linux/drivers/base/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/cpufreq.h>
  13#include <linux/device.h>
  14#include <linux/err.h>
  15#include <linux/fwnode.h>
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/string.h>
  20#include <linux/kdev_t.h>
  21#include <linux/notifier.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/genhd.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/netdevice.h>
  28#include <linux/sched/signal.h>
  29#include <linux/sched/mm.h>
  30#include <linux/sysfs.h>
  31#include <linux/dma-map-ops.h> /* for dma_default_coherent */
  32
  33#include "base.h"
  34#include "power/power.h"
  35
  36#ifdef CONFIG_SYSFS_DEPRECATED
  37#ifdef CONFIG_SYSFS_DEPRECATED_V2
  38long sysfs_deprecated = 1;
  39#else
  40long sysfs_deprecated = 0;
  41#endif
  42static int __init sysfs_deprecated_setup(char *arg)
  43{
  44        return kstrtol(arg, 10, &sysfs_deprecated);
  45}
  46early_param("sysfs.deprecated", sysfs_deprecated_setup);
  47#endif
  48
  49/* Device links support. */
  50static LIST_HEAD(deferred_sync);
  51static unsigned int defer_sync_state_count = 1;
  52static DEFINE_MUTEX(fwnode_link_lock);
  53static bool fw_devlink_is_permissive(void);
  54static bool fw_devlink_drv_reg_done;
  55
  56/**
  57 * fwnode_link_add - Create a link between two fwnode_handles.
  58 * @con: Consumer end of the link.
  59 * @sup: Supplier end of the link.
  60 *
  61 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
  62 * represents the detail that the firmware lists @sup fwnode as supplying a
  63 * resource to @con.
  64 *
  65 * The driver core will use the fwnode link to create a device link between the
  66 * two device objects corresponding to @con and @sup when they are created. The
  67 * driver core will automatically delete the fwnode link between @con and @sup
  68 * after doing that.
  69 *
  70 * Attempts to create duplicate links between the same pair of fwnode handles
  71 * are ignored and there is no reference counting.
  72 */
  73int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
  74{
  75        struct fwnode_link *link;
  76        int ret = 0;
  77
  78        mutex_lock(&fwnode_link_lock);
  79
  80        list_for_each_entry(link, &sup->consumers, s_hook)
  81                if (link->consumer == con)
  82                        goto out;
  83
  84        link = kzalloc(sizeof(*link), GFP_KERNEL);
  85        if (!link) {
  86                ret = -ENOMEM;
  87                goto out;
  88        }
  89
  90        link->supplier = sup;
  91        INIT_LIST_HEAD(&link->s_hook);
  92        link->consumer = con;
  93        INIT_LIST_HEAD(&link->c_hook);
  94
  95        list_add(&link->s_hook, &sup->consumers);
  96        list_add(&link->c_hook, &con->suppliers);
  97out:
  98        mutex_unlock(&fwnode_link_lock);
  99
 100        return ret;
 101}
 102
 103/**
 104 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
 105 * @fwnode: fwnode whose supplier links need to be deleted
 106 *
 107 * Deletes all supplier links connecting directly to @fwnode.
 108 */
 109static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
 110{
 111        struct fwnode_link *link, *tmp;
 112
 113        mutex_lock(&fwnode_link_lock);
 114        list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
 115                list_del(&link->s_hook);
 116                list_del(&link->c_hook);
 117                kfree(link);
 118        }
 119        mutex_unlock(&fwnode_link_lock);
 120}
 121
 122/**
 123 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
 124 * @fwnode: fwnode whose consumer links need to be deleted
 125 *
 126 * Deletes all consumer links connecting directly to @fwnode.
 127 */
 128static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
 129{
 130        struct fwnode_link *link, *tmp;
 131
 132        mutex_lock(&fwnode_link_lock);
 133        list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
 134                list_del(&link->s_hook);
 135                list_del(&link->c_hook);
 136                kfree(link);
 137        }
 138        mutex_unlock(&fwnode_link_lock);
 139}
 140
 141/**
 142 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
 143 * @fwnode: fwnode whose links needs to be deleted
 144 *
 145 * Deletes all links connecting directly to a fwnode.
 146 */
 147void fwnode_links_purge(struct fwnode_handle *fwnode)
 148{
 149        fwnode_links_purge_suppliers(fwnode);
 150        fwnode_links_purge_consumers(fwnode);
 151}
 152
 153void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
 154{
 155        struct fwnode_handle *child;
 156
 157        /* Don't purge consumer links of an added child */
 158        if (fwnode->dev)
 159                return;
 160
 161        fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
 162        fwnode_links_purge_consumers(fwnode);
 163
 164        fwnode_for_each_available_child_node(fwnode, child)
 165                fw_devlink_purge_absent_suppliers(child);
 166}
 167EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
 168
 169#ifdef CONFIG_SRCU
 170static DEFINE_MUTEX(device_links_lock);
 171DEFINE_STATIC_SRCU(device_links_srcu);
 172
 173static inline void device_links_write_lock(void)
 174{
 175        mutex_lock(&device_links_lock);
 176}
 177
 178static inline void device_links_write_unlock(void)
 179{
 180        mutex_unlock(&device_links_lock);
 181}
 182
 183int device_links_read_lock(void) __acquires(&device_links_srcu)
 184{
 185        return srcu_read_lock(&device_links_srcu);
 186}
 187
 188void device_links_read_unlock(int idx) __releases(&device_links_srcu)
 189{
 190        srcu_read_unlock(&device_links_srcu, idx);
 191}
 192
 193int device_links_read_lock_held(void)
 194{
 195        return srcu_read_lock_held(&device_links_srcu);
 196}
 197
 198static void device_link_synchronize_removal(void)
 199{
 200        synchronize_srcu(&device_links_srcu);
 201}
 202
 203static void device_link_remove_from_lists(struct device_link *link)
 204{
 205        list_del_rcu(&link->s_node);
 206        list_del_rcu(&link->c_node);
 207}
 208#else /* !CONFIG_SRCU */
 209static DECLARE_RWSEM(device_links_lock);
 210
 211static inline void device_links_write_lock(void)
 212{
 213        down_write(&device_links_lock);
 214}
 215
 216static inline void device_links_write_unlock(void)
 217{
 218        up_write(&device_links_lock);
 219}
 220
 221int device_links_read_lock(void)
 222{
 223        down_read(&device_links_lock);
 224        return 0;
 225}
 226
 227void device_links_read_unlock(int not_used)
 228{
 229        up_read(&device_links_lock);
 230}
 231
 232#ifdef CONFIG_DEBUG_LOCK_ALLOC
 233int device_links_read_lock_held(void)
 234{
 235        return lockdep_is_held(&device_links_lock);
 236}
 237#endif
 238
 239static inline void device_link_synchronize_removal(void)
 240{
 241}
 242
 243static void device_link_remove_from_lists(struct device_link *link)
 244{
 245        list_del(&link->s_node);
 246        list_del(&link->c_node);
 247}
 248#endif /* !CONFIG_SRCU */
 249
 250static bool device_is_ancestor(struct device *dev, struct device *target)
 251{
 252        while (target->parent) {
 253                target = target->parent;
 254                if (dev == target)
 255                        return true;
 256        }
 257        return false;
 258}
 259
 260/**
 261 * device_is_dependent - Check if one device depends on another one
 262 * @dev: Device to check dependencies for.
 263 * @target: Device to check against.
 264 *
 265 * Check if @target depends on @dev or any device dependent on it (its child or
 266 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 267 */
 268int device_is_dependent(struct device *dev, void *target)
 269{
 270        struct device_link *link;
 271        int ret;
 272
 273        /*
 274         * The "ancestors" check is needed to catch the case when the target
 275         * device has not been completely initialized yet and it is still
 276         * missing from the list of children of its parent device.
 277         */
 278        if (dev == target || device_is_ancestor(dev, target))
 279                return 1;
 280
 281        ret = device_for_each_child(dev, target, device_is_dependent);
 282        if (ret)
 283                return ret;
 284
 285        list_for_each_entry(link, &dev->links.consumers, s_node) {
 286                if ((link->flags & ~DL_FLAG_INFERRED) ==
 287                    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 288                        continue;
 289
 290                if (link->consumer == target)
 291                        return 1;
 292
 293                ret = device_is_dependent(link->consumer, target);
 294                if (ret)
 295                        break;
 296        }
 297        return ret;
 298}
 299
 300static void device_link_init_status(struct device_link *link,
 301                                    struct device *consumer,
 302                                    struct device *supplier)
 303{
 304        switch (supplier->links.status) {
 305        case DL_DEV_PROBING:
 306                switch (consumer->links.status) {
 307                case DL_DEV_PROBING:
 308                        /*
 309                         * A consumer driver can create a link to a supplier
 310                         * that has not completed its probing yet as long as it
 311                         * knows that the supplier is already functional (for
 312                         * example, it has just acquired some resources from the
 313                         * supplier).
 314                         */
 315                        link->status = DL_STATE_CONSUMER_PROBE;
 316                        break;
 317                default:
 318                        link->status = DL_STATE_DORMANT;
 319                        break;
 320                }
 321                break;
 322        case DL_DEV_DRIVER_BOUND:
 323                switch (consumer->links.status) {
 324                case DL_DEV_PROBING:
 325                        link->status = DL_STATE_CONSUMER_PROBE;
 326                        break;
 327                case DL_DEV_DRIVER_BOUND:
 328                        link->status = DL_STATE_ACTIVE;
 329                        break;
 330                default:
 331                        link->status = DL_STATE_AVAILABLE;
 332                        break;
 333                }
 334                break;
 335        case DL_DEV_UNBINDING:
 336                link->status = DL_STATE_SUPPLIER_UNBIND;
 337                break;
 338        default:
 339                link->status = DL_STATE_DORMANT;
 340                break;
 341        }
 342}
 343
 344static int device_reorder_to_tail(struct device *dev, void *not_used)
 345{
 346        struct device_link *link;
 347
 348        /*
 349         * Devices that have not been registered yet will be put to the ends
 350         * of the lists during the registration, so skip them here.
 351         */
 352        if (device_is_registered(dev))
 353                devices_kset_move_last(dev);
 354
 355        if (device_pm_initialized(dev))
 356                device_pm_move_last(dev);
 357
 358        device_for_each_child(dev, NULL, device_reorder_to_tail);
 359        list_for_each_entry(link, &dev->links.consumers, s_node) {
 360                if ((link->flags & ~DL_FLAG_INFERRED) ==
 361                    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 362                        continue;
 363                device_reorder_to_tail(link->consumer, NULL);
 364        }
 365
 366        return 0;
 367}
 368
 369/**
 370 * device_pm_move_to_tail - Move set of devices to the end of device lists
 371 * @dev: Device to move
 372 *
 373 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 374 *
 375 * It moves the @dev along with all of its children and all of its consumers
 376 * to the ends of the device_kset and dpm_list, recursively.
 377 */
 378void device_pm_move_to_tail(struct device *dev)
 379{
 380        int idx;
 381
 382        idx = device_links_read_lock();
 383        device_pm_lock();
 384        device_reorder_to_tail(dev, NULL);
 385        device_pm_unlock();
 386        device_links_read_unlock(idx);
 387}
 388
 389#define to_devlink(dev) container_of((dev), struct device_link, link_dev)
 390
 391static ssize_t status_show(struct device *dev,
 392                           struct device_attribute *attr, char *buf)
 393{
 394        const char *output;
 395
 396        switch (to_devlink(dev)->status) {
 397        case DL_STATE_NONE:
 398                output = "not tracked";
 399                break;
 400        case DL_STATE_DORMANT:
 401                output = "dormant";
 402                break;
 403        case DL_STATE_AVAILABLE:
 404                output = "available";
 405                break;
 406        case DL_STATE_CONSUMER_PROBE:
 407                output = "consumer probing";
 408                break;
 409        case DL_STATE_ACTIVE:
 410                output = "active";
 411                break;
 412        case DL_STATE_SUPPLIER_UNBIND:
 413                output = "supplier unbinding";
 414                break;
 415        default:
 416                output = "unknown";
 417                break;
 418        }
 419
 420        return sysfs_emit(buf, "%s\n", output);
 421}
 422static DEVICE_ATTR_RO(status);
 423
 424static ssize_t auto_remove_on_show(struct device *dev,
 425                                   struct device_attribute *attr, char *buf)
 426{
 427        struct device_link *link = to_devlink(dev);
 428        const char *output;
 429
 430        if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 431                output = "supplier unbind";
 432        else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 433                output = "consumer unbind";
 434        else
 435                output = "never";
 436
 437        return sysfs_emit(buf, "%s\n", output);
 438}
 439static DEVICE_ATTR_RO(auto_remove_on);
 440
 441static ssize_t runtime_pm_show(struct device *dev,
 442                               struct device_attribute *attr, char *buf)
 443{
 444        struct device_link *link = to_devlink(dev);
 445
 446        return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
 447}
 448static DEVICE_ATTR_RO(runtime_pm);
 449
 450static ssize_t sync_state_only_show(struct device *dev,
 451                                    struct device_attribute *attr, char *buf)
 452{
 453        struct device_link *link = to_devlink(dev);
 454
 455        return sysfs_emit(buf, "%d\n",
 456                          !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 457}
 458static DEVICE_ATTR_RO(sync_state_only);
 459
 460static struct attribute *devlink_attrs[] = {
 461        &dev_attr_status.attr,
 462        &dev_attr_auto_remove_on.attr,
 463        &dev_attr_runtime_pm.attr,
 464        &dev_attr_sync_state_only.attr,
 465        NULL,
 466};
 467ATTRIBUTE_GROUPS(devlink);
 468
 469static void device_link_release_fn(struct work_struct *work)
 470{
 471        struct device_link *link = container_of(work, struct device_link, rm_work);
 472
 473        /* Ensure that all references to the link object have been dropped. */
 474        device_link_synchronize_removal();
 475
 476        while (refcount_dec_not_one(&link->rpm_active))
 477                pm_runtime_put(link->supplier);
 478
 479        put_device(link->consumer);
 480        put_device(link->supplier);
 481        kfree(link);
 482}
 483
 484static void devlink_dev_release(struct device *dev)
 485{
 486        struct device_link *link = to_devlink(dev);
 487
 488        INIT_WORK(&link->rm_work, device_link_release_fn);
 489        /*
 490         * It may take a while to complete this work because of the SRCU
 491         * synchronization in device_link_release_fn() and if the consumer or
 492         * supplier devices get deleted when it runs, so put it into the "long"
 493         * workqueue.
 494         */
 495        queue_work(system_long_wq, &link->rm_work);
 496}
 497
 498static struct class devlink_class = {
 499        .name = "devlink",
 500        .owner = THIS_MODULE,
 501        .dev_groups = devlink_groups,
 502        .dev_release = devlink_dev_release,
 503};
 504
 505static int devlink_add_symlinks(struct device *dev,
 506                                struct class_interface *class_intf)
 507{
 508        int ret;
 509        size_t len;
 510        struct device_link *link = to_devlink(dev);
 511        struct device *sup = link->supplier;
 512        struct device *con = link->consumer;
 513        char *buf;
 514
 515        len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 516                  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 517        len += strlen(":");
 518        len += strlen("supplier:") + 1;
 519        buf = kzalloc(len, GFP_KERNEL);
 520        if (!buf)
 521                return -ENOMEM;
 522
 523        ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
 524        if (ret)
 525                goto out;
 526
 527        ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
 528        if (ret)
 529                goto err_con;
 530
 531        snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 532        ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
 533        if (ret)
 534                goto err_con_dev;
 535
 536        snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 537        ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
 538        if (ret)
 539                goto err_sup_dev;
 540
 541        goto out;
 542
 543err_sup_dev:
 544        snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 545        sysfs_remove_link(&sup->kobj, buf);
 546err_con_dev:
 547        sysfs_remove_link(&link->link_dev.kobj, "consumer");
 548err_con:
 549        sysfs_remove_link(&link->link_dev.kobj, "supplier");
 550out:
 551        kfree(buf);
 552        return ret;
 553}
 554
 555static void devlink_remove_symlinks(struct device *dev,
 556                                   struct class_interface *class_intf)
 557{
 558        struct device_link *link = to_devlink(dev);
 559        size_t len;
 560        struct device *sup = link->supplier;
 561        struct device *con = link->consumer;
 562        char *buf;
 563
 564        sysfs_remove_link(&link->link_dev.kobj, "consumer");
 565        sysfs_remove_link(&link->link_dev.kobj, "supplier");
 566
 567        len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 568                  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 569        len += strlen(":");
 570        len += strlen("supplier:") + 1;
 571        buf = kzalloc(len, GFP_KERNEL);
 572        if (!buf) {
 573                WARN(1, "Unable to properly free device link symlinks!\n");
 574                return;
 575        }
 576
 577        snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 578        sysfs_remove_link(&con->kobj, buf);
 579        snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 580        sysfs_remove_link(&sup->kobj, buf);
 581        kfree(buf);
 582}
 583
 584static struct class_interface devlink_class_intf = {
 585        .class = &devlink_class,
 586        .add_dev = devlink_add_symlinks,
 587        .remove_dev = devlink_remove_symlinks,
 588};
 589
 590static int __init devlink_class_init(void)
 591{
 592        int ret;
 593
 594        ret = class_register(&devlink_class);
 595        if (ret)
 596                return ret;
 597
 598        ret = class_interface_register(&devlink_class_intf);
 599        if (ret)
 600                class_unregister(&devlink_class);
 601
 602        return ret;
 603}
 604postcore_initcall(devlink_class_init);
 605
 606#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 607                               DL_FLAG_AUTOREMOVE_SUPPLIER | \
 608                               DL_FLAG_AUTOPROBE_CONSUMER  | \
 609                               DL_FLAG_SYNC_STATE_ONLY | \
 610                               DL_FLAG_INFERRED)
 611
 612#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 613                            DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 614
 615/**
 616 * device_link_add - Create a link between two devices.
 617 * @consumer: Consumer end of the link.
 618 * @supplier: Supplier end of the link.
 619 * @flags: Link flags.
 620 *
 621 * The caller is responsible for the proper synchronization of the link creation
 622 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 623 * runtime PM framework to take the link into account.  Second, if the
 624 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 625 * be forced into the active meta state and reference-counted upon the creation
 626 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 627 * ignored.
 628 *
 629 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 630 * expected to release the link returned by it directly with the help of either
 631 * device_link_del() or device_link_remove().
 632 *
 633 * If that flag is not set, however, the caller of this function is handing the
 634 * management of the link over to the driver core entirely and its return value
 635 * can only be used to check whether or not the link is present.  In that case,
 636 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 637 * flags can be used to indicate to the driver core when the link can be safely
 638 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 639 * that the link is not going to be used (by the given caller of this function)
 640 * after unbinding the consumer or supplier driver, respectively, from its
 641 * device, so the link can be deleted at that point.  If none of them is set,
 642 * the link will be maintained until one of the devices pointed to by it (either
 643 * the consumer or the supplier) is unregistered.
 644 *
 645 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 646 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 647 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 648 * be used to request the driver core to automatically probe for a consumer
 649 * driver after successfully binding a driver to the supplier device.
 650 *
 651 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 652 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 653 * the same time is invalid and will cause NULL to be returned upfront.
 654 * However, if a device link between the given @consumer and @supplier pair
 655 * exists already when this function is called for them, the existing link will
 656 * be returned regardless of its current type and status (the link's flags may
 657 * be modified then).  The caller of this function is then expected to treat
 658 * the link as though it has just been created, so (in particular) if
 659 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 660 * explicitly when not needed any more (as stated above).
 661 *
 662 * A side effect of the link creation is re-ordering of dpm_list and the
 663 * devices_kset list by moving the consumer device and all devices depending
 664 * on it to the ends of these lists (that does not happen to devices that have
 665 * not been registered when this function is called).
 666 *
 667 * The supplier device is required to be registered when this function is called
 668 * and NULL will be returned if that is not the case.  The consumer device need
 669 * not be registered, however.
 670 */
 671struct device_link *device_link_add(struct device *consumer,
 672                                    struct device *supplier, u32 flags)
 673{
 674        struct device_link *link;
 675
 676        if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
 677            (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 678            (flags & DL_FLAG_SYNC_STATE_ONLY &&
 679             (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
 680            (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 681             flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 682                      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 683                return NULL;
 684
 685        if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 686                if (pm_runtime_get_sync(supplier) < 0) {
 687                        pm_runtime_put_noidle(supplier);
 688                        return NULL;
 689                }
 690        }
 691
 692        if (!(flags & DL_FLAG_STATELESS))
 693                flags |= DL_FLAG_MANAGED;
 694
 695        device_links_write_lock();
 696        device_pm_lock();
 697
 698        /*
 699         * If the supplier has not been fully registered yet or there is a
 700         * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
 701         * the supplier already in the graph, return NULL. If the link is a
 702         * SYNC_STATE_ONLY link, we don't check for reverse dependencies
 703         * because it only affects sync_state() callbacks.
 704         */
 705        if (!device_pm_initialized(supplier)
 706            || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
 707                  device_is_dependent(consumer, supplier))) {
 708                link = NULL;
 709                goto out;
 710        }
 711
 712        /*
 713         * SYNC_STATE_ONLY links are useless once a consumer device has probed.
 714         * So, only create it if the consumer hasn't probed yet.
 715         */
 716        if (flags & DL_FLAG_SYNC_STATE_ONLY &&
 717            consumer->links.status != DL_DEV_NO_DRIVER &&
 718            consumer->links.status != DL_DEV_PROBING) {
 719                link = NULL;
 720                goto out;
 721        }
 722
 723        /*
 724         * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 725         * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 726         * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 727         */
 728        if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 729                flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 730
 731        list_for_each_entry(link, &supplier->links.consumers, s_node) {
 732                if (link->consumer != consumer)
 733                        continue;
 734
 735                if (link->flags & DL_FLAG_INFERRED &&
 736                    !(flags & DL_FLAG_INFERRED))
 737                        link->flags &= ~DL_FLAG_INFERRED;
 738
 739                if (flags & DL_FLAG_PM_RUNTIME) {
 740                        if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 741                                pm_runtime_new_link(consumer);
 742                                link->flags |= DL_FLAG_PM_RUNTIME;
 743                        }
 744                        if (flags & DL_FLAG_RPM_ACTIVE)
 745                                refcount_inc(&link->rpm_active);
 746                }
 747
 748                if (flags & DL_FLAG_STATELESS) {
 749                        kref_get(&link->kref);
 750                        if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 751                            !(link->flags & DL_FLAG_STATELESS)) {
 752                                link->flags |= DL_FLAG_STATELESS;
 753                                goto reorder;
 754                        } else {
 755                                link->flags |= DL_FLAG_STATELESS;
 756                                goto out;
 757                        }
 758                }
 759
 760                /*
 761                 * If the life time of the link following from the new flags is
 762                 * longer than indicated by the flags of the existing link,
 763                 * update the existing link to stay around longer.
 764                 */
 765                if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 766                        if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 767                                link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 768                                link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 769                        }
 770                } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 771                        link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 772                                         DL_FLAG_AUTOREMOVE_SUPPLIER);
 773                }
 774                if (!(link->flags & DL_FLAG_MANAGED)) {
 775                        kref_get(&link->kref);
 776                        link->flags |= DL_FLAG_MANAGED;
 777                        device_link_init_status(link, consumer, supplier);
 778                }
 779                if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 780                    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
 781                        link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
 782                        goto reorder;
 783                }
 784
 785                goto out;
 786        }
 787
 788        link = kzalloc(sizeof(*link), GFP_KERNEL);
 789        if (!link)
 790                goto out;
 791
 792        refcount_set(&link->rpm_active, 1);
 793
 794        get_device(supplier);
 795        link->supplier = supplier;
 796        INIT_LIST_HEAD(&link->s_node);
 797        get_device(consumer);
 798        link->consumer = consumer;
 799        INIT_LIST_HEAD(&link->c_node);
 800        link->flags = flags;
 801        kref_init(&link->kref);
 802
 803        link->link_dev.class = &devlink_class;
 804        device_set_pm_not_required(&link->link_dev);
 805        dev_set_name(&link->link_dev, "%s:%s--%s:%s",
 806                     dev_bus_name(supplier), dev_name(supplier),
 807                     dev_bus_name(consumer), dev_name(consumer));
 808        if (device_register(&link->link_dev)) {
 809                put_device(consumer);
 810                put_device(supplier);
 811                kfree(link);
 812                link = NULL;
 813                goto out;
 814        }
 815
 816        if (flags & DL_FLAG_PM_RUNTIME) {
 817                if (flags & DL_FLAG_RPM_ACTIVE)
 818                        refcount_inc(&link->rpm_active);
 819
 820                pm_runtime_new_link(consumer);
 821        }
 822
 823        /* Determine the initial link state. */
 824        if (flags & DL_FLAG_STATELESS)
 825                link->status = DL_STATE_NONE;
 826        else
 827                device_link_init_status(link, consumer, supplier);
 828
 829        /*
 830         * Some callers expect the link creation during consumer driver probe to
 831         * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 832         */
 833        if (link->status == DL_STATE_CONSUMER_PROBE &&
 834            flags & DL_FLAG_PM_RUNTIME)
 835                pm_runtime_resume(supplier);
 836
 837        list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 838        list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 839
 840        if (flags & DL_FLAG_SYNC_STATE_ONLY) {
 841                dev_dbg(consumer,
 842                        "Linked as a sync state only consumer to %s\n",
 843                        dev_name(supplier));
 844                goto out;
 845        }
 846
 847reorder:
 848        /*
 849         * Move the consumer and all of the devices depending on it to the end
 850         * of dpm_list and the devices_kset list.
 851         *
 852         * It is necessary to hold dpm_list locked throughout all that or else
 853         * we may end up suspending with a wrong ordering of it.
 854         */
 855        device_reorder_to_tail(consumer, NULL);
 856
 857        dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 858
 859out:
 860        device_pm_unlock();
 861        device_links_write_unlock();
 862
 863        if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 864                pm_runtime_put(supplier);
 865
 866        return link;
 867}
 868EXPORT_SYMBOL_GPL(device_link_add);
 869
 870static void __device_link_del(struct kref *kref)
 871{
 872        struct device_link *link = container_of(kref, struct device_link, kref);
 873
 874        dev_dbg(link->consumer, "Dropping the link to %s\n",
 875                dev_name(link->supplier));
 876
 877        pm_runtime_drop_link(link);
 878
 879        device_link_remove_from_lists(link);
 880        device_unregister(&link->link_dev);
 881}
 882
 883static void device_link_put_kref(struct device_link *link)
 884{
 885        if (link->flags & DL_FLAG_STATELESS)
 886                kref_put(&link->kref, __device_link_del);
 887        else
 888                WARN(1, "Unable to drop a managed device link reference\n");
 889}
 890
 891/**
 892 * device_link_del - Delete a stateless link between two devices.
 893 * @link: Device link to delete.
 894 *
 895 * The caller must ensure proper synchronization of this function with runtime
 896 * PM.  If the link was added multiple times, it needs to be deleted as often.
 897 * Care is required for hotplugged devices:  Their links are purged on removal
 898 * and calling device_link_del() is then no longer allowed.
 899 */
 900void device_link_del(struct device_link *link)
 901{
 902        device_links_write_lock();
 903        device_link_put_kref(link);
 904        device_links_write_unlock();
 905}
 906EXPORT_SYMBOL_GPL(device_link_del);
 907
 908/**
 909 * device_link_remove - Delete a stateless link between two devices.
 910 * @consumer: Consumer end of the link.
 911 * @supplier: Supplier end of the link.
 912 *
 913 * The caller must ensure proper synchronization of this function with runtime
 914 * PM.
 915 */
 916void device_link_remove(void *consumer, struct device *supplier)
 917{
 918        struct device_link *link;
 919
 920        if (WARN_ON(consumer == supplier))
 921                return;
 922
 923        device_links_write_lock();
 924
 925        list_for_each_entry(link, &supplier->links.consumers, s_node) {
 926                if (link->consumer == consumer) {
 927                        device_link_put_kref(link);
 928                        break;
 929                }
 930        }
 931
 932        device_links_write_unlock();
 933}
 934EXPORT_SYMBOL_GPL(device_link_remove);
 935
 936static void device_links_missing_supplier(struct device *dev)
 937{
 938        struct device_link *link;
 939
 940        list_for_each_entry(link, &dev->links.suppliers, c_node) {
 941                if (link->status != DL_STATE_CONSUMER_PROBE)
 942                        continue;
 943
 944                if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
 945                        WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 946                } else {
 947                        WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 948                        WRITE_ONCE(link->status, DL_STATE_DORMANT);
 949                }
 950        }
 951}
 952
 953/**
 954 * device_links_check_suppliers - Check presence of supplier drivers.
 955 * @dev: Consumer device.
 956 *
 957 * Check links from this device to any suppliers.  Walk the list of the device's
 958 * links to suppliers and see if all of them are available.  If not, simply
 959 * return -EPROBE_DEFER.
 960 *
 961 * We need to guarantee that the supplier will not go away after the check has
 962 * been positive here.  It only can go away in __device_release_driver() and
 963 * that function  checks the device's links to consumers.  This means we need to
 964 * mark the link as "consumer probe in progress" to make the supplier removal
 965 * wait for us to complete (or bad things may happen).
 966 *
 967 * Links without the DL_FLAG_MANAGED flag set are ignored.
 968 */
 969int device_links_check_suppliers(struct device *dev)
 970{
 971        struct device_link *link;
 972        int ret = 0;
 973
 974        /*
 975         * Device waiting for supplier to become available is not allowed to
 976         * probe.
 977         */
 978        mutex_lock(&fwnode_link_lock);
 979        if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
 980            !fw_devlink_is_permissive()) {
 981                dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n",
 982                        list_first_entry(&dev->fwnode->suppliers,
 983                        struct fwnode_link,
 984                        c_hook)->supplier);
 985                mutex_unlock(&fwnode_link_lock);
 986                return -EPROBE_DEFER;
 987        }
 988        mutex_unlock(&fwnode_link_lock);
 989
 990        device_links_write_lock();
 991
 992        list_for_each_entry(link, &dev->links.suppliers, c_node) {
 993                if (!(link->flags & DL_FLAG_MANAGED))
 994                        continue;
 995
 996                if (link->status != DL_STATE_AVAILABLE &&
 997                    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
 998                        device_links_missing_supplier(dev);
 999                        dev_dbg(dev, "probe deferral - supplier %s not ready\n",
1000                                dev_name(link->supplier));
1001                        ret = -EPROBE_DEFER;
1002                        break;
1003                }
1004                WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1005        }
1006        dev->links.status = DL_DEV_PROBING;
1007
1008        device_links_write_unlock();
1009        return ret;
1010}
1011
1012/**
1013 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1014 * @dev: Device to call sync_state() on
1015 * @list: List head to queue the @dev on
1016 *
1017 * Queues a device for a sync_state() callback when the device links write lock
1018 * isn't held. This allows the sync_state() execution flow to use device links
1019 * APIs.  The caller must ensure this function is called with
1020 * device_links_write_lock() held.
1021 *
1022 * This function does a get_device() to make sure the device is not freed while
1023 * on this list.
1024 *
1025 * So the caller must also ensure that device_links_flush_sync_list() is called
1026 * as soon as the caller releases device_links_write_lock().  This is necessary
1027 * to make sure the sync_state() is called in a timely fashion and the
1028 * put_device() is called on this device.
1029 */
1030static void __device_links_queue_sync_state(struct device *dev,
1031                                            struct list_head *list)
1032{
1033        struct device_link *link;
1034
1035        if (!dev_has_sync_state(dev))
1036                return;
1037        if (dev->state_synced)
1038                return;
1039
1040        list_for_each_entry(link, &dev->links.consumers, s_node) {
1041                if (!(link->flags & DL_FLAG_MANAGED))
1042                        continue;
1043                if (link->status != DL_STATE_ACTIVE)
1044                        return;
1045        }
1046
1047        /*
1048         * Set the flag here to avoid adding the same device to a list more
1049         * than once. This can happen if new consumers get added to the device
1050         * and probed before the list is flushed.
1051         */
1052        dev->state_synced = true;
1053
1054        if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1055                return;
1056
1057        get_device(dev);
1058        list_add_tail(&dev->links.defer_sync, list);
1059}
1060
1061/**
1062 * device_links_flush_sync_list - Call sync_state() on a list of devices
1063 * @list: List of devices to call sync_state() on
1064 * @dont_lock_dev: Device for which lock is already held by the caller
1065 *
1066 * Calls sync_state() on all the devices that have been queued for it. This
1067 * function is used in conjunction with __device_links_queue_sync_state(). The
1068 * @dont_lock_dev parameter is useful when this function is called from a
1069 * context where a device lock is already held.
1070 */
1071static void device_links_flush_sync_list(struct list_head *list,
1072                                         struct device *dont_lock_dev)
1073{
1074        struct device *dev, *tmp;
1075
1076        list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1077                list_del_init(&dev->links.defer_sync);
1078
1079                if (dev != dont_lock_dev)
1080                        device_lock(dev);
1081
1082                if (dev->bus->sync_state)
1083                        dev->bus->sync_state(dev);
1084                else if (dev->driver && dev->driver->sync_state)
1085                        dev->driver->sync_state(dev);
1086
1087                if (dev != dont_lock_dev)
1088                        device_unlock(dev);
1089
1090                put_device(dev);
1091        }
1092}
1093
1094void device_links_supplier_sync_state_pause(void)
1095{
1096        device_links_write_lock();
1097        defer_sync_state_count++;
1098        device_links_write_unlock();
1099}
1100
1101void device_links_supplier_sync_state_resume(void)
1102{
1103        struct device *dev, *tmp;
1104        LIST_HEAD(sync_list);
1105
1106        device_links_write_lock();
1107        if (!defer_sync_state_count) {
1108                WARN(true, "Unmatched sync_state pause/resume!");
1109                goto out;
1110        }
1111        defer_sync_state_count--;
1112        if (defer_sync_state_count)
1113                goto out;
1114
1115        list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1116                /*
1117                 * Delete from deferred_sync list before queuing it to
1118                 * sync_list because defer_sync is used for both lists.
1119                 */
1120                list_del_init(&dev->links.defer_sync);
1121                __device_links_queue_sync_state(dev, &sync_list);
1122        }
1123out:
1124        device_links_write_unlock();
1125
1126        device_links_flush_sync_list(&sync_list, NULL);
1127}
1128
1129static int sync_state_resume_initcall(void)
1130{
1131        device_links_supplier_sync_state_resume();
1132        return 0;
1133}
1134late_initcall(sync_state_resume_initcall);
1135
1136static void __device_links_supplier_defer_sync(struct device *sup)
1137{
1138        if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1139                list_add_tail(&sup->links.defer_sync, &deferred_sync);
1140}
1141
1142static void device_link_drop_managed(struct device_link *link)
1143{
1144        link->flags &= ~DL_FLAG_MANAGED;
1145        WRITE_ONCE(link->status, DL_STATE_NONE);
1146        kref_put(&link->kref, __device_link_del);
1147}
1148
1149static ssize_t waiting_for_supplier_show(struct device *dev,
1150                                         struct device_attribute *attr,
1151                                         char *buf)
1152{
1153        bool val;
1154
1155        device_lock(dev);
1156        val = !list_empty(&dev->fwnode->suppliers);
1157        device_unlock(dev);
1158        return sysfs_emit(buf, "%u\n", val);
1159}
1160static DEVICE_ATTR_RO(waiting_for_supplier);
1161
1162/**
1163 * device_links_force_bind - Prepares device to be force bound
1164 * @dev: Consumer device.
1165 *
1166 * device_bind_driver() force binds a device to a driver without calling any
1167 * driver probe functions. So the consumer really isn't going to wait for any
1168 * supplier before it's bound to the driver. We still want the device link
1169 * states to be sensible when this happens.
1170 *
1171 * In preparation for device_bind_driver(), this function goes through each
1172 * supplier device links and checks if the supplier is bound. If it is, then
1173 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1174 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1175 */
1176void device_links_force_bind(struct device *dev)
1177{
1178        struct device_link *link, *ln;
1179
1180        device_links_write_lock();
1181
1182        list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1183                if (!(link->flags & DL_FLAG_MANAGED))
1184                        continue;
1185
1186                if (link->status != DL_STATE_AVAILABLE) {
1187                        device_link_drop_managed(link);
1188                        continue;
1189                }
1190                WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1191        }
1192        dev->links.status = DL_DEV_PROBING;
1193
1194        device_links_write_unlock();
1195}
1196
1197/**
1198 * device_links_driver_bound - Update device links after probing its driver.
1199 * @dev: Device to update the links for.
1200 *
1201 * The probe has been successful, so update links from this device to any
1202 * consumers by changing their status to "available".
1203 *
1204 * Also change the status of @dev's links to suppliers to "active".
1205 *
1206 * Links without the DL_FLAG_MANAGED flag set are ignored.
1207 */
1208void device_links_driver_bound(struct device *dev)
1209{
1210        struct device_link *link, *ln;
1211        LIST_HEAD(sync_list);
1212
1213        /*
1214         * If a device binds successfully, it's expected to have created all
1215         * the device links it needs to or make new device links as it needs
1216         * them. So, fw_devlink no longer needs to create device links to any
1217         * of the device's suppliers.
1218         *
1219         * Also, if a child firmware node of this bound device is not added as
1220         * a device by now, assume it is never going to be added and make sure
1221         * other devices don't defer probe indefinitely by waiting for such a
1222         * child device.
1223         */
1224        if (dev->fwnode && dev->fwnode->dev == dev) {
1225                struct fwnode_handle *child;
1226                fwnode_links_purge_suppliers(dev->fwnode);
1227                fwnode_for_each_available_child_node(dev->fwnode, child)
1228                        fw_devlink_purge_absent_suppliers(child);
1229        }
1230        device_remove_file(dev, &dev_attr_waiting_for_supplier);
1231
1232        device_links_write_lock();
1233
1234        list_for_each_entry(link, &dev->links.consumers, s_node) {
1235                if (!(link->flags & DL_FLAG_MANAGED))
1236                        continue;
1237
1238                /*
1239                 * Links created during consumer probe may be in the "consumer
1240                 * probe" state to start with if the supplier is still probing
1241                 * when they are created and they may become "active" if the
1242                 * consumer probe returns first.  Skip them here.
1243                 */
1244                if (link->status == DL_STATE_CONSUMER_PROBE ||
1245                    link->status == DL_STATE_ACTIVE)
1246                        continue;
1247
1248                WARN_ON(link->status != DL_STATE_DORMANT);
1249                WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1250
1251                if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1252                        driver_deferred_probe_add(link->consumer);
1253        }
1254
1255        if (defer_sync_state_count)
1256                __device_links_supplier_defer_sync(dev);
1257        else
1258                __device_links_queue_sync_state(dev, &sync_list);
1259
1260        list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1261                struct device *supplier;
1262
1263                if (!(link->flags & DL_FLAG_MANAGED))
1264                        continue;
1265
1266                supplier = link->supplier;
1267                if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1268                        /*
1269                         * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1270                         * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1271                         * save to drop the managed link completely.
1272                         */
1273                        device_link_drop_managed(link);
1274                } else {
1275                        WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1276                        WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1277                }
1278
1279                /*
1280                 * This needs to be done even for the deleted
1281                 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1282                 * device link that was preventing the supplier from getting a
1283                 * sync_state() call.
1284                 */
1285                if (defer_sync_state_count)
1286                        __device_links_supplier_defer_sync(supplier);
1287                else
1288                        __device_links_queue_sync_state(supplier, &sync_list);
1289        }
1290
1291        dev->links.status = DL_DEV_DRIVER_BOUND;
1292
1293        device_links_write_unlock();
1294
1295        device_links_flush_sync_list(&sync_list, dev);
1296}
1297
1298/**
1299 * __device_links_no_driver - Update links of a device without a driver.
1300 * @dev: Device without a drvier.
1301 *
1302 * Delete all non-persistent links from this device to any suppliers.
1303 *
1304 * Persistent links stay around, but their status is changed to "available",
1305 * unless they already are in the "supplier unbind in progress" state in which
1306 * case they need not be updated.
1307 *
1308 * Links without the DL_FLAG_MANAGED flag set are ignored.
1309 */
1310static void __device_links_no_driver(struct device *dev)
1311{
1312        struct device_link *link, *ln;
1313
1314        list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1315                if (!(link->flags & DL_FLAG_MANAGED))
1316                        continue;
1317
1318                if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1319                        device_link_drop_managed(link);
1320                        continue;
1321                }
1322
1323                if (link->status != DL_STATE_CONSUMER_PROBE &&
1324                    link->status != DL_STATE_ACTIVE)
1325                        continue;
1326
1327                if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1328                        WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1329                } else {
1330                        WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1331                        WRITE_ONCE(link->status, DL_STATE_DORMANT);
1332                }
1333        }
1334
1335        dev->links.status = DL_DEV_NO_DRIVER;
1336}
1337
1338/**
1339 * device_links_no_driver - Update links after failing driver probe.
1340 * @dev: Device whose driver has just failed to probe.
1341 *
1342 * Clean up leftover links to consumers for @dev and invoke
1343 * %__device_links_no_driver() to update links to suppliers for it as
1344 * appropriate.
1345 *
1346 * Links without the DL_FLAG_MANAGED flag set are ignored.
1347 */
1348void device_links_no_driver(struct device *dev)
1349{
1350        struct device_link *link;
1351
1352        device_links_write_lock();
1353
1354        list_for_each_entry(link, &dev->links.consumers, s_node) {
1355                if (!(link->flags & DL_FLAG_MANAGED))
1356                        continue;
1357
1358                /*
1359                 * The probe has failed, so if the status of the link is
1360                 * "consumer probe" or "active", it must have been added by
1361                 * a probing consumer while this device was still probing.
1362                 * Change its state to "dormant", as it represents a valid
1363                 * relationship, but it is not functionally meaningful.
1364                 */
1365                if (link->status == DL_STATE_CONSUMER_PROBE ||
1366                    link->status == DL_STATE_ACTIVE)
1367                        WRITE_ONCE(link->status, DL_STATE_DORMANT);
1368        }
1369
1370        __device_links_no_driver(dev);
1371
1372        device_links_write_unlock();
1373}
1374
1375/**
1376 * device_links_driver_cleanup - Update links after driver removal.
1377 * @dev: Device whose driver has just gone away.
1378 *
1379 * Update links to consumers for @dev by changing their status to "dormant" and
1380 * invoke %__device_links_no_driver() to update links to suppliers for it as
1381 * appropriate.
1382 *
1383 * Links without the DL_FLAG_MANAGED flag set are ignored.
1384 */
1385void device_links_driver_cleanup(struct device *dev)
1386{
1387        struct device_link *link, *ln;
1388
1389        device_links_write_lock();
1390
1391        list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1392                if (!(link->flags & DL_FLAG_MANAGED))
1393                        continue;
1394
1395                WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1396                WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1397
1398                /*
1399                 * autoremove the links between this @dev and its consumer
1400                 * devices that are not active, i.e. where the link state
1401                 * has moved to DL_STATE_SUPPLIER_UNBIND.
1402                 */
1403                if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1404                    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1405                        device_link_drop_managed(link);
1406
1407                WRITE_ONCE(link->status, DL_STATE_DORMANT);
1408        }
1409
1410        list_del_init(&dev->links.defer_sync);
1411        __device_links_no_driver(dev);
1412
1413        device_links_write_unlock();
1414}
1415
1416/**
1417 * device_links_busy - Check if there are any busy links to consumers.
1418 * @dev: Device to check.
1419 *
1420 * Check each consumer of the device and return 'true' if its link's status
1421 * is one of "consumer probe" or "active" (meaning that the given consumer is
1422 * probing right now or its driver is present).  Otherwise, change the link
1423 * state to "supplier unbind" to prevent the consumer from being probed
1424 * successfully going forward.
1425 *
1426 * Return 'false' if there are no probing or active consumers.
1427 *
1428 * Links without the DL_FLAG_MANAGED flag set are ignored.
1429 */
1430bool device_links_busy(struct device *dev)
1431{
1432        struct device_link *link;
1433        bool ret = false;
1434
1435        device_links_write_lock();
1436
1437        list_for_each_entry(link, &dev->links.consumers, s_node) {
1438                if (!(link->flags & DL_FLAG_MANAGED))
1439                        continue;
1440
1441                if (link->status == DL_STATE_CONSUMER_PROBE
1442                    || link->status == DL_STATE_ACTIVE) {
1443                        ret = true;
1444                        break;
1445                }
1446                WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1447        }
1448
1449        dev->links.status = DL_DEV_UNBINDING;
1450
1451        device_links_write_unlock();
1452        return ret;
1453}
1454
1455/**
1456 * device_links_unbind_consumers - Force unbind consumers of the given device.
1457 * @dev: Device to unbind the consumers of.
1458 *
1459 * Walk the list of links to consumers for @dev and if any of them is in the
1460 * "consumer probe" state, wait for all device probes in progress to complete
1461 * and start over.
1462 *
1463 * If that's not the case, change the status of the link to "supplier unbind"
1464 * and check if the link was in the "active" state.  If so, force the consumer
1465 * driver to unbind and start over (the consumer will not re-probe as we have
1466 * changed the state of the link already).
1467 *
1468 * Links without the DL_FLAG_MANAGED flag set are ignored.
1469 */
1470void device_links_unbind_consumers(struct device *dev)
1471{
1472        struct device_link *link;
1473
1474 start:
1475        device_links_write_lock();
1476
1477        list_for_each_entry(link, &dev->links.consumers, s_node) {
1478                enum device_link_state status;
1479
1480                if (!(link->flags & DL_FLAG_MANAGED) ||
1481                    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1482                        continue;
1483
1484                status = link->status;
1485                if (status == DL_STATE_CONSUMER_PROBE) {
1486                        device_links_write_unlock();
1487
1488                        wait_for_device_probe();
1489                        goto start;
1490                }
1491                WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1492                if (status == DL_STATE_ACTIVE) {
1493                        struct device *consumer = link->consumer;
1494
1495                        get_device(consumer);
1496
1497                        device_links_write_unlock();
1498
1499                        device_release_driver_internal(consumer, NULL,
1500                                                       consumer->parent);
1501                        put_device(consumer);
1502                        goto start;
1503                }
1504        }
1505
1506        device_links_write_unlock();
1507}
1508
1509/**
1510 * device_links_purge - Delete existing links to other devices.
1511 * @dev: Target device.
1512 */
1513static void device_links_purge(struct device *dev)
1514{
1515        struct device_link *link, *ln;
1516
1517        if (dev->class == &devlink_class)
1518                return;
1519
1520        /*
1521         * Delete all of the remaining links from this device to any other
1522         * devices (either consumers or suppliers).
1523         */
1524        device_links_write_lock();
1525
1526        list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1527                WARN_ON(link->status == DL_STATE_ACTIVE);
1528                __device_link_del(&link->kref);
1529        }
1530
1531        list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1532                WARN_ON(link->status != DL_STATE_DORMANT &&
1533                        link->status != DL_STATE_NONE);
1534                __device_link_del(&link->kref);
1535        }
1536
1537        device_links_write_unlock();
1538}
1539
1540#define FW_DEVLINK_FLAGS_PERMISSIVE     (DL_FLAG_INFERRED | \
1541                                         DL_FLAG_SYNC_STATE_ONLY)
1542#define FW_DEVLINK_FLAGS_ON             (DL_FLAG_INFERRED | \
1543                                         DL_FLAG_AUTOPROBE_CONSUMER)
1544#define FW_DEVLINK_FLAGS_RPM            (FW_DEVLINK_FLAGS_ON | \
1545                                         DL_FLAG_PM_RUNTIME)
1546
1547static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1548static int __init fw_devlink_setup(char *arg)
1549{
1550        if (!arg)
1551                return -EINVAL;
1552
1553        if (strcmp(arg, "off") == 0) {
1554                fw_devlink_flags = 0;
1555        } else if (strcmp(arg, "permissive") == 0) {
1556                fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1557        } else if (strcmp(arg, "on") == 0) {
1558                fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1559        } else if (strcmp(arg, "rpm") == 0) {
1560                fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1561        }
1562        return 0;
1563}
1564early_param("fw_devlink", fw_devlink_setup);
1565
1566static bool fw_devlink_strict;
1567static int __init fw_devlink_strict_setup(char *arg)
1568{
1569        return strtobool(arg, &fw_devlink_strict);
1570}
1571early_param("fw_devlink.strict", fw_devlink_strict_setup);
1572
1573u32 fw_devlink_get_flags(void)
1574{
1575        return fw_devlink_flags;
1576}
1577
1578static bool fw_devlink_is_permissive(void)
1579{
1580        return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1581}
1582
1583bool fw_devlink_is_strict(void)
1584{
1585        return fw_devlink_strict && !fw_devlink_is_permissive();
1586}
1587
1588static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1589{
1590        if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1591                return;
1592
1593        fwnode_call_int_op(fwnode, add_links);
1594        fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1595}
1596
1597static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1598{
1599        struct fwnode_handle *child = NULL;
1600
1601        fw_devlink_parse_fwnode(fwnode);
1602
1603        while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1604                fw_devlink_parse_fwtree(child);
1605}
1606
1607static void fw_devlink_relax_link(struct device_link *link)
1608{
1609        if (!(link->flags & DL_FLAG_INFERRED))
1610                return;
1611
1612        if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1613                return;
1614
1615        pm_runtime_drop_link(link);
1616        link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1617        dev_dbg(link->consumer, "Relaxing link with %s\n",
1618                dev_name(link->supplier));
1619}
1620
1621static int fw_devlink_no_driver(struct device *dev, void *data)
1622{
1623        struct device_link *link = to_devlink(dev);
1624
1625        if (!link->supplier->can_match)
1626                fw_devlink_relax_link(link);
1627
1628        return 0;
1629}
1630
1631void fw_devlink_drivers_done(void)
1632{
1633        fw_devlink_drv_reg_done = true;
1634        device_links_write_lock();
1635        class_for_each_device(&devlink_class, NULL, NULL,
1636                              fw_devlink_no_driver);
1637        device_links_write_unlock();
1638}
1639
1640static void fw_devlink_unblock_consumers(struct device *dev)
1641{
1642        struct device_link *link;
1643
1644        if (!fw_devlink_flags || fw_devlink_is_permissive())
1645                return;
1646
1647        device_links_write_lock();
1648        list_for_each_entry(link, &dev->links.consumers, s_node)
1649                fw_devlink_relax_link(link);
1650        device_links_write_unlock();
1651}
1652
1653/**
1654 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1655 * @con: Device to check dependencies for.
1656 * @sup: Device to check against.
1657 *
1658 * Check if @sup depends on @con or any device dependent on it (its child or
1659 * its consumer etc).  When such a cyclic dependency is found, convert all
1660 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1661 * This is the equivalent of doing fw_devlink=permissive just between the
1662 * devices in the cycle. We need to do this because, at this point, fw_devlink
1663 * can't tell which of these dependencies is not a real dependency.
1664 *
1665 * Return 1 if a cycle is found. Otherwise, return 0.
1666 */
1667static int fw_devlink_relax_cycle(struct device *con, void *sup)
1668{
1669        struct device_link *link;
1670        int ret;
1671
1672        if (con == sup)
1673                return 1;
1674
1675        ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1676        if (ret)
1677                return ret;
1678
1679        list_for_each_entry(link, &con->links.consumers, s_node) {
1680                if ((link->flags & ~DL_FLAG_INFERRED) ==
1681                    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1682                        continue;
1683
1684                if (!fw_devlink_relax_cycle(link->consumer, sup))
1685                        continue;
1686
1687                ret = 1;
1688
1689                fw_devlink_relax_link(link);
1690        }
1691        return ret;
1692}
1693
1694/**
1695 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1696 * @con: consumer device for the device link
1697 * @sup_handle: fwnode handle of supplier
1698 * @flags: devlink flags
1699 *
1700 * This function will try to create a device link between the consumer device
1701 * @con and the supplier device represented by @sup_handle.
1702 *
1703 * The supplier has to be provided as a fwnode because incorrect cycles in
1704 * fwnode links can sometimes cause the supplier device to never be created.
1705 * This function detects such cases and returns an error if it cannot create a
1706 * device link from the consumer to a missing supplier.
1707 *
1708 * Returns,
1709 * 0 on successfully creating a device link
1710 * -EINVAL if the device link cannot be created as expected
1711 * -EAGAIN if the device link cannot be created right now, but it may be
1712 *  possible to do that in the future
1713 */
1714static int fw_devlink_create_devlink(struct device *con,
1715                                     struct fwnode_handle *sup_handle, u32 flags)
1716{
1717        struct device *sup_dev;
1718        int ret = 0;
1719
1720        sup_dev = get_dev_from_fwnode(sup_handle);
1721        if (sup_dev) {
1722                /*
1723                 * If it's one of those drivers that don't actually bind to
1724                 * their device using driver core, then don't wait on this
1725                 * supplier device indefinitely.
1726                 */
1727                if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1728                    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1729                        ret = -EINVAL;
1730                        goto out;
1731                }
1732
1733                /*
1734                 * If this fails, it is due to cycles in device links.  Just
1735                 * give up on this link and treat it as invalid.
1736                 */
1737                if (!device_link_add(con, sup_dev, flags) &&
1738                    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1739                        dev_info(con, "Fixing up cyclic dependency with %s\n",
1740                                 dev_name(sup_dev));
1741                        device_links_write_lock();
1742                        fw_devlink_relax_cycle(con, sup_dev);
1743                        device_links_write_unlock();
1744                        device_link_add(con, sup_dev,
1745                                        FW_DEVLINK_FLAGS_PERMISSIVE);
1746                        ret = -EINVAL;
1747                }
1748
1749                goto out;
1750        }
1751
1752        /* Supplier that's already initialized without a struct device. */
1753        if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1754                return -EINVAL;
1755
1756        /*
1757         * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1758         * cycles. So cycle detection isn't necessary and shouldn't be
1759         * done.
1760         */
1761        if (flags & DL_FLAG_SYNC_STATE_ONLY)
1762                return -EAGAIN;
1763
1764        /*
1765         * If we can't find the supplier device from its fwnode, it might be
1766         * due to a cyclic dependency between fwnodes. Some of these cycles can
1767         * be broken by applying logic. Check for these types of cycles and
1768         * break them so that devices in the cycle probe properly.
1769         *
1770         * If the supplier's parent is dependent on the consumer, then
1771         * the consumer-supplier dependency is a false dependency. So,
1772         * treat it as an invalid link.
1773         */
1774        sup_dev = fwnode_get_next_parent_dev(sup_handle);
1775        if (sup_dev && device_is_dependent(con, sup_dev)) {
1776                dev_dbg(con, "Not linking to %pfwP - False link\n",
1777                        sup_handle);
1778                ret = -EINVAL;
1779        } else {
1780                /*
1781                 * Can't check for cycles or no cycles. So let's try
1782                 * again later.
1783                 */
1784                ret = -EAGAIN;
1785        }
1786
1787out:
1788        put_device(sup_dev);
1789        return ret;
1790}
1791
1792/**
1793 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1794 * @dev: Device that needs to be linked to its consumers
1795 *
1796 * This function looks at all the consumer fwnodes of @dev and creates device
1797 * links between the consumer device and @dev (supplier).
1798 *
1799 * If the consumer device has not been added yet, then this function creates a
1800 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1801 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1802 * sync_state() callback before the real consumer device gets to be added and
1803 * then probed.
1804 *
1805 * Once device links are created from the real consumer to @dev (supplier), the
1806 * fwnode links are deleted.
1807 */
1808static void __fw_devlink_link_to_consumers(struct device *dev)
1809{
1810        struct fwnode_handle *fwnode = dev->fwnode;
1811        struct fwnode_link *link, *tmp;
1812
1813        list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1814                u32 dl_flags = fw_devlink_get_flags();
1815                struct device *con_dev;
1816                bool own_link = true;
1817                int ret;
1818
1819                con_dev = get_dev_from_fwnode(link->consumer);
1820                /*
1821                 * If consumer device is not available yet, make a "proxy"
1822                 * SYNC_STATE_ONLY link from the consumer's parent device to
1823                 * the supplier device. This is necessary to make sure the
1824                 * supplier doesn't get a sync_state() callback before the real
1825                 * consumer can create a device link to the supplier.
1826                 *
1827                 * This proxy link step is needed to handle the case where the
1828                 * consumer's parent device is added before the supplier.
1829                 */
1830                if (!con_dev) {
1831                        con_dev = fwnode_get_next_parent_dev(link->consumer);
1832                        /*
1833                         * However, if the consumer's parent device is also the
1834                         * parent of the supplier, don't create a
1835                         * consumer-supplier link from the parent to its child
1836                         * device. Such a dependency is impossible.
1837                         */
1838                        if (con_dev &&
1839                            fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1840                                put_device(con_dev);
1841                                con_dev = NULL;
1842                        } else {
1843                                own_link = false;
1844                                dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1845                        }
1846                }
1847
1848                if (!con_dev)
1849                        continue;
1850
1851                ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1852                put_device(con_dev);
1853                if (!own_link || ret == -EAGAIN)
1854                        continue;
1855
1856                list_del(&link->s_hook);
1857                list_del(&link->c_hook);
1858                kfree(link);
1859        }
1860}
1861
1862/**
1863 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1864 * @dev: The consumer device that needs to be linked to its suppliers
1865 * @fwnode: Root of the fwnode tree that is used to create device links
1866 *
1867 * This function looks at all the supplier fwnodes of fwnode tree rooted at
1868 * @fwnode and creates device links between @dev (consumer) and all the
1869 * supplier devices of the entire fwnode tree at @fwnode.
1870 *
1871 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1872 * and the real suppliers of @dev. Once these device links are created, the
1873 * fwnode links are deleted. When such device links are successfully created,
1874 * this function is called recursively on those supplier devices. This is
1875 * needed to detect and break some invalid cycles in fwnode links.  See
1876 * fw_devlink_create_devlink() for more details.
1877 *
1878 * In addition, it also looks at all the suppliers of the entire fwnode tree
1879 * because some of the child devices of @dev that have not been added yet
1880 * (because @dev hasn't probed) might already have their suppliers added to
1881 * driver core. So, this function creates SYNC_STATE_ONLY device links between
1882 * @dev (consumer) and these suppliers to make sure they don't execute their
1883 * sync_state() callbacks before these child devices have a chance to create
1884 * their device links. The fwnode links that correspond to the child devices
1885 * aren't delete because they are needed later to create the device links
1886 * between the real consumer and supplier devices.
1887 */
1888static void __fw_devlink_link_to_suppliers(struct device *dev,
1889                                           struct fwnode_handle *fwnode)
1890{
1891        bool own_link = (dev->fwnode == fwnode);
1892        struct fwnode_link *link, *tmp;
1893        struct fwnode_handle *child = NULL;
1894        u32 dl_flags;
1895
1896        if (own_link)
1897                dl_flags = fw_devlink_get_flags();
1898        else
1899                dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1900
1901        list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1902                int ret;
1903                struct device *sup_dev;
1904                struct fwnode_handle *sup = link->supplier;
1905
1906                ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1907                if (!own_link || ret == -EAGAIN)
1908                        continue;
1909
1910                list_del(&link->s_hook);
1911                list_del(&link->c_hook);
1912                kfree(link);
1913
1914                /* If no device link was created, nothing more to do. */
1915                if (ret)
1916                        continue;
1917
1918                /*
1919                 * If a device link was successfully created to a supplier, we
1920                 * now need to try and link the supplier to all its suppliers.
1921                 *
1922                 * This is needed to detect and delete false dependencies in
1923                 * fwnode links that haven't been converted to a device link
1924                 * yet. See comments in fw_devlink_create_devlink() for more
1925                 * details on the false dependency.
1926                 *
1927                 * Without deleting these false dependencies, some devices will
1928                 * never probe because they'll keep waiting for their false
1929                 * dependency fwnode links to be converted to device links.
1930                 */
1931                sup_dev = get_dev_from_fwnode(sup);
1932                __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1933                put_device(sup_dev);
1934        }
1935
1936        /*
1937         * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1938         * all the descendants. This proxy link step is needed to handle the
1939         * case where the supplier is added before the consumer's parent device
1940         * (@dev).
1941         */
1942        while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1943                __fw_devlink_link_to_suppliers(dev, child);
1944}
1945
1946static void fw_devlink_link_device(struct device *dev)
1947{
1948        struct fwnode_handle *fwnode = dev->fwnode;
1949
1950        if (!fw_devlink_flags)
1951                return;
1952
1953        fw_devlink_parse_fwtree(fwnode);
1954
1955        mutex_lock(&fwnode_link_lock);
1956        __fw_devlink_link_to_consumers(dev);
1957        __fw_devlink_link_to_suppliers(dev, fwnode);
1958        mutex_unlock(&fwnode_link_lock);
1959}
1960
1961/* Device links support end. */
1962
1963int (*platform_notify)(struct device *dev) = NULL;
1964int (*platform_notify_remove)(struct device *dev) = NULL;
1965static struct kobject *dev_kobj;
1966struct kobject *sysfs_dev_char_kobj;
1967struct kobject *sysfs_dev_block_kobj;
1968
1969static DEFINE_MUTEX(device_hotplug_lock);
1970
1971void lock_device_hotplug(void)
1972{
1973        mutex_lock(&device_hotplug_lock);
1974}
1975
1976void unlock_device_hotplug(void)
1977{
1978        mutex_unlock(&device_hotplug_lock);
1979}
1980
1981int lock_device_hotplug_sysfs(void)
1982{
1983        if (mutex_trylock(&device_hotplug_lock))
1984                return 0;
1985
1986        /* Avoid busy looping (5 ms of sleep should do). */
1987        msleep(5);
1988        return restart_syscall();
1989}
1990
1991#ifdef CONFIG_BLOCK
1992static inline int device_is_not_partition(struct device *dev)
1993{
1994        return !(dev->type == &part_type);
1995}
1996#else
1997static inline int device_is_not_partition(struct device *dev)
1998{
1999        return 1;
2000}
2001#endif
2002
2003static int
2004device_platform_notify(struct device *dev, enum kobject_action action)
2005{
2006        int ret;
2007
2008        ret = acpi_platform_notify(dev, action);
2009        if (ret)
2010                return ret;
2011
2012        ret = software_node_notify(dev, action);
2013        if (ret)
2014                return ret;
2015
2016        if (platform_notify && action == KOBJ_ADD)
2017                platform_notify(dev);
2018        else if (platform_notify_remove && action == KOBJ_REMOVE)
2019                platform_notify_remove(dev);
2020        return 0;
2021}
2022
2023/**
2024 * dev_driver_string - Return a device's driver name, if at all possible
2025 * @dev: struct device to get the name of
2026 *
2027 * Will return the device's driver's name if it is bound to a device.  If
2028 * the device is not bound to a driver, it will return the name of the bus
2029 * it is attached to.  If it is not attached to a bus either, an empty
2030 * string will be returned.
2031 */
2032const char *dev_driver_string(const struct device *dev)
2033{
2034        struct device_driver *drv;
2035
2036        /* dev->driver can change to NULL underneath us because of unbinding,
2037         * so be careful about accessing it.  dev->bus and dev->class should
2038         * never change once they are set, so they don't need special care.
2039         */
2040        drv = READ_ONCE(dev->driver);
2041        return drv ? drv->name : dev_bus_name(dev);
2042}
2043EXPORT_SYMBOL(dev_driver_string);
2044
2045#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2046
2047static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2048                             char *buf)
2049{
2050        struct device_attribute *dev_attr = to_dev_attr(attr);
2051        struct device *dev = kobj_to_dev(kobj);
2052        ssize_t ret = -EIO;
2053
2054        if (dev_attr->show)
2055                ret = dev_attr->show(dev, dev_attr, buf);
2056        if (ret >= (ssize_t)PAGE_SIZE) {
2057                printk("dev_attr_show: %pS returned bad count\n",
2058                                dev_attr->show);
2059        }
2060        return ret;
2061}
2062
2063static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2064                              const char *buf, size_t count)
2065{
2066        struct device_attribute *dev_attr = to_dev_attr(attr);
2067        struct device *dev = kobj_to_dev(kobj);
2068        ssize_t ret = -EIO;
2069
2070        if (dev_attr->store)
2071                ret = dev_attr->store(dev, dev_attr, buf, count);
2072        return ret;
2073}
2074
2075static const struct sysfs_ops dev_sysfs_ops = {
2076        .show   = dev_attr_show,
2077        .store  = dev_attr_store,
2078};
2079
2080#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2081
2082ssize_t device_store_ulong(struct device *dev,
2083                           struct device_attribute *attr,
2084                           const char *buf, size_t size)
2085{
2086        struct dev_ext_attribute *ea = to_ext_attr(attr);
2087        int ret;
2088        unsigned long new;
2089
2090        ret = kstrtoul(buf, 0, &new);
2091        if (ret)
2092                return ret;
2093        *(unsigned long *)(ea->var) = new;
2094        /* Always return full write size even if we didn't consume all */
2095        return size;
2096}
2097EXPORT_SYMBOL_GPL(device_store_ulong);
2098
2099ssize_t device_show_ulong(struct device *dev,
2100                          struct device_attribute *attr,
2101                          char *buf)
2102{
2103        struct dev_ext_attribute *ea = to_ext_attr(attr);
2104        return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2105}
2106EXPORT_SYMBOL_GPL(device_show_ulong);
2107
2108ssize_t device_store_int(struct device *dev,
2109                         struct device_attribute *attr,
2110                         const char *buf, size_t size)
2111{
2112        struct dev_ext_attribute *ea = to_ext_attr(attr);
2113        int ret;
2114        long new;
2115
2116        ret = kstrtol(buf, 0, &new);
2117        if (ret)
2118                return ret;
2119
2120        if (new > INT_MAX || new < INT_MIN)
2121                return -EINVAL;
2122        *(int *)(ea->var) = new;
2123        /* Always return full write size even if we didn't consume all */
2124        return size;
2125}
2126EXPORT_SYMBOL_GPL(device_store_int);
2127
2128ssize_t device_show_int(struct device *dev,
2129                        struct device_attribute *attr,
2130                        char *buf)
2131{
2132        struct dev_ext_attribute *ea = to_ext_attr(attr);
2133
2134        return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2135}
2136EXPORT_SYMBOL_GPL(device_show_int);
2137
2138ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2139                          const char *buf, size_t size)
2140{
2141        struct dev_ext_attribute *ea = to_ext_attr(attr);
2142
2143        if (strtobool(buf, ea->var) < 0)
2144                return -EINVAL;
2145
2146        return size;
2147}
2148EXPORT_SYMBOL_GPL(device_store_bool);
2149
2150ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2151                         char *buf)
2152{
2153        struct dev_ext_attribute *ea = to_ext_attr(attr);
2154
2155        return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2156}
2157EXPORT_SYMBOL_GPL(device_show_bool);
2158
2159/**
2160 * device_release - free device structure.
2161 * @kobj: device's kobject.
2162 *
2163 * This is called once the reference count for the object
2164 * reaches 0. We forward the call to the device's release
2165 * method, which should handle actually freeing the structure.
2166 */
2167static void device_release(struct kobject *kobj)
2168{
2169        struct device *dev = kobj_to_dev(kobj);
2170        struct device_private *p = dev->p;
2171
2172        /*
2173         * Some platform devices are driven without driver attached
2174         * and managed resources may have been acquired.  Make sure
2175         * all resources are released.
2176         *
2177         * Drivers still can add resources into device after device
2178         * is deleted but alive, so release devres here to avoid
2179         * possible memory leak.
2180         */
2181        devres_release_all(dev);
2182
2183        kfree(dev->dma_range_map);
2184
2185        if (dev->release)
2186                dev->release(dev);
2187        else if (dev->type && dev->type->release)
2188                dev->type->release(dev);
2189        else if (dev->class && dev->class->dev_release)
2190                dev->class->dev_release(dev);
2191        else
2192                WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2193                        dev_name(dev));
2194        kfree(p);
2195}
2196
2197static const void *device_namespace(struct kobject *kobj)
2198{
2199        struct device *dev = kobj_to_dev(kobj);
2200        const void *ns = NULL;
2201
2202        if (dev->class && dev->class->ns_type)
2203                ns = dev->class->namespace(dev);
2204
2205        return ns;
2206}
2207
2208static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2209{
2210        struct device *dev = kobj_to_dev(kobj);
2211
2212        if (dev->class && dev->class->get_ownership)
2213                dev->class->get_ownership(dev, uid, gid);
2214}
2215
2216static struct kobj_type device_ktype = {
2217        .release        = device_release,
2218        .sysfs_ops      = &dev_sysfs_ops,
2219        .namespace      = device_namespace,
2220        .get_ownership  = device_get_ownership,
2221};
2222
2223
2224static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2225{
2226        struct kobj_type *ktype = get_ktype(kobj);
2227
2228        if (ktype == &device_ktype) {
2229                struct device *dev = kobj_to_dev(kobj);
2230                if (dev->bus)
2231                        return 1;
2232                if (dev->class)
2233                        return 1;
2234        }
2235        return 0;
2236}
2237
2238static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2239{
2240        struct device *dev = kobj_to_dev(kobj);
2241
2242        if (dev->bus)
2243                return dev->bus->name;
2244        if (dev->class)
2245                return dev->class->name;
2246        return NULL;
2247}
2248
2249static int dev_uevent(struct kset *kset, struct kobject *kobj,
2250                      struct kobj_uevent_env *env)
2251{
2252        struct device *dev = kobj_to_dev(kobj);
2253        int retval = 0;
2254
2255        /* add device node properties if present */
2256        if (MAJOR(dev->devt)) {
2257                const char *tmp;
2258                const char *name;
2259                umode_t mode = 0;
2260                kuid_t uid = GLOBAL_ROOT_UID;
2261                kgid_t gid = GLOBAL_ROOT_GID;
2262
2263                add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2264                add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2265                name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2266                if (name) {
2267                        add_uevent_var(env, "DEVNAME=%s", name);
2268                        if (mode)
2269                                add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2270                        if (!uid_eq(uid, GLOBAL_ROOT_UID))
2271                                add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2272                        if (!gid_eq(gid, GLOBAL_ROOT_GID))
2273                                add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2274                        kfree(tmp);
2275                }
2276        }
2277
2278        if (dev->type && dev->type->name)
2279                add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2280
2281        if (dev->driver)
2282                add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2283
2284        /* Add common DT information about the device */
2285        of_device_uevent(dev, env);
2286
2287        /* have the bus specific function add its stuff */
2288        if (dev->bus && dev->bus->uevent) {
2289                retval = dev->bus->uevent(dev, env);
2290                if (retval)
2291                        pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2292                                 dev_name(dev), __func__, retval);
2293        }
2294
2295        /* have the class specific function add its stuff */
2296        if (dev->class && dev->class->dev_uevent) {
2297                retval = dev->class->dev_uevent(dev, env);
2298                if (retval)
2299                        pr_debug("device: '%s': %s: class uevent() "
2300                                 "returned %d\n", dev_name(dev),
2301                                 __func__, retval);
2302        }
2303
2304        /* have the device type specific function add its stuff */
2305        if (dev->type && dev->type->uevent) {
2306                retval = dev->type->uevent(dev, env);
2307                if (retval)
2308                        pr_debug("device: '%s': %s: dev_type uevent() "
2309                                 "returned %d\n", dev_name(dev),
2310                                 __func__, retval);
2311        }
2312
2313        return retval;
2314}
2315
2316static const struct kset_uevent_ops device_uevent_ops = {
2317        .filter =       dev_uevent_filter,
2318        .name =         dev_uevent_name,
2319        .uevent =       dev_uevent,
2320};
2321
2322static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2323                           char *buf)
2324{
2325        struct kobject *top_kobj;
2326        struct kset *kset;
2327        struct kobj_uevent_env *env = NULL;
2328        int i;
2329        int len = 0;
2330        int retval;
2331
2332        /* search the kset, the device belongs to */
2333        top_kobj = &dev->kobj;
2334        while (!top_kobj->kset && top_kobj->parent)
2335                top_kobj = top_kobj->parent;
2336        if (!top_kobj->kset)
2337                goto out;
2338
2339        kset = top_kobj->kset;
2340        if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2341                goto out;
2342
2343        /* respect filter */
2344        if (kset->uevent_ops && kset->uevent_ops->filter)
2345                if (!kset->uevent_ops->filter(kset, &dev->kobj))
2346                        goto out;
2347
2348        env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2349        if (!env)
2350                return -ENOMEM;
2351
2352        /* let the kset specific function add its keys */
2353        retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2354        if (retval)
2355                goto out;
2356
2357        /* copy keys to file */
2358        for (i = 0; i < env->envp_idx; i++)
2359                len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2360out:
2361        kfree(env);
2362        return len;
2363}
2364
2365static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2366                            const char *buf, size_t count)
2367{
2368        int rc;
2369
2370        rc = kobject_synth_uevent(&dev->kobj, buf, count);
2371
2372        if (rc) {
2373                dev_err(dev, "uevent: failed to send synthetic uevent\n");
2374                return rc;
2375        }
2376
2377        return count;
2378}
2379static DEVICE_ATTR_RW(uevent);
2380
2381static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2382                           char *buf)
2383{
2384        bool val;
2385
2386        device_lock(dev);
2387        val = !dev->offline;
2388        device_unlock(dev);
2389        return sysfs_emit(buf, "%u\n", val);
2390}
2391
2392static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2393                            const char *buf, size_t count)
2394{
2395        bool val;
2396        int ret;
2397
2398        ret = strtobool(buf, &val);
2399        if (ret < 0)
2400                return ret;
2401
2402        ret = lock_device_hotplug_sysfs();
2403        if (ret)
2404                return ret;
2405
2406        ret = val ? device_online(dev) : device_offline(dev);
2407        unlock_device_hotplug();
2408        return ret < 0 ? ret : count;
2409}
2410static DEVICE_ATTR_RW(online);
2411
2412int device_add_groups(struct device *dev, const struct attribute_group **groups)
2413{
2414        return sysfs_create_groups(&dev->kobj, groups);
2415}
2416EXPORT_SYMBOL_GPL(device_add_groups);
2417
2418void device_remove_groups(struct device *dev,
2419                          const struct attribute_group **groups)
2420{
2421        sysfs_remove_groups(&dev->kobj, groups);
2422}
2423EXPORT_SYMBOL_GPL(device_remove_groups);
2424
2425union device_attr_group_devres {
2426        const struct attribute_group *group;
2427        const struct attribute_group **groups;
2428};
2429
2430static int devm_attr_group_match(struct device *dev, void *res, void *data)
2431{
2432        return ((union device_attr_group_devres *)res)->group == data;
2433}
2434
2435static void devm_attr_group_remove(struct device *dev, void *res)
2436{
2437        union device_attr_group_devres *devres = res;
2438        const struct attribute_group *group = devres->group;
2439
2440        dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2441        sysfs_remove_group(&dev->kobj, group);
2442}
2443
2444static void devm_attr_groups_remove(struct device *dev, void *res)
2445{
2446        union device_attr_group_devres *devres = res;
2447        const struct attribute_group **groups = devres->groups;
2448
2449        dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2450        sysfs_remove_groups(&dev->kobj, groups);
2451}
2452
2453/**
2454 * devm_device_add_group - given a device, create a managed attribute group
2455 * @dev:        The device to create the group for
2456 * @grp:        The attribute group to create
2457 *
2458 * This function creates a group for the first time.  It will explicitly
2459 * warn and error if any of the attribute files being created already exist.
2460 *
2461 * Returns 0 on success or error code on failure.
2462 */
2463int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2464{
2465        union device_attr_group_devres *devres;
2466        int error;
2467
2468        devres = devres_alloc(devm_attr_group_remove,
2469                              sizeof(*devres), GFP_KERNEL);
2470        if (!devres)
2471                return -ENOMEM;
2472
2473        error = sysfs_create_group(&dev->kobj, grp);
2474        if (error) {
2475                devres_free(devres);
2476                return error;
2477        }
2478
2479        devres->group = grp;
2480        devres_add(dev, devres);
2481        return 0;
2482}
2483EXPORT_SYMBOL_GPL(devm_device_add_group);
2484
2485/**
2486 * devm_device_remove_group: remove a managed group from a device
2487 * @dev:        device to remove the group from
2488 * @grp:        group to remove
2489 *
2490 * This function removes a group of attributes from a device. The attributes
2491 * previously have to have been created for this group, otherwise it will fail.
2492 */
2493void devm_device_remove_group(struct device *dev,
2494                              const struct attribute_group *grp)
2495{
2496        WARN_ON(devres_release(dev, devm_attr_group_remove,
2497                               devm_attr_group_match,
2498                               /* cast away const */ (void *)grp));
2499}
2500EXPORT_SYMBOL_GPL(devm_device_remove_group);
2501
2502/**
2503 * devm_device_add_groups - create a bunch of managed attribute groups
2504 * @dev:        The device to create the group for
2505 * @groups:     The attribute groups to create, NULL terminated
2506 *
2507 * This function creates a bunch of managed attribute groups.  If an error
2508 * occurs when creating a group, all previously created groups will be
2509 * removed, unwinding everything back to the original state when this
2510 * function was called.  It will explicitly warn and error if any of the
2511 * attribute files being created already exist.
2512 *
2513 * Returns 0 on success or error code from sysfs_create_group on failure.
2514 */
2515int devm_device_add_groups(struct device *dev,
2516                           const struct attribute_group **groups)
2517{
2518        union device_attr_group_devres *devres;
2519        int error;
2520
2521        devres = devres_alloc(devm_attr_groups_remove,
2522                              sizeof(*devres), GFP_KERNEL);
2523        if (!devres)
2524                return -ENOMEM;
2525
2526        error = sysfs_create_groups(&dev->kobj, groups);
2527        if (error) {
2528                devres_free(devres);
2529                return error;
2530        }
2531
2532        devres->groups = groups;
2533        devres_add(dev, devres);
2534        return 0;
2535}
2536EXPORT_SYMBOL_GPL(devm_device_add_groups);
2537
2538/**
2539 * devm_device_remove_groups - remove a list of managed groups
2540 *
2541 * @dev:        The device for the groups to be removed from
2542 * @groups:     NULL terminated list of groups to be removed
2543 *
2544 * If groups is not NULL, remove the specified groups from the device.
2545 */
2546void devm_device_remove_groups(struct device *dev,
2547                               const struct attribute_group **groups)
2548{
2549        WARN_ON(devres_release(dev, devm_attr_groups_remove,
2550                               devm_attr_group_match,
2551                               /* cast away const */ (void *)groups));
2552}
2553EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2554
2555static int device_add_attrs(struct device *dev)
2556{
2557        struct class *class = dev->class;
2558        const struct device_type *type = dev->type;
2559        int error;
2560
2561        if (class) {
2562                error = device_add_groups(dev, class->dev_groups);
2563                if (error)
2564                        return error;
2565        }
2566
2567        if (type) {
2568                error = device_add_groups(dev, type->groups);
2569                if (error)
2570                        goto err_remove_class_groups;
2571        }
2572
2573        error = device_add_groups(dev, dev->groups);
2574        if (error)
2575                goto err_remove_type_groups;
2576
2577        if (device_supports_offline(dev) && !dev->offline_disabled) {
2578                error = device_create_file(dev, &dev_attr_online);
2579                if (error)
2580                        goto err_remove_dev_groups;
2581        }
2582
2583        if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2584                error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2585                if (error)
2586                        goto err_remove_dev_online;
2587        }
2588
2589        return 0;
2590
2591 err_remove_dev_online:
2592        device_remove_file(dev, &dev_attr_online);
2593 err_remove_dev_groups:
2594        device_remove_groups(dev, dev->groups);
2595 err_remove_type_groups:
2596        if (type)
2597                device_remove_groups(dev, type->groups);
2598 err_remove_class_groups:
2599        if (class)
2600                device_remove_groups(dev, class->dev_groups);
2601
2602        return error;
2603}
2604
2605static void device_remove_attrs(struct device *dev)
2606{
2607        struct class *class = dev->class;
2608        const struct device_type *type = dev->type;
2609
2610        device_remove_file(dev, &dev_attr_waiting_for_supplier);
2611        device_remove_file(dev, &dev_attr_online);
2612        device_remove_groups(dev, dev->groups);
2613
2614        if (type)
2615                device_remove_groups(dev, type->groups);
2616
2617        if (class)
2618                device_remove_groups(dev, class->dev_groups);
2619}
2620
2621static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2622                        char *buf)
2623{
2624        return print_dev_t(buf, dev->devt);
2625}
2626static DEVICE_ATTR_RO(dev);
2627
2628/* /sys/devices/ */
2629struct kset *devices_kset;
2630
2631/**
2632 * devices_kset_move_before - Move device in the devices_kset's list.
2633 * @deva: Device to move.
2634 * @devb: Device @deva should come before.
2635 */
2636static void devices_kset_move_before(struct device *deva, struct device *devb)
2637{
2638        if (!devices_kset)
2639                return;
2640        pr_debug("devices_kset: Moving %s before %s\n",
2641                 dev_name(deva), dev_name(devb));
2642        spin_lock(&devices_kset->list_lock);
2643        list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2644        spin_unlock(&devices_kset->list_lock);
2645}
2646
2647/**
2648 * devices_kset_move_after - Move device in the devices_kset's list.
2649 * @deva: Device to move
2650 * @devb: Device @deva should come after.
2651 */
2652static void devices_kset_move_after(struct device *deva, struct device *devb)
2653{
2654        if (!devices_kset)
2655                return;
2656        pr_debug("devices_kset: Moving %s after %s\n",
2657                 dev_name(deva), dev_name(devb));
2658        spin_lock(&devices_kset->list_lock);
2659        list_move(&deva->kobj.entry, &devb->kobj.entry);
2660        spin_unlock(&devices_kset->list_lock);
2661}
2662
2663/**
2664 * devices_kset_move_last - move the device to the end of devices_kset's list.
2665 * @dev: device to move
2666 */
2667void devices_kset_move_last(struct device *dev)
2668{
2669        if (!devices_kset)
2670                return;
2671        pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2672        spin_lock(&devices_kset->list_lock);
2673        list_move_tail(&dev->kobj.entry, &devices_kset->list);
2674        spin_unlock(&devices_kset->list_lock);
2675}
2676
2677/**
2678 * device_create_file - create sysfs attribute file for device.
2679 * @dev: device.
2680 * @attr: device attribute descriptor.
2681 */
2682int device_create_file(struct device *dev,
2683                       const struct device_attribute *attr)
2684{
2685        int error = 0;
2686
2687        if (dev) {
2688                WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2689                        "Attribute %s: write permission without 'store'\n",
2690                        attr->attr.name);
2691                WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2692                        "Attribute %s: read permission without 'show'\n",
2693                        attr->attr.name);
2694                error = sysfs_create_file(&dev->kobj, &attr->attr);
2695        }
2696
2697        return error;
2698}
2699EXPORT_SYMBOL_GPL(device_create_file);
2700
2701/**
2702 * device_remove_file - remove sysfs attribute file.
2703 * @dev: device.
2704 * @attr: device attribute descriptor.
2705 */
2706void device_remove_file(struct device *dev,
2707                        const struct device_attribute *attr)
2708{
2709        if (dev)
2710                sysfs_remove_file(&dev->kobj, &attr->attr);
2711}
2712EXPORT_SYMBOL_GPL(device_remove_file);
2713
2714/**
2715 * device_remove_file_self - remove sysfs attribute file from its own method.
2716 * @dev: device.
2717 * @attr: device attribute descriptor.
2718 *
2719 * See kernfs_remove_self() for details.
2720 */
2721bool device_remove_file_self(struct device *dev,
2722                             const struct device_attribute *attr)
2723{
2724        if (dev)
2725                return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2726        else
2727                return false;
2728}
2729EXPORT_SYMBOL_GPL(device_remove_file_self);
2730
2731/**
2732 * device_create_bin_file - create sysfs binary attribute file for device.
2733 * @dev: device.
2734 * @attr: device binary attribute descriptor.
2735 */
2736int device_create_bin_file(struct device *dev,
2737                           const struct bin_attribute *attr)
2738{
2739        int error = -EINVAL;
2740        if (dev)
2741                error = sysfs_create_bin_file(&dev->kobj, attr);
2742        return error;
2743}
2744EXPORT_SYMBOL_GPL(device_create_bin_file);
2745
2746/**
2747 * device_remove_bin_file - remove sysfs binary attribute file
2748 * @dev: device.
2749 * @attr: device binary attribute descriptor.
2750 */
2751void device_remove_bin_file(struct device *dev,
2752                            const struct bin_attribute *attr)
2753{
2754        if (dev)
2755                sysfs_remove_bin_file(&dev->kobj, attr);
2756}
2757EXPORT_SYMBOL_GPL(device_remove_bin_file);
2758
2759static void klist_children_get(struct klist_node *n)
2760{
2761        struct device_private *p = to_device_private_parent(n);
2762        struct device *dev = p->device;
2763
2764        get_device(dev);
2765}
2766
2767static void klist_children_put(struct klist_node *n)
2768{
2769        struct device_private *p = to_device_private_parent(n);
2770        struct device *dev = p->device;
2771
2772        put_device(dev);
2773}
2774
2775/**
2776 * device_initialize - init device structure.
2777 * @dev: device.
2778 *
2779 * This prepares the device for use by other layers by initializing
2780 * its fields.
2781 * It is the first half of device_register(), if called by
2782 * that function, though it can also be called separately, so one
2783 * may use @dev's fields. In particular, get_device()/put_device()
2784 * may be used for reference counting of @dev after calling this
2785 * function.
2786 *
2787 * All fields in @dev must be initialized by the caller to 0, except
2788 * for those explicitly set to some other value.  The simplest
2789 * approach is to use kzalloc() to allocate the structure containing
2790 * @dev.
2791 *
2792 * NOTE: Use put_device() to give up your reference instead of freeing
2793 * @dev directly once you have called this function.
2794 */
2795void device_initialize(struct device *dev)
2796{
2797        dev->kobj.kset = devices_kset;
2798        kobject_init(&dev->kobj, &device_ktype);
2799        INIT_LIST_HEAD(&dev->dma_pools);
2800        mutex_init(&dev->mutex);
2801#ifdef CONFIG_PROVE_LOCKING
2802        mutex_init(&dev->lockdep_mutex);
2803#endif
2804        lockdep_set_novalidate_class(&dev->mutex);
2805        spin_lock_init(&dev->devres_lock);
2806        INIT_LIST_HEAD(&dev->devres_head);
2807        device_pm_init(dev);
2808        set_dev_node(dev, -1);
2809#ifdef CONFIG_GENERIC_MSI_IRQ
2810        INIT_LIST_HEAD(&dev->msi_list);
2811#endif
2812        INIT_LIST_HEAD(&dev->links.consumers);
2813        INIT_LIST_HEAD(&dev->links.suppliers);
2814        INIT_LIST_HEAD(&dev->links.defer_sync);
2815        dev->links.status = DL_DEV_NO_DRIVER;
2816#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2817    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2818    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2819        dev->dma_coherent = dma_default_coherent;
2820#endif
2821}
2822EXPORT_SYMBOL_GPL(device_initialize);
2823
2824struct kobject *virtual_device_parent(struct device *dev)
2825{
2826        static struct kobject *virtual_dir = NULL;
2827
2828        if (!virtual_dir)
2829                virtual_dir = kobject_create_and_add("virtual",
2830                                                     &devices_kset->kobj);
2831
2832        return virtual_dir;
2833}
2834
2835struct class_dir {
2836        struct kobject kobj;
2837        struct class *class;
2838};
2839
2840#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2841
2842static void class_dir_release(struct kobject *kobj)
2843{
2844        struct class_dir *dir = to_class_dir(kobj);
2845        kfree(dir);
2846}
2847
2848static const
2849struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2850{
2851        struct class_dir *dir = to_class_dir(kobj);
2852        return dir->class->ns_type;
2853}
2854
2855static struct kobj_type class_dir_ktype = {
2856        .release        = class_dir_release,
2857        .sysfs_ops      = &kobj_sysfs_ops,
2858        .child_ns_type  = class_dir_child_ns_type
2859};
2860
2861static struct kobject *
2862class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2863{
2864        struct class_dir *dir;
2865        int retval;
2866
2867        dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2868        if (!dir)
2869                return ERR_PTR(-ENOMEM);
2870
2871        dir->class = class;
2872        kobject_init(&dir->kobj, &class_dir_ktype);
2873
2874        dir->kobj.kset = &class->p->glue_dirs;
2875
2876        retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2877        if (retval < 0) {
2878                kobject_put(&dir->kobj);
2879                return ERR_PTR(retval);
2880        }
2881        return &dir->kobj;
2882}
2883
2884static DEFINE_MUTEX(gdp_mutex);
2885
2886static struct kobject *get_device_parent(struct device *dev,
2887                                         struct device *parent)
2888{
2889        if (dev->class) {
2890                struct kobject *kobj = NULL;
2891                struct kobject *parent_kobj;
2892                struct kobject *k;
2893
2894#ifdef CONFIG_BLOCK
2895                /* block disks show up in /sys/block */
2896                if (sysfs_deprecated && dev->class == &block_class) {
2897                        if (parent && parent->class == &block_class)
2898                                return &parent->kobj;
2899                        return &block_class.p->subsys.kobj;
2900                }
2901#endif
2902
2903                /*
2904                 * If we have no parent, we live in "virtual".
2905                 * Class-devices with a non class-device as parent, live
2906                 * in a "glue" directory to prevent namespace collisions.
2907                 */
2908                if (parent == NULL)
2909                        parent_kobj = virtual_device_parent(dev);
2910                else if (parent->class && !dev->class->ns_type)
2911                        return &parent->kobj;
2912                else
2913                        parent_kobj = &parent->kobj;
2914
2915                mutex_lock(&gdp_mutex);
2916
2917                /* find our class-directory at the parent and reference it */
2918                spin_lock(&dev->class->p->glue_dirs.list_lock);
2919                list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2920                        if (k->parent == parent_kobj) {
2921                                kobj = kobject_get(k);
2922                                break;
2923                        }
2924                spin_unlock(&dev->class->p->glue_dirs.list_lock);
2925                if (kobj) {
2926                        mutex_unlock(&gdp_mutex);
2927                        return kobj;
2928                }
2929
2930                /* or create a new class-directory at the parent device */
2931                k = class_dir_create_and_add(dev->class, parent_kobj);
2932                /* do not emit an uevent for this simple "glue" directory */
2933                mutex_unlock(&gdp_mutex);
2934                return k;
2935        }
2936
2937        /* subsystems can specify a default root directory for their devices */
2938        if (!parent && dev->bus && dev->bus->dev_root)
2939                return &dev->bus->dev_root->kobj;
2940
2941        if (parent)
2942                return &parent->kobj;
2943        return NULL;
2944}
2945
2946static inline bool live_in_glue_dir(struct kobject *kobj,
2947                                    struct device *dev)
2948{
2949        if (!kobj || !dev->class ||
2950            kobj->kset != &dev->class->p->glue_dirs)
2951                return false;
2952        return true;
2953}
2954
2955static inline struct kobject *get_glue_dir(struct device *dev)
2956{
2957        return dev->kobj.parent;
2958}
2959
2960/*
2961 * make sure cleaning up dir as the last step, we need to make
2962 * sure .release handler of kobject is run with holding the
2963 * global lock
2964 */
2965static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2966{
2967        unsigned int ref;
2968
2969        /* see if we live in a "glue" directory */
2970        if (!live_in_glue_dir(glue_dir, dev))
2971                return;
2972
2973        mutex_lock(&gdp_mutex);
2974        /**
2975         * There is a race condition between removing glue directory
2976         * and adding a new device under the glue directory.
2977         *
2978         * CPU1:                                         CPU2:
2979         *
2980         * device_add()
2981         *   get_device_parent()
2982         *     class_dir_create_and_add()
2983         *       kobject_add_internal()
2984         *         create_dir()    // create glue_dir
2985         *
2986         *                                               device_add()
2987         *                                                 get_device_parent()
2988         *                                                   kobject_get() // get glue_dir
2989         *
2990         * device_del()
2991         *   cleanup_glue_dir()
2992         *     kobject_del(glue_dir)
2993         *
2994         *                                               kobject_add()
2995         *                                                 kobject_add_internal()
2996         *                                                   create_dir() // in glue_dir
2997         *                                                     sysfs_create_dir_ns()
2998         *                                                       kernfs_create_dir_ns(sd)
2999         *
3000         *       sysfs_remove_dir() // glue_dir->sd=NULL
3001         *       sysfs_put()        // free glue_dir->sd
3002         *
3003         *                                                         // sd is freed
3004         *                                                         kernfs_new_node(sd)
3005         *                                                           kernfs_get(glue_dir)
3006         *                                                           kernfs_add_one()
3007         *                                                           kernfs_put()
3008         *
3009         * Before CPU1 remove last child device under glue dir, if CPU2 add
3010         * a new device under glue dir, the glue_dir kobject reference count
3011         * will be increase to 2 in kobject_get(k). And CPU2 has been called
3012         * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3013         * and sysfs_put(). This result in glue_dir->sd is freed.
3014         *
3015         * Then the CPU2 will see a stale "empty" but still potentially used
3016         * glue dir around in kernfs_new_node().
3017         *
3018         * In order to avoid this happening, we also should make sure that
3019         * kernfs_node for glue_dir is released in CPU1 only when refcount
3020         * for glue_dir kobj is 1.
3021         */
3022        ref = kref_read(&glue_dir->kref);
3023        if (!kobject_has_children(glue_dir) && !--ref)
3024                kobject_del(glue_dir);
3025        kobject_put(glue_dir);
3026        mutex_unlock(&gdp_mutex);
3027}
3028
3029static int device_add_class_symlinks(struct device *dev)
3030{
3031        struct device_node *of_node = dev_of_node(dev);
3032        int error;
3033
3034        if (of_node) {
3035                error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3036                if (error)
3037                        dev_warn(dev, "Error %d creating of_node link\n",error);
3038                /* An error here doesn't warrant bringing down the device */
3039        }
3040
3041        if (!dev->class)
3042                return 0;
3043
3044        error = sysfs_create_link(&dev->kobj,
3045                                  &dev->class->p->subsys.kobj,
3046                                  "subsystem");
3047        if (error)
3048                goto out_devnode;
3049
3050        if (dev->parent && device_is_not_partition(dev)) {
3051                error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3052                                          "device");
3053                if (error)
3054                        goto out_subsys;
3055        }
3056
3057#ifdef CONFIG_BLOCK
3058        /* /sys/block has directories and does not need symlinks */
3059        if (sysfs_deprecated && dev->class == &block_class)
3060                return 0;
3061#endif
3062
3063        /* link in the class directory pointing to the device */
3064        error = sysfs_create_link(&dev->class->p->subsys.kobj,
3065                                  &dev->kobj, dev_name(dev));
3066        if (error)
3067                goto out_device;
3068
3069        return 0;
3070
3071out_device:
3072        sysfs_remove_link(&dev->kobj, "device");
3073
3074out_subsys:
3075        sysfs_remove_link(&dev->kobj, "subsystem");
3076out_devnode:
3077        sysfs_remove_link(&dev->kobj, "of_node");
3078        return error;
3079}
3080
3081static void device_remove_class_symlinks(struct device *dev)
3082{
3083        if (dev_of_node(dev))
3084                sysfs_remove_link(&dev->kobj, "of_node");
3085
3086        if (!dev->class)
3087                return;
3088
3089        if (dev->parent && device_is_not_partition(dev))
3090                sysfs_remove_link(&dev->kobj, "device");
3091        sysfs_remove_link(&dev->kobj, "subsystem");
3092#ifdef CONFIG_BLOCK
3093        if (sysfs_deprecated && dev->class == &block_class)
3094                return;
3095#endif
3096        sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3097}
3098
3099/**
3100 * dev_set_name - set a device name
3101 * @dev: device
3102 * @fmt: format string for the device's name
3103 */
3104int dev_set_name(struct device *dev, const char *fmt, ...)
3105{
3106        va_list vargs;
3107        int err;
3108
3109        va_start(vargs, fmt);
3110        err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3111        va_end(vargs);
3112        return err;
3113}
3114EXPORT_SYMBOL_GPL(dev_set_name);
3115
3116/**
3117 * device_to_dev_kobj - select a /sys/dev/ directory for the device
3118 * @dev: device
3119 *
3120 * By default we select char/ for new entries.  Setting class->dev_obj
3121 * to NULL prevents an entry from being created.  class->dev_kobj must
3122 * be set (or cleared) before any devices are registered to the class
3123 * otherwise device_create_sys_dev_entry() and
3124 * device_remove_sys_dev_entry() will disagree about the presence of
3125 * the link.
3126 */
3127static struct kobject *device_to_dev_kobj(struct device *dev)
3128{
3129        struct kobject *kobj;
3130
3131        if (dev->class)
3132                kobj = dev->class->dev_kobj;
3133        else
3134                kobj = sysfs_dev_char_kobj;
3135
3136        return kobj;
3137}
3138
3139static int device_create_sys_dev_entry(struct device *dev)
3140{
3141        struct kobject *kobj = device_to_dev_kobj(dev);
3142        int error = 0;
3143        char devt_str[15];
3144
3145        if (kobj) {
3146                format_dev_t(devt_str, dev->devt);
3147                error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3148        }
3149
3150        return error;
3151}
3152
3153static void device_remove_sys_dev_entry(struct device *dev)
3154{
3155        struct kobject *kobj = device_to_dev_kobj(dev);
3156        char devt_str[15];
3157
3158        if (kobj) {
3159                format_dev_t(devt_str, dev->devt);
3160                sysfs_remove_link(kobj, devt_str);
3161        }
3162}
3163
3164static int device_private_init(struct device *dev)
3165{
3166        dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3167        if (!dev->p)
3168                return -ENOMEM;
3169        dev->p->device = dev;
3170        klist_init(&dev->p->klist_children, klist_children_get,
3171                   klist_children_put);
3172        INIT_LIST_HEAD(&dev->p->deferred_probe);
3173        return 0;
3174}
3175
3176/**
3177 * device_add - add device to device hierarchy.
3178 * @dev: device.
3179 *
3180 * This is part 2 of device_register(), though may be called
3181 * separately _iff_ device_initialize() has been called separately.
3182 *
3183 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3184 * to the global and sibling lists for the device, then
3185 * adds it to the other relevant subsystems of the driver model.
3186 *
3187 * Do not call this routine or device_register() more than once for
3188 * any device structure.  The driver model core is not designed to work
3189 * with devices that get unregistered and then spring back to life.
3190 * (Among other things, it's very hard to guarantee that all references
3191 * to the previous incarnation of @dev have been dropped.)  Allocate
3192 * and register a fresh new struct device instead.
3193 *
3194 * NOTE: _Never_ directly free @dev after calling this function, even
3195 * if it returned an error! Always use put_device() to give up your
3196 * reference instead.
3197 *
3198 * Rule of thumb is: if device_add() succeeds, you should call
3199 * device_del() when you want to get rid of it. If device_add() has
3200 * *not* succeeded, use *only* put_device() to drop the reference
3201 * count.
3202 */
3203int device_add(struct device *dev)
3204{
3205        struct device *parent;
3206        struct kobject *kobj;
3207        struct class_interface *class_intf;
3208        int error = -EINVAL;
3209        struct kobject *glue_dir = NULL;
3210
3211        dev = get_device(dev);
3212        if (!dev)
3213                goto done;
3214
3215        if (!dev->p) {
3216                error = device_private_init(dev);
3217                if (error)
3218                        goto done;
3219        }
3220
3221        /*
3222         * for statically allocated devices, which should all be converted
3223         * some day, we need to initialize the name. We prevent reading back
3224         * the name, and force the use of dev_name()
3225         */
3226        if (dev->init_name) {
3227                dev_set_name(dev, "%s", dev->init_name);
3228                dev->init_name = NULL;
3229        }
3230
3231        /* subsystems can specify simple device enumeration */
3232        if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3233                dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3234
3235        if (!dev_name(dev)) {
3236                error = -EINVAL;
3237                goto name_error;
3238        }
3239
3240        pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3241
3242        parent = get_device(dev->parent);
3243        kobj = get_device_parent(dev, parent);
3244        if (IS_ERR(kobj)) {
3245                error = PTR_ERR(kobj);
3246                goto parent_error;
3247        }
3248        if (kobj)
3249                dev->kobj.parent = kobj;
3250
3251        /* use parent numa_node */
3252        if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3253                set_dev_node(dev, dev_to_node(parent));
3254
3255        /* first, register with generic layer. */
3256        /* we require the name to be set before, and pass NULL */
3257        error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3258        if (error) {
3259                glue_dir = get_glue_dir(dev);
3260                goto Error;
3261        }
3262
3263        /* notify platform of device entry */
3264        error = device_platform_notify(dev, KOBJ_ADD);
3265        if (error)
3266                goto platform_error;
3267
3268        error = device_create_file(dev, &dev_attr_uevent);
3269        if (error)
3270                goto attrError;
3271
3272        error = device_add_class_symlinks(dev);
3273        if (error)
3274                goto SymlinkError;
3275        error = device_add_attrs(dev);
3276        if (error)
3277                goto AttrsError;
3278        error = bus_add_device(dev);
3279        if (error)
3280                goto BusError;
3281        error = dpm_sysfs_add(dev);
3282        if (error)
3283                goto DPMError;
3284        device_pm_add(dev);
3285
3286        if (MAJOR(dev->devt)) {
3287                error = device_create_file(dev, &dev_attr_dev);
3288                if (error)
3289                        goto DevAttrError;
3290
3291                error = device_create_sys_dev_entry(dev);
3292                if (error)
3293                        goto SysEntryError;
3294
3295                devtmpfs_create_node(dev);
3296        }
3297
3298        /* Notify clients of device addition.  This call must come
3299         * after dpm_sysfs_add() and before kobject_uevent().
3300         */
3301        if (dev->bus)
3302                blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3303                                             BUS_NOTIFY_ADD_DEVICE, dev);
3304
3305        kobject_uevent(&dev->kobj, KOBJ_ADD);
3306
3307        /*
3308         * Check if any of the other devices (consumers) have been waiting for
3309         * this device (supplier) to be added so that they can create a device
3310         * link to it.
3311         *
3312         * This needs to happen after device_pm_add() because device_link_add()
3313         * requires the supplier be registered before it's called.
3314         *
3315         * But this also needs to happen before bus_probe_device() to make sure
3316         * waiting consumers can link to it before the driver is bound to the
3317         * device and the driver sync_state callback is called for this device.
3318         */
3319        if (dev->fwnode && !dev->fwnode->dev) {
3320                dev->fwnode->dev = dev;
3321                fw_devlink_link_device(dev);
3322        }
3323
3324        bus_probe_device(dev);
3325
3326        /*
3327         * If all driver registration is done and a newly added device doesn't
3328         * match with any driver, don't block its consumers from probing in
3329         * case the consumer device is able to operate without this supplier.
3330         */
3331        if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3332                fw_devlink_unblock_consumers(dev);
3333
3334        if (parent)
3335                klist_add_tail(&dev->p->knode_parent,
3336                               &parent->p->klist_children);
3337
3338        if (dev->class) {
3339                mutex_lock(&dev->class->p->mutex);
3340                /* tie the class to the device */
3341                klist_add_tail(&dev->p->knode_class,
3342                               &dev->class->p->klist_devices);
3343
3344                /* notify any interfaces that the device is here */
3345                list_for_each_entry(class_intf,
3346                                    &dev->class->p->interfaces, node)
3347                        if (class_intf->add_dev)
3348                                class_intf->add_dev(dev, class_intf);
3349                mutex_unlock(&dev->class->p->mutex);
3350        }
3351done:
3352        put_device(dev);
3353        return error;
3354 SysEntryError:
3355        if (MAJOR(dev->devt))
3356                device_remove_file(dev, &dev_attr_dev);
3357 DevAttrError:
3358        device_pm_remove(dev);
3359        dpm_sysfs_remove(dev);
3360 DPMError:
3361        bus_remove_device(dev);
3362 BusError:
3363        device_remove_attrs(dev);
3364 AttrsError:
3365        device_remove_class_symlinks(dev);
3366 SymlinkError:
3367        device_remove_file(dev, &dev_attr_uevent);
3368 attrError:
3369        device_platform_notify(dev, KOBJ_REMOVE);
3370platform_error:
3371        kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3372        glue_dir = get_glue_dir(dev);
3373        kobject_del(&dev->kobj);
3374 Error:
3375        cleanup_glue_dir(dev, glue_dir);
3376parent_error:
3377        put_device(parent);
3378name_error:
3379        kfree(dev->p);
3380        dev->p = NULL;
3381        goto done;
3382}
3383EXPORT_SYMBOL_GPL(device_add);
3384
3385/**
3386 * device_register - register a device with the system.
3387 * @dev: pointer to the device structure
3388 *
3389 * This happens in two clean steps - initialize the device
3390 * and add it to the system. The two steps can be called
3391 * separately, but this is the easiest and most common.
3392 * I.e. you should only call the two helpers separately if
3393 * have a clearly defined need to use and refcount the device
3394 * before it is added to the hierarchy.
3395 *
3396 * For more information, see the kerneldoc for device_initialize()
3397 * and device_add().
3398 *
3399 * NOTE: _Never_ directly free @dev after calling this function, even
3400 * if it returned an error! Always use put_device() to give up the
3401 * reference initialized in this function instead.
3402 */
3403int device_register(struct device *dev)
3404{
3405        device_initialize(dev);
3406        return device_add(dev);
3407}
3408EXPORT_SYMBOL_GPL(device_register);
3409
3410/**
3411 * get_device - increment reference count for device.
3412 * @dev: device.
3413 *
3414 * This simply forwards the call to kobject_get(), though
3415 * we do take care to provide for the case that we get a NULL
3416 * pointer passed in.
3417 */
3418struct device *get_device(struct device *dev)
3419{
3420        return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3421}
3422EXPORT_SYMBOL_GPL(get_device);
3423
3424/**
3425 * put_device - decrement reference count.
3426 * @dev: device in question.
3427 */
3428void put_device(struct device *dev)
3429{
3430        /* might_sleep(); */
3431        if (dev)
3432                kobject_put(&dev->kobj);
3433}
3434EXPORT_SYMBOL_GPL(put_device);
3435
3436bool kill_device(struct device *dev)
3437{
3438        /*
3439         * Require the device lock and set the "dead" flag to guarantee that
3440         * the update behavior is consistent with the other bitfields near
3441         * it and that we cannot have an asynchronous probe routine trying
3442         * to run while we are tearing out the bus/class/sysfs from
3443         * underneath the device.
3444         */
3445        lockdep_assert_held(&dev->mutex);
3446
3447        if (dev->p->dead)
3448                return false;
3449        dev->p->dead = true;
3450        return true;
3451}
3452EXPORT_SYMBOL_GPL(kill_device);
3453
3454/**
3455 * device_del - delete device from system.
3456 * @dev: device.
3457 *
3458 * This is the first part of the device unregistration
3459 * sequence. This removes the device from the lists we control
3460 * from here, has it removed from the other driver model
3461 * subsystems it was added to in device_add(), and removes it
3462 * from the kobject hierarchy.
3463 *
3464 * NOTE: this should be called manually _iff_ device_add() was
3465 * also called manually.
3466 */
3467void device_del(struct device *dev)
3468{
3469        struct device *parent = dev->parent;
3470        struct kobject *glue_dir = NULL;
3471        struct class_interface *class_intf;
3472        unsigned int noio_flag;
3473
3474        device_lock(dev);
3475        kill_device(dev);
3476        device_unlock(dev);
3477
3478        if (dev->fwnode && dev->fwnode->dev == dev)
3479                dev->fwnode->dev = NULL;
3480
3481        /* Notify clients of device removal.  This call must come
3482         * before dpm_sysfs_remove().
3483         */
3484        noio_flag = memalloc_noio_save();
3485        if (dev->bus)
3486                blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3487                                             BUS_NOTIFY_DEL_DEVICE, dev);
3488
3489        dpm_sysfs_remove(dev);
3490        if (parent)
3491                klist_del(&dev->p->knode_parent);
3492        if (MAJOR(dev->devt)) {
3493                devtmpfs_delete_node(dev);
3494                device_remove_sys_dev_entry(dev);
3495                device_remove_file(dev, &dev_attr_dev);
3496        }
3497        if (dev->class) {
3498                device_remove_class_symlinks(dev);
3499
3500                mutex_lock(&dev->class->p->mutex);
3501                /* notify any interfaces that the device is now gone */
3502                list_for_each_entry(class_intf,
3503                                    &dev->class->p->interfaces, node)
3504                        if (class_intf->remove_dev)
3505                                class_intf->remove_dev(dev, class_intf);
3506                /* remove the device from the class list */
3507                klist_del(&dev->p->knode_class);
3508                mutex_unlock(&dev->class->p->mutex);
3509        }
3510        device_remove_file(dev, &dev_attr_uevent);
3511        device_remove_attrs(dev);
3512        bus_remove_device(dev);
3513        device_pm_remove(dev);
3514        driver_deferred_probe_del(dev);
3515        device_platform_notify(dev, KOBJ_REMOVE);
3516        device_remove_properties(dev);
3517        device_links_purge(dev);
3518
3519        if (dev->bus)
3520                blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3521                                             BUS_NOTIFY_REMOVED_DEVICE, dev);
3522        kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3523        glue_dir = get_glue_dir(dev);
3524        kobject_del(&dev->kobj);
3525        cleanup_glue_dir(dev, glue_dir);
3526        memalloc_noio_restore(noio_flag);
3527        put_device(parent);
3528}
3529EXPORT_SYMBOL_GPL(device_del);
3530
3531/**
3532 * device_unregister - unregister device from system.
3533 * @dev: device going away.
3534 *
3535 * We do this in two parts, like we do device_register(). First,
3536 * we remove it from all the subsystems with device_del(), then
3537 * we decrement the reference count via put_device(). If that
3538 * is the final reference count, the device will be cleaned up
3539 * via device_release() above. Otherwise, the structure will
3540 * stick around until the final reference to the device is dropped.
3541 */
3542void device_unregister(struct device *dev)
3543{
3544        pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3545        device_del(dev);
3546        put_device(dev);
3547}
3548EXPORT_SYMBOL_GPL(device_unregister);
3549
3550static struct device *prev_device(struct klist_iter *i)
3551{
3552        struct klist_node *n = klist_prev(i);
3553        struct device *dev = NULL;
3554        struct device_private *p;
3555
3556        if (n) {
3557                p = to_device_private_parent(n);
3558                dev = p->device;
3559        }
3560        return dev;
3561}
3562
3563static struct device *next_device(struct klist_iter *i)
3564{
3565        struct klist_node *n = klist_next(i);
3566        struct device *dev = NULL;
3567        struct device_private *p;
3568
3569        if (n) {
3570                p = to_device_private_parent(n);
3571                dev = p->device;
3572        }
3573        return dev;
3574}
3575
3576/**
3577 * device_get_devnode - path of device node file
3578 * @dev: device
3579 * @mode: returned file access mode
3580 * @uid: returned file owner
3581 * @gid: returned file group
3582 * @tmp: possibly allocated string
3583 *
3584 * Return the relative path of a possible device node.
3585 * Non-default names may need to allocate a memory to compose
3586 * a name. This memory is returned in tmp and needs to be
3587 * freed by the caller.
3588 */
3589const char *device_get_devnode(struct device *dev,
3590                               umode_t *mode, kuid_t *uid, kgid_t *gid,
3591                               const char **tmp)
3592{
3593        char *s;
3594
3595        *tmp = NULL;
3596
3597        /* the device type may provide a specific name */
3598        if (dev->type && dev->type->devnode)
3599                *tmp = dev->type->devnode(dev, mode, uid, gid);
3600        if (*tmp)
3601                return *tmp;
3602
3603        /* the class may provide a specific name */
3604        if (dev->class && dev->class->devnode)
3605                *tmp = dev->class->devnode(dev, mode);
3606        if (*tmp)
3607                return *tmp;
3608
3609        /* return name without allocation, tmp == NULL */
3610        if (strchr(dev_name(dev), '!') == NULL)
3611                return dev_name(dev);
3612
3613        /* replace '!' in the name with '/' */
3614        s = kstrdup(dev_name(dev), GFP_KERNEL);
3615        if (!s)
3616                return NULL;
3617        strreplace(s, '!', '/');
3618        return *tmp = s;
3619}
3620
3621/**
3622 * device_for_each_child - device child iterator.
3623 * @parent: parent struct device.
3624 * @fn: function to be called for each device.
3625 * @data: data for the callback.
3626 *
3627 * Iterate over @parent's child devices, and call @fn for each,
3628 * passing it @data.
3629 *
3630 * We check the return of @fn each time. If it returns anything
3631 * other than 0, we break out and return that value.
3632 */
3633int device_for_each_child(struct device *parent, void *data,
3634                          int (*fn)(struct device *dev, void *data))
3635{
3636        struct klist_iter i;
3637        struct device *child;
3638        int error = 0;
3639
3640        if (!parent->p)
3641                return 0;
3642
3643        klist_iter_init(&parent->p->klist_children, &i);
3644        while (!error && (child = next_device(&i)))
3645                error = fn(child, data);
3646        klist_iter_exit(&i);
3647        return error;
3648}
3649EXPORT_SYMBOL_GPL(device_for_each_child);
3650
3651/**
3652 * device_for_each_child_reverse - device child iterator in reversed order.
3653 * @parent: parent struct device.
3654 * @fn: function to be called for each device.
3655 * @data: data for the callback.
3656 *
3657 * Iterate over @parent's child devices, and call @fn for each,
3658 * passing it @data.
3659 *
3660 * We check the return of @fn each time. If it returns anything
3661 * other than 0, we break out and return that value.
3662 */
3663int device_for_each_child_reverse(struct device *parent, void *data,
3664                                  int (*fn)(struct device *dev, void *data))
3665{
3666        struct klist_iter i;
3667        struct device *child;
3668        int error = 0;
3669
3670        if (!parent->p)
3671                return 0;
3672
3673        klist_iter_init(&parent->p->klist_children, &i);
3674        while ((child = prev_device(&i)) && !error)
3675                error = fn(child, data);
3676        klist_iter_exit(&i);
3677        return error;
3678}
3679EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3680
3681/**
3682 * device_find_child - device iterator for locating a particular device.
3683 * @parent: parent struct device
3684 * @match: Callback function to check device
3685 * @data: Data to pass to match function
3686 *
3687 * This is similar to the device_for_each_child() function above, but it
3688 * returns a reference to a device that is 'found' for later use, as
3689 * determined by the @match callback.
3690 *
3691 * The callback should return 0 if the device doesn't match and non-zero
3692 * if it does.  If the callback returns non-zero and a reference to the
3693 * current device can be obtained, this function will return to the caller
3694 * and not iterate over any more devices.
3695 *
3696 * NOTE: you will need to drop the reference with put_device() after use.
3697 */
3698struct device *device_find_child(struct device *parent, void *data,
3699                                 int (*match)(struct device *dev, void *data))
3700{
3701        struct klist_iter i;
3702        struct device *child;
3703
3704        if (!parent)
3705                return NULL;
3706
3707        klist_iter_init(&parent->p->klist_children, &i);
3708        while ((child = next_device(&i)))
3709                if (match(child, data) && get_device(child))
3710                        break;
3711        klist_iter_exit(&i);
3712        return child;
3713}
3714EXPORT_SYMBOL_GPL(device_find_child);
3715
3716/**
3717 * device_find_child_by_name - device iterator for locating a child device.
3718 * @parent: parent struct device
3719 * @name: name of the child device
3720 *
3721 * This is similar to the device_find_child() function above, but it
3722 * returns a reference to a device that has the name @name.
3723 *
3724 * NOTE: you will need to drop the reference with put_device() after use.
3725 */
3726struct device *device_find_child_by_name(struct device *parent,
3727                                         const char *name)
3728{
3729        struct klist_iter i;
3730        struct device *child;
3731
3732        if (!parent)
3733                return NULL;
3734
3735        klist_iter_init(&parent->p->klist_children, &i);
3736        while ((child = next_device(&i)))
3737                if (sysfs_streq(dev_name(child), name) && get_device(child))
3738                        break;
3739        klist_iter_exit(&i);
3740        return child;
3741}
3742EXPORT_SYMBOL_GPL(device_find_child_by_name);
3743
3744int __init devices_init(void)
3745{
3746        devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3747        if (!devices_kset)
3748                return -ENOMEM;
3749        dev_kobj = kobject_create_and_add("dev", NULL);
3750        if (!dev_kobj)
3751                goto dev_kobj_err;
3752        sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3753        if (!sysfs_dev_block_kobj)
3754                goto block_kobj_err;
3755        sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3756        if (!sysfs_dev_char_kobj)
3757                goto char_kobj_err;
3758
3759        return 0;
3760
3761 char_kobj_err:
3762        kobject_put(sysfs_dev_block_kobj);
3763 block_kobj_err:
3764        kobject_put(dev_kobj);
3765 dev_kobj_err:
3766        kset_unregister(devices_kset);
3767        return -ENOMEM;
3768}
3769
3770static int device_check_offline(struct device *dev, void *not_used)
3771{
3772        int ret;
3773
3774        ret = device_for_each_child(dev, NULL, device_check_offline);
3775        if (ret)
3776                return ret;
3777
3778        return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3779}
3780
3781/**
3782 * device_offline - Prepare the device for hot-removal.
3783 * @dev: Device to be put offline.
3784 *
3785 * Execute the device bus type's .offline() callback, if present, to prepare
3786 * the device for a subsequent hot-removal.  If that succeeds, the device must
3787 * not be used until either it is removed or its bus type's .online() callback
3788 * is executed.
3789 *
3790 * Call under device_hotplug_lock.
3791 */
3792int device_offline(struct device *dev)
3793{
3794        int ret;
3795
3796        if (dev->offline_disabled)
3797                return -EPERM;
3798
3799        ret = device_for_each_child(dev, NULL, device_check_offline);
3800        if (ret)
3801                return ret;
3802
3803        device_lock(dev);
3804        if (device_supports_offline(dev)) {
3805                if (dev->offline) {
3806                        ret = 1;
3807                } else {
3808                        ret = dev->bus->offline(dev);
3809                        if (!ret) {
3810                                kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3811                                dev->offline = true;
3812                        }
3813                }
3814        }
3815        device_unlock(dev);
3816
3817        return ret;
3818}
3819
3820/**
3821 * device_online - Put the device back online after successful device_offline().
3822 * @dev: Device to be put back online.
3823 *
3824 * If device_offline() has been successfully executed for @dev, but the device
3825 * has not been removed subsequently, execute its bus type's .online() callback
3826 * to indicate that the device can be used again.
3827 *
3828 * Call under device_hotplug_lock.
3829 */
3830int device_online(struct device *dev)
3831{
3832        int ret = 0;
3833
3834        device_lock(dev);
3835        if (device_supports_offline(dev)) {
3836                if (dev->offline) {
3837                        ret = dev->bus->online(dev);
3838                        if (!ret) {
3839                                kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3840                                dev->offline = false;
3841                        }
3842                } else {
3843                        ret = 1;
3844                }
3845        }
3846        device_unlock(dev);
3847
3848        return ret;
3849}
3850
3851struct root_device {
3852        struct device dev;
3853        struct module *owner;
3854};
3855
3856static inline struct root_device *to_root_device(struct device *d)
3857{
3858        return container_of(d, struct root_device, dev);
3859}
3860
3861static void root_device_release(struct device *dev)
3862{
3863        kfree(to_root_device(dev));
3864}
3865
3866/**
3867 * __root_device_register - allocate and register a root device
3868 * @name: root device name
3869 * @owner: owner module of the root device, usually THIS_MODULE
3870 *
3871 * This function allocates a root device and registers it
3872 * using device_register(). In order to free the returned
3873 * device, use root_device_unregister().
3874 *
3875 * Root devices are dummy devices which allow other devices
3876 * to be grouped under /sys/devices. Use this function to
3877 * allocate a root device and then use it as the parent of
3878 * any device which should appear under /sys/devices/{name}
3879 *
3880 * The /sys/devices/{name} directory will also contain a
3881 * 'module' symlink which points to the @owner directory
3882 * in sysfs.
3883 *
3884 * Returns &struct device pointer on success, or ERR_PTR() on error.
3885 *
3886 * Note: You probably want to use root_device_register().
3887 */
3888struct device *__root_device_register(const char *name, struct module *owner)
3889{
3890        struct root_device *root;
3891        int err = -ENOMEM;
3892
3893        root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3894        if (!root)
3895                return ERR_PTR(err);
3896
3897        err = dev_set_name(&root->dev, "%s", name);
3898        if (err) {
3899                kfree(root);
3900                return ERR_PTR(err);
3901        }
3902
3903        root->dev.release = root_device_release;
3904
3905        err = device_register(&root->dev);
3906        if (err) {
3907                put_device(&root->dev);
3908                return ERR_PTR(err);
3909        }
3910
3911#ifdef CONFIG_MODULES   /* gotta find a "cleaner" way to do this */
3912        if (owner) {
3913                struct module_kobject *mk = &owner->mkobj;
3914
3915                err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3916                if (err) {
3917                        device_unregister(&root->dev);
3918                        return ERR_PTR(err);
3919                }
3920                root->owner = owner;
3921        }
3922#endif
3923
3924        return &root->dev;
3925}
3926EXPORT_SYMBOL_GPL(__root_device_register);
3927
3928/**
3929 * root_device_unregister - unregister and free a root device
3930 * @dev: device going away
3931 *
3932 * This function unregisters and cleans up a device that was created by
3933 * root_device_register().
3934 */
3935void root_device_unregister(struct device *dev)
3936{
3937        struct root_device *root = to_root_device(dev);
3938
3939        if (root->owner)
3940                sysfs_remove_link(&root->dev.kobj, "module");
3941
3942        device_unregister(dev);
3943}
3944EXPORT_SYMBOL_GPL(root_device_unregister);
3945
3946
3947static void device_create_release(struct device *dev)
3948{
3949        pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3950        kfree(dev);
3951}
3952
3953static __printf(6, 0) struct device *
3954device_create_groups_vargs(struct class *class, struct device *parent,
3955                           dev_t devt, void *drvdata,
3956                           const struct attribute_group **groups,
3957                           const char *fmt, va_list args)
3958{
3959        struct device *dev = NULL;
3960        int retval = -ENODEV;
3961
3962        if (class == NULL || IS_ERR(class))
3963                goto error;
3964
3965        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3966        if (!dev) {
3967                retval = -ENOMEM;
3968                goto error;
3969        }
3970
3971        device_initialize(dev);
3972        dev->devt = devt;
3973        dev->class = class;
3974        dev->parent = parent;
3975        dev->groups = groups;
3976        dev->release = device_create_release;
3977        dev_set_drvdata(dev, drvdata);
3978
3979        retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3980        if (retval)
3981                goto error;
3982
3983        retval = device_add(dev);
3984        if (retval)
3985                goto error;
3986
3987        return dev;
3988
3989error:
3990        put_device(dev);
3991        return ERR_PTR(retval);
3992}
3993
3994/**
3995 * device_create - creates a device and registers it with sysfs
3996 * @class: pointer to the struct class that this device should be registered to
3997 * @parent: pointer to the parent struct device of this new device, if any
3998 * @devt: the dev_t for the char device to be added
3999 * @drvdata: the data to be added to the device for callbacks
4000 * @fmt: string for the device's name
4001 *
4002 * This function can be used by char device classes.  A struct device
4003 * will be created in sysfs, registered to the specified class.
4004 *
4005 * A "dev" file will be created, showing the dev_t for the device, if
4006 * the dev_t is not 0,0.
4007 * If a pointer to a parent struct device is passed in, the newly created
4008 * struct device will be a child of that device in sysfs.
4009 * The pointer to the struct device will be returned from the call.
4010 * Any further sysfs files that might be required can be created using this
4011 * pointer.
4012 *
4013 * Returns &struct device pointer on success, or ERR_PTR() on error.
4014 *
4015 * Note: the struct class passed to this function must have previously
4016 * been created with a call to class_create().
4017 */
4018struct device *device_create(struct class *class, struct device *parent,
4019                             dev_t devt, void *drvdata, const char *fmt, ...)
4020{
4021        va_list vargs;
4022        struct device *dev;
4023
4024        va_start(vargs, fmt);
4025        dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4026                                          fmt, vargs);
4027        va_end(vargs);
4028        return dev;
4029}
4030EXPORT_SYMBOL_GPL(device_create);
4031
4032/**
4033 * device_create_with_groups - creates a device and registers it with sysfs
4034 * @class: pointer to the struct class that this device should be registered to
4035 * @parent: pointer to the parent struct device of this new device, if any
4036 * @devt: the dev_t for the char device to be added
4037 * @drvdata: the data to be added to the device for callbacks
4038 * @groups: NULL-terminated list of attribute groups to be created
4039 * @fmt: string for the device's name
4040 *
4041 * This function can be used by char device classes.  A struct device
4042 * will be created in sysfs, registered to the specified class.
4043 * Additional attributes specified in the groups parameter will also
4044 * be created automatically.
4045 *
4046 * A "dev" file will be created, showing the dev_t for the device, if
4047 * the dev_t is not 0,0.
4048 * If a pointer to a parent struct device is passed in, the newly created
4049 * struct device will be a child of that device in sysfs.
4050 * The pointer to the struct device will be returned from the call.
4051 * Any further sysfs files that might be required can be created using this
4052 * pointer.
4053 *
4054 * Returns &struct device pointer on success, or ERR_PTR() on error.
4055 *
4056 * Note: the struct class passed to this function must have previously
4057 * been created with a call to class_create().
4058 */
4059struct device *device_create_with_groups(struct class *class,
4060                                         struct device *parent, dev_t devt,
4061                                         void *drvdata,
4062                                         const struct attribute_group **groups,
4063                                         const char *fmt, ...)
4064{
4065        va_list vargs;
4066        struct device *dev;
4067
4068        va_start(vargs, fmt);
4069        dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4070                                         fmt, vargs);
4071        va_end(vargs);
4072        return dev;
4073}
4074EXPORT_SYMBOL_GPL(device_create_with_groups);
4075
4076/**
4077 * device_destroy - removes a device that was created with device_create()
4078 * @class: pointer to the struct class that this device was registered with
4079 * @devt: the dev_t of the device that was previously registered
4080 *
4081 * This call unregisters and cleans up a device that was created with a
4082 * call to device_create().
4083 */
4084void device_destroy(struct class *class, dev_t devt)
4085{
4086        struct device *dev;
4087
4088        dev = class_find_device_by_devt(class, devt);
4089        if (dev) {
4090                put_device(dev);
4091                device_unregister(dev);
4092        }
4093}
4094EXPORT_SYMBOL_GPL(device_destroy);
4095
4096/**
4097 * device_rename - renames a device
4098 * @dev: the pointer to the struct device to be renamed
4099 * @new_name: the new name of the device
4100 *
4101 * It is the responsibility of the caller to provide mutual
4102 * exclusion between two different calls of device_rename
4103 * on the same device to ensure that new_name is valid and
4104 * won't conflict with other devices.
4105 *
4106 * Note: Don't call this function.  Currently, the networking layer calls this
4107 * function, but that will change.  The following text from Kay Sievers offers
4108 * some insight:
4109 *
4110 * Renaming devices is racy at many levels, symlinks and other stuff are not
4111 * replaced atomically, and you get a "move" uevent, but it's not easy to
4112 * connect the event to the old and new device. Device nodes are not renamed at
4113 * all, there isn't even support for that in the kernel now.
4114 *
4115 * In the meantime, during renaming, your target name might be taken by another
4116 * driver, creating conflicts. Or the old name is taken directly after you
4117 * renamed it -- then you get events for the same DEVPATH, before you even see
4118 * the "move" event. It's just a mess, and nothing new should ever rely on
4119 * kernel device renaming. Besides that, it's not even implemented now for
4120 * other things than (driver-core wise very simple) network devices.
4121 *
4122 * We are currently about to change network renaming in udev to completely
4123 * disallow renaming of devices in the same namespace as the kernel uses,
4124 * because we can't solve the problems properly, that arise with swapping names
4125 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4126 * be allowed to some other name than eth[0-9]*, for the aforementioned
4127 * reasons.
4128 *
4129 * Make up a "real" name in the driver before you register anything, or add
4130 * some other attributes for userspace to find the device, or use udev to add
4131 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4132 * don't even want to get into that and try to implement the missing pieces in
4133 * the core. We really have other pieces to fix in the driver core mess. :)
4134 */
4135int device_rename(struct device *dev, const char *new_name)
4136{
4137        struct kobject *kobj = &dev->kobj;
4138        char *old_device_name = NULL;
4139        int error;
4140
4141        dev = get_device(dev);
4142        if (!dev)
4143                return -EINVAL;
4144
4145        dev_dbg(dev, "renaming to %s\n", new_name);
4146
4147        old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4148        if (!old_device_name) {
4149                error = -ENOMEM;
4150                goto out;
4151        }
4152
4153        if (dev->class) {
4154                error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4155                                             kobj, old_device_name,
4156                                             new_name, kobject_namespace(kobj));
4157                if (error)
4158                        goto out;
4159        }
4160
4161        error = kobject_rename(kobj, new_name);
4162        if (error)
4163                goto out;
4164
4165out:
4166        put_device(dev);
4167
4168        kfree(old_device_name);
4169
4170        return error;
4171}
4172EXPORT_SYMBOL_GPL(device_rename);
4173
4174static int device_move_class_links(struct device *dev,
4175                                   struct device *old_parent,
4176                                   struct device *new_parent)
4177{
4178        int error = 0;
4179
4180        if (old_parent)
4181                sysfs_remove_link(&dev->kobj, "device");
4182        if (new_parent)
4183                error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4184                                          "device");
4185        return error;
4186}
4187
4188/**
4189 * device_move - moves a device to a new parent
4190 * @dev: the pointer to the struct device to be moved
4191 * @new_parent: the new parent of the device (can be NULL)
4192 * @dpm_order: how to reorder the dpm_list
4193 */
4194int device_move(struct device *dev, struct device *new_parent,
4195                enum dpm_order dpm_order)
4196{
4197        int error;
4198        struct device *old_parent;
4199        struct kobject *new_parent_kobj;
4200
4201        dev = get_device(dev);
4202        if (!dev)
4203                return -EINVAL;
4204
4205        device_pm_lock();
4206        new_parent = get_device(new_parent);
4207        new_parent_kobj = get_device_parent(dev, new_parent);
4208        if (IS_ERR(new_parent_kobj)) {
4209                error = PTR_ERR(new_parent_kobj);
4210                put_device(new_parent);
4211                goto out;
4212        }
4213
4214        pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4215                 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4216        error = kobject_move(&dev->kobj, new_parent_kobj);
4217        if (error) {
4218                cleanup_glue_dir(dev, new_parent_kobj);
4219                put_device(new_parent);
4220                goto out;
4221        }
4222        old_parent = dev->parent;
4223        dev->parent = new_parent;
4224        if (old_parent)
4225                klist_remove(&dev->p->knode_parent);
4226        if (new_parent) {
4227                klist_add_tail(&dev->p->knode_parent,
4228                               &new_parent->p->klist_children);
4229                set_dev_node(dev, dev_to_node(new_parent));
4230        }
4231
4232        if (dev->class) {
4233                error = device_move_class_links(dev, old_parent, new_parent);
4234                if (error) {
4235                        /* We ignore errors on cleanup since we're hosed anyway... */
4236                        device_move_class_links(dev, new_parent, old_parent);
4237                        if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4238                                if (new_parent)
4239                                        klist_remove(&dev->p->knode_parent);
4240                                dev->parent = old_parent;
4241                                if (old_parent) {
4242                                        klist_add_tail(&dev->p->knode_parent,
4243                                                       &old_parent->p->klist_children);
4244                                        set_dev_node(dev, dev_to_node(old_parent));
4245                                }
4246                        }
4247                        cleanup_glue_dir(dev, new_parent_kobj);
4248                        put_device(new_parent);
4249                        goto out;
4250                }
4251        }
4252        switch (dpm_order) {
4253        case DPM_ORDER_NONE:
4254                break;
4255        case DPM_ORDER_DEV_AFTER_PARENT:
4256                device_pm_move_after(dev, new_parent);
4257                devices_kset_move_after(dev, new_parent);
4258                break;
4259        case DPM_ORDER_PARENT_BEFORE_DEV:
4260                device_pm_move_before(new_parent, dev);
4261                devices_kset_move_before(new_parent, dev);
4262                break;
4263        case DPM_ORDER_DEV_LAST:
4264                device_pm_move_last(dev);
4265                devices_kset_move_last(dev);
4266                break;
4267        }
4268
4269        put_device(old_parent);
4270out:
4271        device_pm_unlock();
4272        put_device(dev);
4273        return error;
4274}
4275EXPORT_SYMBOL_GPL(device_move);
4276
4277static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4278                                     kgid_t kgid)
4279{
4280        struct kobject *kobj = &dev->kobj;
4281        struct class *class = dev->class;
4282        const struct device_type *type = dev->type;
4283        int error;
4284
4285        if (class) {
4286                /*
4287                 * Change the device groups of the device class for @dev to
4288                 * @kuid/@kgid.
4289                 */
4290                error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4291                                                  kgid);
4292                if (error)
4293                        return error;
4294        }
4295
4296        if (type) {
4297                /*
4298                 * Change the device groups of the device type for @dev to
4299                 * @kuid/@kgid.
4300                 */
4301                error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4302                                                  kgid);
4303                if (error)
4304                        return error;
4305        }
4306
4307        /* Change the device groups of @dev to @kuid/@kgid. */
4308        error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4309        if (error)
4310                return error;
4311
4312        if (device_supports_offline(dev) && !dev->offline_disabled) {
4313                /* Change online device attributes of @dev to @kuid/@kgid. */
4314                error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4315                                                kuid, kgid);
4316                if (error)
4317                        return error;
4318        }
4319
4320        return 0;
4321}
4322
4323/**
4324 * device_change_owner - change the owner of an existing device.
4325 * @dev: device.
4326 * @kuid: new owner's kuid
4327 * @kgid: new owner's kgid
4328 *
4329 * This changes the owner of @dev and its corresponding sysfs entries to
4330 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4331 * core.
4332 *
4333 * Returns 0 on success or error code on failure.
4334 */
4335int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4336{
4337        int error;
4338        struct kobject *kobj = &dev->kobj;
4339
4340        dev = get_device(dev);
4341        if (!dev)
4342                return -EINVAL;
4343
4344        /*
4345         * Change the kobject and the default attributes and groups of the
4346         * ktype associated with it to @kuid/@kgid.
4347         */
4348        error = sysfs_change_owner(kobj, kuid, kgid);
4349        if (error)
4350                goto out;
4351
4352        /*
4353         * Change the uevent file for @dev to the new owner. The uevent file
4354         * was created in a separate step when @dev got added and we mirror
4355         * that step here.
4356         */
4357        error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4358                                        kgid);
4359        if (error)
4360                goto out;
4361
4362        /*
4363         * Change the device groups, the device groups associated with the
4364         * device class, and the groups associated with the device type of @dev
4365         * to @kuid/@kgid.
4366         */
4367        error = device_attrs_change_owner(dev, kuid, kgid);
4368        if (error)
4369                goto out;
4370
4371        error = dpm_sysfs_change_owner(dev, kuid, kgid);
4372        if (error)
4373                goto out;
4374
4375#ifdef CONFIG_BLOCK
4376        if (sysfs_deprecated && dev->class == &block_class)
4377                goto out;
4378#endif
4379
4380        /*
4381         * Change the owner of the symlink located in the class directory of
4382         * the device class associated with @dev which points to the actual
4383         * directory entry for @dev to @kuid/@kgid. This ensures that the
4384         * symlink shows the same permissions as its target.
4385         */
4386        error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4387                                        dev_name(dev), kuid, kgid);
4388        if (error)
4389                goto out;
4390
4391out:
4392        put_device(dev);
4393        return error;
4394}
4395EXPORT_SYMBOL_GPL(device_change_owner);
4396
4397/**
4398 * device_shutdown - call ->shutdown() on each device to shutdown.
4399 */
4400void device_shutdown(void)
4401{
4402        struct device *dev, *parent;
4403
4404        wait_for_device_probe();
4405        device_block_probing();
4406
4407        cpufreq_suspend();
4408
4409        spin_lock(&devices_kset->list_lock);
4410        /*
4411         * Walk the devices list backward, shutting down each in turn.
4412         * Beware that device unplug events may also start pulling
4413         * devices offline, even as the system is shutting down.
4414         */
4415        while (!list_empty(&devices_kset->list)) {
4416                dev = list_entry(devices_kset->list.prev, struct device,
4417                                kobj.entry);
4418
4419                /*
4420                 * hold reference count of device's parent to
4421                 * prevent it from being freed because parent's
4422                 * lock is to be held
4423                 */
4424                parent = get_device(dev->parent);
4425                get_device(dev);
4426                /*
4427                 * Make sure the device is off the kset list, in the
4428                 * event that dev->*->shutdown() doesn't remove it.
4429                 */
4430                list_del_init(&dev->kobj.entry);
4431                spin_unlock(&devices_kset->list_lock);
4432
4433                /* hold lock to avoid race with probe/release */
4434                if (parent)
4435                        device_lock(parent);
4436                device_lock(dev);
4437
4438                /* Don't allow any more runtime suspends */
4439                pm_runtime_get_noresume(dev);
4440                pm_runtime_barrier(dev);
4441
4442                if (dev->class && dev->class->shutdown_pre) {
4443                        if (initcall_debug)
4444                                dev_info(dev, "shutdown_pre\n");
4445                        dev->class->shutdown_pre(dev);
4446                }
4447                if (dev->bus && dev->bus->shutdown) {
4448                        if (initcall_debug)
4449                                dev_info(dev, "shutdown\n");
4450                        dev->bus->shutdown(dev);
4451                } else if (dev->driver && dev->driver->shutdown) {
4452                        if (initcall_debug)
4453                                dev_info(dev, "shutdown\n");
4454                        dev->driver->shutdown(dev);
4455                }
4456
4457                device_unlock(dev);
4458                if (parent)
4459                        device_unlock(parent);
4460
4461                put_device(dev);
4462                put_device(parent);
4463
4464                spin_lock(&devices_kset->list_lock);
4465        }
4466        spin_unlock(&devices_kset->list_lock);
4467}
4468
4469/*
4470 * Device logging functions
4471 */
4472
4473#ifdef CONFIG_PRINTK
4474static void
4475set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4476{
4477        const char *subsys;
4478
4479        memset(dev_info, 0, sizeof(*dev_info));
4480
4481        if (dev->class)
4482                subsys = dev->class->name;
4483        else if (dev->bus)
4484                subsys = dev->bus->name;
4485        else
4486                return;
4487
4488        strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4489
4490        /*
4491         * Add device identifier DEVICE=:
4492         *   b12:8         block dev_t
4493         *   c127:3        char dev_t
4494         *   n8            netdev ifindex
4495         *   +sound:card0  subsystem:devname
4496         */
4497        if (MAJOR(dev->devt)) {
4498                char c;
4499
4500                if (strcmp(subsys, "block") == 0)
4501                        c = 'b';
4502                else
4503                        c = 'c';
4504
4505                snprintf(dev_info->device, sizeof(dev_info->device),
4506                         "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4507        } else if (strcmp(subsys, "net") == 0) {
4508                struct net_device *net = to_net_dev(dev);
4509
4510                snprintf(dev_info->device, sizeof(dev_info->device),
4511                         "n%u", net->ifindex);
4512        } else {
4513                snprintf(dev_info->device, sizeof(dev_info->device),
4514                         "+%s:%s", subsys, dev_name(dev));
4515        }
4516}
4517
4518int dev_vprintk_emit(int level, const struct device *dev,
4519                     const char *fmt, va_list args)
4520{
4521        struct dev_printk_info dev_info;
4522
4523        set_dev_info(dev, &dev_info);
4524
4525        return vprintk_emit(0, level, &dev_info, fmt, args);
4526}
4527EXPORT_SYMBOL(dev_vprintk_emit);
4528
4529int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4530{
4531        va_list args;
4532        int r;
4533
4534        va_start(args, fmt);
4535
4536        r = dev_vprintk_emit(level, dev, fmt, args);
4537
4538        va_end(args);
4539
4540        return r;
4541}
4542EXPORT_SYMBOL(dev_printk_emit);
4543
4544static void __dev_printk(const char *level, const struct device *dev,
4545                        struct va_format *vaf)
4546{
4547        if (dev)
4548                dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4549                                dev_driver_string(dev), dev_name(dev), vaf);
4550        else
4551                printk("%s(NULL device *): %pV", level, vaf);
4552}
4553
4554void dev_printk(const char *level, const struct device *dev,
4555                const char *fmt, ...)
4556{
4557        struct va_format vaf;
4558        va_list args;
4559
4560        va_start(args, fmt);
4561
4562        vaf.fmt = fmt;
4563        vaf.va = &args;
4564
4565        __dev_printk(level, dev, &vaf);
4566
4567        va_end(args);
4568}
4569EXPORT_SYMBOL(dev_printk);
4570
4571#define define_dev_printk_level(func, kern_level)               \
4572void func(const struct device *dev, const char *fmt, ...)       \
4573{                                                               \
4574        struct va_format vaf;                                   \
4575        va_list args;                                           \
4576                                                                \
4577        va_start(args, fmt);                                    \
4578                                                                \
4579        vaf.fmt = fmt;                                          \
4580        vaf.va = &args;                                         \
4581                                                                \
4582        __dev_printk(kern_level, dev, &vaf);                    \
4583                                                                \
4584        va_end(args);                                           \
4585}                                                               \
4586EXPORT_SYMBOL(func);
4587
4588define_dev_printk_level(_dev_emerg, KERN_EMERG);
4589define_dev_printk_level(_dev_alert, KERN_ALERT);
4590define_dev_printk_level(_dev_crit, KERN_CRIT);
4591define_dev_printk_level(_dev_err, KERN_ERR);
4592define_dev_printk_level(_dev_warn, KERN_WARNING);
4593define_dev_printk_level(_dev_notice, KERN_NOTICE);
4594define_dev_printk_level(_dev_info, KERN_INFO);
4595
4596#endif
4597
4598/**
4599 * dev_err_probe - probe error check and log helper
4600 * @dev: the pointer to the struct device
4601 * @err: error value to test
4602 * @fmt: printf-style format string
4603 * @...: arguments as specified in the format string
4604 *
4605 * This helper implements common pattern present in probe functions for error
4606 * checking: print debug or error message depending if the error value is
4607 * -EPROBE_DEFER and propagate error upwards.
4608 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4609 * checked later by reading devices_deferred debugfs attribute.
4610 * It replaces code sequence::
4611 *
4612 *      if (err != -EPROBE_DEFER)
4613 *              dev_err(dev, ...);
4614 *      else
4615 *              dev_dbg(dev, ...);
4616 *      return err;
4617 *
4618 * with::
4619 *
4620 *      return dev_err_probe(dev, err, ...);
4621 *
4622 * Returns @err.
4623 *
4624 */
4625int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4626{
4627        struct va_format vaf;
4628        va_list args;
4629
4630        va_start(args, fmt);
4631        vaf.fmt = fmt;
4632        vaf.va = &args;
4633
4634        if (err != -EPROBE_DEFER) {
4635                dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4636        } else {
4637                device_set_deferred_probe_reason(dev, &vaf);
4638                dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4639        }
4640
4641        va_end(args);
4642
4643        return err;
4644}
4645EXPORT_SYMBOL_GPL(dev_err_probe);
4646
4647static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4648{
4649        return fwnode && !IS_ERR(fwnode->secondary);
4650}
4651
4652/**
4653 * set_primary_fwnode - Change the primary firmware node of a given device.
4654 * @dev: Device to handle.
4655 * @fwnode: New primary firmware node of the device.
4656 *
4657 * Set the device's firmware node pointer to @fwnode, but if a secondary
4658 * firmware node of the device is present, preserve it.
4659 *
4660 * Valid fwnode cases are:
4661 *  - primary --> secondary --> -ENODEV
4662 *  - primary --> NULL
4663 *  - secondary --> -ENODEV
4664 *  - NULL
4665 */
4666void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4667{
4668        struct device *parent = dev->parent;
4669        struct fwnode_handle *fn = dev->fwnode;
4670
4671        if (fwnode) {
4672                if (fwnode_is_primary(fn))
4673                        fn = fn->secondary;
4674
4675                if (fn) {
4676                        WARN_ON(fwnode->secondary);
4677                        fwnode->secondary = fn;
4678                }
4679                dev->fwnode = fwnode;
4680        } else {
4681                if (fwnode_is_primary(fn)) {
4682                        dev->fwnode = fn->secondary;
4683                        /* Set fn->secondary = NULL, so fn remains the primary fwnode */
4684                        if (!(parent && fn == parent->fwnode))
4685                                fn->secondary = NULL;
4686                } else {
4687                        dev->fwnode = NULL;
4688                }
4689        }
4690}
4691EXPORT_SYMBOL_GPL(set_primary_fwnode);
4692
4693/**
4694 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4695 * @dev: Device to handle.
4696 * @fwnode: New secondary firmware node of the device.
4697 *
4698 * If a primary firmware node of the device is present, set its secondary
4699 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4700 * @fwnode.
4701 */
4702void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4703{
4704        if (fwnode)
4705                fwnode->secondary = ERR_PTR(-ENODEV);
4706
4707        if (fwnode_is_primary(dev->fwnode))
4708                dev->fwnode->secondary = fwnode;
4709        else
4710                dev->fwnode = fwnode;
4711}
4712EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4713
4714/**
4715 * device_set_of_node_from_dev - reuse device-tree node of another device
4716 * @dev: device whose device-tree node is being set
4717 * @dev2: device whose device-tree node is being reused
4718 *
4719 * Takes another reference to the new device-tree node after first dropping
4720 * any reference held to the old node.
4721 */
4722void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4723{
4724        of_node_put(dev->of_node);
4725        dev->of_node = of_node_get(dev2->of_node);
4726        dev->of_node_reused = true;
4727}
4728EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4729
4730int device_match_name(struct device *dev, const void *name)
4731{
4732        return sysfs_streq(dev_name(dev), name);
4733}
4734EXPORT_SYMBOL_GPL(device_match_name);
4735
4736int device_match_of_node(struct device *dev, const void *np)
4737{
4738        return dev->of_node == np;
4739}
4740EXPORT_SYMBOL_GPL(device_match_of_node);
4741
4742int device_match_fwnode(struct device *dev, const void *fwnode)
4743{
4744        return dev_fwnode(dev) == fwnode;
4745}
4746EXPORT_SYMBOL_GPL(device_match_fwnode);
4747
4748int device_match_devt(struct device *dev, const void *pdevt)
4749{
4750        return dev->devt == *(dev_t *)pdevt;
4751}
4752EXPORT_SYMBOL_GPL(device_match_devt);
4753
4754int device_match_acpi_dev(struct device *dev, const void *adev)
4755{
4756        return ACPI_COMPANION(dev) == adev;
4757}
4758EXPORT_SYMBOL(device_match_acpi_dev);
4759
4760int device_match_any(struct device *dev, const void *unused)
4761{
4762        return 1;
4763}
4764EXPORT_SYMBOL_GPL(device_match_any);
4765