linux/block/partitions/efi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/************************************************************
   3 * EFI GUID Partition Table handling
   4 *
   5 * http://www.uefi.org/specs/
   6 * http://www.intel.com/technology/efi/
   7 *
   8 * efi.[ch] by Matt Domsch <Matt_Domsch@dell.com>
   9 *   Copyright 2000,2001,2002,2004 Dell Inc.
  10 *
  11 * TODO:
  12 *
  13 * Changelog:
  14 * Mon August 5th, 2013 Davidlohr Bueso <davidlohr@hp.com>
  15 * - detect hybrid MBRs, tighter pMBR checking & cleanups.
  16 *
  17 * Mon Nov 09 2004 Matt Domsch <Matt_Domsch@dell.com>
  18 * - test for valid PMBR and valid PGPT before ever reading
  19 *   AGPT, allow override with 'gpt' kernel command line option.
  20 * - check for first/last_usable_lba outside of size of disk
  21 *
  22 * Tue  Mar 26 2002 Matt Domsch <Matt_Domsch@dell.com>
  23 * - Ported to 2.5.7-pre1 and 2.5.7-dj2
  24 * - Applied patch to avoid fault in alternate header handling
  25 * - cleaned up find_valid_gpt
  26 * - On-disk structure and copy in memory is *always* LE now - 
  27 *   swab fields as needed
  28 * - remove print_gpt_header()
  29 * - only use first max_p partition entries, to keep the kernel minor number
  30 *   and partition numbers tied.
  31 *
  32 * Mon  Feb 04 2002 Matt Domsch <Matt_Domsch@dell.com>
  33 * - Removed __PRIPTR_PREFIX - not being used
  34 *
  35 * Mon  Jan 14 2002 Matt Domsch <Matt_Domsch@dell.com>
  36 * - Ported to 2.5.2-pre11 + library crc32 patch Linus applied
  37 *
  38 * Thu Dec 6 2001 Matt Domsch <Matt_Domsch@dell.com>
  39 * - Added compare_gpts().
  40 * - moved le_efi_guid_to_cpus() back into this file.  GPT is the only
  41 *   thing that keeps EFI GUIDs on disk.
  42 * - Changed gpt structure names and members to be simpler and more Linux-like.
  43 * 
  44 * Wed Oct 17 2001 Matt Domsch <Matt_Domsch@dell.com>
  45 * - Removed CONFIG_DEVFS_VOLUMES_UUID code entirely per Martin Wilck
  46 *
  47 * Wed Oct 10 2001 Matt Domsch <Matt_Domsch@dell.com>
  48 * - Changed function comments to DocBook style per Andreas Dilger suggestion.
  49 *
  50 * Mon Oct 08 2001 Matt Domsch <Matt_Domsch@dell.com>
  51 * - Change read_lba() to use the page cache per Al Viro's work.
  52 * - print u64s properly on all architectures
  53 * - fixed debug_printk(), now Dprintk()
  54 *
  55 * Mon Oct 01 2001 Matt Domsch <Matt_Domsch@dell.com>
  56 * - Style cleanups
  57 * - made most functions static
  58 * - Endianness addition
  59 * - remove test for second alternate header, as it's not per spec,
  60 *   and is unnecessary.  There's now a method to read/write the last
  61 *   sector of an odd-sized disk from user space.  No tools have ever
  62 *   been released which used this code, so it's effectively dead.
  63 * - Per Asit Mallick of Intel, added a test for a valid PMBR.
  64 * - Added kernel command line option 'gpt' to override valid PMBR test.
  65 *
  66 * Wed Jun  6 2001 Martin Wilck <Martin.Wilck@Fujitsu-Siemens.com>
  67 * - added devfs volume UUID support (/dev/volumes/uuids) for
  68 *   mounting file systems by the partition GUID. 
  69 *
  70 * Tue Dec  5 2000 Matt Domsch <Matt_Domsch@dell.com>
  71 * - Moved crc32() to linux/lib, added efi_crc32().
  72 *
  73 * Thu Nov 30 2000 Matt Domsch <Matt_Domsch@dell.com>
  74 * - Replaced Intel's CRC32 function with an equivalent
  75 *   non-license-restricted version.
  76 *
  77 * Wed Oct 25 2000 Matt Domsch <Matt_Domsch@dell.com>
  78 * - Fixed the last_lba() call to return the proper last block
  79 *
  80 * Thu Oct 12 2000 Matt Domsch <Matt_Domsch@dell.com>
  81 * - Thanks to Andries Brouwer for his debugging assistance.
  82 * - Code works, detects all the partitions.
  83 *
  84 ************************************************************/
  85#include <linux/kernel.h>
  86#include <linux/crc32.h>
  87#include <linux/ctype.h>
  88#include <linux/math64.h>
  89#include <linux/slab.h>
  90#include "check.h"
  91#include "efi.h"
  92
  93/* This allows a kernel command line option 'gpt' to override
  94 * the test for invalid PMBR.  Not __initdata because reloading
  95 * the partition tables happens after init too.
  96 */
  97static int force_gpt;
  98static int __init
  99force_gpt_fn(char *str)
 100{
 101        force_gpt = 1;
 102        return 1;
 103}
 104__setup("gpt", force_gpt_fn);
 105
 106
 107/**
 108 * efi_crc32() - EFI version of crc32 function
 109 * @buf: buffer to calculate crc32 of
 110 * @len: length of buf
 111 *
 112 * Description: Returns EFI-style CRC32 value for @buf
 113 * 
 114 * This function uses the little endian Ethernet polynomial
 115 * but seeds the function with ~0, and xor's with ~0 at the end.
 116 * Note, the EFI Specification, v1.02, has a reference to
 117 * Dr. Dobbs Journal, May 1994 (actually it's in May 1992).
 118 */
 119static inline u32
 120efi_crc32(const void *buf, unsigned long len)
 121{
 122        return (crc32(~0L, buf, len) ^ ~0L);
 123}
 124
 125/**
 126 * last_lba(): return number of last logical block of device
 127 * @bdev: block device
 128 * 
 129 * Description: Returns last LBA value on success, 0 on error.
 130 * This is stored (by sd and ide-geometry) in
 131 *  the part[0] entry for this disk, and is the number of
 132 *  physical sectors available on the disk.
 133 */
 134static u64 last_lba(struct block_device *bdev)
 135{
 136        if (!bdev || !bdev->bd_inode)
 137                return 0;
 138        return div_u64(bdev->bd_inode->i_size,
 139                       bdev_logical_block_size(bdev)) - 1ULL;
 140}
 141
 142static inline int pmbr_part_valid(gpt_mbr_record *part)
 143{
 144        if (part->os_type != EFI_PMBR_OSTYPE_EFI_GPT)
 145                goto invalid;
 146
 147        /* set to 0x00000001 (i.e., the LBA of the GPT Partition Header) */
 148        if (le32_to_cpu(part->starting_lba) != GPT_PRIMARY_PARTITION_TABLE_LBA)
 149                goto invalid;
 150
 151        return GPT_MBR_PROTECTIVE;
 152invalid:
 153        return 0;
 154}
 155
 156/**
 157 * is_pmbr_valid(): test Protective MBR for validity
 158 * @mbr: pointer to a legacy mbr structure
 159 * @total_sectors: amount of sectors in the device
 160 *
 161 * Description: Checks for a valid protective or hybrid
 162 * master boot record (MBR). The validity of a pMBR depends
 163 * on all of the following properties:
 164 *  1) MSDOS signature is in the last two bytes of the MBR
 165 *  2) One partition of type 0xEE is found
 166 *
 167 * In addition, a hybrid MBR will have up to three additional
 168 * primary partitions, which point to the same space that's
 169 * marked out by up to three GPT partitions.
 170 *
 171 * Returns 0 upon invalid MBR, or GPT_MBR_PROTECTIVE or
 172 * GPT_MBR_HYBRID depending on the device layout.
 173 */
 174static int is_pmbr_valid(legacy_mbr *mbr, sector_t total_sectors)
 175{
 176        uint32_t sz = 0;
 177        int i, part = 0, ret = 0; /* invalid by default */
 178
 179        if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
 180                goto done;
 181
 182        for (i = 0; i < 4; i++) {
 183                ret = pmbr_part_valid(&mbr->partition_record[i]);
 184                if (ret == GPT_MBR_PROTECTIVE) {
 185                        part = i;
 186                        /*
 187                         * Ok, we at least know that there's a protective MBR,
 188                         * now check if there are other partition types for
 189                         * hybrid MBR.
 190                         */
 191                        goto check_hybrid;
 192                }
 193        }
 194
 195        if (ret != GPT_MBR_PROTECTIVE)
 196                goto done;
 197check_hybrid:
 198        for (i = 0; i < 4; i++)
 199                if ((mbr->partition_record[i].os_type !=
 200                        EFI_PMBR_OSTYPE_EFI_GPT) &&
 201                    (mbr->partition_record[i].os_type != 0x00))
 202                        ret = GPT_MBR_HYBRID;
 203
 204        /*
 205         * Protective MBRs take up the lesser of the whole disk
 206         * or 2 TiB (32bit LBA), ignoring the rest of the disk.
 207         * Some partitioning programs, nonetheless, choose to set
 208         * the size to the maximum 32-bit limitation, disregarding
 209         * the disk size.
 210         *
 211         * Hybrid MBRs do not necessarily comply with this.
 212         *
 213         * Consider a bad value here to be a warning to support dd'ing
 214         * an image from a smaller disk to a larger disk.
 215         */
 216        if (ret == GPT_MBR_PROTECTIVE) {
 217                sz = le32_to_cpu(mbr->partition_record[part].size_in_lba);
 218                if (sz != (uint32_t) total_sectors - 1 && sz != 0xFFFFFFFF)
 219                        pr_debug("GPT: mbr size in lba (%u) different than whole disk (%u).\n",
 220                                 sz, min_t(uint32_t,
 221                                           total_sectors - 1, 0xFFFFFFFF));
 222        }
 223done:
 224        return ret;
 225}
 226
 227/**
 228 * read_lba(): Read bytes from disk, starting at given LBA
 229 * @state: disk parsed partitions
 230 * @lba: the Logical Block Address of the partition table
 231 * @buffer: destination buffer
 232 * @count: bytes to read
 233 *
 234 * Description: Reads @count bytes from @state->bdev into @buffer.
 235 * Returns number of bytes read on success, 0 on error.
 236 */
 237static size_t read_lba(struct parsed_partitions *state,
 238                       u64 lba, u8 *buffer, size_t count)
 239{
 240        size_t totalreadcount = 0;
 241        struct block_device *bdev = state->bdev;
 242        sector_t n = lba * (bdev_logical_block_size(bdev) / 512);
 243
 244        if (!buffer || lba > last_lba(bdev))
 245                return 0;
 246
 247        while (count) {
 248                int copied = 512;
 249                Sector sect;
 250                unsigned char *data = read_part_sector(state, n++, &sect);
 251                if (!data)
 252                        break;
 253                if (copied > count)
 254                        copied = count;
 255                memcpy(buffer, data, copied);
 256                put_dev_sector(sect);
 257                buffer += copied;
 258                totalreadcount +=copied;
 259                count -= copied;
 260        }
 261        return totalreadcount;
 262}
 263
 264/**
 265 * alloc_read_gpt_entries(): reads partition entries from disk
 266 * @state: disk parsed partitions
 267 * @gpt: GPT header
 268 * 
 269 * Description: Returns ptes on success,  NULL on error.
 270 * Allocates space for PTEs based on information found in @gpt.
 271 * Notes: remember to free pte when you're done!
 272 */
 273static gpt_entry *alloc_read_gpt_entries(struct parsed_partitions *state,
 274                                         gpt_header *gpt)
 275{
 276        size_t count;
 277        gpt_entry *pte;
 278
 279        if (!gpt)
 280                return NULL;
 281
 282        count = (size_t)le32_to_cpu(gpt->num_partition_entries) *
 283                le32_to_cpu(gpt->sizeof_partition_entry);
 284        if (!count)
 285                return NULL;
 286        pte = kmalloc(count, GFP_KERNEL);
 287        if (!pte)
 288                return NULL;
 289
 290        if (read_lba(state, le64_to_cpu(gpt->partition_entry_lba),
 291                        (u8 *) pte, count) < count) {
 292                kfree(pte);
 293                pte=NULL;
 294                return NULL;
 295        }
 296        return pte;
 297}
 298
 299/**
 300 * alloc_read_gpt_header(): Allocates GPT header, reads into it from disk
 301 * @state: disk parsed partitions
 302 * @lba: the Logical Block Address of the partition table
 303 * 
 304 * Description: returns GPT header on success, NULL on error.   Allocates
 305 * and fills a GPT header starting at @ from @state->bdev.
 306 * Note: remember to free gpt when finished with it.
 307 */
 308static gpt_header *alloc_read_gpt_header(struct parsed_partitions *state,
 309                                         u64 lba)
 310{
 311        gpt_header *gpt;
 312        unsigned ssz = bdev_logical_block_size(state->bdev);
 313
 314        gpt = kmalloc(ssz, GFP_KERNEL);
 315        if (!gpt)
 316                return NULL;
 317
 318        if (read_lba(state, lba, (u8 *) gpt, ssz) < ssz) {
 319                kfree(gpt);
 320                gpt=NULL;
 321                return NULL;
 322        }
 323
 324        return gpt;
 325}
 326
 327/**
 328 * is_gpt_valid() - tests one GPT header and PTEs for validity
 329 * @state: disk parsed partitions
 330 * @lba: logical block address of the GPT header to test
 331 * @gpt: GPT header ptr, filled on return.
 332 * @ptes: PTEs ptr, filled on return.
 333 *
 334 * Description: returns 1 if valid,  0 on error.
 335 * If valid, returns pointers to newly allocated GPT header and PTEs.
 336 */
 337static int is_gpt_valid(struct parsed_partitions *state, u64 lba,
 338                        gpt_header **gpt, gpt_entry **ptes)
 339{
 340        u32 crc, origcrc;
 341        u64 lastlba, pt_size;
 342
 343        if (!ptes)
 344                return 0;
 345        if (!(*gpt = alloc_read_gpt_header(state, lba)))
 346                return 0;
 347
 348        /* Check the GUID Partition Table signature */
 349        if (le64_to_cpu((*gpt)->signature) != GPT_HEADER_SIGNATURE) {
 350                pr_debug("GUID Partition Table Header signature is wrong:"
 351                         "%lld != %lld\n",
 352                         (unsigned long long)le64_to_cpu((*gpt)->signature),
 353                         (unsigned long long)GPT_HEADER_SIGNATURE);
 354                goto fail;
 355        }
 356
 357        /* Check the GUID Partition Table header size is too big */
 358        if (le32_to_cpu((*gpt)->header_size) >
 359                        bdev_logical_block_size(state->bdev)) {
 360                pr_debug("GUID Partition Table Header size is too large: %u > %u\n",
 361                        le32_to_cpu((*gpt)->header_size),
 362                        bdev_logical_block_size(state->bdev));
 363                goto fail;
 364        }
 365
 366        /* Check the GUID Partition Table header size is too small */
 367        if (le32_to_cpu((*gpt)->header_size) < sizeof(gpt_header)) {
 368                pr_debug("GUID Partition Table Header size is too small: %u < %zu\n",
 369                        le32_to_cpu((*gpt)->header_size),
 370                        sizeof(gpt_header));
 371                goto fail;
 372        }
 373
 374        /* Check the GUID Partition Table CRC */
 375        origcrc = le32_to_cpu((*gpt)->header_crc32);
 376        (*gpt)->header_crc32 = 0;
 377        crc = efi_crc32((const unsigned char *) (*gpt), le32_to_cpu((*gpt)->header_size));
 378
 379        if (crc != origcrc) {
 380                pr_debug("GUID Partition Table Header CRC is wrong: %x != %x\n",
 381                         crc, origcrc);
 382                goto fail;
 383        }
 384        (*gpt)->header_crc32 = cpu_to_le32(origcrc);
 385
 386        /* Check that the my_lba entry points to the LBA that contains
 387         * the GUID Partition Table */
 388        if (le64_to_cpu((*gpt)->my_lba) != lba) {
 389                pr_debug("GPT my_lba incorrect: %lld != %lld\n",
 390                         (unsigned long long)le64_to_cpu((*gpt)->my_lba),
 391                         (unsigned long long)lba);
 392                goto fail;
 393        }
 394
 395        /* Check the first_usable_lba and last_usable_lba are
 396         * within the disk.
 397         */
 398        lastlba = last_lba(state->bdev);
 399        if (le64_to_cpu((*gpt)->first_usable_lba) > lastlba) {
 400                pr_debug("GPT: first_usable_lba incorrect: %lld > %lld\n",
 401                         (unsigned long long)le64_to_cpu((*gpt)->first_usable_lba),
 402                         (unsigned long long)lastlba);
 403                goto fail;
 404        }
 405        if (le64_to_cpu((*gpt)->last_usable_lba) > lastlba) {
 406                pr_debug("GPT: last_usable_lba incorrect: %lld > %lld\n",
 407                         (unsigned long long)le64_to_cpu((*gpt)->last_usable_lba),
 408                         (unsigned long long)lastlba);
 409                goto fail;
 410        }
 411        if (le64_to_cpu((*gpt)->last_usable_lba) < le64_to_cpu((*gpt)->first_usable_lba)) {
 412                pr_debug("GPT: last_usable_lba incorrect: %lld > %lld\n",
 413                         (unsigned long long)le64_to_cpu((*gpt)->last_usable_lba),
 414                         (unsigned long long)le64_to_cpu((*gpt)->first_usable_lba));
 415                goto fail;
 416        }
 417        /* Check that sizeof_partition_entry has the correct value */
 418        if (le32_to_cpu((*gpt)->sizeof_partition_entry) != sizeof(gpt_entry)) {
 419                pr_debug("GUID Partition Entry Size check failed.\n");
 420                goto fail;
 421        }
 422
 423        /* Sanity check partition table size */
 424        pt_size = (u64)le32_to_cpu((*gpt)->num_partition_entries) *
 425                le32_to_cpu((*gpt)->sizeof_partition_entry);
 426        if (pt_size > KMALLOC_MAX_SIZE) {
 427                pr_debug("GUID Partition Table is too large: %llu > %lu bytes\n",
 428                         (unsigned long long)pt_size, KMALLOC_MAX_SIZE);
 429                goto fail;
 430        }
 431
 432        if (!(*ptes = alloc_read_gpt_entries(state, *gpt)))
 433                goto fail;
 434
 435        /* Check the GUID Partition Entry Array CRC */
 436        crc = efi_crc32((const unsigned char *) (*ptes), pt_size);
 437
 438        if (crc != le32_to_cpu((*gpt)->partition_entry_array_crc32)) {
 439                pr_debug("GUID Partition Entry Array CRC check failed.\n");
 440                goto fail_ptes;
 441        }
 442
 443        /* We're done, all's well */
 444        return 1;
 445
 446 fail_ptes:
 447        kfree(*ptes);
 448        *ptes = NULL;
 449 fail:
 450        kfree(*gpt);
 451        *gpt = NULL;
 452        return 0;
 453}
 454
 455/**
 456 * is_pte_valid() - tests one PTE for validity
 457 * @pte:pte to check
 458 * @lastlba: last lba of the disk
 459 *
 460 * Description: returns 1 if valid,  0 on error.
 461 */
 462static inline int
 463is_pte_valid(const gpt_entry *pte, const u64 lastlba)
 464{
 465        if ((!efi_guidcmp(pte->partition_type_guid, NULL_GUID)) ||
 466            le64_to_cpu(pte->starting_lba) > lastlba         ||
 467            le64_to_cpu(pte->ending_lba)   > lastlba)
 468                return 0;
 469        return 1;
 470}
 471
 472/**
 473 * compare_gpts() - Search disk for valid GPT headers and PTEs
 474 * @pgpt: primary GPT header
 475 * @agpt: alternate GPT header
 476 * @lastlba: last LBA number
 477 *
 478 * Description: Returns nothing.  Sanity checks pgpt and agpt fields
 479 * and prints warnings on discrepancies.
 480 * 
 481 */
 482static void
 483compare_gpts(gpt_header *pgpt, gpt_header *agpt, u64 lastlba)
 484{
 485        int error_found = 0;
 486        if (!pgpt || !agpt)
 487                return;
 488        if (le64_to_cpu(pgpt->my_lba) != le64_to_cpu(agpt->alternate_lba)) {
 489                pr_warn("GPT:Primary header LBA != Alt. header alternate_lba\n");
 490                pr_warn("GPT:%lld != %lld\n",
 491                       (unsigned long long)le64_to_cpu(pgpt->my_lba),
 492                       (unsigned long long)le64_to_cpu(agpt->alternate_lba));
 493                error_found++;
 494        }
 495        if (le64_to_cpu(pgpt->alternate_lba) != le64_to_cpu(agpt->my_lba)) {
 496                pr_warn("GPT:Primary header alternate_lba != Alt. header my_lba\n");
 497                pr_warn("GPT:%lld != %lld\n",
 498                       (unsigned long long)le64_to_cpu(pgpt->alternate_lba),
 499                       (unsigned long long)le64_to_cpu(agpt->my_lba));
 500                error_found++;
 501        }
 502        if (le64_to_cpu(pgpt->first_usable_lba) !=
 503            le64_to_cpu(agpt->first_usable_lba)) {
 504                pr_warn("GPT:first_usable_lbas don't match.\n");
 505                pr_warn("GPT:%lld != %lld\n",
 506                       (unsigned long long)le64_to_cpu(pgpt->first_usable_lba),
 507                       (unsigned long long)le64_to_cpu(agpt->first_usable_lba));
 508                error_found++;
 509        }
 510        if (le64_to_cpu(pgpt->last_usable_lba) !=
 511            le64_to_cpu(agpt->last_usable_lba)) {
 512                pr_warn("GPT:last_usable_lbas don't match.\n");
 513                pr_warn("GPT:%lld != %lld\n",
 514                       (unsigned long long)le64_to_cpu(pgpt->last_usable_lba),
 515                       (unsigned long long)le64_to_cpu(agpt->last_usable_lba));
 516                error_found++;
 517        }
 518        if (efi_guidcmp(pgpt->disk_guid, agpt->disk_guid)) {
 519                pr_warn("GPT:disk_guids don't match.\n");
 520                error_found++;
 521        }
 522        if (le32_to_cpu(pgpt->num_partition_entries) !=
 523            le32_to_cpu(agpt->num_partition_entries)) {
 524                pr_warn("GPT:num_partition_entries don't match: "
 525                       "0x%x != 0x%x\n",
 526                       le32_to_cpu(pgpt->num_partition_entries),
 527                       le32_to_cpu(agpt->num_partition_entries));
 528                error_found++;
 529        }
 530        if (le32_to_cpu(pgpt->sizeof_partition_entry) !=
 531            le32_to_cpu(agpt->sizeof_partition_entry)) {
 532                pr_warn("GPT:sizeof_partition_entry values don't match: "
 533                       "0x%x != 0x%x\n",
 534                       le32_to_cpu(pgpt->sizeof_partition_entry),
 535                       le32_to_cpu(agpt->sizeof_partition_entry));
 536                error_found++;
 537        }
 538        if (le32_to_cpu(pgpt->partition_entry_array_crc32) !=
 539            le32_to_cpu(agpt->partition_entry_array_crc32)) {
 540                pr_warn("GPT:partition_entry_array_crc32 values don't match: "
 541                       "0x%x != 0x%x\n",
 542                       le32_to_cpu(pgpt->partition_entry_array_crc32),
 543                       le32_to_cpu(agpt->partition_entry_array_crc32));
 544                error_found++;
 545        }
 546        if (le64_to_cpu(pgpt->alternate_lba) != lastlba) {
 547                pr_warn("GPT:Primary header thinks Alt. header is not at the end of the disk.\n");
 548                pr_warn("GPT:%lld != %lld\n",
 549                        (unsigned long long)le64_to_cpu(pgpt->alternate_lba),
 550                        (unsigned long long)lastlba);
 551                error_found++;
 552        }
 553
 554        if (le64_to_cpu(agpt->my_lba) != lastlba) {
 555                pr_warn("GPT:Alternate GPT header not at the end of the disk.\n");
 556                pr_warn("GPT:%lld != %lld\n",
 557                        (unsigned long long)le64_to_cpu(agpt->my_lba),
 558                        (unsigned long long)lastlba);
 559                error_found++;
 560        }
 561
 562        if (error_found)
 563                pr_warn("GPT: Use GNU Parted to correct GPT errors.\n");
 564        return;
 565}
 566
 567/**
 568 * find_valid_gpt() - Search disk for valid GPT headers and PTEs
 569 * @state: disk parsed partitions
 570 * @gpt: GPT header ptr, filled on return.
 571 * @ptes: PTEs ptr, filled on return.
 572 *
 573 * Description: Returns 1 if valid, 0 on error.
 574 * If valid, returns pointers to newly allocated GPT header and PTEs.
 575 * Validity depends on PMBR being valid (or being overridden by the
 576 * 'gpt' kernel command line option) and finding either the Primary
 577 * GPT header and PTEs valid, or the Alternate GPT header and PTEs
 578 * valid.  If the Primary GPT header is not valid, the Alternate GPT header
 579 * is not checked unless the 'gpt' kernel command line option is passed.
 580 * This protects against devices which misreport their size, and forces
 581 * the user to decide to use the Alternate GPT.
 582 */
 583static int find_valid_gpt(struct parsed_partitions *state, gpt_header **gpt,
 584                          gpt_entry **ptes)
 585{
 586        int good_pgpt = 0, good_agpt = 0, good_pmbr = 0;
 587        gpt_header *pgpt = NULL, *agpt = NULL;
 588        gpt_entry *pptes = NULL, *aptes = NULL;
 589        legacy_mbr *legacymbr;
 590        sector_t total_sectors = i_size_read(state->bdev->bd_inode) >> 9;
 591        u64 lastlba;
 592
 593        if (!ptes)
 594                return 0;
 595
 596        lastlba = last_lba(state->bdev);
 597        if (!force_gpt) {
 598                /* This will be added to the EFI Spec. per Intel after v1.02. */
 599                legacymbr = kzalloc(sizeof(*legacymbr), GFP_KERNEL);
 600                if (!legacymbr)
 601                        goto fail;
 602
 603                read_lba(state, 0, (u8 *)legacymbr, sizeof(*legacymbr));
 604                good_pmbr = is_pmbr_valid(legacymbr, total_sectors);
 605                kfree(legacymbr);
 606
 607                if (!good_pmbr)
 608                        goto fail;
 609
 610                pr_debug("Device has a %s MBR\n",
 611                         good_pmbr == GPT_MBR_PROTECTIVE ?
 612                                                "protective" : "hybrid");
 613        }
 614
 615        good_pgpt = is_gpt_valid(state, GPT_PRIMARY_PARTITION_TABLE_LBA,
 616                                 &pgpt, &pptes);
 617        if (good_pgpt)
 618                good_agpt = is_gpt_valid(state,
 619                                         le64_to_cpu(pgpt->alternate_lba),
 620                                         &agpt, &aptes);
 621        if (!good_agpt && force_gpt)
 622                good_agpt = is_gpt_valid(state, lastlba, &agpt, &aptes);
 623
 624        /* The obviously unsuccessful case */
 625        if (!good_pgpt && !good_agpt)
 626                goto fail;
 627
 628        compare_gpts(pgpt, agpt, lastlba);
 629
 630        /* The good cases */
 631        if (good_pgpt) {
 632                *gpt  = pgpt;
 633                *ptes = pptes;
 634                kfree(agpt);
 635                kfree(aptes);
 636                if (!good_agpt)
 637                        pr_warn("Alternate GPT is invalid, using primary GPT.\n");
 638                return 1;
 639        }
 640        else if (good_agpt) {
 641                *gpt  = agpt;
 642                *ptes = aptes;
 643                kfree(pgpt);
 644                kfree(pptes);
 645                pr_warn("Primary GPT is invalid, using alternate GPT.\n");
 646                return 1;
 647        }
 648
 649 fail:
 650        kfree(pgpt);
 651        kfree(agpt);
 652        kfree(pptes);
 653        kfree(aptes);
 654        *gpt = NULL;
 655        *ptes = NULL;
 656        return 0;
 657}
 658
 659/**
 660 * utf16_le_to_7bit(): Naively converts a UTF-16LE string to 7-bit ASCII characters
 661 * @in: input UTF-16LE string
 662 * @size: size of the input string
 663 * @out: output string ptr, should be capable to store @size+1 characters
 664 *
 665 * Description: Converts @size UTF16-LE symbols from @in string to 7-bit
 666 * ASCII characters and stores them to @out. Adds trailing zero to @out array.
 667 */
 668static void utf16_le_to_7bit(const __le16 *in, unsigned int size, u8 *out)
 669{
 670        unsigned int i = 0;
 671
 672        out[size] = 0;
 673
 674        while (i < size) {
 675                u8 c = le16_to_cpu(in[i]) & 0xff;
 676
 677                if (c && !isprint(c))
 678                        c = '!';
 679                out[i] = c;
 680                i++;
 681        }
 682}
 683
 684/**
 685 * efi_partition - scan for GPT partitions
 686 * @state: disk parsed partitions
 687 *
 688 * Description: called from check.c, if the disk contains GPT
 689 * partitions, sets up partition entries in the kernel.
 690 *
 691 * If the first block on the disk is a legacy MBR,
 692 * it will get handled by msdos_partition().
 693 * If it's a Protective MBR, we'll handle it here.
 694 *
 695 * We do not create a Linux partition for GPT, but
 696 * only for the actual data partitions.
 697 * Returns:
 698 * -1 if unable to read the partition table
 699 *  0 if this isn't our partition table
 700 *  1 if successful
 701 *
 702 */
 703int efi_partition(struct parsed_partitions *state)
 704{
 705        gpt_header *gpt = NULL;
 706        gpt_entry *ptes = NULL;
 707        u32 i;
 708        unsigned ssz = bdev_logical_block_size(state->bdev) / 512;
 709
 710        if (!find_valid_gpt(state, &gpt, &ptes) || !gpt || !ptes) {
 711                kfree(gpt);
 712                kfree(ptes);
 713                return 0;
 714        }
 715
 716        pr_debug("GUID Partition Table is valid!  Yea!\n");
 717
 718        for (i = 0; i < le32_to_cpu(gpt->num_partition_entries) && i < state->limit-1; i++) {
 719                struct partition_meta_info *info;
 720                unsigned label_max;
 721                u64 start = le64_to_cpu(ptes[i].starting_lba);
 722                u64 size = le64_to_cpu(ptes[i].ending_lba) -
 723                           le64_to_cpu(ptes[i].starting_lba) + 1ULL;
 724
 725                if (!is_pte_valid(&ptes[i], last_lba(state->bdev)))
 726                        continue;
 727
 728                put_partition(state, i+1, start * ssz, size * ssz);
 729
 730                /* If this is a RAID volume, tell md */
 731                if (!efi_guidcmp(ptes[i].partition_type_guid, PARTITION_LINUX_RAID_GUID))
 732                        state->parts[i + 1].flags = ADDPART_FLAG_RAID;
 733
 734                info = &state->parts[i + 1].info;
 735                efi_guid_to_str(&ptes[i].unique_partition_guid, info->uuid);
 736
 737                /* Naively convert UTF16-LE to 7 bits. */
 738                label_max = min(ARRAY_SIZE(info->volname) - 1,
 739                                ARRAY_SIZE(ptes[i].partition_name));
 740                utf16_le_to_7bit(ptes[i].partition_name, label_max, info->volname);
 741                state->parts[i + 1].has_info = true;
 742        }
 743        kfree(ptes);
 744        kfree(gpt);
 745        strlcat(state->pp_buf, "\n", PAGE_SIZE);
 746        return 1;
 747}
 748