia32_sgxlepubkeyhash[4];
 338
 339#if IS_ENABLED(CONFIG_HYPERV)
 340        u64 hv_root_ept;
 341#endif
 342
 343        struct pt_desc pt_desc;
 344        struct lbr_desc lbr_desc;
 345
 346        /* Save desired MSR intercept (read: pass-through) state */
 347#define MAX_POSSIBLE_PASSTHROUGH_MSRS   13
 348        struct {
 349                DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
 350                DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
 351        } shadow_msr_intercept;
 352};
 353
 354struct kvm_vmx {
 355        struct kvm kvm;
 356
 357        unsigned int tss_addr;
 358        bool ept_identity_pagetable_done;
 359        gpa_t ept_identity_map_addr;
 360
 361#if IS_ENABLED(CONFIG_HYPERV)
 362        hpa_t hv_root_ept;
 363        spinlock_t hv_root_ept_lock;
 364#endif
 365};
 366
 367bool nested_vmx_allowed(struct kvm_vcpu *vcpu);
 368void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
 369                        struct loaded_vmcs *buddy);
 370int allocate_vpid(void);
 371void free_vpid(int vpid);
 372void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
 373void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
 374void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
 375                        unsigned long fs_base, unsigned long gs_base);
 376int vmx_get_cpl(struct kvm_vcpu *vcpu);
 377unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
 378void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
 379u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
 380void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
 381int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
 382void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
 383void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
 384void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
 385void ept_save_pdptrs(struct kvm_vcpu *vcpu);
 386void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
 387void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
 388u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
 389
 390void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
 391void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
 392bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
 393bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
 394bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
 395void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
 396void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
 397struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
 398void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
 399void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
 400bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
 401int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
 402void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
 403
 404void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
 405void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
 406
 407static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr,
 408                                             int type, bool value)
 409{
 410        if (value)
 411                vmx_enable_intercept_for_msr(vcpu, msr, type);
 412        else
 413                vmx_disable_intercept_for_msr(vcpu, msr, type);
 414}
 415
 416void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
 417
 418static inline u8 vmx_get_rvi(void)
 419{
 420        return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
 421}
 422
 423#define BUILD_CONTROLS_SHADOW(lname, uname)                                 \
 424static inline void lname##_controls_set(struct vcpu_vmx *vmx, u32 val)      \
 425{                                                                           \
 426        if (vmx->loaded_vmcs->controls_shadow.lname != val) {               \
 427                vmcs_write32(uname, val);                                   \
 428                vmx->loaded_vmcs->controls_shadow.lname = val;              \
 429        }                                                                   \
 430}                                                                           \
 431static inline u32 lname##_controls_get(struct vcpu_vmx *vmx)                \
 432{                                                                           \
 433        return vmx->loaded_vmcs->controls_shadow.lname;                     \
 434}                                                                           \
 435static inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u32 val)   \
 436{                                                                           \
 437        lname##_controls_set(vmx, lname##_controls_get(vmx) | val);         \
 438}                                                                           \
 439static inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u32 val) \
 440{                                                                           \
 441        lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val);        \
 442}
 443BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS)
 444BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS)
 445BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL)
 446BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL)
 447BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL)
 448
 449static inline void vmx_register_cache_reset(struct kvm_vcpu *vcpu)
 450{
 451        vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
 452                                  | (1 << VCPU_EXREG_RFLAGS)
 453                                  | (1 << VCPU_EXREG_PDPTR)
 454                                  | (1 << VCPU_EXREG_SEGMENTS)
 455                                  | (1 << VCPU_EXREG_CR0)
 456                                  | (1 << VCPU_EXREG_CR3)
 457                                  | (1 << VCPU_EXREG_CR4)
 458                                  | (1 << VCPU_EXREG_EXIT_INFO_1)
 459                                  | (1 << VCPU_EXREG_EXIT_INFO_2));
 460        vcpu->arch.regs_dirty = 0;
 461}
 462
 463static inline u32 vmx_vmentry_ctrl(void)
 464{
 465        u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
 466        if (vmx_pt_mode_is_system())
 467                vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
 468                                  VM_ENTRY_LOAD_IA32_RTIT_CTL);
 469        /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
 470        return vmentry_ctrl &
 471                ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
 472}
 473
 474static inline u32 vmx_vmexit_ctrl(void)
 475{
 476        u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
 477        if (vmx_pt_mode_is_system())
 478                vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
 479                                 VM_EXIT_CLEAR_IA32_RTIT_CTL);
 480        /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
 481        return vmexit_ctrl &
 482                ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
 483}
 484
 485u32 vmx_exec_control(struct vcpu_vmx *vmx);
 486u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx);
 487
 488static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
 489{
 490        return container_of(kvm, struct kvm_vmx, kvm);
 491}
 492
 493static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
 494{
 495        return container_of(vcpu, struct vcpu_vmx, vcpu);
 496}
 497
 498static inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
 499{
 500        struct vcpu_vmx *vmx = to_vmx(vcpu);
 501
 502        if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_1)) {
 503                kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
 504                vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 505        }
 506        return vmx->exit_qualification;
 507}
 508
 509static inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
 510{
 511        struct vcpu_vmx *vmx = to_vmx(vcpu);
 512
 513        if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_2)) {
 514                kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
 515                vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
 516        }
 517        return vmx->exit_intr_info;
 518}
 519
 520struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
 521void free_vmcs(struct vmcs *vmcs);
 522int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
 523void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
 524void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
 525
 526static inline struct vmcs *alloc_vmcs(bool shadow)
 527{
 528        return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
 529                              GFP_KERNEL_ACCOUNT);
 530}
 531
 532static inline void decache_tsc_multiplier(struct vcpu_vmx *vmx)
 533{
 534        vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
 535        vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
 536}
 537
 538static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
 539{
 540        return vmx->secondary_exec_control &
 541                SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
 542}
 543
 544static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
 545{
 546        if (!enable_ept)
 547                return true;
 548
 549        return allow_smaller_maxphyaddr && cpuid_maxphyaddr(vcpu) < boot_cpu_data.x86_phys_bits;
 550}
 551
 552static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
 553{
 554        return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
 555            (secondary_exec_controls_get(to_vmx(vcpu)) &
 556            SECONDARY_EXEC_UNRESTRICTED_GUEST));
 557}
 558
 559bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
 560static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
 561{
 562        return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
 563}
 564
 565void dump_vmcs(struct kvm_vcpu *vcpu);
 566
 567#endif /* __KVM_X86_VMX_H */
 568