linux/drivers/acpi/processor_idle.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * processor_idle - idle state submodule to the ACPI processor driver
   4 *
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   8 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   9 *                      - Added processor hotplug support
  10 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  11 *                      - Added support for C3 on SMP
  12 */
  13#define pr_fmt(fmt) "ACPI: " fmt
  14
  15#include <linux/module.h>
  16#include <linux/acpi.h>
  17#include <linux/dmi.h>
  18#include <linux/sched.h>       /* need_resched() */
  19#include <linux/tick.h>
  20#include <linux/cpuidle.h>
  21#include <linux/cpu.h>
  22#include <acpi/processor.h>
  23
  24/*
  25 * Include the apic definitions for x86 to have the APIC timer related defines
  26 * available also for UP (on SMP it gets magically included via linux/smp.h).
  27 * asm/acpi.h is not an option, as it would require more include magic. Also
  28 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  29 */
  30#ifdef CONFIG_X86
  31#include <asm/apic.h>
  32#include <asm/cpu.h>
  33#endif
  34
  35#define ACPI_IDLE_STATE_START   (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
  36
  37static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  38module_param(max_cstate, uint, 0000);
  39static unsigned int nocst __read_mostly;
  40module_param(nocst, uint, 0000);
  41static int bm_check_disable __read_mostly;
  42module_param(bm_check_disable, uint, 0000);
  43
  44static unsigned int latency_factor __read_mostly = 2;
  45module_param(latency_factor, uint, 0644);
  46
  47static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
  48
  49struct cpuidle_driver acpi_idle_driver = {
  50        .name =         "acpi_idle",
  51        .owner =        THIS_MODULE,
  52};
  53
  54#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
  55static
  56DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
  57
  58static int disabled_by_idle_boot_param(void)
  59{
  60        return boot_option_idle_override == IDLE_POLL ||
  61                boot_option_idle_override == IDLE_HALT;
  62}
  63
  64/*
  65 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  66 * For now disable this. Probably a bug somewhere else.
  67 *
  68 * To skip this limit, boot/load with a large max_cstate limit.
  69 */
  70static int set_max_cstate(const struct dmi_system_id *id)
  71{
  72        if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  73                return 0;
  74
  75        pr_notice("%s detected - limiting to C%ld max_cstate."
  76                  " Override with \"processor.max_cstate=%d\"\n", id->ident,
  77                  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  78
  79        max_cstate = (long)id->driver_data;
  80
  81        return 0;
  82}
  83
  84static const struct dmi_system_id processor_power_dmi_table[] = {
  85        { set_max_cstate, "Clevo 5600D", {
  86          DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  87          DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
  88         (void *)2},
  89        { set_max_cstate, "Pavilion zv5000", {
  90          DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
  91          DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
  92         (void *)1},
  93        { set_max_cstate, "Asus L8400B", {
  94          DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
  95          DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
  96         (void *)1},
  97        {},
  98};
  99
 100
 101/*
 102 * Callers should disable interrupts before the call and enable
 103 * interrupts after return.
 104 */
 105static void __cpuidle acpi_safe_halt(void)
 106{
 107        if (!tif_need_resched()) {
 108                safe_halt();
 109                local_irq_disable();
 110        }
 111}
 112
 113#ifdef ARCH_APICTIMER_STOPS_ON_C3
 114
 115/*
 116 * Some BIOS implementations switch to C3 in the published C2 state.
 117 * This seems to be a common problem on AMD boxen, but other vendors
 118 * are affected too. We pick the most conservative approach: we assume
 119 * that the local APIC stops in both C2 and C3.
 120 */
 121static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 122                                   struct acpi_processor_cx *cx)
 123{
 124        struct acpi_processor_power *pwr = &pr->power;
 125        u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 126
 127        if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 128                return;
 129
 130        if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
 131                type = ACPI_STATE_C1;
 132
 133        /*
 134         * Check, if one of the previous states already marked the lapic
 135         * unstable
 136         */
 137        if (pwr->timer_broadcast_on_state < state)
 138                return;
 139
 140        if (cx->type >= type)
 141                pr->power.timer_broadcast_on_state = state;
 142}
 143
 144static void __lapic_timer_propagate_broadcast(void *arg)
 145{
 146        struct acpi_processor *pr = (struct acpi_processor *) arg;
 147
 148        if (pr->power.timer_broadcast_on_state < INT_MAX)
 149                tick_broadcast_enable();
 150        else
 151                tick_broadcast_disable();
 152}
 153
 154static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 155{
 156        smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 157                                 (void *)pr, 1);
 158}
 159
 160/* Power(C) State timer broadcast control */
 161static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
 162                                        struct acpi_processor_cx *cx)
 163{
 164        return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
 165}
 166
 167#else
 168
 169static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 170                                   struct acpi_processor_cx *cstate) { }
 171static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 172
 173static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
 174                                        struct acpi_processor_cx *cx)
 175{
 176        return false;
 177}
 178
 179#endif
 180
 181#if defined(CONFIG_X86)
 182static void tsc_check_state(int state)
 183{
 184        switch (boot_cpu_data.x86_vendor) {
 185        case X86_VENDOR_HYGON:
 186        case X86_VENDOR_AMD:
 187        case X86_VENDOR_INTEL:
 188        case X86_VENDOR_CENTAUR:
 189        case X86_VENDOR_ZHAOXIN:
 190                /*
 191                 * AMD Fam10h TSC will tick in all
 192                 * C/P/S0/S1 states when this bit is set.
 193                 */
 194                if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 195                        return;
 196                fallthrough;
 197        default:
 198                /* TSC could halt in idle, so notify users */
 199                if (state > ACPI_STATE_C1)
 200                        mark_tsc_unstable("TSC halts in idle");
 201        }
 202}
 203#else
 204static void tsc_check_state(int state) { return; }
 205#endif
 206
 207static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 208{
 209
 210        if (!pr->pblk)
 211                return -ENODEV;
 212
 213        /* if info is obtained from pblk/fadt, type equals state */
 214        pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 215        pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 216
 217#ifndef CONFIG_HOTPLUG_CPU
 218        /*
 219         * Check for P_LVL2_UP flag before entering C2 and above on
 220         * an SMP system.
 221         */
 222        if ((num_online_cpus() > 1) &&
 223            !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 224                return -ENODEV;
 225#endif
 226
 227        /* determine C2 and C3 address from pblk */
 228        pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 229        pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 230
 231        /* determine latencies from FADT */
 232        pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
 233        pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
 234
 235        /*
 236         * FADT specified C2 latency must be less than or equal to
 237         * 100 microseconds.
 238         */
 239        if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 240                acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
 241                                  acpi_gbl_FADT.c2_latency);
 242                /* invalidate C2 */
 243                pr->power.states[ACPI_STATE_C2].address = 0;
 244        }
 245
 246        /*
 247         * FADT supplied C3 latency must be less than or equal to
 248         * 1000 microseconds.
 249         */
 250        if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 251                acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
 252                                  acpi_gbl_FADT.c3_latency);
 253                /* invalidate C3 */
 254                pr->power.states[ACPI_STATE_C3].address = 0;
 255        }
 256
 257        acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
 258                          pr->power.states[ACPI_STATE_C2].address,
 259                          pr->power.states[ACPI_STATE_C3].address);
 260
 261        snprintf(pr->power.states[ACPI_STATE_C2].desc,
 262                         ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
 263                         pr->power.states[ACPI_STATE_C2].address);
 264        snprintf(pr->power.states[ACPI_STATE_C3].desc,
 265                         ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
 266                         pr->power.states[ACPI_STATE_C3].address);
 267
 268        return 0;
 269}
 270
 271static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 272{
 273        if (!pr->power.states[ACPI_STATE_C1].valid) {
 274                /* set the first C-State to C1 */
 275                /* all processors need to support C1 */
 276                pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 277                pr->power.states[ACPI_STATE_C1].valid = 1;
 278                pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 279
 280                snprintf(pr->power.states[ACPI_STATE_C1].desc,
 281                         ACPI_CX_DESC_LEN, "ACPI HLT");
 282        }
 283        /* the C0 state only exists as a filler in our array */
 284        pr->power.states[ACPI_STATE_C0].valid = 1;
 285        return 0;
 286}
 287
 288static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 289{
 290        int ret;
 291
 292        if (nocst)
 293                return -ENODEV;
 294
 295        ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
 296        if (ret)
 297                return ret;
 298
 299        if (!pr->power.count)
 300                return -EFAULT;
 301
 302        pr->flags.has_cst = 1;
 303        return 0;
 304}
 305
 306static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 307                                           struct acpi_processor_cx *cx)
 308{
 309        static int bm_check_flag = -1;
 310        static int bm_control_flag = -1;
 311
 312
 313        if (!cx->address)
 314                return;
 315
 316        /*
 317         * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 318         * DMA transfers are used by any ISA device to avoid livelock.
 319         * Note that we could disable Type-F DMA (as recommended by
 320         * the erratum), but this is known to disrupt certain ISA
 321         * devices thus we take the conservative approach.
 322         */
 323        else if (errata.piix4.fdma) {
 324                acpi_handle_debug(pr->handle,
 325                                  "C3 not supported on PIIX4 with Type-F DMA\n");
 326                return;
 327        }
 328
 329        /* All the logic here assumes flags.bm_check is same across all CPUs */
 330        if (bm_check_flag == -1) {
 331                /* Determine whether bm_check is needed based on CPU  */
 332                acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 333                bm_check_flag = pr->flags.bm_check;
 334                bm_control_flag = pr->flags.bm_control;
 335        } else {
 336                pr->flags.bm_check = bm_check_flag;
 337                pr->flags.bm_control = bm_control_flag;
 338        }
 339
 340        if (pr->flags.bm_check) {
 341                if (!pr->flags.bm_control) {
 342                        if (pr->flags.has_cst != 1) {
 343                                /* bus mastering control is necessary */
 344                                acpi_handle_debug(pr->handle,
 345                                                  "C3 support requires BM control\n");
 346                                return;
 347                        } else {
 348                                /* Here we enter C3 without bus mastering */
 349                                acpi_handle_debug(pr->handle,
 350                                                  "C3 support without BM control\n");
 351                        }
 352                }
 353        } else {
 354                /*
 355                 * WBINVD should be set in fadt, for C3 state to be
 356                 * supported on when bm_check is not required.
 357                 */
 358                if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 359                        acpi_handle_debug(pr->handle,
 360                                          "Cache invalidation should work properly"
 361                                          " for C3 to be enabled on SMP systems\n");
 362                        return;
 363                }
 364        }
 365
 366        /*
 367         * Otherwise we've met all of our C3 requirements.
 368         * Normalize the C3 latency to expidite policy.  Enable
 369         * checking of bus mastering status (bm_check) so we can
 370         * use this in our C3 policy
 371         */
 372        cx->valid = 1;
 373
 374        /*
 375         * On older chipsets, BM_RLD needs to be set
 376         * in order for Bus Master activity to wake the
 377         * system from C3.  Newer chipsets handle DMA
 378         * during C3 automatically and BM_RLD is a NOP.
 379         * In either case, the proper way to
 380         * handle BM_RLD is to set it and leave it set.
 381         */
 382        acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 383
 384        return;
 385}
 386
 387static int acpi_processor_power_verify(struct acpi_processor *pr)
 388{
 389        unsigned int i;
 390        unsigned int working = 0;
 391
 392        pr->power.timer_broadcast_on_state = INT_MAX;
 393
 394        for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 395                struct acpi_processor_cx *cx = &pr->power.states[i];
 396
 397                switch (cx->type) {
 398                case ACPI_STATE_C1:
 399                        cx->valid = 1;
 400                        break;
 401
 402                case ACPI_STATE_C2:
 403                        if (!cx->address)
 404                                break;
 405                        cx->valid = 1;
 406                        break;
 407
 408                case ACPI_STATE_C3:
 409                        acpi_processor_power_verify_c3(pr, cx);
 410                        break;
 411                }
 412                if (!cx->valid)
 413                        continue;
 414
 415                lapic_timer_check_state(i, pr, cx);
 416                tsc_check_state(cx->type);
 417                working++;
 418        }
 419
 420        lapic_timer_propagate_broadcast(pr);
 421
 422        return (working);
 423}
 424
 425static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 426{
 427        unsigned int i;
 428        int result;
 429
 430
 431        /* NOTE: the idle thread may not be running while calling
 432         * this function */
 433
 434        /* Zero initialize all the C-states info. */
 435        memset(pr->power.states, 0, sizeof(pr->power.states));
 436
 437        result = acpi_processor_get_power_info_cst(pr);
 438        if (result == -ENODEV)
 439                result = acpi_processor_get_power_info_fadt(pr);
 440
 441        if (result)
 442                return result;
 443
 444        acpi_processor_get_power_info_default(pr);
 445
 446        pr->power.count = acpi_processor_power_verify(pr);
 447
 448        /*
 449         * if one state of type C2 or C3 is available, mark this
 450         * CPU as being "idle manageable"
 451         */
 452        for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 453                if (pr->power.states[i].valid) {
 454                        pr->power.count = i;
 455                        pr->flags.power = 1;
 456                }
 457        }
 458
 459        return 0;
 460}
 461
 462/**
 463 * acpi_idle_bm_check - checks if bus master activity was detected
 464 */
 465static int acpi_idle_bm_check(void)
 466{
 467        u32 bm_status = 0;
 468
 469        if (bm_check_disable)
 470                return 0;
 471
 472        acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 473        if (bm_status)
 474                acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 475        /*
 476         * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 477         * the true state of bus mastering activity; forcing us to
 478         * manually check the BMIDEA bit of each IDE channel.
 479         */
 480        else if (errata.piix4.bmisx) {
 481                if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 482                    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 483                        bm_status = 1;
 484        }
 485        return bm_status;
 486}
 487
 488static void wait_for_freeze(void)
 489{
 490#ifdef  CONFIG_X86
 491        /* No delay is needed if we are in guest */
 492        if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 493                return;
 494#endif
 495        /* Dummy wait op - must do something useless after P_LVL2 read
 496           because chipsets cannot guarantee that STPCLK# signal
 497           gets asserted in time to freeze execution properly. */
 498        inl(acpi_gbl_FADT.xpm_timer_block.address);
 499}
 500
 501/**
 502 * acpi_idle_do_entry - enter idle state using the appropriate method
 503 * @cx: cstate data
 504 *
 505 * Caller disables interrupt before call and enables interrupt after return.
 506 */
 507static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
 508{
 509        if (cx->entry_method == ACPI_CSTATE_FFH) {
 510                /* Call into architectural FFH based C-state */
 511                acpi_processor_ffh_cstate_enter(cx);
 512        } else if (cx->entry_method == ACPI_CSTATE_HALT) {
 513                acpi_safe_halt();
 514        } else {
 515                /* IO port based C-state */
 516                inb(cx->address);
 517                wait_for_freeze();
 518        }
 519}
 520
 521/**
 522 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 523 * @dev: the target CPU
 524 * @index: the index of suggested state
 525 */
 526static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 527{
 528        struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 529
 530        ACPI_FLUSH_CPU_CACHE();
 531
 532        while (1) {
 533
 534                if (cx->entry_method == ACPI_CSTATE_HALT)
 535                        safe_halt();
 536                else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 537                        inb(cx->address);
 538                        wait_for_freeze();
 539                } else
 540                        return -ENODEV;
 541
 542#if defined(CONFIG_X86) && defined(CONFIG_HOTPLUG_CPU)
 543                cond_wakeup_cpu0();
 544#endif
 545        }
 546
 547        /* Never reached */
 548        return 0;
 549}
 550
 551static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
 552{
 553        return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
 554                !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
 555}
 556
 557static int c3_cpu_count;
 558static DEFINE_RAW_SPINLOCK(c3_lock);
 559
 560/**
 561 * acpi_idle_enter_bm - enters C3 with proper BM handling
 562 * @drv: cpuidle driver
 563 * @pr: Target processor
 564 * @cx: Target state context
 565 * @index: index of target state
 566 */
 567static int acpi_idle_enter_bm(struct cpuidle_driver *drv,
 568                               struct acpi_processor *pr,
 569                               struct acpi_processor_cx *cx,
 570                               int index)
 571{
 572        static struct acpi_processor_cx safe_cx = {
 573                .entry_method = ACPI_CSTATE_HALT,
 574        };
 575
 576        /*
 577         * disable bus master
 578         * bm_check implies we need ARB_DIS
 579         * bm_control implies whether we can do ARB_DIS
 580         *
 581         * That leaves a case where bm_check is set and bm_control is not set.
 582         * In that case we cannot do much, we enter C3 without doing anything.
 583         */
 584        bool dis_bm = pr->flags.bm_control;
 585
 586        /* If we can skip BM, demote to a safe state. */
 587        if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
 588                dis_bm = false;
 589                index = drv->safe_state_index;
 590                if (index >= 0) {
 591                        cx = this_cpu_read(acpi_cstate[index]);
 592                } else {
 593                        cx = &safe_cx;
 594                        index = -EBUSY;
 595                }
 596        }
 597
 598        if (dis_bm) {
 599                raw_spin_lock(&c3_lock);
 600                c3_cpu_count++;
 601                /* Disable bus master arbitration when all CPUs are in C3 */
 602                if (c3_cpu_count == num_online_cpus())
 603                        acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 604                raw_spin_unlock(&c3_lock);
 605        }
 606
 607        rcu_idle_enter();
 608
 609        acpi_idle_do_entry(cx);
 610
 611        rcu_idle_exit();
 612
 613        /* Re-enable bus master arbitration */
 614        if (dis_bm) {
 615                raw_spin_lock(&c3_lock);
 616                acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 617                c3_cpu_count--;
 618                raw_spin_unlock(&c3_lock);
 619        }
 620
 621        return index;
 622}
 623
 624static int acpi_idle_enter(struct cpuidle_device *dev,
 625                           struct cpuidle_driver *drv, int index)
 626{
 627        struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 628        struct acpi_processor *pr;
 629
 630        pr = __this_cpu_read(processors);
 631        if (unlikely(!pr))
 632                return -EINVAL;
 633
 634        if (cx->type != ACPI_STATE_C1) {
 635                if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
 636                        return acpi_idle_enter_bm(drv, pr, cx, index);
 637
 638                /* C2 to C1 demotion. */
 639                if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
 640                        index = ACPI_IDLE_STATE_START;
 641                        cx = per_cpu(acpi_cstate[index], dev->cpu);
 642                }
 643        }
 644
 645        if (cx->type == ACPI_STATE_C3)
 646                ACPI_FLUSH_CPU_CACHE();
 647
 648        acpi_idle_do_entry(cx);
 649
 650        return index;
 651}
 652
 653static int acpi_idle_enter_s2idle(struct cpuidle_device *dev,
 654                                  struct cpuidle_driver *drv, int index)
 655{
 656        struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 657
 658        if (cx->type == ACPI_STATE_C3) {
 659                struct acpi_processor *pr = __this_cpu_read(processors);
 660
 661                if (unlikely(!pr))
 662                        return 0;
 663
 664                if (pr->flags.bm_check) {
 665                        u8 bm_sts_skip = cx->bm_sts_skip;
 666
 667                        /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
 668                        cx->bm_sts_skip = 1;
 669                        acpi_idle_enter_bm(drv, pr, cx, index);
 670                        cx->bm_sts_skip = bm_sts_skip;
 671
 672                        return 0;
 673                } else {
 674                        ACPI_FLUSH_CPU_CACHE();
 675                }
 676        }
 677        acpi_idle_do_entry(cx);
 678
 679        return 0;
 680}
 681
 682static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 683                                           struct cpuidle_device *dev)
 684{
 685        int i, count = ACPI_IDLE_STATE_START;
 686        struct acpi_processor_cx *cx;
 687        struct cpuidle_state *state;
 688
 689        if (max_cstate == 0)
 690                max_cstate = 1;
 691
 692        for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 693                state = &acpi_idle_driver.states[count];
 694                cx = &pr->power.states[i];
 695
 696                if (!cx->valid)
 697                        continue;
 698
 699                per_cpu(acpi_cstate[count], dev->cpu) = cx;
 700
 701                if (lapic_timer_needs_broadcast(pr, cx))
 702                        state->flags |= CPUIDLE_FLAG_TIMER_STOP;
 703
 704                if (cx->type == ACPI_STATE_C3) {
 705                        state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
 706                        if (pr->flags.bm_check)
 707                                state->flags |= CPUIDLE_FLAG_RCU_IDLE;
 708                }
 709
 710                count++;
 711                if (count == CPUIDLE_STATE_MAX)
 712                        break;
 713        }
 714
 715        if (!count)
 716                return -EINVAL;
 717
 718        return 0;
 719}
 720
 721static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 722{
 723        int i, count;
 724        struct acpi_processor_cx *cx;
 725        struct cpuidle_state *state;
 726        struct cpuidle_driver *drv = &acpi_idle_driver;
 727
 728        if (max_cstate == 0)
 729                max_cstate = 1;
 730
 731        if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
 732                cpuidle_poll_state_init(drv);
 733                count = 1;
 734        } else {
 735                count = 0;
 736        }
 737
 738        for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 739                cx = &pr->power.states[i];
 740
 741                if (!cx->valid)
 742                        continue;
 743
 744                state = &drv->states[count];
 745                snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
 746                strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
 747                state->exit_latency = cx->latency;
 748                state->target_residency = cx->latency * latency_factor;
 749                state->enter = acpi_idle_enter;
 750
 751                state->flags = 0;
 752                if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
 753                        state->enter_dead = acpi_idle_play_dead;
 754                        drv->safe_state_index = count;
 755                }
 756                /*
 757                 * Halt-induced C1 is not good for ->enter_s2idle, because it
 758                 * re-enables interrupts on exit.  Moreover, C1 is generally not
 759                 * particularly interesting from the suspend-to-idle angle, so
 760                 * avoid C1 and the situations in which we may need to fall back
 761                 * to it altogether.
 762                 */
 763                if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
 764                        state->enter_s2idle = acpi_idle_enter_s2idle;
 765
 766                count++;
 767                if (count == CPUIDLE_STATE_MAX)
 768                        break;
 769        }
 770
 771        drv->state_count = count;
 772
 773        if (!count)
 774                return -EINVAL;
 775
 776        return 0;
 777}
 778
 779static inline void acpi_processor_cstate_first_run_checks(void)
 780{
 781        static int first_run;
 782
 783        if (first_run)
 784                return;
 785        dmi_check_system(processor_power_dmi_table);
 786        max_cstate = acpi_processor_cstate_check(max_cstate);
 787        if (max_cstate < ACPI_C_STATES_MAX)
 788                pr_notice("processor limited to max C-state %d\n", max_cstate);
 789
 790        first_run++;
 791
 792        if (nocst)
 793                return;
 794
 795        acpi_processor_claim_cst_control();
 796}
 797#else
 798
 799static inline int disabled_by_idle_boot_param(void) { return 0; }
 800static inline void acpi_processor_cstate_first_run_checks(void) { }
 801static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 802{
 803        return -ENODEV;
 804}
 805
 806static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 807                                           struct cpuidle_device *dev)
 808{
 809        return -EINVAL;
 810}
 811
 812static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 813{
 814        return -EINVAL;
 815}
 816
 817#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
 818
 819struct acpi_lpi_states_array {
 820        unsigned int size;
 821        unsigned int composite_states_size;
 822        struct acpi_lpi_state *entries;
 823        struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
 824};
 825
 826static int obj_get_integer(union acpi_object *obj, u32 *value)
 827{
 828        if (obj->type != ACPI_TYPE_INTEGER)
 829                return -EINVAL;
 830
 831        *value = obj->integer.value;
 832        return 0;
 833}
 834
 835static int acpi_processor_evaluate_lpi(acpi_handle handle,
 836                                       struct acpi_lpi_states_array *info)
 837{
 838        acpi_status status;
 839        int ret = 0;
 840        int pkg_count, state_idx = 1, loop;
 841        struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 842        union acpi_object *lpi_data;
 843        struct acpi_lpi_state *lpi_state;
 844
 845        status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
 846        if (ACPI_FAILURE(status)) {
 847                acpi_handle_debug(handle, "No _LPI, giving up\n");
 848                return -ENODEV;
 849        }
 850
 851        lpi_data = buffer.pointer;
 852
 853        /* There must be at least 4 elements = 3 elements + 1 package */
 854        if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
 855            lpi_data->package.count < 4) {
 856                pr_debug("not enough elements in _LPI\n");
 857                ret = -ENODATA;
 858                goto end;
 859        }
 860
 861        pkg_count = lpi_data->package.elements[2].integer.value;
 862
 863        /* Validate number of power states. */
 864        if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
 865                pr_debug("count given by _LPI is not valid\n");
 866                ret = -ENODATA;
 867                goto end;
 868        }
 869
 870        lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
 871        if (!lpi_state) {
 872                ret = -ENOMEM;
 873                goto end;
 874        }
 875
 876        info->size = pkg_count;
 877        info->entries = lpi_state;
 878
 879        /* LPI States start at index 3 */
 880        for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
 881                union acpi_object *element, *pkg_elem, *obj;
 882
 883                element = &lpi_data->package.elements[loop];
 884                if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
 885                        continue;
 886
 887                pkg_elem = element->package.elements;
 888
 889                obj = pkg_elem + 6;
 890                if (obj->type == ACPI_TYPE_BUFFER) {
 891                        struct acpi_power_register *reg;
 892
 893                        reg = (struct acpi_power_register *)obj->buffer.pointer;
 894                        if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 895                            reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
 896                                continue;
 897
 898                        lpi_state->address = reg->address;
 899                        lpi_state->entry_method =
 900                                reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
 901                                ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
 902                } else if (obj->type == ACPI_TYPE_INTEGER) {
 903                        lpi_state->entry_method = ACPI_CSTATE_INTEGER;
 904                        lpi_state->address = obj->integer.value;
 905                } else {
 906                        continue;
 907                }
 908
 909                /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
 910
 911                obj = pkg_elem + 9;
 912                if (obj->type == ACPI_TYPE_STRING)
 913                        strlcpy(lpi_state->desc, obj->string.pointer,
 914                                ACPI_CX_DESC_LEN);
 915
 916                lpi_state->index = state_idx;
 917                if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
 918                        pr_debug("No min. residency found, assuming 10 us\n");
 919                        lpi_state->min_residency = 10;
 920                }
 921
 922                if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
 923                        pr_debug("No wakeup residency found, assuming 10 us\n");
 924                        lpi_state->wake_latency = 10;
 925                }
 926
 927                if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
 928                        lpi_state->flags = 0;
 929
 930                if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
 931                        lpi_state->arch_flags = 0;
 932
 933                if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
 934                        lpi_state->res_cnt_freq = 1;
 935
 936                if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
 937                        lpi_state->enable_parent_state = 0;
 938        }
 939
 940        acpi_handle_debug(handle, "Found %d power states\n", state_idx);
 941end:
 942        kfree(buffer.pointer);
 943        return ret;
 944}
 945
 946/*
 947 * flat_state_cnt - the number of composite LPI states after the process of flattening
 948 */
 949static int flat_state_cnt;
 950
 951/**
 952 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
 953 *
 954 * @local: local LPI state
 955 * @parent: parent LPI state
 956 * @result: composite LPI state
 957 */
 958static bool combine_lpi_states(struct acpi_lpi_state *local,
 959                               struct acpi_lpi_state *parent,
 960                               struct acpi_lpi_state *result)
 961{
 962        if (parent->entry_method == ACPI_CSTATE_INTEGER) {
 963                if (!parent->address) /* 0 means autopromotable */
 964                        return false;
 965                result->address = local->address + parent->address;
 966        } else {
 967                result->address = parent->address;
 968        }
 969
 970        result->min_residency = max(local->min_residency, parent->min_residency);
 971        result->wake_latency = local->wake_latency + parent->wake_latency;
 972        result->enable_parent_state = parent->enable_parent_state;
 973        result->entry_method = local->entry_method;
 974
 975        result->flags = parent->flags;
 976        result->arch_flags = parent->arch_flags;
 977        result->index = parent->index;
 978
 979        strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
 980        strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
 981        strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
 982        return true;
 983}
 984
 985#define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
 986
 987static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
 988                                  struct acpi_lpi_state *t)
 989{
 990        curr_level->composite_states[curr_level->composite_states_size++] = t;
 991}
 992
 993static int flatten_lpi_states(struct acpi_processor *pr,
 994                              struct acpi_lpi_states_array *curr_level,
 995                              struct acpi_lpi_states_array *prev_level)
 996{
 997        int i, j, state_count = curr_level->size;
 998        struct acpi_lpi_state *p, *t = curr_level->entries;
 999
1000        curr_level->composite_states_size = 0;
1001        for (j = 0; j < state_count; j++, t++) {
1002                struct acpi_lpi_state *flpi;
1003
1004                if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1005                        continue;
1006
1007                if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1008                        pr_warn("Limiting number of LPI states to max (%d)\n",
1009                                ACPI_PROCESSOR_MAX_POWER);
1010                        pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1011                        break;
1012                }
1013
1014                flpi = &pr->power.lpi_states[flat_state_cnt];
1015
1016                if (!prev_level) { /* leaf/processor node */
1017                        memcpy(flpi, t, sizeof(*t));
1018                        stash_composite_state(curr_level, flpi);
1019                        flat_state_cnt++;
1020                        continue;
1021                }
1022
1023                for (i = 0; i < prev_level->composite_states_size; i++) {
1024                        p = prev_level->composite_states[i];
1025                        if (t->index <= p->enable_parent_state &&
1026                            combine_lpi_states(p, t, flpi)) {
1027                                stash_composite_state(curr_level, flpi);
1028                                flat_state_cnt++;
1029                                flpi++;
1030                        }
1031                }
1032        }
1033
1034        kfree(curr_level->entries);
1035        return 0;
1036}
1037
1038static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1039{
1040        int ret, i;
1041        acpi_status status;
1042        acpi_handle handle = pr->handle, pr_ahandle;
1043        struct acpi_device *d = NULL;
1044        struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1045
1046        if (!osc_pc_lpi_support_confirmed)
1047                return -EOPNOTSUPP;
1048
1049        if (!acpi_has_method(handle, "_LPI"))
1050                return -EINVAL;
1051
1052        flat_state_cnt = 0;
1053        prev = &info[0];
1054        curr = &info[1];
1055        handle = pr->handle;
1056        ret = acpi_processor_evaluate_lpi(handle, prev);
1057        if (ret)
1058                return ret;
1059        flatten_lpi_states(pr, prev, NULL);
1060
1061        status = acpi_get_parent(handle, &pr_ahandle);
1062        while (ACPI_SUCCESS(status)) {
1063                acpi_bus_get_device(pr_ahandle, &d);
1064                handle = pr_ahandle;
1065
1066                if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1067                        break;
1068
1069                /* can be optional ? */
1070                if (!acpi_has_method(handle, "_LPI"))
1071                        break;
1072
1073                ret = acpi_processor_evaluate_lpi(handle, curr);
1074                if (ret)
1075                        break;
1076
1077                /* flatten all the LPI states in this level of hierarchy */
1078                flatten_lpi_states(pr, curr, prev);
1079
1080                tmp = prev, prev = curr, curr = tmp;
1081
1082                status = acpi_get_parent(handle, &pr_ahandle);
1083        }
1084
1085        pr->power.count = flat_state_cnt;
1086        /* reset the index after flattening */
1087        for (i = 0; i < pr->power.count; i++)
1088                pr->power.lpi_states[i].index = i;
1089
1090        /* Tell driver that _LPI is supported. */
1091        pr->flags.has_lpi = 1;
1092        pr->flags.power = 1;
1093
1094        return 0;
1095}
1096
1097int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1098{
1099        return -ENODEV;
1100}
1101
1102int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1103{
1104        return -ENODEV;
1105}
1106
1107/**
1108 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1109 * @dev: the target CPU
1110 * @drv: cpuidle driver containing cpuidle state info
1111 * @index: index of target state
1112 *
1113 * Return: 0 for success or negative value for error
1114 */
1115static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1116                               struct cpuidle_driver *drv, int index)
1117{
1118        struct acpi_processor *pr;
1119        struct acpi_lpi_state *lpi;
1120
1121        pr = __this_cpu_read(processors);
1122
1123        if (unlikely(!pr))
1124                return -EINVAL;
1125
1126        lpi = &pr->power.lpi_states[index];
1127        if (lpi->entry_method == ACPI_CSTATE_FFH)
1128                return acpi_processor_ffh_lpi_enter(lpi);
1129
1130        return -EINVAL;
1131}
1132
1133static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1134{
1135        int i;
1136        struct acpi_lpi_state *lpi;
1137        struct cpuidle_state *state;
1138        struct cpuidle_driver *drv = &acpi_idle_driver;
1139
1140        if (!pr->flags.has_lpi)
1141                return -EOPNOTSUPP;
1142
1143        for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1144                lpi = &pr->power.lpi_states[i];
1145
1146                state = &drv->states[i];
1147                snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1148                strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1149                state->exit_latency = lpi->wake_latency;
1150                state->target_residency = lpi->min_residency;
1151                if (lpi->arch_flags)
1152                        state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1153                state->enter = acpi_idle_lpi_enter;
1154                drv->safe_state_index = i;
1155        }
1156
1157        drv->state_count = i;
1158
1159        return 0;
1160}
1161
1162/**
1163 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1164 * global state data i.e. idle routines
1165 *
1166 * @pr: the ACPI processor
1167 */
1168static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1169{
1170        int i;
1171        struct cpuidle_driver *drv = &acpi_idle_driver;
1172
1173        if (!pr->flags.power_setup_done || !pr->flags.power)
1174                return -EINVAL;
1175
1176        drv->safe_state_index = -1;
1177        for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1178                drv->states[i].name[0] = '\0';
1179                drv->states[i].desc[0] = '\0';
1180        }
1181
1182        if (pr->flags.has_lpi)
1183                return acpi_processor_setup_lpi_states(pr);
1184
1185        return acpi_processor_setup_cstates(pr);
1186}
1187
1188/**
1189 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1190 * device i.e. per-cpu data
1191 *
1192 * @pr: the ACPI processor
1193 * @dev : the cpuidle device
1194 */
1195static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1196                                            struct cpuidle_device *dev)
1197{
1198        if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1199                return -EINVAL;
1200
1201        dev->cpu = pr->id;
1202        if (pr->flags.has_lpi)
1203                return acpi_processor_ffh_lpi_probe(pr->id);
1204
1205        return acpi_processor_setup_cpuidle_cx(pr, dev);
1206}
1207
1208static int acpi_processor_get_power_info(struct acpi_processor *pr)
1209{
1210        int ret;
1211
1212        ret = acpi_processor_get_lpi_info(pr);
1213        if (ret)
1214                ret = acpi_processor_get_cstate_info(pr);
1215
1216        return ret;
1217}
1218
1219int acpi_processor_hotplug(struct acpi_processor *pr)
1220{
1221        int ret = 0;
1222        struct cpuidle_device *dev;
1223
1224        if (disabled_by_idle_boot_param())
1225                return 0;
1226
1227        if (!pr->flags.power_setup_done)
1228                return -ENODEV;
1229
1230        dev = per_cpu(acpi_cpuidle_device, pr->id);
1231        cpuidle_pause_and_lock();
1232        cpuidle_disable_device(dev);
1233        ret = acpi_processor_get_power_info(pr);
1234        if (!ret && pr->flags.power) {
1235                acpi_processor_setup_cpuidle_dev(pr, dev);
1236                ret = cpuidle_enable_device(dev);
1237        }
1238        cpuidle_resume_and_unlock();
1239
1240        return ret;
1241}
1242
1243int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1244{
1245        int cpu;
1246        struct acpi_processor *_pr;
1247        struct cpuidle_device *dev;
1248
1249        if (disabled_by_idle_boot_param())
1250                return 0;
1251
1252        if (!pr->flags.power_setup_done)
1253                return -ENODEV;
1254
1255        /*
1256         * FIXME:  Design the ACPI notification to make it once per
1257         * system instead of once per-cpu.  This condition is a hack
1258         * to make the code that updates C-States be called once.
1259         */
1260
1261        if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1262
1263                /* Protect against cpu-hotplug */
1264                get_online_cpus();
1265                cpuidle_pause_and_lock();
1266
1267                /* Disable all cpuidle devices */
1268                for_each_online_cpu(cpu) {
1269                        _pr = per_cpu(processors, cpu);
1270                        if (!_pr || !_pr->flags.power_setup_done)
1271                                continue;
1272                        dev = per_cpu(acpi_cpuidle_device, cpu);
1273                        cpuidle_disable_device(dev);
1274                }
1275
1276                /* Populate Updated C-state information */
1277                acpi_processor_get_power_info(pr);
1278                acpi_processor_setup_cpuidle_states(pr);
1279
1280                /* Enable all cpuidle devices */
1281                for_each_online_cpu(cpu) {
1282                        _pr = per_cpu(processors, cpu);
1283                        if (!_pr || !_pr->flags.power_setup_done)
1284                                continue;
1285                        acpi_processor_get_power_info(_pr);
1286                        if (_pr->flags.power) {
1287                                dev = per_cpu(acpi_cpuidle_device, cpu);
1288                                acpi_processor_setup_cpuidle_dev(_pr, dev);
1289                                cpuidle_enable_device(dev);
1290                        }
1291                }
1292                cpuidle_resume_and_unlock();
1293                put_online_cpus();
1294        }
1295
1296        return 0;
1297}
1298
1299static int acpi_processor_registered;
1300
1301int acpi_processor_power_init(struct acpi_processor *pr)
1302{
1303        int retval;
1304        struct cpuidle_device *dev;
1305
1306        if (disabled_by_idle_boot_param())
1307                return 0;
1308
1309        acpi_processor_cstate_first_run_checks();
1310
1311        if (!acpi_processor_get_power_info(pr))
1312                pr->flags.power_setup_done = 1;
1313
1314        /*
1315         * Install the idle handler if processor power management is supported.
1316         * Note that we use previously set idle handler will be used on
1317         * platforms that only support C1.
1318         */
1319        if (pr->flags.power) {
1320                /* Register acpi_idle_driver if not already registered */
1321                if (!acpi_processor_registered) {
1322                        acpi_processor_setup_cpuidle_states(pr);
1323                        retval = cpuidle_register_driver(&acpi_idle_driver);
1324                        if (retval)
1325                                return retval;
1326                        pr_debug("%s registered with cpuidle\n",
1327                                 acpi_idle_driver.name);
1328                }
1329
1330                dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1331                if (!dev)
1332                        return -ENOMEM;
1333                per_cpu(acpi_cpuidle_device, pr->id) = dev;
1334
1335                acpi_processor_setup_cpuidle_dev(pr, dev);
1336
1337                /* Register per-cpu cpuidle_device. Cpuidle driver
1338                 * must already be registered before registering device
1339                 */
1340                retval = cpuidle_register_device(dev);
1341                if (retval) {
1342                        if (acpi_processor_registered == 0)
1343                                cpuidle_unregister_driver(&acpi_idle_driver);
1344                        return retval;
1345                }
1346                acpi_processor_registered++;
1347        }
1348        return 0;
1349}
1350
1351int acpi_processor_power_exit(struct acpi_processor *pr)
1352{
1353        struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1354
1355        if (disabled_by_idle_boot_param())
1356                return 0;
1357
1358        if (pr->flags.power) {
1359                cpuidle_unregister_device(dev);
1360                acpi_processor_registered--;
1361                if (acpi_processor_registered == 0)
1362                        cpuidle_unregister_driver(&acpi_idle_driver);
1363        }
1364
1365        pr->flags.power_setup_done = 0;
1366        return 0;
1367}
1368