linux/drivers/block/loop.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/block/loop.c
   3 *
   4 *  Written by Theodore Ts'o, 3/29/93
   5 *
   6 * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
   7 * permitted under the GNU General Public License.
   8 *
   9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
  10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
  11 *
  12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
  13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
  14 *
  15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
  16 *
  17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
  18 *
  19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
  20 *
  21 * Loadable modules and other fixes by AK, 1998
  22 *
  23 * Make real block number available to downstream transfer functions, enables
  24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
  25 * Reed H. Petty, rhp@draper.net
  26 *
  27 * Maximum number of loop devices now dynamic via max_loop module parameter.
  28 * Russell Kroll <rkroll@exploits.org> 19990701
  29 *
  30 * Maximum number of loop devices when compiled-in now selectable by passing
  31 * max_loop=<1-255> to the kernel on boot.
  32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
  33 *
  34 * Completely rewrite request handling to be make_request_fn style and
  35 * non blocking, pushing work to a helper thread. Lots of fixes from
  36 * Al Viro too.
  37 * Jens Axboe <axboe@suse.de>, Nov 2000
  38 *
  39 * Support up to 256 loop devices
  40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
  41 *
  42 * Support for falling back on the write file operation when the address space
  43 * operations write_begin is not available on the backing filesystem.
  44 * Anton Altaparmakov, 16 Feb 2005
  45 *
  46 * Still To Fix:
  47 * - Advisory locking is ignored here.
  48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
  49 *
  50 */
  51
  52#include <linux/module.h>
  53#include <linux/moduleparam.h>
  54#include <linux/sched.h>
  55#include <linux/fs.h>
  56#include <linux/pagemap.h>
  57#include <linux/file.h>
  58#include <linux/stat.h>
  59#include <linux/errno.h>
  60#include <linux/major.h>
  61#include <linux/wait.h>
  62#include <linux/blkdev.h>
  63#include <linux/blkpg.h>
  64#include <linux/init.h>
  65#include <linux/swap.h>
  66#include <linux/slab.h>
  67#include <linux/compat.h>
  68#include <linux/suspend.h>
  69#include <linux/freezer.h>
  70#include <linux/mutex.h>
  71#include <linux/writeback.h>
  72#include <linux/completion.h>
  73#include <linux/highmem.h>
  74#include <linux/kthread.h>
  75#include <linux/splice.h>
  76#include <linux/sysfs.h>
  77#include <linux/miscdevice.h>
  78#include <linux/falloc.h>
  79#include <linux/uio.h>
  80#include <linux/ioprio.h>
  81#include <linux/blk-cgroup.h>
  82
  83#include "loop.h"
  84
  85#include <linux/uaccess.h>
  86
  87static DEFINE_IDR(loop_index_idr);
  88static DEFINE_MUTEX(loop_ctl_mutex);
  89
  90static int max_part;
  91static int part_shift;
  92
  93static int transfer_xor(struct loop_device *lo, int cmd,
  94                        struct page *raw_page, unsigned raw_off,
  95                        struct page *loop_page, unsigned loop_off,
  96                        int size, sector_t real_block)
  97{
  98        char *raw_buf = kmap_atomic(raw_page) + raw_off;
  99        char *loop_buf = kmap_atomic(loop_page) + loop_off;
 100        char *in, *out, *key;
 101        int i, keysize;
 102
 103        if (cmd == READ) {
 104                in = raw_buf;
 105                out = loop_buf;
 106        } else {
 107                in = loop_buf;
 108                out = raw_buf;
 109        }
 110
 111        key = lo->lo_encrypt_key;
 112        keysize = lo->lo_encrypt_key_size;
 113        for (i = 0; i < size; i++)
 114                *out++ = *in++ ^ key[(i & 511) % keysize];
 115
 116        kunmap_atomic(loop_buf);
 117        kunmap_atomic(raw_buf);
 118        cond_resched();
 119        return 0;
 120}
 121
 122static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
 123{
 124        if (unlikely(info->lo_encrypt_key_size <= 0))
 125                return -EINVAL;
 126        return 0;
 127}
 128
 129static struct loop_func_table none_funcs = {
 130        .number = LO_CRYPT_NONE,
 131}; 
 132
 133static struct loop_func_table xor_funcs = {
 134        .number = LO_CRYPT_XOR,
 135        .transfer = transfer_xor,
 136        .init = xor_init
 137}; 
 138
 139/* xfer_funcs[0] is special - its release function is never called */
 140static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
 141        &none_funcs,
 142        &xor_funcs
 143};
 144
 145static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
 146{
 147        loff_t loopsize;
 148
 149        /* Compute loopsize in bytes */
 150        loopsize = i_size_read(file->f_mapping->host);
 151        if (offset > 0)
 152                loopsize -= offset;
 153        /* offset is beyond i_size, weird but possible */
 154        if (loopsize < 0)
 155                return 0;
 156
 157        if (sizelimit > 0 && sizelimit < loopsize)
 158                loopsize = sizelimit;
 159        /*
 160         * Unfortunately, if we want to do I/O on the device,
 161         * the number of 512-byte sectors has to fit into a sector_t.
 162         */
 163        return loopsize >> 9;
 164}
 165
 166static loff_t get_loop_size(struct loop_device *lo, struct file *file)
 167{
 168        return get_size(lo->lo_offset, lo->lo_sizelimit, file);
 169}
 170
 171static void __loop_update_dio(struct loop_device *lo, bool dio)
 172{
 173        struct file *file = lo->lo_backing_file;
 174        struct address_space *mapping = file->f_mapping;
 175        struct inode *inode = mapping->host;
 176        unsigned short sb_bsize = 0;
 177        unsigned dio_align = 0;
 178        bool use_dio;
 179
 180        if (inode->i_sb->s_bdev) {
 181                sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
 182                dio_align = sb_bsize - 1;
 183        }
 184
 185        /*
 186         * We support direct I/O only if lo_offset is aligned with the
 187         * logical I/O size of backing device, and the logical block
 188         * size of loop is bigger than the backing device's and the loop
 189         * needn't transform transfer.
 190         *
 191         * TODO: the above condition may be loosed in the future, and
 192         * direct I/O may be switched runtime at that time because most
 193         * of requests in sane applications should be PAGE_SIZE aligned
 194         */
 195        if (dio) {
 196                if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
 197                                !(lo->lo_offset & dio_align) &&
 198                                mapping->a_ops->direct_IO &&
 199                                !lo->transfer)
 200                        use_dio = true;
 201                else
 202                        use_dio = false;
 203        } else {
 204                use_dio = false;
 205        }
 206
 207        if (lo->use_dio == use_dio)
 208                return;
 209
 210        /* flush dirty pages before changing direct IO */
 211        vfs_fsync(file, 0);
 212
 213        /*
 214         * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
 215         * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
 216         * will get updated by ioctl(LOOP_GET_STATUS)
 217         */
 218        if (lo->lo_state == Lo_bound)
 219                blk_mq_freeze_queue(lo->lo_queue);
 220        lo->use_dio = use_dio;
 221        if (use_dio) {
 222                blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
 223                lo->lo_flags |= LO_FLAGS_DIRECT_IO;
 224        } else {
 225                blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
 226                lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
 227        }
 228        if (lo->lo_state == Lo_bound)
 229                blk_mq_unfreeze_queue(lo->lo_queue);
 230}
 231
 232/**
 233 * loop_validate_block_size() - validates the passed in block size
 234 * @bsize: size to validate
 235 */
 236static int
 237loop_validate_block_size(unsigned short bsize)
 238{
 239        if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
 240                return -EINVAL;
 241
 242        return 0;
 243}
 244
 245/**
 246 * loop_set_size() - sets device size and notifies userspace
 247 * @lo: struct loop_device to set the size for
 248 * @size: new size of the loop device
 249 *
 250 * Callers must validate that the size passed into this function fits into
 251 * a sector_t, eg using loop_validate_size()
 252 */
 253static void loop_set_size(struct loop_device *lo, loff_t size)
 254{
 255        if (!set_capacity_and_notify(lo->lo_disk, size))
 256                kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
 257}
 258
 259static inline int
 260lo_do_transfer(struct loop_device *lo, int cmd,
 261               struct page *rpage, unsigned roffs,
 262               struct page *lpage, unsigned loffs,
 263               int size, sector_t rblock)
 264{
 265        int ret;
 266
 267        ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
 268        if (likely(!ret))
 269                return 0;
 270
 271        printk_ratelimited(KERN_ERR
 272                "loop: Transfer error at byte offset %llu, length %i.\n",
 273                (unsigned long long)rblock << 9, size);
 274        return ret;
 275}
 276
 277static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
 278{
 279        struct iov_iter i;
 280        ssize_t bw;
 281
 282        iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
 283
 284        file_start_write(file);
 285        bw = vfs_iter_write(file, &i, ppos, 0);
 286        file_end_write(file);
 287
 288        if (likely(bw ==  bvec->bv_len))
 289                return 0;
 290
 291        printk_ratelimited(KERN_ERR
 292                "loop: Write error at byte offset %llu, length %i.\n",
 293                (unsigned long long)*ppos, bvec->bv_len);
 294        if (bw >= 0)
 295                bw = -EIO;
 296        return bw;
 297}
 298
 299static int lo_write_simple(struct loop_device *lo, struct request *rq,
 300                loff_t pos)
 301{
 302        struct bio_vec bvec;
 303        struct req_iterator iter;
 304        int ret = 0;
 305
 306        rq_for_each_segment(bvec, rq, iter) {
 307                ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
 308                if (ret < 0)
 309                        break;
 310                cond_resched();
 311        }
 312
 313        return ret;
 314}
 315
 316/*
 317 * This is the slow, transforming version that needs to double buffer the
 318 * data as it cannot do the transformations in place without having direct
 319 * access to the destination pages of the backing file.
 320 */
 321static int lo_write_transfer(struct loop_device *lo, struct request *rq,
 322                loff_t pos)
 323{
 324        struct bio_vec bvec, b;
 325        struct req_iterator iter;
 326        struct page *page;
 327        int ret = 0;
 328
 329        page = alloc_page(GFP_NOIO);
 330        if (unlikely(!page))
 331                return -ENOMEM;
 332
 333        rq_for_each_segment(bvec, rq, iter) {
 334                ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
 335                        bvec.bv_offset, bvec.bv_len, pos >> 9);
 336                if (unlikely(ret))
 337                        break;
 338
 339                b.bv_page = page;
 340                b.bv_offset = 0;
 341                b.bv_len = bvec.bv_len;
 342                ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
 343                if (ret < 0)
 344                        break;
 345        }
 346
 347        __free_page(page);
 348        return ret;
 349}
 350
 351static int lo_read_simple(struct loop_device *lo, struct request *rq,
 352                loff_t pos)
 353{
 354        struct bio_vec bvec;
 355        struct req_iterator iter;
 356        struct iov_iter i;
 357        ssize_t len;
 358
 359        rq_for_each_segment(bvec, rq, iter) {
 360                iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
 361                len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
 362                if (len < 0)
 363                        return len;
 364
 365                flush_dcache_page(bvec.bv_page);
 366
 367                if (len != bvec.bv_len) {
 368                        struct bio *bio;
 369
 370                        __rq_for_each_bio(bio, rq)
 371                                zero_fill_bio(bio);
 372                        break;
 373                }
 374                cond_resched();
 375        }
 376
 377        return 0;
 378}
 379
 380static int lo_read_transfer(struct loop_device *lo, struct request *rq,
 381                loff_t pos)
 382{
 383        struct bio_vec bvec, b;
 384        struct req_iterator iter;
 385        struct iov_iter i;
 386        struct page *page;
 387        ssize_t len;
 388        int ret = 0;
 389
 390        page = alloc_page(GFP_NOIO);
 391        if (unlikely(!page))
 392                return -ENOMEM;
 393
 394        rq_for_each_segment(bvec, rq, iter) {
 395                loff_t offset = pos;
 396
 397                b.bv_page = page;
 398                b.bv_offset = 0;
 399                b.bv_len = bvec.bv_len;
 400
 401                iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
 402                len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
 403                if (len < 0) {
 404                        ret = len;
 405                        goto out_free_page;
 406                }
 407
 408                ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
 409                        bvec.bv_offset, len, offset >> 9);
 410                if (ret)
 411                        goto out_free_page;
 412
 413                flush_dcache_page(bvec.bv_page);
 414
 415                if (len != bvec.bv_len) {
 416                        struct bio *bio;
 417
 418                        __rq_for_each_bio(bio, rq)
 419                                zero_fill_bio(bio);
 420                        break;
 421                }
 422        }
 423
 424        ret = 0;
 425out_free_page:
 426        __free_page(page);
 427        return ret;
 428}
 429
 430static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
 431                        int mode)
 432{
 433        /*
 434         * We use fallocate to manipulate the space mappings used by the image
 435         * a.k.a. discard/zerorange. However we do not support this if
 436         * encryption is enabled, because it may give an attacker useful
 437         * information.
 438         */
 439        struct file *file = lo->lo_backing_file;
 440        struct request_queue *q = lo->lo_queue;
 441        int ret;
 442
 443        mode |= FALLOC_FL_KEEP_SIZE;
 444
 445        if (!blk_queue_discard(q)) {
 446                ret = -EOPNOTSUPP;
 447                goto out;
 448        }
 449
 450        ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
 451        if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
 452                ret = -EIO;
 453 out:
 454        return ret;
 455}
 456
 457static int lo_req_flush(struct loop_device *lo, struct request *rq)
 458{
 459        struct file *file = lo->lo_backing_file;
 460        int ret = vfs_fsync(file, 0);
 461        if (unlikely(ret && ret != -EINVAL))
 462                ret = -EIO;
 463
 464        return ret;
 465}
 466
 467static void lo_complete_rq(struct request *rq)
 468{
 469        struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
 470        blk_status_t ret = BLK_STS_OK;
 471
 472        if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
 473            req_op(rq) != REQ_OP_READ) {
 474                if (cmd->ret < 0)
 475                        ret = errno_to_blk_status(cmd->ret);
 476                goto end_io;
 477        }
 478
 479        /*
 480         * Short READ - if we got some data, advance our request and
 481         * retry it. If we got no data, end the rest with EIO.
 482         */
 483        if (cmd->ret) {
 484                blk_update_request(rq, BLK_STS_OK, cmd->ret);
 485                cmd->ret = 0;
 486                blk_mq_requeue_request(rq, true);
 487        } else {
 488                if (cmd->use_aio) {
 489                        struct bio *bio = rq->bio;
 490
 491                        while (bio) {
 492                                zero_fill_bio(bio);
 493                                bio = bio->bi_next;
 494                        }
 495                }
 496                ret = BLK_STS_IOERR;
 497end_io:
 498                blk_mq_end_request(rq, ret);
 499        }
 500}
 501
 502static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
 503{
 504        struct request *rq = blk_mq_rq_from_pdu(cmd);
 505
 506        if (!atomic_dec_and_test(&cmd->ref))
 507                return;
 508        kfree(cmd->bvec);
 509        cmd->bvec = NULL;
 510        if (likely(!blk_should_fake_timeout(rq->q)))
 511                blk_mq_complete_request(rq);
 512}
 513
 514static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
 515{
 516        struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
 517
 518        if (cmd->css)
 519                css_put(cmd->css);
 520        cmd->ret = ret;
 521        lo_rw_aio_do_completion(cmd);
 522}
 523
 524static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
 525                     loff_t pos, bool rw)
 526{
 527        struct iov_iter iter;
 528        struct req_iterator rq_iter;
 529        struct bio_vec *bvec;
 530        struct request *rq = blk_mq_rq_from_pdu(cmd);
 531        struct bio *bio = rq->bio;
 532        struct file *file = lo->lo_backing_file;
 533        struct bio_vec tmp;
 534        unsigned int offset;
 535        int nr_bvec = 0;
 536        int ret;
 537
 538        rq_for_each_bvec(tmp, rq, rq_iter)
 539                nr_bvec++;
 540
 541        if (rq->bio != rq->biotail) {
 542
 543                bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
 544                                     GFP_NOIO);
 545                if (!bvec)
 546                        return -EIO;
 547                cmd->bvec = bvec;
 548
 549                /*
 550                 * The bios of the request may be started from the middle of
 551                 * the 'bvec' because of bio splitting, so we can't directly
 552                 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
 553                 * API will take care of all details for us.
 554                 */
 555                rq_for_each_bvec(tmp, rq, rq_iter) {
 556                        *bvec = tmp;
 557                        bvec++;
 558                }
 559                bvec = cmd->bvec;
 560                offset = 0;
 561        } else {
 562                /*
 563                 * Same here, this bio may be started from the middle of the
 564                 * 'bvec' because of bio splitting, so offset from the bvec
 565                 * must be passed to iov iterator
 566                 */
 567                offset = bio->bi_iter.bi_bvec_done;
 568                bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
 569        }
 570        atomic_set(&cmd->ref, 2);
 571
 572        iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
 573        iter.iov_offset = offset;
 574
 575        cmd->iocb.ki_pos = pos;
 576        cmd->iocb.ki_filp = file;
 577        cmd->iocb.ki_complete = lo_rw_aio_complete;
 578        cmd->iocb.ki_flags = IOCB_DIRECT;
 579        cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
 580        if (cmd->css)
 581                kthread_associate_blkcg(cmd->css);
 582
 583        if (rw == WRITE)
 584                ret = call_write_iter(file, &cmd->iocb, &iter);
 585        else
 586                ret = call_read_iter(file, &cmd->iocb, &iter);
 587
 588        lo_rw_aio_do_completion(cmd);
 589        kthread_associate_blkcg(NULL);
 590
 591        if (ret != -EIOCBQUEUED)
 592                cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
 593        return 0;
 594}
 595
 596static int do_req_filebacked(struct loop_device *lo, struct request *rq)
 597{
 598        struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
 599        loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
 600
 601        /*
 602         * lo_write_simple and lo_read_simple should have been covered
 603         * by io submit style function like lo_rw_aio(), one blocker
 604         * is that lo_read_simple() need to call flush_dcache_page after
 605         * the page is written from kernel, and it isn't easy to handle
 606         * this in io submit style function which submits all segments
 607         * of the req at one time. And direct read IO doesn't need to
 608         * run flush_dcache_page().
 609         */
 610        switch (req_op(rq)) {
 611        case REQ_OP_FLUSH:
 612                return lo_req_flush(lo, rq);
 613        case REQ_OP_WRITE_ZEROES:
 614                /*
 615                 * If the caller doesn't want deallocation, call zeroout to
 616                 * write zeroes the range.  Otherwise, punch them out.
 617                 */
 618                return lo_fallocate(lo, rq, pos,
 619                        (rq->cmd_flags & REQ_NOUNMAP) ?
 620                                FALLOC_FL_ZERO_RANGE :
 621                                FALLOC_FL_PUNCH_HOLE);
 622        case REQ_OP_DISCARD:
 623                return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
 624        case REQ_OP_WRITE:
 625                if (lo->transfer)
 626                        return lo_write_transfer(lo, rq, pos);
 627                else if (cmd->use_aio)
 628                        return lo_rw_aio(lo, cmd, pos, WRITE);
 629                else
 630                        return lo_write_simple(lo, rq, pos);
 631        case REQ_OP_READ:
 632                if (lo->transfer)
 633                        return lo_read_transfer(lo, rq, pos);
 634                else if (cmd->use_aio)
 635                        return lo_rw_aio(lo, cmd, pos, READ);
 636                else
 637                        return lo_read_simple(lo, rq, pos);
 638        default:
 639                WARN_ON_ONCE(1);
 640                return -EIO;
 641        }
 642}
 643
 644static inline void loop_update_dio(struct loop_device *lo)
 645{
 646        __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
 647                                lo->use_dio);
 648}
 649
 650static void loop_reread_partitions(struct loop_device *lo,
 651                                   struct block_device *bdev)
 652{
 653        int rc;
 654
 655        mutex_lock(&bdev->bd_mutex);
 656        rc = bdev_disk_changed(bdev, false);
 657        mutex_unlock(&bdev->bd_mutex);
 658        if (rc)
 659                pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
 660                        __func__, lo->lo_number, lo->lo_file_name, rc);
 661}
 662
 663static inline int is_loop_device(struct file *file)
 664{
 665        struct inode *i = file->f_mapping->host;
 666
 667        return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
 668}
 669
 670static int loop_validate_file(struct file *file, struct block_device *bdev)
 671{
 672        struct inode    *inode = file->f_mapping->host;
 673        struct file     *f = file;
 674
 675        /* Avoid recursion */
 676        while (is_loop_device(f)) {
 677                struct loop_device *l;
 678
 679                if (f->f_mapping->host->i_rdev == bdev->bd_dev)
 680                        return -EBADF;
 681
 682                l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
 683                if (l->lo_state != Lo_bound) {
 684                        return -EINVAL;
 685                }
 686                f = l->lo_backing_file;
 687        }
 688        if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
 689                return -EINVAL;
 690        return 0;
 691}
 692
 693/*
 694 * loop_change_fd switched the backing store of a loopback device to
 695 * a new file. This is useful for operating system installers to free up
 696 * the original file and in High Availability environments to switch to
 697 * an alternative location for the content in case of server meltdown.
 698 * This can only work if the loop device is used read-only, and if the
 699 * new backing store is the same size and type as the old backing store.
 700 */
 701static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
 702                          unsigned int arg)
 703{
 704        struct file     *file = NULL, *old_file;
 705        int             error;
 706        bool            partscan;
 707
 708        error = mutex_lock_killable(&lo->lo_mutex);
 709        if (error)
 710                return error;
 711        error = -ENXIO;
 712        if (lo->lo_state != Lo_bound)
 713                goto out_err;
 714
 715        /* the loop device has to be read-only */
 716        error = -EINVAL;
 717        if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
 718                goto out_err;
 719
 720        error = -EBADF;
 721        file = fget(arg);
 722        if (!file)
 723                goto out_err;
 724
 725        error = loop_validate_file(file, bdev);
 726        if (error)
 727                goto out_err;
 728
 729        old_file = lo->lo_backing_file;
 730
 731        error = -EINVAL;
 732
 733        /* size of the new backing store needs to be the same */
 734        if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
 735                goto out_err;
 736
 737        /* and ... switch */
 738        blk_mq_freeze_queue(lo->lo_queue);
 739        mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
 740        lo->lo_backing_file = file;
 741        lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
 742        mapping_set_gfp_mask(file->f_mapping,
 743                             lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
 744        loop_update_dio(lo);
 745        blk_mq_unfreeze_queue(lo->lo_queue);
 746        partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
 747        mutex_unlock(&lo->lo_mutex);
 748        /*
 749         * We must drop file reference outside of lo_mutex as dropping
 750         * the file ref can take bd_mutex which creates circular locking
 751         * dependency.
 752         */
 753        fput(old_file);
 754        if (partscan)
 755                loop_reread_partitions(lo, bdev);
 756        return 0;
 757
 758out_err:
 759        mutex_unlock(&lo->lo_mutex);
 760        if (file)
 761                fput(file);
 762        return error;
 763}
 764
 765/* loop sysfs attributes */
 766
 767static ssize_t loop_attr_show(struct device *dev, char *page,
 768                              ssize_t (*callback)(struct loop_device *, char *))
 769{
 770        struct gendisk *disk = dev_to_disk(dev);
 771        struct loop_device *lo = disk->private_data;
 772
 773        return callback(lo, page);
 774}
 775
 776#define LOOP_ATTR_RO(_name)                                             \
 777static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);  \
 778static ssize_t loop_attr_do_show_##_name(struct device *d,              \
 779                                struct device_attribute *attr, char *b) \
 780{                                                                       \
 781        return loop_attr_show(d, b, loop_attr_##_name##_show);          \
 782}                                                                       \
 783static struct device_attribute loop_attr_##_name =                      \
 784        __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
 785
 786static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
 787{
 788        ssize_t ret;
 789        char *p = NULL;
 790
 791        spin_lock_irq(&lo->lo_lock);
 792        if (lo->lo_backing_file)
 793                p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
 794        spin_unlock_irq(&lo->lo_lock);
 795
 796        if (IS_ERR_OR_NULL(p))
 797                ret = PTR_ERR(p);
 798        else {
 799                ret = strlen(p);
 800                memmove(buf, p, ret);
 801                buf[ret++] = '\n';
 802                buf[ret] = 0;
 803        }
 804
 805        return ret;
 806}
 807
 808static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
 809{
 810        return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
 811}
 812
 813static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
 814{
 815        return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
 816}
 817
 818static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
 819{
 820        int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
 821
 822        return sprintf(buf, "%s\n", autoclear ? "1" : "0");
 823}
 824
 825static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
 826{
 827        int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
 828
 829        return sprintf(buf, "%s\n", partscan ? "1" : "0");
 830}
 831
 832static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
 833{
 834        int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
 835
 836        return sprintf(buf, "%s\n", dio ? "1" : "0");
 837}
 838
 839LOOP_ATTR_RO(backing_file);
 840LOOP_ATTR_RO(offset);
 841LOOP_ATTR_RO(sizelimit);
 842LOOP_ATTR_RO(autoclear);
 843LOOP_ATTR_RO(partscan);
 844LOOP_ATTR_RO(dio);
 845
 846static struct attribute *loop_attrs[] = {
 847        &loop_attr_backing_file.attr,
 848        &loop_attr_offset.attr,
 849        &loop_attr_sizelimit.attr,
 850        &loop_attr_autoclear.attr,
 851        &loop_attr_partscan.attr,
 852        &loop_attr_dio.attr,
 853        NULL,
 854};
 855
 856static struct attribute_group loop_attribute_group = {
 857        .name = "loop",
 858        .attrs= loop_attrs,
 859};
 860
 861static void loop_sysfs_init(struct loop_device *lo)
 862{
 863        lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
 864                                                &loop_attribute_group);
 865}
 866
 867static void loop_sysfs_exit(struct loop_device *lo)
 868{
 869        if (lo->sysfs_inited)
 870                sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
 871                                   &loop_attribute_group);
 872}
 873
 874static void loop_config_discard(struct loop_device *lo)
 875{
 876        struct file *file = lo->lo_backing_file;
 877        struct inode *inode = file->f_mapping->host;
 878        struct request_queue *q = lo->lo_queue;
 879        u32 granularity, max_discard_sectors;
 880
 881        /*
 882         * If the backing device is a block device, mirror its zeroing
 883         * capability. Set the discard sectors to the block device's zeroing
 884         * capabilities because loop discards result in blkdev_issue_zeroout(),
 885         * not blkdev_issue_discard(). This maintains consistent behavior with
 886         * file-backed loop devices: discarded regions read back as zero.
 887         */
 888        if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
 889                struct request_queue *backingq = bdev_get_queue(I_BDEV(inode));
 890
 891                max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
 892                granularity = backingq->limits.discard_granularity ?:
 893                        queue_physical_block_size(backingq);
 894
 895        /*
 896         * We use punch hole to reclaim the free space used by the
 897         * image a.k.a. discard. However we do not support discard if
 898         * encryption is enabled, because it may give an attacker
 899         * useful information.
 900         */
 901        } else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) {
 902                max_discard_sectors = 0;
 903                granularity = 0;
 904
 905        } else {
 906                max_discard_sectors = UINT_MAX >> 9;
 907                granularity = inode->i_sb->s_blocksize;
 908        }
 909
 910        if (max_discard_sectors) {
 911                q->limits.discard_granularity = granularity;
 912                blk_queue_max_discard_sectors(q, max_discard_sectors);
 913                blk_queue_max_write_zeroes_sectors(q, max_discard_sectors);
 914                blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
 915        } else {
 916                q->limits.discard_granularity = 0;
 917                blk_queue_max_discard_sectors(q, 0);
 918                blk_queue_max_write_zeroes_sectors(q, 0);
 919                blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
 920        }
 921        q->limits.discard_alignment = 0;
 922}
 923
 924static void loop_unprepare_queue(struct loop_device *lo)
 925{
 926        kthread_flush_worker(&lo->worker);
 927        kthread_stop(lo->worker_task);
 928}
 929
 930static int loop_kthread_worker_fn(void *worker_ptr)
 931{
 932        current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
 933        return kthread_worker_fn(worker_ptr);
 934}
 935
 936static int loop_prepare_queue(struct loop_device *lo)
 937{
 938        kthread_init_worker(&lo->worker);
 939        lo->worker_task = kthread_run(loop_kthread_worker_fn,
 940                        &lo->worker, "loop%d", lo->lo_number);
 941        if (IS_ERR(lo->worker_task))
 942                return -ENOMEM;
 943        set_user_nice(lo->worker_task, MIN_NICE);
 944        return 0;
 945}
 946
 947static void loop_update_rotational(struct loop_device *lo)
 948{
 949        struct file *file = lo->lo_backing_file;
 950        struct inode *file_inode = file->f_mapping->host;
 951        struct block_device *file_bdev = file_inode->i_sb->s_bdev;
 952        struct request_queue *q = lo->lo_queue;
 953        bool nonrot = true;
 954
 955        /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
 956        if (file_bdev)
 957                nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
 958
 959        if (nonrot)
 960                blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
 961        else
 962                blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
 963}
 964
 965static int
 966loop_release_xfer(struct loop_device *lo)
 967{
 968        int err = 0;
 969        struct loop_func_table *xfer = lo->lo_encryption;
 970
 971        if (xfer) {
 972                if (xfer->release)
 973                        err = xfer->release(lo);
 974                lo->transfer = NULL;
 975                lo->lo_encryption = NULL;
 976                module_put(xfer->owner);
 977        }
 978        return err;
 979}
 980
 981static int
 982loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
 983               const struct loop_info64 *i)
 984{
 985        int err = 0;
 986
 987        if (xfer) {
 988                struct module *owner = xfer->owner;
 989
 990                if (!try_module_get(owner))
 991                        return -EINVAL;
 992                if (xfer->init)
 993                        err = xfer->init(lo, i);
 994                if (err)
 995                        module_put(owner);
 996                else
 997                        lo->lo_encryption = xfer;
 998        }
 999        return err;
1000}
1001
1002/**
1003 * loop_set_status_from_info - configure device from loop_info
1004 * @lo: struct loop_device to configure
1005 * @info: struct loop_info64 to configure the device with
1006 *
1007 * Configures the loop device parameters according to the passed
1008 * in loop_info64 configuration.
1009 */
1010static int
1011loop_set_status_from_info(struct loop_device *lo,
1012                          const struct loop_info64 *info)
1013{
1014        int err;
1015        struct loop_func_table *xfer;
1016        kuid_t uid = current_uid();
1017
1018        if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1019                return -EINVAL;
1020
1021        err = loop_release_xfer(lo);
1022        if (err)
1023                return err;
1024
1025        if (info->lo_encrypt_type) {
1026                unsigned int type = info->lo_encrypt_type;
1027
1028                if (type >= MAX_LO_CRYPT)
1029                        return -EINVAL;
1030                xfer = xfer_funcs[type];
1031                if (xfer == NULL)
1032                        return -EINVAL;
1033        } else
1034                xfer = NULL;
1035
1036        err = loop_init_xfer(lo, xfer, info);
1037        if (err)
1038                return err;
1039
1040        lo->lo_offset = info->lo_offset;
1041        lo->lo_sizelimit = info->lo_sizelimit;
1042        memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1043        memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1044        lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1045        lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1046
1047        if (!xfer)
1048                xfer = &none_funcs;
1049        lo->transfer = xfer->transfer;
1050        lo->ioctl = xfer->ioctl;
1051
1052        lo->lo_flags = info->lo_flags;
1053
1054        lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1055        lo->lo_init[0] = info->lo_init[0];
1056        lo->lo_init[1] = info->lo_init[1];
1057        if (info->lo_encrypt_key_size) {
1058                memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1059                       info->lo_encrypt_key_size);
1060                lo->lo_key_owner = uid;
1061        }
1062
1063        return 0;
1064}
1065
1066static int loop_configure(struct loop_device *lo, fmode_t mode,
1067                          struct block_device *bdev,
1068                          const struct loop_config *config)
1069{
1070        struct file     *file;
1071        struct inode    *inode;
1072        struct address_space *mapping;
1073        int             error;
1074        loff_t          size;
1075        bool            partscan;
1076        unsigned short  bsize;
1077
1078        /* This is safe, since we have a reference from open(). */
1079        __module_get(THIS_MODULE);
1080
1081        error = -EBADF;
1082        file = fget(config->fd);
1083        if (!file)
1084                goto out;
1085
1086        /*
1087         * If we don't hold exclusive handle for the device, upgrade to it
1088         * here to avoid changing device under exclusive owner.
1089         */
1090        if (!(mode & FMODE_EXCL)) {
1091                error = bd_prepare_to_claim(bdev, loop_configure);
1092                if (error)
1093                        goto out_putf;
1094        }
1095
1096        error = mutex_lock_killable(&lo->lo_mutex);
1097        if (error)
1098                goto out_bdev;
1099
1100        error = -EBUSY;
1101        if (lo->lo_state != Lo_unbound)
1102                goto out_unlock;
1103
1104        error = loop_validate_file(file, bdev);
1105        if (error)
1106                goto out_unlock;
1107
1108        mapping = file->f_mapping;
1109        inode = mapping->host;
1110
1111        if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1112                error = -EINVAL;
1113                goto out_unlock;
1114        }
1115
1116        if (config->block_size) {
1117                error = loop_validate_block_size(config->block_size);
1118                if (error)
1119                        goto out_unlock;
1120        }
1121
1122        error = loop_set_status_from_info(lo, &config->info);
1123        if (error)
1124                goto out_unlock;
1125
1126        if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
1127            !file->f_op->write_iter)
1128                lo->lo_flags |= LO_FLAGS_READ_ONLY;
1129
1130        error = loop_prepare_queue(lo);
1131        if (error)
1132                goto out_unlock;
1133
1134        set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1135
1136        lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1137        lo->lo_device = bdev;
1138        lo->lo_backing_file = file;
1139        lo->old_gfp_mask = mapping_gfp_mask(mapping);
1140        mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1141
1142        if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1143                blk_queue_write_cache(lo->lo_queue, true, false);
1144
1145        if (config->block_size)
1146                bsize = config->block_size;
1147        else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1148                /* In case of direct I/O, match underlying block size */
1149                bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1150        else
1151                bsize = 512;
1152
1153        blk_queue_logical_block_size(lo->lo_queue, bsize);
1154        blk_queue_physical_block_size(lo->lo_queue, bsize);
1155        blk_queue_io_min(lo->lo_queue, bsize);
1156
1157        loop_update_rotational(lo);
1158        loop_update_dio(lo);
1159        loop_sysfs_init(lo);
1160
1161        size = get_loop_size(lo, file);
1162        loop_set_size(lo, size);
1163
1164        lo->lo_state = Lo_bound;
1165        if (part_shift)
1166                lo->lo_flags |= LO_FLAGS_PARTSCAN;
1167        partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1168        if (partscan)
1169                lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1170
1171        /* Grab the block_device to prevent its destruction after we
1172         * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1173         */
1174        bdgrab(bdev);
1175        mutex_unlock(&lo->lo_mutex);
1176        if (partscan)
1177                loop_reread_partitions(lo, bdev);
1178        if (!(mode & FMODE_EXCL))
1179                bd_abort_claiming(bdev, loop_configure);
1180        return 0;
1181
1182out_unlock:
1183        mutex_unlock(&lo->lo_mutex);
1184out_bdev:
1185        if (!(mode & FMODE_EXCL))
1186                bd_abort_claiming(bdev, loop_configure);
1187out_putf:
1188        fput(file);
1189out:
1190        /* This is safe: open() is still holding a reference. */
1191        module_put(THIS_MODULE);
1192        return error;
1193}
1194
1195static int __loop_clr_fd(struct loop_device *lo, bool release)
1196{
1197        struct file *filp = NULL;
1198        gfp_t gfp = lo->old_gfp_mask;
1199        struct block_device *bdev = lo->lo_device;
1200        int err = 0;
1201        bool partscan = false;
1202        int lo_number;
1203
1204        mutex_lock(&lo->lo_mutex);
1205        if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1206                err = -ENXIO;
1207                goto out_unlock;
1208        }
1209
1210        filp = lo->lo_backing_file;
1211        if (filp == NULL) {
1212                err = -EINVAL;
1213                goto out_unlock;
1214        }
1215
1216        if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags))
1217                blk_queue_write_cache(lo->lo_queue, false, false);
1218
1219        /* freeze request queue during the transition */
1220        blk_mq_freeze_queue(lo->lo_queue);
1221
1222        spin_lock_irq(&lo->lo_lock);
1223        lo->lo_backing_file = NULL;
1224        spin_unlock_irq(&lo->lo_lock);
1225
1226        loop_release_xfer(lo);
1227        lo->transfer = NULL;
1228        lo->ioctl = NULL;
1229        lo->lo_device = NULL;
1230        lo->lo_encryption = NULL;
1231        lo->lo_offset = 0;
1232        lo->lo_sizelimit = 0;
1233        lo->lo_encrypt_key_size = 0;
1234        memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1235        memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1236        memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1237        blk_queue_logical_block_size(lo->lo_queue, 512);
1238        blk_queue_physical_block_size(lo->lo_queue, 512);
1239        blk_queue_io_min(lo->lo_queue, 512);
1240        if (bdev) {
1241                bdput(bdev);
1242                invalidate_bdev(bdev);
1243                bdev->bd_inode->i_mapping->wb_err = 0;
1244        }
1245        set_capacity(lo->lo_disk, 0);
1246        loop_sysfs_exit(lo);
1247        if (bdev) {
1248                /* let user-space know about this change */
1249                kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1250        }
1251        mapping_set_gfp_mask(filp->f_mapping, gfp);
1252        /* This is safe: open() is still holding a reference. */
1253        module_put(THIS_MODULE);
1254        blk_mq_unfreeze_queue(lo->lo_queue);
1255
1256        partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1257        lo_number = lo->lo_number;
1258        loop_unprepare_queue(lo);
1259out_unlock:
1260        mutex_unlock(&lo->lo_mutex);
1261        if (partscan) {
1262                /*
1263                 * bd_mutex has been held already in release path, so don't
1264                 * acquire it if this function is called in such case.
1265                 *
1266                 * If the reread partition isn't from release path, lo_refcnt
1267                 * must be at least one and it can only become zero when the
1268                 * current holder is released.
1269                 */
1270                if (!release)
1271                        mutex_lock(&bdev->bd_mutex);
1272                err = bdev_disk_changed(bdev, false);
1273                if (!release)
1274                        mutex_unlock(&bdev->bd_mutex);
1275                if (err)
1276                        pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1277                                __func__, lo_number, err);
1278                /* Device is gone, no point in returning error */
1279                err = 0;
1280        }
1281
1282        /*
1283         * lo->lo_state is set to Lo_unbound here after above partscan has
1284         * finished.
1285         *
1286         * There cannot be anybody else entering __loop_clr_fd() as
1287         * lo->lo_backing_file is already cleared and Lo_rundown state
1288         * protects us from all the other places trying to change the 'lo'
1289         * device.
1290         */
1291        mutex_lock(&lo->lo_mutex);
1292        lo->lo_flags = 0;
1293        if (!part_shift)
1294                lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1295        lo->lo_state = Lo_unbound;
1296        mutex_unlock(&lo->lo_mutex);
1297
1298        /*
1299         * Need not hold lo_mutex to fput backing file. Calling fput holding
1300         * lo_mutex triggers a circular lock dependency possibility warning as
1301         * fput can take bd_mutex which is usually taken before lo_mutex.
1302         */
1303        if (filp)
1304                fput(filp);
1305        return err;
1306}
1307
1308static int loop_clr_fd(struct loop_device *lo)
1309{
1310        int err;
1311
1312        err = mutex_lock_killable(&lo->lo_mutex);
1313        if (err)
1314                return err;
1315        if (lo->lo_state != Lo_bound) {
1316                mutex_unlock(&lo->lo_mutex);
1317                return -ENXIO;
1318        }
1319        /*
1320         * If we've explicitly asked to tear down the loop device,
1321         * and it has an elevated reference count, set it for auto-teardown when
1322         * the last reference goes away. This stops $!~#$@ udev from
1323         * preventing teardown because it decided that it needs to run blkid on
1324         * the loopback device whenever they appear. xfstests is notorious for
1325         * failing tests because blkid via udev races with a losetup
1326         * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1327         * command to fail with EBUSY.
1328         */
1329        if (atomic_read(&lo->lo_refcnt) > 1) {
1330                lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1331                mutex_unlock(&lo->lo_mutex);
1332                return 0;
1333        }
1334        lo->lo_state = Lo_rundown;
1335        mutex_unlock(&lo->lo_mutex);
1336
1337        return __loop_clr_fd(lo, false);
1338}
1339
1340static int
1341loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1342{
1343        int err;
1344        struct block_device *bdev;
1345        kuid_t uid = current_uid();
1346        int prev_lo_flags;
1347        bool partscan = false;
1348        bool size_changed = false;
1349
1350        err = mutex_lock_killable(&lo->lo_mutex);
1351        if (err)
1352                return err;
1353        if (lo->lo_encrypt_key_size &&
1354            !uid_eq(lo->lo_key_owner, uid) &&
1355            !capable(CAP_SYS_ADMIN)) {
1356                err = -EPERM;
1357                goto out_unlock;
1358        }
1359        if (lo->lo_state != Lo_bound) {
1360                err = -ENXIO;
1361                goto out_unlock;
1362        }
1363
1364        if (lo->lo_offset != info->lo_offset ||
1365            lo->lo_sizelimit != info->lo_sizelimit) {
1366                size_changed = true;
1367                sync_blockdev(lo->lo_device);
1368                invalidate_bdev(lo->lo_device);
1369        }
1370
1371        /* I/O need to be drained during transfer transition */
1372        blk_mq_freeze_queue(lo->lo_queue);
1373
1374        if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) {
1375                /* If any pages were dirtied after invalidate_bdev(), try again */
1376                err = -EAGAIN;
1377                pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1378                        __func__, lo->lo_number, lo->lo_file_name,
1379                        lo->lo_device->bd_inode->i_mapping->nrpages);
1380                goto out_unfreeze;
1381        }
1382
1383        prev_lo_flags = lo->lo_flags;
1384
1385        err = loop_set_status_from_info(lo, info);
1386        if (err)
1387                goto out_unfreeze;
1388
1389        /* Mask out flags that can't be set using LOOP_SET_STATUS. */
1390        lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1391        /* For those flags, use the previous values instead */
1392        lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1393        /* For flags that can't be cleared, use previous values too */
1394        lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1395
1396        if (size_changed) {
1397                loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1398                                           lo->lo_backing_file);
1399                loop_set_size(lo, new_size);
1400        }
1401
1402        loop_config_discard(lo);
1403
1404        /* update dio if lo_offset or transfer is changed */
1405        __loop_update_dio(lo, lo->use_dio);
1406
1407out_unfreeze:
1408        blk_mq_unfreeze_queue(lo->lo_queue);
1409
1410        if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1411             !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1412                lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1413                bdev = lo->lo_device;
1414                partscan = true;
1415        }
1416out_unlock:
1417        mutex_unlock(&lo->lo_mutex);
1418        if (partscan)
1419                loop_reread_partitions(lo, bdev);
1420
1421        return err;
1422}
1423
1424static int
1425loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1426{
1427        struct path path;
1428        struct kstat stat;
1429        int ret;
1430
1431        ret = mutex_lock_killable(&lo->lo_mutex);
1432        if (ret)
1433                return ret;
1434        if (lo->lo_state != Lo_bound) {
1435                mutex_unlock(&lo->lo_mutex);
1436                return -ENXIO;
1437        }
1438
1439        memset(info, 0, sizeof(*info));
1440        info->lo_number = lo->lo_number;
1441        info->lo_offset = lo->lo_offset;
1442        info->lo_sizelimit = lo->lo_sizelimit;
1443        info->lo_flags = lo->lo_flags;
1444        memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1445        memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1446        info->lo_encrypt_type =
1447                lo->lo_encryption ? lo->lo_encryption->number : 0;
1448        if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1449                info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1450                memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1451                       lo->lo_encrypt_key_size);
1452        }
1453
1454        /* Drop lo_mutex while we call into the filesystem. */
1455        path = lo->lo_backing_file->f_path;
1456        path_get(&path);
1457        mutex_unlock(&lo->lo_mutex);
1458        ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1459        if (!ret) {
1460                info->lo_device = huge_encode_dev(stat.dev);
1461                info->lo_inode = stat.ino;
1462                info->lo_rdevice = huge_encode_dev(stat.rdev);
1463        }
1464        path_put(&path);
1465        return ret;
1466}
1467
1468static void
1469loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1470{
1471        memset(info64, 0, sizeof(*info64));
1472        info64->lo_number = info->lo_number;
1473        info64->lo_device = info->lo_device;
1474        info64->lo_inode = info->lo_inode;
1475        info64->lo_rdevice = info->lo_rdevice;
1476        info64->lo_offset = info->lo_offset;
1477        info64->lo_sizelimit = 0;
1478        info64->lo_encrypt_type = info->lo_encrypt_type;
1479        info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1480        info64->lo_flags = info->lo_flags;
1481        info64->lo_init[0] = info->lo_init[0];
1482        info64->lo_init[1] = info->lo_init[1];
1483        if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1484                memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1485        else
1486                memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1487        memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1488}
1489
1490static int
1491loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1492{
1493        memset(info, 0, sizeof(*info));
1494        info->lo_number = info64->lo_number;
1495        info->lo_device = info64->lo_device;
1496        info->lo_inode = info64->lo_inode;
1497        info->lo_rdevice = info64->lo_rdevice;
1498        info->lo_offset = info64->lo_offset;
1499        info->lo_encrypt_type = info64->lo_encrypt_type;
1500        info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1501        info->lo_flags = info64->lo_flags;
1502        info->lo_init[0] = info64->lo_init[0];
1503        info->lo_init[1] = info64->lo_init[1];
1504        if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1505                memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1506        else
1507                memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1508        memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1509
1510        /* error in case values were truncated */
1511        if (info->lo_device != info64->lo_device ||
1512            info->lo_rdevice != info64->lo_rdevice ||
1513            info->lo_inode != info64->lo_inode ||
1514            info->lo_offset != info64->lo_offset)
1515                return -EOVERFLOW;
1516
1517        return 0;
1518}
1519
1520static int
1521loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1522{
1523        struct loop_info info;
1524        struct loop_info64 info64;
1525
1526        if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1527                return -EFAULT;
1528        loop_info64_from_old(&info, &info64);
1529        return loop_set_status(lo, &info64);
1530}
1531
1532static int
1533loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1534{
1535        struct loop_info64 info64;
1536
1537        if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1538                return -EFAULT;
1539        return loop_set_status(lo, &info64);
1540}
1541
1542static int
1543loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1544        struct loop_info info;
1545        struct loop_info64 info64;
1546        int err;
1547
1548        if (!arg)
1549                return -EINVAL;
1550        err = loop_get_status(lo, &info64);
1551        if (!err)
1552                err = loop_info64_to_old(&info64, &info);
1553        if (!err && copy_to_user(arg, &info, sizeof(info)))
1554                err = -EFAULT;
1555
1556        return err;
1557}
1558
1559static int
1560loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1561        struct loop_info64 info64;
1562        int err;
1563
1564        if (!arg)
1565                return -EINVAL;
1566        err = loop_get_status(lo, &info64);
1567        if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1568                err = -EFAULT;
1569
1570        return err;
1571}
1572
1573static int loop_set_capacity(struct loop_device *lo)
1574{
1575        loff_t size;
1576
1577        if (unlikely(lo->lo_state != Lo_bound))
1578                return -ENXIO;
1579
1580        size = get_loop_size(lo, lo->lo_backing_file);
1581        loop_set_size(lo, size);
1582
1583        return 0;
1584}
1585
1586static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1587{
1588        int error = -ENXIO;
1589        if (lo->lo_state != Lo_bound)
1590                goto out;
1591
1592        __loop_update_dio(lo, !!arg);
1593        if (lo->use_dio == !!arg)
1594                return 0;
1595        error = -EINVAL;
1596 out:
1597        return error;
1598}
1599
1600static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1601{
1602        int err = 0;
1603
1604        if (lo->lo_state != Lo_bound)
1605                return -ENXIO;
1606
1607        err = loop_validate_block_size(arg);
1608        if (err)
1609                return err;
1610
1611        if (lo->lo_queue->limits.logical_block_size == arg)
1612                return 0;
1613
1614        sync_blockdev(lo->lo_device);
1615        invalidate_bdev(lo->lo_device);
1616
1617        blk_mq_freeze_queue(lo->lo_queue);
1618
1619        /* invalidate_bdev should have truncated all the pages */
1620        if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1621                err = -EAGAIN;
1622                pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1623                        __func__, lo->lo_number, lo->lo_file_name,
1624                        lo->lo_device->bd_inode->i_mapping->nrpages);
1625                goto out_unfreeze;
1626        }
1627
1628        blk_queue_logical_block_size(lo->lo_queue, arg);
1629        blk_queue_physical_block_size(lo->lo_queue, arg);
1630        blk_queue_io_min(lo->lo_queue, arg);
1631        loop_update_dio(lo);
1632out_unfreeze:
1633        blk_mq_unfreeze_queue(lo->lo_queue);
1634
1635        return err;
1636}
1637
1638static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1639                           unsigned long arg)
1640{
1641        int err;
1642
1643        err = mutex_lock_killable(&lo->lo_mutex);
1644        if (err)
1645                return err;
1646        switch (cmd) {
1647        case LOOP_SET_CAPACITY:
1648                err = loop_set_capacity(lo);
1649                break;
1650        case LOOP_SET_DIRECT_IO:
1651                err = loop_set_dio(lo, arg);
1652                break;
1653        case LOOP_SET_BLOCK_SIZE:
1654                err = loop_set_block_size(lo, arg);
1655                break;
1656        default:
1657                err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1658        }
1659        mutex_unlock(&lo->lo_mutex);
1660        return err;
1661}
1662
1663static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1664        unsigned int cmd, unsigned long arg)
1665{
1666        struct loop_device *lo = bdev->bd_disk->private_data;
1667        void __user *argp = (void __user *) arg;
1668        int err;
1669
1670        switch (cmd) {
1671        case LOOP_SET_FD: {
1672                /*
1673                 * Legacy case - pass in a zeroed out struct loop_config with
1674                 * only the file descriptor set , which corresponds with the
1675                 * default parameters we'd have used otherwise.
1676                 */
1677                struct loop_config config;
1678
1679                memset(&config, 0, sizeof(config));
1680                config.fd = arg;
1681
1682                return loop_configure(lo, mode, bdev, &config);
1683        }
1684        case LOOP_CONFIGURE: {
1685                struct loop_config config;
1686
1687                if (copy_from_user(&config, argp, sizeof(config)))
1688                        return -EFAULT;
1689
1690                return loop_configure(lo, mode, bdev, &config);
1691        }
1692        case LOOP_CHANGE_FD:
1693                return loop_change_fd(lo, bdev, arg);
1694        case LOOP_CLR_FD:
1695                return loop_clr_fd(lo);
1696        case LOOP_SET_STATUS:
1697                err = -EPERM;
1698                if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1699                        err = loop_set_status_old(lo, argp);
1700                }
1701                break;
1702        case LOOP_GET_STATUS:
1703                return loop_get_status_old(lo, argp);
1704        case LOOP_SET_STATUS64:
1705                err = -EPERM;
1706                if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1707                        err = loop_set_status64(lo, argp);
1708                }
1709                break;
1710        case LOOP_GET_STATUS64:
1711                return loop_get_status64(lo, argp);
1712        case LOOP_SET_CAPACITY:
1713        case LOOP_SET_DIRECT_IO:
1714        case LOOP_SET_BLOCK_SIZE:
1715                if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1716                        return -EPERM;
1717                fallthrough;
1718        default:
1719                err = lo_simple_ioctl(lo, cmd, arg);
1720                break;
1721        }
1722
1723        return err;
1724}
1725
1726#ifdef CONFIG_COMPAT
1727struct compat_loop_info {
1728        compat_int_t    lo_number;      /* ioctl r/o */
1729        compat_dev_t    lo_device;      /* ioctl r/o */
1730        compat_ulong_t  lo_inode;       /* ioctl r/o */
1731        compat_dev_t    lo_rdevice;     /* ioctl r/o */
1732        compat_int_t    lo_offset;
1733        compat_int_t    lo_encrypt_type;
1734        compat_int_t    lo_encrypt_key_size;    /* ioctl w/o */
1735        compat_int_t    lo_flags;       /* ioctl r/o */
1736        char            lo_name[LO_NAME_SIZE];
1737        unsigned char   lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1738        compat_ulong_t  lo_init[2];
1739        char            reserved[4];
1740};
1741
1742/*
1743 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1744 * - noinlined to reduce stack space usage in main part of driver
1745 */
1746static noinline int
1747loop_info64_from_compat(const struct compat_loop_info __user *arg,
1748                        struct loop_info64 *info64)
1749{
1750        struct compat_loop_info info;
1751
1752        if (copy_from_user(&info, arg, sizeof(info)))
1753                return -EFAULT;
1754
1755        memset(info64, 0, sizeof(*info64));
1756        info64->lo_number = info.lo_number;
1757        info64->lo_device = info.lo_device;
1758        info64->lo_inode = info.lo_inode;
1759        info64->lo_rdevice = info.lo_rdevice;
1760        info64->lo_offset = info.lo_offset;
1761        info64->lo_sizelimit = 0;
1762        info64->lo_encrypt_type = info.lo_encrypt_type;
1763        info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1764        info64->lo_flags = info.lo_flags;
1765        info64->lo_init[0] = info.lo_init[0];
1766        info64->lo_init[1] = info.lo_init[1];
1767        if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1768                memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1769        else
1770                memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1771        memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1772        return 0;
1773}
1774
1775/*
1776 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1777 * - noinlined to reduce stack space usage in main part of driver
1778 */
1779static noinline int
1780loop_info64_to_compat(const struct loop_info64 *info64,
1781                      struct compat_loop_info __user *arg)
1782{
1783        struct compat_loop_info info;
1784
1785        memset(&info, 0, sizeof(info));
1786        info.lo_number = info64->lo_number;
1787        info.lo_device = info64->lo_device;
1788        info.lo_inode = info64->lo_inode;
1789        info.lo_rdevice = info64->lo_rdevice;
1790        info.lo_offset = info64->lo_offset;
1791        info.lo_encrypt_type = info64->lo_encrypt_type;
1792        info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1793        info.lo_flags = info64->lo_flags;
1794        info.lo_init[0] = info64->lo_init[0];
1795        info.lo_init[1] = info64->lo_init[1];
1796        if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1797                memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1798        else
1799                memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1800        memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1801
1802        /* error in case values were truncated */
1803        if (info.lo_device != info64->lo_device ||
1804            info.lo_rdevice != info64->lo_rdevice ||
1805            info.lo_inode != info64->lo_inode ||
1806            info.lo_offset != info64->lo_offset ||
1807            info.lo_init[0] != info64->lo_init[0] ||
1808            info.lo_init[1] != info64->lo_init[1])
1809                return -EOVERFLOW;
1810
1811        if (copy_to_user(arg, &info, sizeof(info)))
1812                return -EFAULT;
1813        return 0;
1814}
1815
1816static int
1817loop_set_status_compat(struct loop_device *lo,
1818                       const struct compat_loop_info __user *arg)
1819{
1820        struct loop_info64 info64;
1821        int ret;
1822
1823        ret = loop_info64_from_compat(arg, &info64);
1824        if (ret < 0)
1825                return ret;
1826        return loop_set_status(lo, &info64);
1827}
1828
1829static int
1830loop_get_status_compat(struct loop_device *lo,
1831                       struct compat_loop_info __user *arg)
1832{
1833        struct loop_info64 info64;
1834        int err;
1835
1836        if (!arg)
1837                return -EINVAL;
1838        err = loop_get_status(lo, &info64);
1839        if (!err)
1840                err = loop_info64_to_compat(&info64, arg);
1841        return err;
1842}
1843
1844static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1845                           unsigned int cmd, unsigned long arg)
1846{
1847        struct loop_device *lo = bdev->bd_disk->private_data;
1848        int err;
1849
1850        switch(cmd) {
1851        case LOOP_SET_STATUS:
1852                err = loop_set_status_compat(lo,
1853                             (const struct compat_loop_info __user *)arg);
1854                break;
1855        case LOOP_GET_STATUS:
1856                err = loop_get_status_compat(lo,
1857                                     (struct compat_loop_info __user *)arg);
1858                break;
1859        case LOOP_SET_CAPACITY:
1860        case LOOP_CLR_FD:
1861        case LOOP_GET_STATUS64:
1862        case LOOP_SET_STATUS64:
1863        case LOOP_CONFIGURE:
1864                arg = (unsigned long) compat_ptr(arg);
1865                fallthrough;
1866        case LOOP_SET_FD:
1867        case LOOP_CHANGE_FD:
1868        case LOOP_SET_BLOCK_SIZE:
1869        case LOOP_SET_DIRECT_IO:
1870                err = lo_ioctl(bdev, mode, cmd, arg);
1871                break;
1872        default:
1873                err = -ENOIOCTLCMD;
1874                break;
1875        }
1876        return err;
1877}
1878#endif
1879
1880static int lo_open(struct block_device *bdev, fmode_t mode)
1881{
1882        struct loop_device *lo = bdev->bd_disk->private_data;
1883        int err;
1884
1885        err = mutex_lock_killable(&lo->lo_mutex);
1886        if (err)
1887                return err;
1888        if (lo->lo_state == Lo_deleting)
1889                err = -ENXIO;
1890        else
1891                atomic_inc(&lo->lo_refcnt);
1892        mutex_unlock(&lo->lo_mutex);
1893        return err;
1894}
1895
1896static void lo_release(struct gendisk *disk, fmode_t mode)
1897{
1898        struct loop_device *lo = disk->private_data;
1899
1900        mutex_lock(&lo->lo_mutex);
1901        if (atomic_dec_return(&lo->lo_refcnt))
1902                goto out_unlock;
1903
1904        if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1905                if (lo->lo_state != Lo_bound)
1906                        goto out_unlock;
1907                lo->lo_state = Lo_rundown;
1908                mutex_unlock(&lo->lo_mutex);
1909                /*
1910                 * In autoclear mode, stop the loop thread
1911                 * and remove configuration after last close.
1912                 */
1913                __loop_clr_fd(lo, true);
1914                return;
1915        } else if (lo->lo_state == Lo_bound) {
1916                /*
1917                 * Otherwise keep thread (if running) and config,
1918                 * but flush possible ongoing bios in thread.
1919                 */
1920                blk_mq_freeze_queue(lo->lo_queue);
1921                blk_mq_unfreeze_queue(lo->lo_queue);
1922        }
1923
1924out_unlock:
1925        mutex_unlock(&lo->lo_mutex);
1926}
1927
1928static const struct block_device_operations lo_fops = {
1929        .owner =        THIS_MODULE,
1930        .open =         lo_open,
1931        .release =      lo_release,
1932        .ioctl =        lo_ioctl,
1933#ifdef CONFIG_COMPAT
1934        .compat_ioctl = lo_compat_ioctl,
1935#endif
1936};
1937
1938/*
1939 * And now the modules code and kernel interface.
1940 */
1941static int max_loop;
1942module_param(max_loop, int, 0444);
1943MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1944module_param(max_part, int, 0444);
1945MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1946MODULE_LICENSE("GPL");
1947MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1948
1949int loop_register_transfer(struct loop_func_table *funcs)
1950{
1951        unsigned int n = funcs->number;
1952
1953        if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1954                return -EINVAL;
1955        xfer_funcs[n] = funcs;
1956        return 0;
1957}
1958
1959static int unregister_transfer_cb(int id, void *ptr, void *data)
1960{
1961        struct loop_device *lo = ptr;
1962        struct loop_func_table *xfer = data;
1963
1964        mutex_lock(&lo->lo_mutex);
1965        if (lo->lo_encryption == xfer)
1966                loop_release_xfer(lo);
1967        mutex_unlock(&lo->lo_mutex);
1968        return 0;
1969}
1970
1971int loop_unregister_transfer(int number)
1972{
1973        unsigned int n = number;
1974        struct loop_func_table *xfer;
1975
1976        if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1977                return -EINVAL;
1978
1979        xfer_funcs[n] = NULL;
1980        idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1981        return 0;
1982}
1983
1984EXPORT_SYMBOL(loop_register_transfer);
1985EXPORT_SYMBOL(loop_unregister_transfer);
1986
1987static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1988                const struct blk_mq_queue_data *bd)
1989{
1990        struct request *rq = bd->rq;
1991        struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1992        struct loop_device *lo = rq->q->queuedata;
1993
1994        blk_mq_start_request(rq);
1995
1996        if (lo->lo_state != Lo_bound)
1997                return BLK_STS_IOERR;
1998
1999        switch (req_op(rq)) {
2000        case REQ_OP_FLUSH:
2001        case REQ_OP_DISCARD:
2002        case REQ_OP_WRITE_ZEROES:
2003                cmd->use_aio = false;
2004                break;
2005        default:
2006                cmd->use_aio = lo->use_dio;
2007                break;
2008        }
2009
2010        /* always use the first bio's css */
2011#ifdef CONFIG_BLK_CGROUP
2012        if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
2013                cmd->css = &bio_blkcg(rq->bio)->css;
2014                css_get(cmd->css);
2015        } else
2016#endif
2017                cmd->css = NULL;
2018        kthread_queue_work(&lo->worker, &cmd->work);
2019
2020        return BLK_STS_OK;
2021}
2022
2023static void loop_handle_cmd(struct loop_cmd *cmd)
2024{
2025        struct request *rq = blk_mq_rq_from_pdu(cmd);
2026        const bool write = op_is_write(req_op(rq));
2027        struct loop_device *lo = rq->q->queuedata;
2028        int ret = 0;
2029
2030        if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
2031                ret = -EIO;
2032                goto failed;
2033        }
2034
2035        ret = do_req_filebacked(lo, rq);
2036 failed:
2037        /* complete non-aio request */
2038        if (!cmd->use_aio || ret) {
2039                if (ret == -EOPNOTSUPP)
2040                        cmd->ret = ret;
2041                else
2042                        cmd->ret = ret ? -EIO : 0;
2043                if (likely(!blk_should_fake_timeout(rq->q)))
2044                        blk_mq_complete_request(rq);
2045        }
2046}
2047
2048static void loop_queue_work(struct kthread_work *work)
2049{
2050        struct loop_cmd *cmd =
2051                container_of(work, struct loop_cmd, work);
2052
2053        loop_handle_cmd(cmd);
2054}
2055
2056static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
2057                unsigned int hctx_idx, unsigned int numa_node)
2058{
2059        struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2060
2061        kthread_init_work(&cmd->work, loop_queue_work);
2062        return 0;
2063}
2064
2065static const struct blk_mq_ops loop_mq_ops = {
2066        .queue_rq       = loop_queue_rq,
2067        .init_request   = loop_init_request,
2068        .complete       = lo_complete_rq,
2069};
2070
2071static int loop_add(struct loop_device **l, int i)
2072{
2073        struct loop_device *lo;
2074        struct gendisk *disk;
2075        int err;
2076
2077        err = -ENOMEM;
2078        lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2079        if (!lo)
2080                goto out;
2081
2082        lo->lo_state = Lo_unbound;
2083
2084        /* allocate id, if @id >= 0, we're requesting that specific id */
2085        if (i >= 0) {
2086                err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2087                if (err == -ENOSPC)
2088                        err = -EEXIST;
2089        } else {
2090                err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2091        }
2092        if (err < 0)
2093                goto out_free_dev;
2094        i = err;
2095
2096        err = -ENOMEM;
2097        lo->tag_set.ops = &loop_mq_ops;
2098        lo->tag_set.nr_hw_queues = 1;
2099        lo->tag_set.queue_depth = 128;
2100        lo->tag_set.numa_node = NUMA_NO_NODE;
2101        lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2102        lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING;
2103        lo->tag_set.driver_data = lo;
2104
2105        err = blk_mq_alloc_tag_set(&lo->tag_set);
2106        if (err)
2107                goto out_free_idr;
2108
2109        lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
2110        if (IS_ERR(lo->lo_queue)) {
2111                err = PTR_ERR(lo->lo_queue);
2112                goto out_cleanup_tags;
2113        }
2114        lo->lo_queue->queuedata = lo;
2115
2116        blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2117
2118        /*
2119         * By default, we do buffer IO, so it doesn't make sense to enable
2120         * merge because the I/O submitted to backing file is handled page by
2121         * page. For directio mode, merge does help to dispatch bigger request
2122         * to underlayer disk. We will enable merge once directio is enabled.
2123         */
2124        blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2125
2126        err = -ENOMEM;
2127        disk = lo->lo_disk = alloc_disk(1 << part_shift);
2128        if (!disk)
2129                goto out_free_queue;
2130
2131        /*
2132         * Disable partition scanning by default. The in-kernel partition
2133         * scanning can be requested individually per-device during its
2134         * setup. Userspace can always add and remove partitions from all
2135         * devices. The needed partition minors are allocated from the
2136         * extended minor space, the main loop device numbers will continue
2137         * to match the loop minors, regardless of the number of partitions
2138         * used.
2139         *
2140         * If max_part is given, partition scanning is globally enabled for
2141         * all loop devices. The minors for the main loop devices will be
2142         * multiples of max_part.
2143         *
2144         * Note: Global-for-all-devices, set-only-at-init, read-only module
2145         * parameteters like 'max_loop' and 'max_part' make things needlessly
2146         * complicated, are too static, inflexible and may surprise
2147         * userspace tools. Parameters like this in general should be avoided.
2148         */
2149        if (!part_shift)
2150                disk->flags |= GENHD_FL_NO_PART_SCAN;
2151        disk->flags |= GENHD_FL_EXT_DEVT;
2152        atomic_set(&lo->lo_refcnt, 0);
2153        mutex_init(&lo->lo_mutex);
2154        lo->lo_number           = i;
2155        spin_lock_init(&lo->lo_lock);
2156        disk->major             = LOOP_MAJOR;
2157        disk->first_minor       = i << part_shift;
2158        disk->fops              = &lo_fops;
2159        disk->private_data      = lo;
2160        disk->queue             = lo->lo_queue;
2161        sprintf(disk->disk_name, "loop%d", i);
2162        add_disk(disk);
2163        *l = lo;
2164        return lo->lo_number;
2165
2166out_free_queue:
2167        blk_cleanup_queue(lo->lo_queue);
2168out_cleanup_tags:
2169        blk_mq_free_tag_set(&lo->tag_set);
2170out_free_idr:
2171        idr_remove(&loop_index_idr, i);
2172out_free_dev:
2173        kfree(lo);
2174out:
2175        return err;
2176}
2177
2178static void loop_remove(struct loop_device *lo)
2179{
2180        del_gendisk(lo->lo_disk);
2181        blk_cleanup_queue(lo->lo_queue);
2182        blk_mq_free_tag_set(&lo->tag_set);
2183        put_disk(lo->lo_disk);
2184        mutex_destroy(&lo->lo_mutex);
2185        kfree(lo);
2186}
2187
2188static int find_free_cb(int id, void *ptr, void *data)
2189{
2190        struct loop_device *lo = ptr;
2191        struct loop_device **l = data;
2192
2193        if (lo->lo_state == Lo_unbound) {
2194                *l = lo;
2195                return 1;
2196        }
2197        return 0;
2198}
2199
2200static int loop_lookup(struct loop_device **l, int i)
2201{
2202        struct loop_device *lo;
2203        int ret = -ENODEV;
2204
2205        if (i < 0) {
2206                int err;
2207
2208                err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2209                if (err == 1) {
2210                        *l = lo;
2211                        ret = lo->lo_number;
2212                }
2213                goto out;
2214        }
2215
2216        /* lookup and return a specific i */
2217        lo = idr_find(&loop_index_idr, i);
2218        if (lo) {
2219                *l = lo;
2220                ret = lo->lo_number;
2221        }
2222out:
2223        return ret;
2224}
2225
2226static void loop_probe(dev_t dev)
2227{
2228        int idx = MINOR(dev) >> part_shift;
2229        struct loop_device *lo;
2230
2231        if (max_loop && idx >= max_loop)
2232                return;
2233
2234        mutex_lock(&loop_ctl_mutex);
2235        if (loop_lookup(&lo, idx) < 0)
2236                loop_add(&lo, idx);
2237        mutex_unlock(&loop_ctl_mutex);
2238}
2239
2240static long loop_control_ioctl(struct file *file, unsigned int cmd,
2241                               unsigned long parm)
2242{
2243        struct loop_device *lo;
2244        int ret;
2245
2246        ret = mutex_lock_killable(&loop_ctl_mutex);
2247        if (ret)
2248                return ret;
2249
2250        ret = -ENOSYS;
2251        switch (cmd) {
2252        case LOOP_CTL_ADD:
2253                ret = loop_lookup(&lo, parm);
2254                if (ret >= 0) {
2255                        ret = -EEXIST;
2256                        break;
2257                }
2258                ret = loop_add(&lo, parm);
2259                break;
2260        case LOOP_CTL_REMOVE:
2261                ret = loop_lookup(&lo, parm);
2262                if (ret < 0)
2263                        break;
2264                ret = mutex_lock_killable(&lo->lo_mutex);
2265                if (ret)
2266                        break;
2267                if (lo->lo_state != Lo_unbound) {
2268                        ret = -EBUSY;
2269                        mutex_unlock(&lo->lo_mutex);
2270                        break;
2271                }
2272                if (atomic_read(&lo->lo_refcnt) > 0) {
2273                        ret = -EBUSY;
2274                        mutex_unlock(&lo->lo_mutex);
2275                        break;
2276                }
2277                lo->lo_state = Lo_deleting;
2278                mutex_unlock(&lo->lo_mutex);
2279                idr_remove(&loop_index_idr, lo->lo_number);
2280                loop_remove(lo);
2281                break;
2282        case LOOP_CTL_GET_FREE:
2283                ret = loop_lookup(&lo, -1);
2284                if (ret >= 0)
2285                        break;
2286                ret = loop_add(&lo, -1);
2287        }
2288        mutex_unlock(&loop_ctl_mutex);
2289
2290        return ret;
2291}
2292
2293static const struct file_operations loop_ctl_fops = {
2294        .open           = nonseekable_open,
2295        .unlocked_ioctl = loop_control_ioctl,
2296        .compat_ioctl   = loop_control_ioctl,
2297        .owner          = THIS_MODULE,
2298        .llseek         = noop_llseek,
2299};
2300
2301static struct miscdevice loop_misc = {
2302        .minor          = LOOP_CTRL_MINOR,
2303        .name           = "loop-control",
2304        .fops           = &loop_ctl_fops,
2305};
2306
2307MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2308MODULE_ALIAS("devname:loop-control");
2309
2310static int __init loop_init(void)
2311{
2312        int i, nr;
2313        struct loop_device *lo;
2314        int err;
2315
2316        part_shift = 0;
2317        if (max_part > 0) {
2318                part_shift = fls(max_part);
2319
2320                /*
2321                 * Adjust max_part according to part_shift as it is exported
2322                 * to user space so that user can decide correct minor number
2323                 * if [s]he want to create more devices.
2324                 *
2325                 * Note that -1 is required because partition 0 is reserved
2326                 * for the whole disk.
2327                 */
2328                max_part = (1UL << part_shift) - 1;
2329        }
2330
2331        if ((1UL << part_shift) > DISK_MAX_PARTS) {
2332                err = -EINVAL;
2333                goto err_out;
2334        }
2335
2336        if (max_loop > 1UL << (MINORBITS - part_shift)) {
2337                err = -EINVAL;
2338                goto err_out;
2339        }
2340
2341        /*
2342         * If max_loop is specified, create that many devices upfront.
2343         * This also becomes a hard limit. If max_loop is not specified,
2344         * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2345         * init time. Loop devices can be requested on-demand with the
2346         * /dev/loop-control interface, or be instantiated by accessing
2347         * a 'dead' device node.
2348         */
2349        if (max_loop)
2350                nr = max_loop;
2351        else
2352                nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2353
2354        err = misc_register(&loop_misc);
2355        if (err < 0)
2356                goto err_out;
2357
2358
2359        if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2360                err = -EIO;
2361                goto misc_out;
2362        }
2363
2364        /* pre-create number of devices given by config or max_loop */
2365        mutex_lock(&loop_ctl_mutex);
2366        for (i = 0; i < nr; i++)
2367                loop_add(&lo, i);
2368        mutex_unlock(&loop_ctl_mutex);
2369
2370        printk(KERN_INFO "loop: module loaded\n");
2371        return 0;
2372
2373misc_out:
2374        misc_deregister(&loop_misc);
2375err_out:
2376        return err;
2377}
2378
2379static int loop_exit_cb(int id, void *ptr, void *data)
2380{
2381        struct loop_device *lo = ptr;
2382
2383        loop_remove(lo);
2384        return 0;
2385}
2386
2387static void __exit loop_exit(void)
2388{
2389        mutex_lock(&loop_ctl_mutex);
2390
2391        idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2392        idr_destroy(&loop_index_idr);
2393
2394        unregister_blkdev(LOOP_MAJOR, "loop");
2395
2396        misc_deregister(&loop_misc);
2397
2398        mutex_unlock(&loop_ctl_mutex);
2399}
2400
2401module_init(loop_init);
2402module_exit(loop_exit);
2403
2404#ifndef MODULE
2405static int __init max_loop_setup(char *str)
2406{
2407        max_loop = simple_strtol(str, NULL, 0);
2408        return 1;
2409}
2410
2411__setup("max_loop=", max_loop_setup);
2412#endif
2413