linux/crypto/ecc.h
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2013, Kenneth MacKay
   3 * All rights reserved.
   4 *
   5 * Redistribution and use in source and binary forms, with or without
   6 * modification, are permitted provided that the following conditions are
   7 * met:
   8 *  * Redistributions of source code must retain the above copyright
   9 *   notice, this list of conditions and the following disclaimer.
  10 *  * Redistributions in binary form must reproduce the above copyright
  11 *    notice, this list of conditions and the following disclaimer in the
  12 *    documentation and/or other materials provided with the distribution.
  13 *
  14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25 */
  26#ifndef _CRYPTO_ECC_H
  27#define _CRYPTO_ECC_H
  28
  29#include <crypto/ecc_curve.h>
  30
  31/* One digit is u64 qword. */
  32#define ECC_CURVE_NIST_P192_DIGITS  3
  33#define ECC_CURVE_NIST_P256_DIGITS  4
  34#define ECC_CURVE_NIST_P384_DIGITS  6
  35#define ECC_MAX_DIGITS              (512 / 64) /* due to ecrdsa */
  36
  37#define ECC_DIGITS_TO_BYTES_SHIFT 3
  38
  39#define ECC_MAX_BYTES (ECC_MAX_DIGITS << ECC_DIGITS_TO_BYTES_SHIFT)
  40
  41#define ECC_POINT_INIT(x, y, ndigits)   (struct ecc_point) { x, y, ndigits }
  42
  43/**
  44 * ecc_swap_digits() - Copy ndigits from big endian array to native array
  45 * @in:       Input array
  46 * @out:      Output array
  47 * @ndigits:  Number of digits to copy
  48 */
  49static inline void ecc_swap_digits(const u64 *in, u64 *out, unsigned int ndigits)
  50{
  51        const __be64 *src = (__force __be64 *)in;
  52        int i;
  53
  54        for (i = 0; i < ndigits; i++)
  55                out[i] = be64_to_cpu(src[ndigits - 1 - i]);
  56}
  57
  58/**
  59 * ecc_is_key_valid() - Validate a given ECDH private key
  60 *
  61 * @curve_id:           id representing the curve to use
  62 * @ndigits:            curve's number of digits
  63 * @private_key:        private key to be used for the given curve
  64 * @private_key_len:    private key length
  65 *
  66 * Returns 0 if the key is acceptable, a negative value otherwise
  67 */
  68int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
  69                     const u64 *private_key, unsigned int private_key_len);
  70
  71/**
  72 * ecc_gen_privkey() -  Generates an ECC private key.
  73 * The private key is a random integer in the range 0 < random < n, where n is a
  74 * prime that is the order of the cyclic subgroup generated by the distinguished
  75 * point G.
  76 * @curve_id:           id representing the curve to use
  77 * @ndigits:            curve number of digits
  78 * @private_key:        buffer for storing the generated private key
  79 *
  80 * Returns 0 if the private key was generated successfully, a negative value
  81 * if an error occurred.
  82 */
  83int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey);
  84
  85/**
  86 * ecc_make_pub_key() - Compute an ECC public key
  87 *
  88 * @curve_id:           id representing the curve to use
  89 * @ndigits:            curve's number of digits
  90 * @private_key:        pregenerated private key for the given curve
  91 * @public_key:         buffer for storing the generated public key
  92 *
  93 * Returns 0 if the public key was generated successfully, a negative value
  94 * if an error occurred.
  95 */
  96int ecc_make_pub_key(const unsigned int curve_id, unsigned int ndigits,
  97                     const u64 *private_key, u64 *public_key);
  98
  99/**
 100 * crypto_ecdh_shared_secret() - Compute a shared secret
 101 *
 102 * @curve_id:           id representing the curve to use
 103 * @ndigits:            curve's number of digits
 104 * @private_key:        private key of part A
 105 * @public_key:         public key of counterpart B
 106 * @secret:             buffer for storing the calculated shared secret
 107 *
 108 * Note: It is recommended that you hash the result of crypto_ecdh_shared_secret
 109 * before using it for symmetric encryption or HMAC.
 110 *
 111 * Returns 0 if the shared secret was generated successfully, a negative value
 112 * if an error occurred.
 113 */
 114int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
 115                              const u64 *private_key, const u64 *public_key,
 116                              u64 *secret);
 117
 118/**
 119 * ecc_is_pubkey_valid_partial() - Partial public key validation
 120 *
 121 * @curve:              elliptic curve domain parameters
 122 * @pk:                 public key as a point
 123 *
 124 * Valdiate public key according to SP800-56A section 5.6.2.3.4 ECC Partial
 125 * Public-Key Validation Routine.
 126 *
 127 * Note: There is no check that the public key is in the correct elliptic curve
 128 * subgroup.
 129 *
 130 * Return: 0 if validation is successful, -EINVAL if validation is failed.
 131 */
 132int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
 133                                struct ecc_point *pk);
 134
 135/**
 136 * ecc_is_pubkey_valid_full() - Full public key validation
 137 *
 138 * @curve:              elliptic curve domain parameters
 139 * @pk:                 public key as a point
 140 *
 141 * Valdiate public key according to SP800-56A section 5.6.2.3.3 ECC Full
 142 * Public-Key Validation Routine.
 143 *
 144 * Return: 0 if validation is successful, -EINVAL if validation is failed.
 145 */
 146int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
 147                             struct ecc_point *pk);
 148
 149/**
 150 * vli_is_zero() - Determine is vli is zero
 151 *
 152 * @vli:                vli to check.
 153 * @ndigits:            length of the @vli
 154 */
 155bool vli_is_zero(const u64 *vli, unsigned int ndigits);
 156
 157/**
 158 * vli_cmp() - compare left and right vlis
 159 *
 160 * @left:               vli
 161 * @right:              vli
 162 * @ndigits:            length of both vlis
 163 *
 164 * Returns sign of @left - @right, i.e. -1 if @left < @right,
 165 * 0 if @left == @right, 1 if @left > @right.
 166 */
 167int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits);
 168
 169/**
 170 * vli_sub() - Subtracts right from left
 171 *
 172 * @result:             where to write result
 173 * @left:               vli
 174 * @right               vli
 175 * @ndigits:            length of all vlis
 176 *
 177 * Note: can modify in-place.
 178 *
 179 * Return: carry bit.
 180 */
 181u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
 182            unsigned int ndigits);
 183
 184/**
 185 * vli_from_be64() - Load vli from big-endian u64 array
 186 *
 187 * @dest:               destination vli
 188 * @src:                source array of u64 BE values
 189 * @ndigits:            length of both vli and array
 190 */
 191void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits);
 192
 193/**
 194 * vli_from_le64() - Load vli from little-endian u64 array
 195 *
 196 * @dest:               destination vli
 197 * @src:                source array of u64 LE values
 198 * @ndigits:            length of both vli and array
 199 */
 200void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits);
 201
 202/**
 203 * vli_mod_inv() - Modular inversion
 204 *
 205 * @result:             where to write vli number
 206 * @input:              vli value to operate on
 207 * @mod:                modulus
 208 * @ndigits:            length of all vlis
 209 */
 210void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
 211                 unsigned int ndigits);
 212
 213/**
 214 * vli_mod_mult_slow() - Modular multiplication
 215 *
 216 * @result:             where to write result value
 217 * @left:               vli number to multiply with @right
 218 * @right:              vli number to multiply with @left
 219 * @mod:                modulus
 220 * @ndigits:            length of all vlis
 221 *
 222 * Note: Assumes that mod is big enough curve order.
 223 */
 224void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
 225                       const u64 *mod, unsigned int ndigits);
 226
 227/**
 228 * ecc_point_mult_shamir() - Add two points multiplied by scalars
 229 *
 230 * @result:             resulting point
 231 * @x:                  scalar to multiply with @p
 232 * @p:                  point to multiply with @x
 233 * @y:                  scalar to multiply with @q
 234 * @q:                  point to multiply with @y
 235 * @curve:              curve
 236 *
 237 * Returns result = x * p + x * q over the curve.
 238 * This works faster than two multiplications and addition.
 239 */
 240void ecc_point_mult_shamir(const struct ecc_point *result,
 241                           const u64 *x, const struct ecc_point *p,
 242                           const u64 *y, const struct ecc_point *q,
 243                           const struct ecc_curve *curve);
 244#endif
 245