linux/block/blk-throttle.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Interface for controlling IO bandwidth on a request queue
   4 *
   5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
   6 */
   7
   8#include <linux/module.h>
   9#include <linux/slab.h>
  10#include <linux/blkdev.h>
  11#include <linux/bio.h>
  12#include <linux/blktrace_api.h>
  13#include <linux/blk-cgroup.h>
  14#include "blk.h"
  15#include "blk-cgroup-rwstat.h"
  16
  17/* Max dispatch from a group in 1 round */
  18#define THROTL_GRP_QUANTUM 8
  19
  20/* Total max dispatch from all groups in one round */
  21#define THROTL_QUANTUM 32
  22
  23/* Throttling is performed over a slice and after that slice is renewed */
  24#define DFL_THROTL_SLICE_HD (HZ / 10)
  25#define DFL_THROTL_SLICE_SSD (HZ / 50)
  26#define MAX_THROTL_SLICE (HZ)
  27#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
  28#define MIN_THROTL_BPS (320 * 1024)
  29#define MIN_THROTL_IOPS (10)
  30#define DFL_LATENCY_TARGET (-1L)
  31#define DFL_IDLE_THRESHOLD (0)
  32#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
  33#define LATENCY_FILTERED_SSD (0)
  34/*
  35 * For HD, very small latency comes from sequential IO. Such IO is helpless to
  36 * help determine if its IO is impacted by others, hence we ignore the IO
  37 */
  38#define LATENCY_FILTERED_HD (1000L) /* 1ms */
  39
  40static struct blkcg_policy blkcg_policy_throtl;
  41
  42/* A workqueue to queue throttle related work */
  43static struct workqueue_struct *kthrotld_workqueue;
  44
  45/*
  46 * To implement hierarchical throttling, throtl_grps form a tree and bios
  47 * are dispatched upwards level by level until they reach the top and get
  48 * issued.  When dispatching bios from the children and local group at each
  49 * level, if the bios are dispatched into a single bio_list, there's a risk
  50 * of a local or child group which can queue many bios at once filling up
  51 * the list starving others.
  52 *
  53 * To avoid such starvation, dispatched bios are queued separately
  54 * according to where they came from.  When they are again dispatched to
  55 * the parent, they're popped in round-robin order so that no single source
  56 * hogs the dispatch window.
  57 *
  58 * throtl_qnode is used to keep the queued bios separated by their sources.
  59 * Bios are queued to throtl_qnode which in turn is queued to
  60 * throtl_service_queue and then dispatched in round-robin order.
  61 *
  62 * It's also used to track the reference counts on blkg's.  A qnode always
  63 * belongs to a throtl_grp and gets queued on itself or the parent, so
  64 * incrementing the reference of the associated throtl_grp when a qnode is
  65 * queued and decrementing when dequeued is enough to keep the whole blkg
  66 * tree pinned while bios are in flight.
  67 */
  68struct throtl_qnode {
  69        struct list_head        node;           /* service_queue->queued[] */
  70        struct bio_list         bios;           /* queued bios */
  71        struct throtl_grp       *tg;            /* tg this qnode belongs to */
  72};
  73
  74struct throtl_service_queue {
  75        struct throtl_service_queue *parent_sq; /* the parent service_queue */
  76
  77        /*
  78         * Bios queued directly to this service_queue or dispatched from
  79         * children throtl_grp's.
  80         */
  81        struct list_head        queued[2];      /* throtl_qnode [READ/WRITE] */
  82        unsigned int            nr_queued[2];   /* number of queued bios */
  83
  84        /*
  85         * RB tree of active children throtl_grp's, which are sorted by
  86         * their ->disptime.
  87         */
  88        struct rb_root_cached   pending_tree;   /* RB tree of active tgs */
  89        unsigned int            nr_pending;     /* # queued in the tree */
  90        unsigned long           first_pending_disptime; /* disptime of the first tg */
  91        struct timer_list       pending_timer;  /* fires on first_pending_disptime */
  92};
  93
  94enum tg_state_flags {
  95        THROTL_TG_PENDING       = 1 << 0,       /* on parent's pending tree */
  96        THROTL_TG_WAS_EMPTY     = 1 << 1,       /* bio_lists[] became non-empty */
  97};
  98
  99#define rb_entry_tg(node)       rb_entry((node), struct throtl_grp, rb_node)
 100
 101enum {
 102        LIMIT_LOW,
 103        LIMIT_MAX,
 104        LIMIT_CNT,
 105};
 106
 107struct throtl_grp {
 108        /* must be the first member */
 109        struct blkg_policy_data pd;
 110
 111        /* active throtl group service_queue member */
 112        struct rb_node rb_node;
 113
 114        /* throtl_data this group belongs to */
 115        struct throtl_data *td;
 116
 117        /* this group's service queue */
 118        struct throtl_service_queue service_queue;
 119
 120        /*
 121         * qnode_on_self is used when bios are directly queued to this
 122         * throtl_grp so that local bios compete fairly with bios
 123         * dispatched from children.  qnode_on_parent is used when bios are
 124         * dispatched from this throtl_grp into its parent and will compete
 125         * with the sibling qnode_on_parents and the parent's
 126         * qnode_on_self.
 127         */
 128        struct throtl_qnode qnode_on_self[2];
 129        struct throtl_qnode qnode_on_parent[2];
 130
 131        /*
 132         * Dispatch time in jiffies. This is the estimated time when group
 133         * will unthrottle and is ready to dispatch more bio. It is used as
 134         * key to sort active groups in service tree.
 135         */
 136        unsigned long disptime;
 137
 138        unsigned int flags;
 139
 140        /* are there any throtl rules between this group and td? */
 141        bool has_rules[2];
 142
 143        /* internally used bytes per second rate limits */
 144        uint64_t bps[2][LIMIT_CNT];
 145        /* user configured bps limits */
 146        uint64_t bps_conf[2][LIMIT_CNT];
 147
 148        /* internally used IOPS limits */
 149        unsigned int iops[2][LIMIT_CNT];
 150        /* user configured IOPS limits */
 151        unsigned int iops_conf[2][LIMIT_CNT];
 152
 153        /* Number of bytes dispatched in current slice */
 154        uint64_t bytes_disp[2];
 155        /* Number of bio's dispatched in current slice */
 156        unsigned int io_disp[2];
 157
 158        unsigned long last_low_overflow_time[2];
 159
 160        uint64_t last_bytes_disp[2];
 161        unsigned int last_io_disp[2];
 162
 163        unsigned long last_check_time;
 164
 165        unsigned long latency_target; /* us */
 166        unsigned long latency_target_conf; /* us */
 167        /* When did we start a new slice */
 168        unsigned long slice_start[2];
 169        unsigned long slice_end[2];
 170
 171        unsigned long last_finish_time; /* ns / 1024 */
 172        unsigned long checked_last_finish_time; /* ns / 1024 */
 173        unsigned long avg_idletime; /* ns / 1024 */
 174        unsigned long idletime_threshold; /* us */
 175        unsigned long idletime_threshold_conf; /* us */
 176
 177        unsigned int bio_cnt; /* total bios */
 178        unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
 179        unsigned long bio_cnt_reset_time;
 180
 181        struct blkg_rwstat stat_bytes;
 182        struct blkg_rwstat stat_ios;
 183};
 184
 185/* We measure latency for request size from <= 4k to >= 1M */
 186#define LATENCY_BUCKET_SIZE 9
 187
 188struct latency_bucket {
 189        unsigned long total_latency; /* ns / 1024 */
 190        int samples;
 191};
 192
 193struct avg_latency_bucket {
 194        unsigned long latency; /* ns / 1024 */
 195        bool valid;
 196};
 197
 198struct throtl_data
 199{
 200        /* service tree for active throtl groups */
 201        struct throtl_service_queue service_queue;
 202
 203        struct request_queue *queue;
 204
 205        /* Total Number of queued bios on READ and WRITE lists */
 206        unsigned int nr_queued[2];
 207
 208        unsigned int throtl_slice;
 209
 210        /* Work for dispatching throttled bios */
 211        struct work_struct dispatch_work;
 212        unsigned int limit_index;
 213        bool limit_valid[LIMIT_CNT];
 214
 215        unsigned long low_upgrade_time;
 216        unsigned long low_downgrade_time;
 217
 218        unsigned int scale;
 219
 220        struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
 221        struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
 222        struct latency_bucket __percpu *latency_buckets[2];
 223        unsigned long last_calculate_time;
 224        unsigned long filtered_latency;
 225
 226        bool track_bio_latency;
 227};
 228
 229static void throtl_pending_timer_fn(struct timer_list *t);
 230
 231static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
 232{
 233        return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
 234}
 235
 236static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
 237{
 238        return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
 239}
 240
 241static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
 242{
 243        return pd_to_blkg(&tg->pd);
 244}
 245
 246/**
 247 * sq_to_tg - return the throl_grp the specified service queue belongs to
 248 * @sq: the throtl_service_queue of interest
 249 *
 250 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 251 * embedded in throtl_data, %NULL is returned.
 252 */
 253static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
 254{
 255        if (sq && sq->parent_sq)
 256                return container_of(sq, struct throtl_grp, service_queue);
 257        else
 258                return NULL;
 259}
 260
 261/**
 262 * sq_to_td - return throtl_data the specified service queue belongs to
 263 * @sq: the throtl_service_queue of interest
 264 *
 265 * A service_queue can be embedded in either a throtl_grp or throtl_data.
 266 * Determine the associated throtl_data accordingly and return it.
 267 */
 268static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
 269{
 270        struct throtl_grp *tg = sq_to_tg(sq);
 271
 272        if (tg)
 273                return tg->td;
 274        else
 275                return container_of(sq, struct throtl_data, service_queue);
 276}
 277
 278/*
 279 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 280 * make the IO dispatch more smooth.
 281 * Scale up: linearly scale up according to lapsed time since upgrade. For
 282 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 283 *           limit hits .max limit
 284 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 285 */
 286static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
 287{
 288        /* arbitrary value to avoid too big scale */
 289        if (td->scale < 4096 && time_after_eq(jiffies,
 290            td->low_upgrade_time + td->scale * td->throtl_slice))
 291                td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
 292
 293        return low + (low >> 1) * td->scale;
 294}
 295
 296static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
 297{
 298        struct blkcg_gq *blkg = tg_to_blkg(tg);
 299        struct throtl_data *td;
 300        uint64_t ret;
 301
 302        if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
 303                return U64_MAX;
 304
 305        td = tg->td;
 306        ret = tg->bps[rw][td->limit_index];
 307        if (ret == 0 && td->limit_index == LIMIT_LOW) {
 308                /* intermediate node or iops isn't 0 */
 309                if (!list_empty(&blkg->blkcg->css.children) ||
 310                    tg->iops[rw][td->limit_index])
 311                        return U64_MAX;
 312                else
 313                        return MIN_THROTL_BPS;
 314        }
 315
 316        if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
 317            tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
 318                uint64_t adjusted;
 319
 320                adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
 321                ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
 322        }
 323        return ret;
 324}
 325
 326static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
 327{
 328        struct blkcg_gq *blkg = tg_to_blkg(tg);
 329        struct throtl_data *td;
 330        unsigned int ret;
 331
 332        if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
 333                return UINT_MAX;
 334
 335        td = tg->td;
 336        ret = tg->iops[rw][td->limit_index];
 337        if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
 338                /* intermediate node or bps isn't 0 */
 339                if (!list_empty(&blkg->blkcg->css.children) ||
 340                    tg->bps[rw][td->limit_index])
 341                        return UINT_MAX;
 342                else
 343                        return MIN_THROTL_IOPS;
 344        }
 345
 346        if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
 347            tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
 348                uint64_t adjusted;
 349
 350                adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
 351                if (adjusted > UINT_MAX)
 352                        adjusted = UINT_MAX;
 353                ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
 354        }
 355        return ret;
 356}
 357
 358#define request_bucket_index(sectors) \
 359        clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
 360
 361/**
 362 * throtl_log - log debug message via blktrace
 363 * @sq: the service_queue being reported
 364 * @fmt: printf format string
 365 * @args: printf args
 366 *
 367 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 368 * throtl_grp; otherwise, just "throtl".
 369 */
 370#define throtl_log(sq, fmt, args...)    do {                            \
 371        struct throtl_grp *__tg = sq_to_tg((sq));                       \
 372        struct throtl_data *__td = sq_to_td((sq));                      \
 373                                                                        \
 374        (void)__td;                                                     \
 375        if (likely(!blk_trace_note_message_enabled(__td->queue)))       \
 376                break;                                                  \
 377        if ((__tg)) {                                                   \
 378                blk_add_cgroup_trace_msg(__td->queue,                   \
 379                        tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
 380        } else {                                                        \
 381                blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);  \
 382        }                                                               \
 383} while (0)
 384
 385static inline unsigned int throtl_bio_data_size(struct bio *bio)
 386{
 387        /* assume it's one sector */
 388        if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
 389                return 512;
 390        return bio->bi_iter.bi_size;
 391}
 392
 393static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
 394{
 395        INIT_LIST_HEAD(&qn->node);
 396        bio_list_init(&qn->bios);
 397        qn->tg = tg;
 398}
 399
 400/**
 401 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 402 * @bio: bio being added
 403 * @qn: qnode to add bio to
 404 * @queued: the service_queue->queued[] list @qn belongs to
 405 *
 406 * Add @bio to @qn and put @qn on @queued if it's not already on.
 407 * @qn->tg's reference count is bumped when @qn is activated.  See the
 408 * comment on top of throtl_qnode definition for details.
 409 */
 410static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
 411                                 struct list_head *queued)
 412{
 413        bio_list_add(&qn->bios, bio);
 414        if (list_empty(&qn->node)) {
 415                list_add_tail(&qn->node, queued);
 416                blkg_get(tg_to_blkg(qn->tg));
 417        }
 418}
 419
 420/**
 421 * throtl_peek_queued - peek the first bio on a qnode list
 422 * @queued: the qnode list to peek
 423 */
 424static struct bio *throtl_peek_queued(struct list_head *queued)
 425{
 426        struct throtl_qnode *qn;
 427        struct bio *bio;
 428
 429        if (list_empty(queued))
 430                return NULL;
 431
 432        qn = list_first_entry(queued, struct throtl_qnode, node);
 433        bio = bio_list_peek(&qn->bios);
 434        WARN_ON_ONCE(!bio);
 435        return bio;
 436}
 437
 438/**
 439 * throtl_pop_queued - pop the first bio form a qnode list
 440 * @queued: the qnode list to pop a bio from
 441 * @tg_to_put: optional out argument for throtl_grp to put
 442 *
 443 * Pop the first bio from the qnode list @queued.  After popping, the first
 444 * qnode is removed from @queued if empty or moved to the end of @queued so
 445 * that the popping order is round-robin.
 446 *
 447 * When the first qnode is removed, its associated throtl_grp should be put
 448 * too.  If @tg_to_put is NULL, this function automatically puts it;
 449 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 450 * responsible for putting it.
 451 */
 452static struct bio *throtl_pop_queued(struct list_head *queued,
 453                                     struct throtl_grp **tg_to_put)
 454{
 455        struct throtl_qnode *qn;
 456        struct bio *bio;
 457
 458        if (list_empty(queued))
 459                return NULL;
 460
 461        qn = list_first_entry(queued, struct throtl_qnode, node);
 462        bio = bio_list_pop(&qn->bios);
 463        WARN_ON_ONCE(!bio);
 464
 465        if (bio_list_empty(&qn->bios)) {
 466                list_del_init(&qn->node);
 467                if (tg_to_put)
 468                        *tg_to_put = qn->tg;
 469                else
 470                        blkg_put(tg_to_blkg(qn->tg));
 471        } else {
 472                list_move_tail(&qn->node, queued);
 473        }
 474
 475        return bio;
 476}
 477
 478/* init a service_queue, assumes the caller zeroed it */
 479static void throtl_service_queue_init(struct throtl_service_queue *sq)
 480{
 481        INIT_LIST_HEAD(&sq->queued[0]);
 482        INIT_LIST_HEAD(&sq->queued[1]);
 483        sq->pending_tree = RB_ROOT_CACHED;
 484        timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
 485}
 486
 487static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
 488                                                struct request_queue *q,
 489                                                struct blkcg *blkcg)
 490{
 491        struct throtl_grp *tg;
 492        int rw;
 493
 494        tg = kzalloc_node(sizeof(*tg), gfp, q->node);
 495        if (!tg)
 496                return NULL;
 497
 498        if (blkg_rwstat_init(&tg->stat_bytes, gfp))
 499                goto err_free_tg;
 500
 501        if (blkg_rwstat_init(&tg->stat_ios, gfp))
 502                goto err_exit_stat_bytes;
 503
 504        throtl_service_queue_init(&tg->service_queue);
 505
 506        for (rw = READ; rw <= WRITE; rw++) {
 507                throtl_qnode_init(&tg->qnode_on_self[rw], tg);
 508                throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
 509        }
 510
 511        RB_CLEAR_NODE(&tg->rb_node);
 512        tg->bps[READ][LIMIT_MAX] = U64_MAX;
 513        tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
 514        tg->iops[READ][LIMIT_MAX] = UINT_MAX;
 515        tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
 516        tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
 517        tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
 518        tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
 519        tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
 520        /* LIMIT_LOW will have default value 0 */
 521
 522        tg->latency_target = DFL_LATENCY_TARGET;
 523        tg->latency_target_conf = DFL_LATENCY_TARGET;
 524        tg->idletime_threshold = DFL_IDLE_THRESHOLD;
 525        tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
 526
 527        return &tg->pd;
 528
 529err_exit_stat_bytes:
 530        blkg_rwstat_exit(&tg->stat_bytes);
 531err_free_tg:
 532        kfree(tg);
 533        return NULL;
 534}
 535
 536static void throtl_pd_init(struct blkg_policy_data *pd)
 537{
 538        struct throtl_grp *tg = pd_to_tg(pd);
 539        struct blkcg_gq *blkg = tg_to_blkg(tg);
 540        struct throtl_data *td = blkg->q->td;
 541        struct throtl_service_queue *sq = &tg->service_queue;
 542
 543        /*
 544         * If on the default hierarchy, we switch to properly hierarchical
 545         * behavior where limits on a given throtl_grp are applied to the
 546         * whole subtree rather than just the group itself.  e.g. If 16M
 547         * read_bps limit is set on the root group, the whole system can't
 548         * exceed 16M for the device.
 549         *
 550         * If not on the default hierarchy, the broken flat hierarchy
 551         * behavior is retained where all throtl_grps are treated as if
 552         * they're all separate root groups right below throtl_data.
 553         * Limits of a group don't interact with limits of other groups
 554         * regardless of the position of the group in the hierarchy.
 555         */
 556        sq->parent_sq = &td->service_queue;
 557        if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
 558                sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
 559        tg->td = td;
 560}
 561
 562/*
 563 * Set has_rules[] if @tg or any of its parents have limits configured.
 564 * This doesn't require walking up to the top of the hierarchy as the
 565 * parent's has_rules[] is guaranteed to be correct.
 566 */
 567static void tg_update_has_rules(struct throtl_grp *tg)
 568{
 569        struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
 570        struct throtl_data *td = tg->td;
 571        int rw;
 572
 573        for (rw = READ; rw <= WRITE; rw++)
 574                tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
 575                        (td->limit_valid[td->limit_index] &&
 576                         (tg_bps_limit(tg, rw) != U64_MAX ||
 577                          tg_iops_limit(tg, rw) != UINT_MAX));
 578}
 579
 580static void throtl_pd_online(struct blkg_policy_data *pd)
 581{
 582        struct throtl_grp *tg = pd_to_tg(pd);
 583        /*
 584         * We don't want new groups to escape the limits of its ancestors.
 585         * Update has_rules[] after a new group is brought online.
 586         */
 587        tg_update_has_rules(tg);
 588}
 589
 590#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
 591static void blk_throtl_update_limit_valid(struct throtl_data *td)
 592{
 593        struct cgroup_subsys_state *pos_css;
 594        struct blkcg_gq *blkg;
 595        bool low_valid = false;
 596
 597        rcu_read_lock();
 598        blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
 599                struct throtl_grp *tg = blkg_to_tg(blkg);
 600
 601                if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
 602                    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
 603                        low_valid = true;
 604                        break;
 605                }
 606        }
 607        rcu_read_unlock();
 608
 609        td->limit_valid[LIMIT_LOW] = low_valid;
 610}
 611#else
 612static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
 613{
 614}
 615#endif
 616
 617static void throtl_upgrade_state(struct throtl_data *td);
 618static void throtl_pd_offline(struct blkg_policy_data *pd)
 619{
 620        struct throtl_grp *tg = pd_to_tg(pd);
 621
 622        tg->bps[READ][LIMIT_LOW] = 0;
 623        tg->bps[WRITE][LIMIT_LOW] = 0;
 624        tg->iops[READ][LIMIT_LOW] = 0;
 625        tg->iops[WRITE][LIMIT_LOW] = 0;
 626
 627        blk_throtl_update_limit_valid(tg->td);
 628
 629        if (!tg->td->limit_valid[tg->td->limit_index])
 630                throtl_upgrade_state(tg->td);
 631}
 632
 633static void throtl_pd_free(struct blkg_policy_data *pd)
 634{
 635        struct throtl_grp *tg = pd_to_tg(pd);
 636
 637        del_timer_sync(&tg->service_queue.pending_timer);
 638        blkg_rwstat_exit(&tg->stat_bytes);
 639        blkg_rwstat_exit(&tg->stat_ios);
 640        kfree(tg);
 641}
 642
 643static struct throtl_grp *
 644throtl_rb_first(struct throtl_service_queue *parent_sq)
 645{
 646        struct rb_node *n;
 647
 648        n = rb_first_cached(&parent_sq->pending_tree);
 649        WARN_ON_ONCE(!n);
 650        if (!n)
 651                return NULL;
 652        return rb_entry_tg(n);
 653}
 654
 655static void throtl_rb_erase(struct rb_node *n,
 656                            struct throtl_service_queue *parent_sq)
 657{
 658        rb_erase_cached(n, &parent_sq->pending_tree);
 659        RB_CLEAR_NODE(n);
 660        --parent_sq->nr_pending;
 661}
 662
 663static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
 664{
 665        struct throtl_grp *tg;
 666
 667        tg = throtl_rb_first(parent_sq);
 668        if (!tg)
 669                return;
 670
 671        parent_sq->first_pending_disptime = tg->disptime;
 672}
 673
 674static void tg_service_queue_add(struct throtl_grp *tg)
 675{
 676        struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
 677        struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
 678        struct rb_node *parent = NULL;
 679        struct throtl_grp *__tg;
 680        unsigned long key = tg->disptime;
 681        bool leftmost = true;
 682
 683        while (*node != NULL) {
 684                parent = *node;
 685                __tg = rb_entry_tg(parent);
 686
 687                if (time_before(key, __tg->disptime))
 688                        node = &parent->rb_left;
 689                else {
 690                        node = &parent->rb_right;
 691                        leftmost = false;
 692                }
 693        }
 694
 695        rb_link_node(&tg->rb_node, parent, node);
 696        rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
 697                               leftmost);
 698}
 699
 700static void throtl_enqueue_tg(struct throtl_grp *tg)
 701{
 702        if (!(tg->flags & THROTL_TG_PENDING)) {
 703                tg_service_queue_add(tg);
 704                tg->flags |= THROTL_TG_PENDING;
 705                tg->service_queue.parent_sq->nr_pending++;
 706        }
 707}
 708
 709static void throtl_dequeue_tg(struct throtl_grp *tg)
 710{
 711        if (tg->flags & THROTL_TG_PENDING) {
 712                throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
 713                tg->flags &= ~THROTL_TG_PENDING;
 714        }
 715}
 716
 717/* Call with queue lock held */
 718static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
 719                                          unsigned long expires)
 720{
 721        unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
 722
 723        /*
 724         * Since we are adjusting the throttle limit dynamically, the sleep
 725         * time calculated according to previous limit might be invalid. It's
 726         * possible the cgroup sleep time is very long and no other cgroups
 727         * have IO running so notify the limit changes. Make sure the cgroup
 728         * doesn't sleep too long to avoid the missed notification.
 729         */
 730        if (time_after(expires, max_expire))
 731                expires = max_expire;
 732        mod_timer(&sq->pending_timer, expires);
 733        throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
 734                   expires - jiffies, jiffies);
 735}
 736
 737/**
 738 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 739 * @sq: the service_queue to schedule dispatch for
 740 * @force: force scheduling
 741 *
 742 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 743 * dispatch time of the first pending child.  Returns %true if either timer
 744 * is armed or there's no pending child left.  %false if the current
 745 * dispatch window is still open and the caller should continue
 746 * dispatching.
 747 *
 748 * If @force is %true, the dispatch timer is always scheduled and this
 749 * function is guaranteed to return %true.  This is to be used when the
 750 * caller can't dispatch itself and needs to invoke pending_timer
 751 * unconditionally.  Note that forced scheduling is likely to induce short
 752 * delay before dispatch starts even if @sq->first_pending_disptime is not
 753 * in the future and thus shouldn't be used in hot paths.
 754 */
 755static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
 756                                          bool force)
 757{
 758        /* any pending children left? */
 759        if (!sq->nr_pending)
 760                return true;
 761
 762        update_min_dispatch_time(sq);
 763
 764        /* is the next dispatch time in the future? */
 765        if (force || time_after(sq->first_pending_disptime, jiffies)) {
 766                throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
 767                return true;
 768        }
 769
 770        /* tell the caller to continue dispatching */
 771        return false;
 772}
 773
 774static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
 775                bool rw, unsigned long start)
 776{
 777        tg->bytes_disp[rw] = 0;
 778        tg->io_disp[rw] = 0;
 779
 780        /*
 781         * Previous slice has expired. We must have trimmed it after last
 782         * bio dispatch. That means since start of last slice, we never used
 783         * that bandwidth. Do try to make use of that bandwidth while giving
 784         * credit.
 785         */
 786        if (time_after_eq(start, tg->slice_start[rw]))
 787                tg->slice_start[rw] = start;
 788
 789        tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
 790        throtl_log(&tg->service_queue,
 791                   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
 792                   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 793                   tg->slice_end[rw], jiffies);
 794}
 795
 796static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
 797{
 798        tg->bytes_disp[rw] = 0;
 799        tg->io_disp[rw] = 0;
 800        tg->slice_start[rw] = jiffies;
 801        tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
 802        throtl_log(&tg->service_queue,
 803                   "[%c] new slice start=%lu end=%lu jiffies=%lu",
 804                   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 805                   tg->slice_end[rw], jiffies);
 806}
 807
 808static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
 809                                        unsigned long jiffy_end)
 810{
 811        tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
 812}
 813
 814static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
 815                                       unsigned long jiffy_end)
 816{
 817        throtl_set_slice_end(tg, rw, jiffy_end);
 818        throtl_log(&tg->service_queue,
 819                   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
 820                   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 821                   tg->slice_end[rw], jiffies);
 822}
 823
 824/* Determine if previously allocated or extended slice is complete or not */
 825static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
 826{
 827        if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
 828                return false;
 829
 830        return true;
 831}
 832
 833/* Trim the used slices and adjust slice start accordingly */
 834static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
 835{
 836        unsigned long nr_slices, time_elapsed, io_trim;
 837        u64 bytes_trim, tmp;
 838
 839        BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
 840
 841        /*
 842         * If bps are unlimited (-1), then time slice don't get
 843         * renewed. Don't try to trim the slice if slice is used. A new
 844         * slice will start when appropriate.
 845         */
 846        if (throtl_slice_used(tg, rw))
 847                return;
 848
 849        /*
 850         * A bio has been dispatched. Also adjust slice_end. It might happen
 851         * that initially cgroup limit was very low resulting in high
 852         * slice_end, but later limit was bumped up and bio was dispatched
 853         * sooner, then we need to reduce slice_end. A high bogus slice_end
 854         * is bad because it does not allow new slice to start.
 855         */
 856
 857        throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
 858
 859        time_elapsed = jiffies - tg->slice_start[rw];
 860
 861        nr_slices = time_elapsed / tg->td->throtl_slice;
 862
 863        if (!nr_slices)
 864                return;
 865        tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
 866        do_div(tmp, HZ);
 867        bytes_trim = tmp;
 868
 869        io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
 870                HZ;
 871
 872        if (!bytes_trim && !io_trim)
 873                return;
 874
 875        if (tg->bytes_disp[rw] >= bytes_trim)
 876                tg->bytes_disp[rw] -= bytes_trim;
 877        else
 878                tg->bytes_disp[rw] = 0;
 879
 880        if (tg->io_disp[rw] >= io_trim)
 881                tg->io_disp[rw] -= io_trim;
 882        else
 883                tg->io_disp[rw] = 0;
 884
 885        tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
 886
 887        throtl_log(&tg->service_queue,
 888                   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
 889                   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
 890                   tg->slice_start[rw], tg->slice_end[rw], jiffies);
 891}
 892
 893static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
 894                                  u32 iops_limit, unsigned long *wait)
 895{
 896        bool rw = bio_data_dir(bio);
 897        unsigned int io_allowed;
 898        unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 899        u64 tmp;
 900
 901        if (iops_limit == UINT_MAX) {
 902                if (wait)
 903                        *wait = 0;
 904                return true;
 905        }
 906
 907        jiffy_elapsed = jiffies - tg->slice_start[rw];
 908
 909        /* Round up to the next throttle slice, wait time must be nonzero */
 910        jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
 911
 912        /*
 913         * jiffy_elapsed_rnd should not be a big value as minimum iops can be
 914         * 1 then at max jiffy elapsed should be equivalent of 1 second as we
 915         * will allow dispatch after 1 second and after that slice should
 916         * have been trimmed.
 917         */
 918
 919        tmp = (u64)iops_limit * jiffy_elapsed_rnd;
 920        do_div(tmp, HZ);
 921
 922        if (tmp > UINT_MAX)
 923                io_allowed = UINT_MAX;
 924        else
 925                io_allowed = tmp;
 926
 927        if (tg->io_disp[rw] + 1 <= io_allowed) {
 928                if (wait)
 929                        *wait = 0;
 930                return true;
 931        }
 932
 933        /* Calc approx time to dispatch */
 934        jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
 935
 936        if (wait)
 937                *wait = jiffy_wait;
 938        return false;
 939}
 940
 941static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
 942                                 u64 bps_limit, unsigned long *wait)
 943{
 944        bool rw = bio_data_dir(bio);
 945        u64 bytes_allowed, extra_bytes, tmp;
 946        unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 947        unsigned int bio_size = throtl_bio_data_size(bio);
 948
 949        if (bps_limit == U64_MAX) {
 950                if (wait)
 951                        *wait = 0;
 952                return true;
 953        }
 954
 955        jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 956
 957        /* Slice has just started. Consider one slice interval */
 958        if (!jiffy_elapsed)
 959                jiffy_elapsed_rnd = tg->td->throtl_slice;
 960
 961        jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
 962
 963        tmp = bps_limit * jiffy_elapsed_rnd;
 964        do_div(tmp, HZ);
 965        bytes_allowed = tmp;
 966
 967        if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
 968                if (wait)
 969                        *wait = 0;
 970                return true;
 971        }
 972
 973        /* Calc approx time to dispatch */
 974        extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
 975        jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
 976
 977        if (!jiffy_wait)
 978                jiffy_wait = 1;
 979
 980        /*
 981         * This wait time is without taking into consideration the rounding
 982         * up we did. Add that time also.
 983         */
 984        jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
 985        if (wait)
 986                *wait = jiffy_wait;
 987        return false;
 988}
 989
 990/*
 991 * Returns whether one can dispatch a bio or not. Also returns approx number
 992 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 993 */
 994static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
 995                            unsigned long *wait)
 996{
 997        bool rw = bio_data_dir(bio);
 998        unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
 999        u64 bps_limit = tg_bps_limit(tg, rw);
1000        u32 iops_limit = tg_iops_limit(tg, rw);
1001
1002        /*
1003         * Currently whole state machine of group depends on first bio
1004         * queued in the group bio list. So one should not be calling
1005         * this function with a different bio if there are other bios
1006         * queued.
1007         */
1008        BUG_ON(tg->service_queue.nr_queued[rw] &&
1009               bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1010
1011        /* If tg->bps = -1, then BW is unlimited */
1012        if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
1013                if (wait)
1014                        *wait = 0;
1015                return true;
1016        }
1017
1018        /*
1019         * If previous slice expired, start a new one otherwise renew/extend
1020         * existing slice to make sure it is at least throtl_slice interval
1021         * long since now. New slice is started only for empty throttle group.
1022         * If there is queued bio, that means there should be an active
1023         * slice and it should be extended instead.
1024         */
1025        if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1026                throtl_start_new_slice(tg, rw);
1027        else {
1028                if (time_before(tg->slice_end[rw],
1029                    jiffies + tg->td->throtl_slice))
1030                        throtl_extend_slice(tg, rw,
1031                                jiffies + tg->td->throtl_slice);
1032        }
1033
1034        if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
1035            tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
1036                if (wait)
1037                        *wait = 0;
1038                return true;
1039        }
1040
1041        max_wait = max(bps_wait, iops_wait);
1042
1043        if (wait)
1044                *wait = max_wait;
1045
1046        if (time_before(tg->slice_end[rw], jiffies + max_wait))
1047                throtl_extend_slice(tg, rw, jiffies + max_wait);
1048
1049        return false;
1050}
1051
1052static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1053{
1054        bool rw = bio_data_dir(bio);
1055        unsigned int bio_size = throtl_bio_data_size(bio);
1056
1057        /* Charge the bio to the group */
1058        tg->bytes_disp[rw] += bio_size;
1059        tg->io_disp[rw]++;
1060        tg->last_bytes_disp[rw] += bio_size;
1061        tg->last_io_disp[rw]++;
1062
1063        /*
1064         * BIO_THROTTLED is used to prevent the same bio to be throttled
1065         * more than once as a throttled bio will go through blk-throtl the
1066         * second time when it eventually gets issued.  Set it when a bio
1067         * is being charged to a tg.
1068         */
1069        if (!bio_flagged(bio, BIO_THROTTLED))
1070                bio_set_flag(bio, BIO_THROTTLED);
1071}
1072
1073/**
1074 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1075 * @bio: bio to add
1076 * @qn: qnode to use
1077 * @tg: the target throtl_grp
1078 *
1079 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1080 * tg->qnode_on_self[] is used.
1081 */
1082static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1083                              struct throtl_grp *tg)
1084{
1085        struct throtl_service_queue *sq = &tg->service_queue;
1086        bool rw = bio_data_dir(bio);
1087
1088        if (!qn)
1089                qn = &tg->qnode_on_self[rw];
1090
1091        /*
1092         * If @tg doesn't currently have any bios queued in the same
1093         * direction, queueing @bio can change when @tg should be
1094         * dispatched.  Mark that @tg was empty.  This is automatically
1095         * cleared on the next tg_update_disptime().
1096         */
1097        if (!sq->nr_queued[rw])
1098                tg->flags |= THROTL_TG_WAS_EMPTY;
1099
1100        throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1101
1102        sq->nr_queued[rw]++;
1103        throtl_enqueue_tg(tg);
1104}
1105
1106static void tg_update_disptime(struct throtl_grp *tg)
1107{
1108        struct throtl_service_queue *sq = &tg->service_queue;
1109        unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1110        struct bio *bio;
1111
1112        bio = throtl_peek_queued(&sq->queued[READ]);
1113        if (bio)
1114                tg_may_dispatch(tg, bio, &read_wait);
1115
1116        bio = throtl_peek_queued(&sq->queued[WRITE]);
1117        if (bio)
1118                tg_may_dispatch(tg, bio, &write_wait);
1119
1120        min_wait = min(read_wait, write_wait);
1121        disptime = jiffies + min_wait;
1122
1123        /* Update dispatch time */
1124        throtl_dequeue_tg(tg);
1125        tg->disptime = disptime;
1126        throtl_enqueue_tg(tg);
1127
1128        /* see throtl_add_bio_tg() */
1129        tg->flags &= ~THROTL_TG_WAS_EMPTY;
1130}
1131
1132static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1133                                        struct throtl_grp *parent_tg, bool rw)
1134{
1135        if (throtl_slice_used(parent_tg, rw)) {
1136                throtl_start_new_slice_with_credit(parent_tg, rw,
1137                                child_tg->slice_start[rw]);
1138        }
1139
1140}
1141
1142static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1143{
1144        struct throtl_service_queue *sq = &tg->service_queue;
1145        struct throtl_service_queue *parent_sq = sq->parent_sq;
1146        struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1147        struct throtl_grp *tg_to_put = NULL;
1148        struct bio *bio;
1149
1150        /*
1151         * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1152         * from @tg may put its reference and @parent_sq might end up
1153         * getting released prematurely.  Remember the tg to put and put it
1154         * after @bio is transferred to @parent_sq.
1155         */
1156        bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1157        sq->nr_queued[rw]--;
1158
1159        throtl_charge_bio(tg, bio);
1160
1161        /*
1162         * If our parent is another tg, we just need to transfer @bio to
1163         * the parent using throtl_add_bio_tg().  If our parent is
1164         * @td->service_queue, @bio is ready to be issued.  Put it on its
1165         * bio_lists[] and decrease total number queued.  The caller is
1166         * responsible for issuing these bios.
1167         */
1168        if (parent_tg) {
1169                throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1170                start_parent_slice_with_credit(tg, parent_tg, rw);
1171        } else {
1172                throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1173                                     &parent_sq->queued[rw]);
1174                BUG_ON(tg->td->nr_queued[rw] <= 0);
1175                tg->td->nr_queued[rw]--;
1176        }
1177
1178        throtl_trim_slice(tg, rw);
1179
1180        if (tg_to_put)
1181                blkg_put(tg_to_blkg(tg_to_put));
1182}
1183
1184static int throtl_dispatch_tg(struct throtl_grp *tg)
1185{
1186        struct throtl_service_queue *sq = &tg->service_queue;
1187        unsigned int nr_reads = 0, nr_writes = 0;
1188        unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1189        unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1190        struct bio *bio;
1191
1192        /* Try to dispatch 75% READS and 25% WRITES */
1193
1194        while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1195               tg_may_dispatch(tg, bio, NULL)) {
1196
1197                tg_dispatch_one_bio(tg, bio_data_dir(bio));
1198                nr_reads++;
1199
1200                if (nr_reads >= max_nr_reads)
1201                        break;
1202        }
1203
1204        while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1205               tg_may_dispatch(tg, bio, NULL)) {
1206
1207                tg_dispatch_one_bio(tg, bio_data_dir(bio));
1208                nr_writes++;
1209
1210                if (nr_writes >= max_nr_writes)
1211                        break;
1212        }
1213
1214        return nr_reads + nr_writes;
1215}
1216
1217static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1218{
1219        unsigned int nr_disp = 0;
1220
1221        while (1) {
1222                struct throtl_grp *tg;
1223                struct throtl_service_queue *sq;
1224
1225                if (!parent_sq->nr_pending)
1226                        break;
1227
1228                tg = throtl_rb_first(parent_sq);
1229                if (!tg)
1230                        break;
1231
1232                if (time_before(jiffies, tg->disptime))
1233                        break;
1234
1235                throtl_dequeue_tg(tg);
1236
1237                nr_disp += throtl_dispatch_tg(tg);
1238
1239                sq = &tg->service_queue;
1240                if (sq->nr_queued[0] || sq->nr_queued[1])
1241                        tg_update_disptime(tg);
1242
1243                if (nr_disp >= THROTL_QUANTUM)
1244                        break;
1245        }
1246
1247        return nr_disp;
1248}
1249
1250static bool throtl_can_upgrade(struct throtl_data *td,
1251        struct throtl_grp *this_tg);
1252/**
1253 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1254 * @t: the pending_timer member of the throtl_service_queue being serviced
1255 *
1256 * This timer is armed when a child throtl_grp with active bio's become
1257 * pending and queued on the service_queue's pending_tree and expires when
1258 * the first child throtl_grp should be dispatched.  This function
1259 * dispatches bio's from the children throtl_grps to the parent
1260 * service_queue.
1261 *
1262 * If the parent's parent is another throtl_grp, dispatching is propagated
1263 * by either arming its pending_timer or repeating dispatch directly.  If
1264 * the top-level service_tree is reached, throtl_data->dispatch_work is
1265 * kicked so that the ready bio's are issued.
1266 */
1267static void throtl_pending_timer_fn(struct timer_list *t)
1268{
1269        struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1270        struct throtl_grp *tg = sq_to_tg(sq);
1271        struct throtl_data *td = sq_to_td(sq);
1272        struct request_queue *q = td->queue;
1273        struct throtl_service_queue *parent_sq;
1274        bool dispatched;
1275        int ret;
1276
1277        spin_lock_irq(&q->queue_lock);
1278        if (throtl_can_upgrade(td, NULL))
1279                throtl_upgrade_state(td);
1280
1281again:
1282        parent_sq = sq->parent_sq;
1283        dispatched = false;
1284
1285        while (true) {
1286                throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1287                           sq->nr_queued[READ] + sq->nr_queued[WRITE],
1288                           sq->nr_queued[READ], sq->nr_queued[WRITE]);
1289
1290                ret = throtl_select_dispatch(sq);
1291                if (ret) {
1292                        throtl_log(sq, "bios disp=%u", ret);
1293                        dispatched = true;
1294                }
1295
1296                if (throtl_schedule_next_dispatch(sq, false))
1297                        break;
1298
1299                /* this dispatch windows is still open, relax and repeat */
1300                spin_unlock_irq(&q->queue_lock);
1301                cpu_relax();
1302                spin_lock_irq(&q->queue_lock);
1303        }
1304
1305        if (!dispatched)
1306                goto out_unlock;
1307
1308        if (parent_sq) {
1309                /* @parent_sq is another throl_grp, propagate dispatch */
1310                if (tg->flags & THROTL_TG_WAS_EMPTY) {
1311                        tg_update_disptime(tg);
1312                        if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1313                                /* window is already open, repeat dispatching */
1314                                sq = parent_sq;
1315                                tg = sq_to_tg(sq);
1316                                goto again;
1317                        }
1318                }
1319        } else {
1320                /* reached the top-level, queue issuing */
1321                queue_work(kthrotld_workqueue, &td->dispatch_work);
1322        }
1323out_unlock:
1324        spin_unlock_irq(&q->queue_lock);
1325}
1326
1327/**
1328 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1329 * @work: work item being executed
1330 *
1331 * This function is queued for execution when bios reach the bio_lists[]
1332 * of throtl_data->service_queue.  Those bios are ready and issued by this
1333 * function.
1334 */
1335static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1336{
1337        struct throtl_data *td = container_of(work, struct throtl_data,
1338                                              dispatch_work);
1339        struct throtl_service_queue *td_sq = &td->service_queue;
1340        struct request_queue *q = td->queue;
1341        struct bio_list bio_list_on_stack;
1342        struct bio *bio;
1343        struct blk_plug plug;
1344        int rw;
1345
1346        bio_list_init(&bio_list_on_stack);
1347
1348        spin_lock_irq(&q->queue_lock);
1349        for (rw = READ; rw <= WRITE; rw++)
1350                while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1351                        bio_list_add(&bio_list_on_stack, bio);
1352        spin_unlock_irq(&q->queue_lock);
1353
1354        if (!bio_list_empty(&bio_list_on_stack)) {
1355                blk_start_plug(&plug);
1356                while ((bio = bio_list_pop(&bio_list_on_stack)))
1357                        submit_bio_noacct(bio);
1358                blk_finish_plug(&plug);
1359        }
1360}
1361
1362static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1363                              int off)
1364{
1365        struct throtl_grp *tg = pd_to_tg(pd);
1366        u64 v = *(u64 *)((void *)tg + off);
1367
1368        if (v == U64_MAX)
1369                return 0;
1370        return __blkg_prfill_u64(sf, pd, v);
1371}
1372
1373static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1374                               int off)
1375{
1376        struct throtl_grp *tg = pd_to_tg(pd);
1377        unsigned int v = *(unsigned int *)((void *)tg + off);
1378
1379        if (v == UINT_MAX)
1380                return 0;
1381        return __blkg_prfill_u64(sf, pd, v);
1382}
1383
1384static int tg_print_conf_u64(struct seq_file *sf, void *v)
1385{
1386        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1387                          &blkcg_policy_throtl, seq_cft(sf)->private, false);
1388        return 0;
1389}
1390
1391static int tg_print_conf_uint(struct seq_file *sf, void *v)
1392{
1393        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1394                          &blkcg_policy_throtl, seq_cft(sf)->private, false);
1395        return 0;
1396}
1397
1398static void tg_conf_updated(struct throtl_grp *tg, bool global)
1399{
1400        struct throtl_service_queue *sq = &tg->service_queue;
1401        struct cgroup_subsys_state *pos_css;
1402        struct blkcg_gq *blkg;
1403
1404        throtl_log(&tg->service_queue,
1405                   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1406                   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1407                   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1408
1409        /*
1410         * Update has_rules[] flags for the updated tg's subtree.  A tg is
1411         * considered to have rules if either the tg itself or any of its
1412         * ancestors has rules.  This identifies groups without any
1413         * restrictions in the whole hierarchy and allows them to bypass
1414         * blk-throttle.
1415         */
1416        blkg_for_each_descendant_pre(blkg, pos_css,
1417                        global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1418                struct throtl_grp *this_tg = blkg_to_tg(blkg);
1419                struct throtl_grp *parent_tg;
1420
1421                tg_update_has_rules(this_tg);
1422                /* ignore root/second level */
1423                if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1424                    !blkg->parent->parent)
1425                        continue;
1426                parent_tg = blkg_to_tg(blkg->parent);
1427                /*
1428                 * make sure all children has lower idle time threshold and
1429                 * higher latency target
1430                 */
1431                this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1432                                parent_tg->idletime_threshold);
1433                this_tg->latency_target = max(this_tg->latency_target,
1434                                parent_tg->latency_target);
1435        }
1436
1437        /*
1438         * We're already holding queue_lock and know @tg is valid.  Let's
1439         * apply the new config directly.
1440         *
1441         * Restart the slices for both READ and WRITES. It might happen
1442         * that a group's limit are dropped suddenly and we don't want to
1443         * account recently dispatched IO with new low rate.
1444         */
1445        throtl_start_new_slice(tg, READ);
1446        throtl_start_new_slice(tg, WRITE);
1447
1448        if (tg->flags & THROTL_TG_PENDING) {
1449                tg_update_disptime(tg);
1450                throtl_schedule_next_dispatch(sq->parent_sq, true);
1451        }
1452}
1453
1454static ssize_t tg_set_conf(struct kernfs_open_file *of,
1455                           char *buf, size_t nbytes, loff_t off, bool is_u64)
1456{
1457        struct blkcg *blkcg = css_to_blkcg(of_css(of));
1458        struct blkg_conf_ctx ctx;
1459        struct throtl_grp *tg;
1460        int ret;
1461        u64 v;
1462
1463        ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1464        if (ret)
1465                return ret;
1466
1467        ret = -EINVAL;
1468        if (sscanf(ctx.body, "%llu", &v) != 1)
1469                goto out_finish;
1470        if (!v)
1471                v = U64_MAX;
1472
1473        tg = blkg_to_tg(ctx.blkg);
1474
1475        if (is_u64)
1476                *(u64 *)((void *)tg + of_cft(of)->private) = v;
1477        else
1478                *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1479
1480        tg_conf_updated(tg, false);
1481        ret = 0;
1482out_finish:
1483        blkg_conf_finish(&ctx);
1484        return ret ?: nbytes;
1485}
1486
1487static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1488                               char *buf, size_t nbytes, loff_t off)
1489{
1490        return tg_set_conf(of, buf, nbytes, off, true);
1491}
1492
1493static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1494                                char *buf, size_t nbytes, loff_t off)
1495{
1496        return tg_set_conf(of, buf, nbytes, off, false);
1497}
1498
1499static int tg_print_rwstat(struct seq_file *sf, void *v)
1500{
1501        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1502                          blkg_prfill_rwstat, &blkcg_policy_throtl,
1503                          seq_cft(sf)->private, true);
1504        return 0;
1505}
1506
1507static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1508                                      struct blkg_policy_data *pd, int off)
1509{
1510        struct blkg_rwstat_sample sum;
1511
1512        blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1513                                  &sum);
1514        return __blkg_prfill_rwstat(sf, pd, &sum);
1515}
1516
1517static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1518{
1519        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1520                          tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1521                          seq_cft(sf)->private, true);
1522        return 0;
1523}
1524
1525static struct cftype throtl_legacy_files[] = {
1526        {
1527                .name = "throttle.read_bps_device",
1528                .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1529                .seq_show = tg_print_conf_u64,
1530                .write = tg_set_conf_u64,
1531        },
1532        {
1533                .name = "throttle.write_bps_device",
1534                .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1535                .seq_show = tg_print_conf_u64,
1536                .write = tg_set_conf_u64,
1537        },
1538        {
1539                .name = "throttle.read_iops_device",
1540                .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1541                .seq_show = tg_print_conf_uint,
1542                .write = tg_set_conf_uint,
1543        },
1544        {
1545                .name = "throttle.write_iops_device",
1546                .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1547                .seq_show = tg_print_conf_uint,
1548                .write = tg_set_conf_uint,
1549        },
1550        {
1551                .name = "throttle.io_service_bytes",
1552                .private = offsetof(struct throtl_grp, stat_bytes),
1553                .seq_show = tg_print_rwstat,
1554        },
1555        {
1556                .name = "throttle.io_service_bytes_recursive",
1557                .private = offsetof(struct throtl_grp, stat_bytes),
1558                .seq_show = tg_print_rwstat_recursive,
1559        },
1560        {
1561                .name = "throttle.io_serviced",
1562                .private = offsetof(struct throtl_grp, stat_ios),
1563                .seq_show = tg_print_rwstat,
1564        },
1565        {
1566                .name = "throttle.io_serviced_recursive",
1567                .private = offsetof(struct throtl_grp, stat_ios),
1568                .seq_show = tg_print_rwstat_recursive,
1569        },
1570        { }     /* terminate */
1571};
1572
1573static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1574                         int off)
1575{
1576        struct throtl_grp *tg = pd_to_tg(pd);
1577        const char *dname = blkg_dev_name(pd->blkg);
1578        char bufs[4][21] = { "max", "max", "max", "max" };
1579        u64 bps_dft;
1580        unsigned int iops_dft;
1581        char idle_time[26] = "";
1582        char latency_time[26] = "";
1583
1584        if (!dname)
1585                return 0;
1586
1587        if (off == LIMIT_LOW) {
1588                bps_dft = 0;
1589                iops_dft = 0;
1590        } else {
1591                bps_dft = U64_MAX;
1592                iops_dft = UINT_MAX;
1593        }
1594
1595        if (tg->bps_conf[READ][off] == bps_dft &&
1596            tg->bps_conf[WRITE][off] == bps_dft &&
1597            tg->iops_conf[READ][off] == iops_dft &&
1598            tg->iops_conf[WRITE][off] == iops_dft &&
1599            (off != LIMIT_LOW ||
1600             (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1601              tg->latency_target_conf == DFL_LATENCY_TARGET)))
1602                return 0;
1603
1604        if (tg->bps_conf[READ][off] != U64_MAX)
1605                snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1606                        tg->bps_conf[READ][off]);
1607        if (tg->bps_conf[WRITE][off] != U64_MAX)
1608                snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1609                        tg->bps_conf[WRITE][off]);
1610        if (tg->iops_conf[READ][off] != UINT_MAX)
1611                snprintf(bufs[2], sizeof(bufs[2]), "%u",
1612                        tg->iops_conf[READ][off]);
1613        if (tg->iops_conf[WRITE][off] != UINT_MAX)
1614                snprintf(bufs[3], sizeof(bufs[3]), "%u",
1615                        tg->iops_conf[WRITE][off]);
1616        if (off == LIMIT_LOW) {
1617                if (tg->idletime_threshold_conf == ULONG_MAX)
1618                        strcpy(idle_time, " idle=max");
1619                else
1620                        snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1621                                tg->idletime_threshold_conf);
1622
1623                if (tg->latency_target_conf == ULONG_MAX)
1624                        strcpy(latency_time, " latency=max");
1625                else
1626                        snprintf(latency_time, sizeof(latency_time),
1627                                " latency=%lu", tg->latency_target_conf);
1628        }
1629
1630        seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1631                   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1632                   latency_time);
1633        return 0;
1634}
1635
1636static int tg_print_limit(struct seq_file *sf, void *v)
1637{
1638        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1639                          &blkcg_policy_throtl, seq_cft(sf)->private, false);
1640        return 0;
1641}
1642
1643static ssize_t tg_set_limit(struct kernfs_open_file *of,
1644                          char *buf, size_t nbytes, loff_t off)
1645{
1646        struct blkcg *blkcg = css_to_blkcg(of_css(of));
1647        struct blkg_conf_ctx ctx;
1648        struct throtl_grp *tg;
1649        u64 v[4];
1650        unsigned long idle_time;
1651        unsigned long latency_time;
1652        int ret;
1653        int index = of_cft(of)->private;
1654
1655        ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1656        if (ret)
1657                return ret;
1658
1659        tg = blkg_to_tg(ctx.blkg);
1660
1661        v[0] = tg->bps_conf[READ][index];
1662        v[1] = tg->bps_conf[WRITE][index];
1663        v[2] = tg->iops_conf[READ][index];
1664        v[3] = tg->iops_conf[WRITE][index];
1665
1666        idle_time = tg->idletime_threshold_conf;
1667        latency_time = tg->latency_target_conf;
1668        while (true) {
1669                char tok[27];   /* wiops=18446744073709551616 */
1670                char *p;
1671                u64 val = U64_MAX;
1672                int len;
1673
1674                if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1675                        break;
1676                if (tok[0] == '\0')
1677                        break;
1678                ctx.body += len;
1679
1680                ret = -EINVAL;
1681                p = tok;
1682                strsep(&p, "=");
1683                if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1684                        goto out_finish;
1685
1686                ret = -ERANGE;
1687                if (!val)
1688                        goto out_finish;
1689
1690                ret = -EINVAL;
1691                if (!strcmp(tok, "rbps") && val > 1)
1692                        v[0] = val;
1693                else if (!strcmp(tok, "wbps") && val > 1)
1694                        v[1] = val;
1695                else if (!strcmp(tok, "riops") && val > 1)
1696                        v[2] = min_t(u64, val, UINT_MAX);
1697                else if (!strcmp(tok, "wiops") && val > 1)
1698                        v[3] = min_t(u64, val, UINT_MAX);
1699                else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1700                        idle_time = val;
1701                else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1702                        latency_time = val;
1703                else
1704                        goto out_finish;
1705        }
1706
1707        tg->bps_conf[READ][index] = v[0];
1708        tg->bps_conf[WRITE][index] = v[1];
1709        tg->iops_conf[READ][index] = v[2];
1710        tg->iops_conf[WRITE][index] = v[3];
1711
1712        if (index == LIMIT_MAX) {
1713                tg->bps[READ][index] = v[0];
1714                tg->bps[WRITE][index] = v[1];
1715                tg->iops[READ][index] = v[2];
1716                tg->iops[WRITE][index] = v[3];
1717        }
1718        tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1719                tg->bps_conf[READ][LIMIT_MAX]);
1720        tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1721                tg->bps_conf[WRITE][LIMIT_MAX]);
1722        tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1723                tg->iops_conf[READ][LIMIT_MAX]);
1724        tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1725                tg->iops_conf[WRITE][LIMIT_MAX]);
1726        tg->idletime_threshold_conf = idle_time;
1727        tg->latency_target_conf = latency_time;
1728
1729        /* force user to configure all settings for low limit  */
1730        if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1731              tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1732            tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1733            tg->latency_target_conf == DFL_LATENCY_TARGET) {
1734                tg->bps[READ][LIMIT_LOW] = 0;
1735                tg->bps[WRITE][LIMIT_LOW] = 0;
1736                tg->iops[READ][LIMIT_LOW] = 0;
1737                tg->iops[WRITE][LIMIT_LOW] = 0;
1738                tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1739                tg->latency_target = DFL_LATENCY_TARGET;
1740        } else if (index == LIMIT_LOW) {
1741                tg->idletime_threshold = tg->idletime_threshold_conf;
1742                tg->latency_target = tg->latency_target_conf;
1743        }
1744
1745        blk_throtl_update_limit_valid(tg->td);
1746        if (tg->td->limit_valid[LIMIT_LOW]) {
1747                if (index == LIMIT_LOW)
1748                        tg->td->limit_index = LIMIT_LOW;
1749        } else
1750                tg->td->limit_index = LIMIT_MAX;
1751        tg_conf_updated(tg, index == LIMIT_LOW &&
1752                tg->td->limit_valid[LIMIT_LOW]);
1753        ret = 0;
1754out_finish:
1755        blkg_conf_finish(&ctx);
1756        return ret ?: nbytes;
1757}
1758
1759static struct cftype throtl_files[] = {
1760#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1761        {
1762                .name = "low",
1763                .flags = CFTYPE_NOT_ON_ROOT,
1764                .seq_show = tg_print_limit,
1765                .write = tg_set_limit,
1766                .private = LIMIT_LOW,
1767        },
1768#endif
1769        {
1770                .name = "max",
1771                .flags = CFTYPE_NOT_ON_ROOT,
1772                .seq_show = tg_print_limit,
1773                .write = tg_set_limit,
1774                .private = LIMIT_MAX,
1775        },
1776        { }     /* terminate */
1777};
1778
1779static void throtl_shutdown_wq(struct request_queue *q)
1780{
1781        struct throtl_data *td = q->td;
1782
1783        cancel_work_sync(&td->dispatch_work);
1784}
1785
1786static struct blkcg_policy blkcg_policy_throtl = {
1787        .dfl_cftypes            = throtl_files,
1788        .legacy_cftypes         = throtl_legacy_files,
1789
1790        .pd_alloc_fn            = throtl_pd_alloc,
1791        .pd_init_fn             = throtl_pd_init,
1792        .pd_online_fn           = throtl_pd_online,
1793        .pd_offline_fn          = throtl_pd_offline,
1794        .pd_free_fn             = throtl_pd_free,
1795};
1796
1797static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1798{
1799        unsigned long rtime = jiffies, wtime = jiffies;
1800
1801        if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1802                rtime = tg->last_low_overflow_time[READ];
1803        if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1804                wtime = tg->last_low_overflow_time[WRITE];
1805        return min(rtime, wtime);
1806}
1807
1808/* tg should not be an intermediate node */
1809static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1810{
1811        struct throtl_service_queue *parent_sq;
1812        struct throtl_grp *parent = tg;
1813        unsigned long ret = __tg_last_low_overflow_time(tg);
1814
1815        while (true) {
1816                parent_sq = parent->service_queue.parent_sq;
1817                parent = sq_to_tg(parent_sq);
1818                if (!parent)
1819                        break;
1820
1821                /*
1822                 * The parent doesn't have low limit, it always reaches low
1823                 * limit. Its overflow time is useless for children
1824                 */
1825                if (!parent->bps[READ][LIMIT_LOW] &&
1826                    !parent->iops[READ][LIMIT_LOW] &&
1827                    !parent->bps[WRITE][LIMIT_LOW] &&
1828                    !parent->iops[WRITE][LIMIT_LOW])
1829                        continue;
1830                if (time_after(__tg_last_low_overflow_time(parent), ret))
1831                        ret = __tg_last_low_overflow_time(parent);
1832        }
1833        return ret;
1834}
1835
1836static bool throtl_tg_is_idle(struct throtl_grp *tg)
1837{
1838        /*
1839         * cgroup is idle if:
1840         * - single idle is too long, longer than a fixed value (in case user
1841         *   configure a too big threshold) or 4 times of idletime threshold
1842         * - average think time is more than threshold
1843         * - IO latency is largely below threshold
1844         */
1845        unsigned long time;
1846        bool ret;
1847
1848        time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1849        ret = tg->latency_target == DFL_LATENCY_TARGET ||
1850              tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1851              (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1852              tg->avg_idletime > tg->idletime_threshold ||
1853              (tg->latency_target && tg->bio_cnt &&
1854                tg->bad_bio_cnt * 5 < tg->bio_cnt);
1855        throtl_log(&tg->service_queue,
1856                "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1857                tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1858                tg->bio_cnt, ret, tg->td->scale);
1859        return ret;
1860}
1861
1862static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1863{
1864        struct throtl_service_queue *sq = &tg->service_queue;
1865        bool read_limit, write_limit;
1866
1867        /*
1868         * if cgroup reaches low limit (if low limit is 0, the cgroup always
1869         * reaches), it's ok to upgrade to next limit
1870         */
1871        read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1872        write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1873        if (!read_limit && !write_limit)
1874                return true;
1875        if (read_limit && sq->nr_queued[READ] &&
1876            (!write_limit || sq->nr_queued[WRITE]))
1877                return true;
1878        if (write_limit && sq->nr_queued[WRITE] &&
1879            (!read_limit || sq->nr_queued[READ]))
1880                return true;
1881
1882        if (time_after_eq(jiffies,
1883                tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1884            throtl_tg_is_idle(tg))
1885                return true;
1886        return false;
1887}
1888
1889static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1890{
1891        while (true) {
1892                if (throtl_tg_can_upgrade(tg))
1893                        return true;
1894                tg = sq_to_tg(tg->service_queue.parent_sq);
1895                if (!tg || !tg_to_blkg(tg)->parent)
1896                        return false;
1897        }
1898        return false;
1899}
1900
1901static bool throtl_can_upgrade(struct throtl_data *td,
1902        struct throtl_grp *this_tg)
1903{
1904        struct cgroup_subsys_state *pos_css;
1905        struct blkcg_gq *blkg;
1906
1907        if (td->limit_index != LIMIT_LOW)
1908                return false;
1909
1910        if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1911                return false;
1912
1913        rcu_read_lock();
1914        blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1915                struct throtl_grp *tg = blkg_to_tg(blkg);
1916
1917                if (tg == this_tg)
1918                        continue;
1919                if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1920                        continue;
1921                if (!throtl_hierarchy_can_upgrade(tg)) {
1922                        rcu_read_unlock();
1923                        return false;
1924                }
1925        }
1926        rcu_read_unlock();
1927        return true;
1928}
1929
1930static void throtl_upgrade_check(struct throtl_grp *tg)
1931{
1932        unsigned long now = jiffies;
1933
1934        if (tg->td->limit_index != LIMIT_LOW)
1935                return;
1936
1937        if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1938                return;
1939
1940        tg->last_check_time = now;
1941
1942        if (!time_after_eq(now,
1943             __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1944                return;
1945
1946        if (throtl_can_upgrade(tg->td, NULL))
1947                throtl_upgrade_state(tg->td);
1948}
1949
1950static void throtl_upgrade_state(struct throtl_data *td)
1951{
1952        struct cgroup_subsys_state *pos_css;
1953        struct blkcg_gq *blkg;
1954
1955        throtl_log(&td->service_queue, "upgrade to max");
1956        td->limit_index = LIMIT_MAX;
1957        td->low_upgrade_time = jiffies;
1958        td->scale = 0;
1959        rcu_read_lock();
1960        blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1961                struct throtl_grp *tg = blkg_to_tg(blkg);
1962                struct throtl_service_queue *sq = &tg->service_queue;
1963
1964                tg->disptime = jiffies - 1;
1965                throtl_select_dispatch(sq);
1966                throtl_schedule_next_dispatch(sq, true);
1967        }
1968        rcu_read_unlock();
1969        throtl_select_dispatch(&td->service_queue);
1970        throtl_schedule_next_dispatch(&td->service_queue, true);
1971        queue_work(kthrotld_workqueue, &td->dispatch_work);
1972}
1973
1974static void throtl_downgrade_state(struct throtl_data *td)
1975{
1976        td->scale /= 2;
1977
1978        throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1979        if (td->scale) {
1980                td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1981                return;
1982        }
1983
1984        td->limit_index = LIMIT_LOW;
1985        td->low_downgrade_time = jiffies;
1986}
1987
1988static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1989{
1990        struct throtl_data *td = tg->td;
1991        unsigned long now = jiffies;
1992
1993        /*
1994         * If cgroup is below low limit, consider downgrade and throttle other
1995         * cgroups
1996         */
1997        if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
1998            time_after_eq(now, tg_last_low_overflow_time(tg) +
1999                                        td->throtl_slice) &&
2000            (!throtl_tg_is_idle(tg) ||
2001             !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
2002                return true;
2003        return false;
2004}
2005
2006static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
2007{
2008        while (true) {
2009                if (!throtl_tg_can_downgrade(tg))
2010                        return false;
2011                tg = sq_to_tg(tg->service_queue.parent_sq);
2012                if (!tg || !tg_to_blkg(tg)->parent)
2013                        break;
2014        }
2015        return true;
2016}
2017
2018static void throtl_downgrade_check(struct throtl_grp *tg)
2019{
2020        uint64_t bps;
2021        unsigned int iops;
2022        unsigned long elapsed_time;
2023        unsigned long now = jiffies;
2024
2025        if (tg->td->limit_index != LIMIT_MAX ||
2026            !tg->td->limit_valid[LIMIT_LOW])
2027                return;
2028        if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2029                return;
2030        if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2031                return;
2032
2033        elapsed_time = now - tg->last_check_time;
2034        tg->last_check_time = now;
2035
2036        if (time_before(now, tg_last_low_overflow_time(tg) +
2037                        tg->td->throtl_slice))
2038                return;
2039
2040        if (tg->bps[READ][LIMIT_LOW]) {
2041                bps = tg->last_bytes_disp[READ] * HZ;
2042                do_div(bps, elapsed_time);
2043                if (bps >= tg->bps[READ][LIMIT_LOW])
2044                        tg->last_low_overflow_time[READ] = now;
2045        }
2046
2047        if (tg->bps[WRITE][LIMIT_LOW]) {
2048                bps = tg->last_bytes_disp[WRITE] * HZ;
2049                do_div(bps, elapsed_time);
2050                if (bps >= tg->bps[WRITE][LIMIT_LOW])
2051                        tg->last_low_overflow_time[WRITE] = now;
2052        }
2053
2054        if (tg->iops[READ][LIMIT_LOW]) {
2055                iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2056                if (iops >= tg->iops[READ][LIMIT_LOW])
2057                        tg->last_low_overflow_time[READ] = now;
2058        }
2059
2060        if (tg->iops[WRITE][LIMIT_LOW]) {
2061                iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2062                if (iops >= tg->iops[WRITE][LIMIT_LOW])
2063                        tg->last_low_overflow_time[WRITE] = now;
2064        }
2065
2066        /*
2067         * If cgroup is below low limit, consider downgrade and throttle other
2068         * cgroups
2069         */
2070        if (throtl_hierarchy_can_downgrade(tg))
2071                throtl_downgrade_state(tg->td);
2072
2073        tg->last_bytes_disp[READ] = 0;
2074        tg->last_bytes_disp[WRITE] = 0;
2075        tg->last_io_disp[READ] = 0;
2076        tg->last_io_disp[WRITE] = 0;
2077}
2078
2079static void blk_throtl_update_idletime(struct throtl_grp *tg)
2080{
2081        unsigned long now;
2082        unsigned long last_finish_time = tg->last_finish_time;
2083
2084        if (last_finish_time == 0)
2085                return;
2086
2087        now = ktime_get_ns() >> 10;
2088        if (now <= last_finish_time ||
2089            last_finish_time == tg->checked_last_finish_time)
2090                return;
2091
2092        tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2093        tg->checked_last_finish_time = last_finish_time;
2094}
2095
2096#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2097static void throtl_update_latency_buckets(struct throtl_data *td)
2098{
2099        struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2100        int i, cpu, rw;
2101        unsigned long last_latency[2] = { 0 };
2102        unsigned long latency[2];
2103
2104        if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2105                return;
2106        if (time_before(jiffies, td->last_calculate_time + HZ))
2107                return;
2108        td->last_calculate_time = jiffies;
2109
2110        memset(avg_latency, 0, sizeof(avg_latency));
2111        for (rw = READ; rw <= WRITE; rw++) {
2112                for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2113                        struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2114
2115                        for_each_possible_cpu(cpu) {
2116                                struct latency_bucket *bucket;
2117
2118                                /* this isn't race free, but ok in practice */
2119                                bucket = per_cpu_ptr(td->latency_buckets[rw],
2120                                        cpu);
2121                                tmp->total_latency += bucket[i].total_latency;
2122                                tmp->samples += bucket[i].samples;
2123                                bucket[i].total_latency = 0;
2124                                bucket[i].samples = 0;
2125                        }
2126
2127                        if (tmp->samples >= 32) {
2128                                int samples = tmp->samples;
2129
2130                                latency[rw] = tmp->total_latency;
2131
2132                                tmp->total_latency = 0;
2133                                tmp->samples = 0;
2134                                latency[rw] /= samples;
2135                                if (latency[rw] == 0)
2136                                        continue;
2137                                avg_latency[rw][i].latency = latency[rw];
2138                        }
2139                }
2140        }
2141
2142        for (rw = READ; rw <= WRITE; rw++) {
2143                for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2144                        if (!avg_latency[rw][i].latency) {
2145                                if (td->avg_buckets[rw][i].latency < last_latency[rw])
2146                                        td->avg_buckets[rw][i].latency =
2147                                                last_latency[rw];
2148                                continue;
2149                        }
2150
2151                        if (!td->avg_buckets[rw][i].valid)
2152                                latency[rw] = avg_latency[rw][i].latency;
2153                        else
2154                                latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2155                                        avg_latency[rw][i].latency) >> 3;
2156
2157                        td->avg_buckets[rw][i].latency = max(latency[rw],
2158                                last_latency[rw]);
2159                        td->avg_buckets[rw][i].valid = true;
2160                        last_latency[rw] = td->avg_buckets[rw][i].latency;
2161                }
2162        }
2163
2164        for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2165                throtl_log(&td->service_queue,
2166                        "Latency bucket %d: read latency=%ld, read valid=%d, "
2167                        "write latency=%ld, write valid=%d", i,
2168                        td->avg_buckets[READ][i].latency,
2169                        td->avg_buckets[READ][i].valid,
2170                        td->avg_buckets[WRITE][i].latency,
2171                        td->avg_buckets[WRITE][i].valid);
2172}
2173#else
2174static inline void throtl_update_latency_buckets(struct throtl_data *td)
2175{
2176}
2177#endif
2178
2179bool blk_throtl_bio(struct bio *bio)
2180{
2181        struct request_queue *q = bio->bi_bdev->bd_disk->queue;
2182        struct blkcg_gq *blkg = bio->bi_blkg;
2183        struct throtl_qnode *qn = NULL;
2184        struct throtl_grp *tg = blkg_to_tg(blkg);
2185        struct throtl_service_queue *sq;
2186        bool rw = bio_data_dir(bio);
2187        bool throttled = false;
2188        struct throtl_data *td = tg->td;
2189
2190        rcu_read_lock();
2191
2192        /* see throtl_charge_bio() */
2193        if (bio_flagged(bio, BIO_THROTTLED))
2194                goto out;
2195
2196        if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2197                blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2198                                bio->bi_iter.bi_size);
2199                blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2200        }
2201
2202        if (!tg->has_rules[rw])
2203                goto out;
2204
2205        spin_lock_irq(&q->queue_lock);
2206
2207        throtl_update_latency_buckets(td);
2208
2209        blk_throtl_update_idletime(tg);
2210
2211        sq = &tg->service_queue;
2212
2213again:
2214        while (true) {
2215                if (tg->last_low_overflow_time[rw] == 0)
2216                        tg->last_low_overflow_time[rw] = jiffies;
2217                throtl_downgrade_check(tg);
2218                throtl_upgrade_check(tg);
2219                /* throtl is FIFO - if bios are already queued, should queue */
2220                if (sq->nr_queued[rw])
2221                        break;
2222
2223                /* if above limits, break to queue */
2224                if (!tg_may_dispatch(tg, bio, NULL)) {
2225                        tg->last_low_overflow_time[rw] = jiffies;
2226                        if (throtl_can_upgrade(td, tg)) {
2227                                throtl_upgrade_state(td);
2228                                goto again;
2229                        }
2230                        break;
2231                }
2232
2233                /* within limits, let's charge and dispatch directly */
2234                throtl_charge_bio(tg, bio);
2235
2236                /*
2237                 * We need to trim slice even when bios are not being queued
2238                 * otherwise it might happen that a bio is not queued for
2239                 * a long time and slice keeps on extending and trim is not
2240                 * called for a long time. Now if limits are reduced suddenly
2241                 * we take into account all the IO dispatched so far at new
2242                 * low rate and * newly queued IO gets a really long dispatch
2243                 * time.
2244                 *
2245                 * So keep on trimming slice even if bio is not queued.
2246                 */
2247                throtl_trim_slice(tg, rw);
2248
2249                /*
2250                 * @bio passed through this layer without being throttled.
2251                 * Climb up the ladder.  If we're already at the top, it
2252                 * can be executed directly.
2253                 */
2254                qn = &tg->qnode_on_parent[rw];
2255                sq = sq->parent_sq;
2256                tg = sq_to_tg(sq);
2257                if (!tg)
2258                        goto out_unlock;
2259        }
2260
2261        /* out-of-limit, queue to @tg */
2262        throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2263                   rw == READ ? 'R' : 'W',
2264                   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2265                   tg_bps_limit(tg, rw),
2266                   tg->io_disp[rw], tg_iops_limit(tg, rw),
2267                   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2268
2269        tg->last_low_overflow_time[rw] = jiffies;
2270
2271        td->nr_queued[rw]++;
2272        throtl_add_bio_tg(bio, qn, tg);
2273        throttled = true;
2274
2275        /*
2276         * Update @tg's dispatch time and force schedule dispatch if @tg
2277         * was empty before @bio.  The forced scheduling isn't likely to
2278         * cause undue delay as @bio is likely to be dispatched directly if
2279         * its @tg's disptime is not in the future.
2280         */
2281        if (tg->flags & THROTL_TG_WAS_EMPTY) {
2282                tg_update_disptime(tg);
2283                throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2284        }
2285
2286out_unlock:
2287        spin_unlock_irq(&q->queue_lock);
2288out:
2289        bio_set_flag(bio, BIO_THROTTLED);
2290
2291#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2292        if (throttled || !td->track_bio_latency)
2293                bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2294#endif
2295        rcu_read_unlock();
2296        return throttled;
2297}
2298
2299#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2300static void throtl_track_latency(struct throtl_data *td, sector_t size,
2301        int op, unsigned long time)
2302{
2303        struct latency_bucket *latency;
2304        int index;
2305
2306        if (!td || td->limit_index != LIMIT_LOW ||
2307            !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2308            !blk_queue_nonrot(td->queue))
2309                return;
2310
2311        index = request_bucket_index(size);
2312
2313        latency = get_cpu_ptr(td->latency_buckets[op]);
2314        latency[index].total_latency += time;
2315        latency[index].samples++;
2316        put_cpu_ptr(td->latency_buckets[op]);
2317}
2318
2319void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2320{
2321        struct request_queue *q = rq->q;
2322        struct throtl_data *td = q->td;
2323
2324        throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2325                             time_ns >> 10);
2326}
2327
2328void blk_throtl_bio_endio(struct bio *bio)
2329{
2330        struct blkcg_gq *blkg;
2331        struct throtl_grp *tg;
2332        u64 finish_time_ns;
2333        unsigned long finish_time;
2334        unsigned long start_time;
2335        unsigned long lat;
2336        int rw = bio_data_dir(bio);
2337
2338        blkg = bio->bi_blkg;
2339        if (!blkg)
2340                return;
2341        tg = blkg_to_tg(blkg);
2342        if (!tg->td->limit_valid[LIMIT_LOW])
2343                return;
2344
2345        finish_time_ns = ktime_get_ns();
2346        tg->last_finish_time = finish_time_ns >> 10;
2347
2348        start_time = bio_issue_time(&bio->bi_issue) >> 10;
2349        finish_time = __bio_issue_time(finish_time_ns) >> 10;
2350        if (!start_time || finish_time <= start_time)
2351                return;
2352
2353        lat = finish_time - start_time;
2354        /* this is only for bio based driver */
2355        if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2356                throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2357                                     bio_op(bio), lat);
2358
2359        if (tg->latency_target && lat >= tg->td->filtered_latency) {
2360                int bucket;
2361                unsigned int threshold;
2362
2363                bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2364                threshold = tg->td->avg_buckets[rw][bucket].latency +
2365                        tg->latency_target;
2366                if (lat > threshold)
2367                        tg->bad_bio_cnt++;
2368                /*
2369                 * Not race free, could get wrong count, which means cgroups
2370                 * will be throttled
2371                 */
2372                tg->bio_cnt++;
2373        }
2374
2375        if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2376                tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2377                tg->bio_cnt /= 2;
2378                tg->bad_bio_cnt /= 2;
2379        }
2380}
2381#endif
2382
2383int blk_throtl_init(struct request_queue *q)
2384{
2385        struct throtl_data *td;
2386        int ret;
2387
2388        td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2389        if (!td)
2390                return -ENOMEM;
2391        td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2392                LATENCY_BUCKET_SIZE, __alignof__(u64));
2393        if (!td->latency_buckets[READ]) {
2394                kfree(td);
2395                return -ENOMEM;
2396        }
2397        td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2398                LATENCY_BUCKET_SIZE, __alignof__(u64));
2399        if (!td->latency_buckets[WRITE]) {
2400                free_percpu(td->latency_buckets[READ]);
2401                kfree(td);
2402                return -ENOMEM;
2403        }
2404
2405        INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2406        throtl_service_queue_init(&td->service_queue);
2407
2408        q->td = td;
2409        td->queue = q;
2410
2411        td->limit_valid[LIMIT_MAX] = true;
2412        td->limit_index = LIMIT_MAX;
2413        td->low_upgrade_time = jiffies;
2414        td->low_downgrade_time = jiffies;
2415
2416        /* activate policy */
2417        ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2418        if (ret) {
2419                free_percpu(td->latency_buckets[READ]);
2420                free_percpu(td->latency_buckets[WRITE]);
2421                kfree(td);
2422        }
2423        return ret;
2424}
2425
2426void blk_throtl_exit(struct request_queue *q)
2427{
2428        BUG_ON(!q->td);
2429        throtl_shutdown_wq(q);
2430        blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2431        free_percpu(q->td->latency_buckets[READ]);
2432        free_percpu(q->td->latency_buckets[WRITE]);
2433        kfree(q->td);
2434}
2435
2436void blk_throtl_register_queue(struct request_queue *q)
2437{
2438        struct throtl_data *td;
2439        int i;
2440
2441        td = q->td;
2442        BUG_ON(!td);
2443
2444        if (blk_queue_nonrot(q)) {
2445                td->throtl_slice = DFL_THROTL_SLICE_SSD;
2446                td->filtered_latency = LATENCY_FILTERED_SSD;
2447        } else {
2448                td->throtl_slice = DFL_THROTL_SLICE_HD;
2449                td->filtered_latency = LATENCY_FILTERED_HD;
2450                for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2451                        td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2452                        td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2453                }
2454        }
2455#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2456        /* if no low limit, use previous default */
2457        td->throtl_slice = DFL_THROTL_SLICE_HD;
2458#endif
2459
2460        td->track_bio_latency = !queue_is_mq(q);
2461        if (!td->track_bio_latency)
2462                blk_stat_enable_accounting(q);
2463}
2464
2465#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2466ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2467{
2468        if (!q->td)
2469                return -EINVAL;
2470        return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2471}
2472
2473ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2474        const char *page, size_t count)
2475{
2476        unsigned long v;
2477        unsigned long t;
2478
2479        if (!q->td)
2480                return -EINVAL;
2481        if (kstrtoul(page, 10, &v))
2482                return -EINVAL;
2483        t = msecs_to_jiffies(v);
2484        if (t == 0 || t > MAX_THROTL_SLICE)
2485                return -EINVAL;
2486        q->td->throtl_slice = t;
2487        return count;
2488}
2489#endif
2490
2491static int __init throtl_init(void)
2492{
2493        kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2494        if (!kthrotld_workqueue)
2495                panic("Failed to create kthrotld\n");
2496
2497        return blkcg_policy_register(&blkcg_policy_throtl);
2498}
2499
2500module_init(throtl_init);
2501