1
2
3
4
5
6
7
8
9
10#include <linux/interrupt.h>
11#include <linux/io.h>
12#include <linux/of.h>
13#include <linux/of_address.h>
14#include <linux/of_irq.h>
15#include <linux/clockchips.h>
16#include <linux/clocksource.h>
17#include <linux/sched_clock.h>
18#include <linux/clk.h>
19#include <linux/slab.h>
20#include <linux/bitops.h>
21#include <linux/delay.h>
22
23
24
25
26#define TIMER1_COUNT (0x00)
27#define TIMER1_LOAD (0x04)
28#define TIMER1_MATCH1 (0x08)
29#define TIMER1_MATCH2 (0x0c)
30#define TIMER2_COUNT (0x10)
31#define TIMER2_LOAD (0x14)
32#define TIMER2_MATCH1 (0x18)
33#define TIMER2_MATCH2 (0x1c)
34#define TIMER3_COUNT (0x20)
35#define TIMER3_LOAD (0x24)
36#define TIMER3_MATCH1 (0x28)
37#define TIMER3_MATCH2 (0x2c)
38#define TIMER_CR (0x30)
39
40
41
42
43#define AST2600_TIMER_CR_CLR (0x3c)
44
45
46
47
48#define TIMER_1_CR_ENABLE BIT(0)
49#define TIMER_1_CR_CLOCK BIT(1)
50#define TIMER_1_CR_INT BIT(2)
51#define TIMER_2_CR_ENABLE BIT(3)
52#define TIMER_2_CR_CLOCK BIT(4)
53#define TIMER_2_CR_INT BIT(5)
54#define TIMER_3_CR_ENABLE BIT(6)
55#define TIMER_3_CR_CLOCK BIT(7)
56#define TIMER_3_CR_INT BIT(8)
57#define TIMER_1_CR_UPDOWN BIT(9)
58#define TIMER_2_CR_UPDOWN BIT(10)
59#define TIMER_3_CR_UPDOWN BIT(11)
60
61
62
63
64
65
66#define TIMER_1_CR_ASPEED_ENABLE BIT(0)
67#define TIMER_1_CR_ASPEED_CLOCK BIT(1)
68#define TIMER_1_CR_ASPEED_INT BIT(2)
69#define TIMER_2_CR_ASPEED_ENABLE BIT(4)
70#define TIMER_2_CR_ASPEED_CLOCK BIT(5)
71#define TIMER_2_CR_ASPEED_INT BIT(6)
72#define TIMER_3_CR_ASPEED_ENABLE BIT(8)
73#define TIMER_3_CR_ASPEED_CLOCK BIT(9)
74#define TIMER_3_CR_ASPEED_INT BIT(10)
75
76
77
78
79
80
81
82
83
84
85
86#define TIMER_INTR_STATE (0x34)
87#define TIMER_INTR_MASK (0x38)
88#define TIMER_1_INT_MATCH1 BIT(0)
89#define TIMER_1_INT_MATCH2 BIT(1)
90#define TIMER_1_INT_OVERFLOW BIT(2)
91#define TIMER_2_INT_MATCH1 BIT(3)
92#define TIMER_2_INT_MATCH2 BIT(4)
93#define TIMER_2_INT_OVERFLOW BIT(5)
94#define TIMER_3_INT_MATCH1 BIT(6)
95#define TIMER_3_INT_MATCH2 BIT(7)
96#define TIMER_3_INT_OVERFLOW BIT(8)
97#define TIMER_INT_ALL_MASK 0x1ff
98
99struct fttmr010 {
100 void __iomem *base;
101 unsigned int tick_rate;
102 bool is_aspeed;
103 u32 t1_enable_val;
104 struct clock_event_device clkevt;
105 int (*timer_shutdown)(struct clock_event_device *evt);
106#ifdef CONFIG_ARM
107 struct delay_timer delay_timer;
108#endif
109};
110
111
112
113
114
115static struct fttmr010 *local_fttmr;
116
117static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
118{
119 return container_of(evt, struct fttmr010, clkevt);
120}
121
122static unsigned long fttmr010_read_current_timer_up(void)
123{
124 return readl(local_fttmr->base + TIMER2_COUNT);
125}
126
127static unsigned long fttmr010_read_current_timer_down(void)
128{
129 return ~readl(local_fttmr->base + TIMER2_COUNT);
130}
131
132static u64 notrace fttmr010_read_sched_clock_up(void)
133{
134 return fttmr010_read_current_timer_up();
135}
136
137static u64 notrace fttmr010_read_sched_clock_down(void)
138{
139 return fttmr010_read_current_timer_down();
140}
141
142static int fttmr010_timer_set_next_event(unsigned long cycles,
143 struct clock_event_device *evt)
144{
145 struct fttmr010 *fttmr010 = to_fttmr010(evt);
146 u32 cr;
147
148
149 fttmr010->timer_shutdown(evt);
150
151 if (fttmr010->is_aspeed) {
152
153
154
155
156 writel(cycles, fttmr010->base + TIMER1_LOAD);
157 } else {
158
159 cr = readl(fttmr010->base + TIMER1_COUNT);
160 writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
161 }
162
163
164 cr = readl(fttmr010->base + TIMER_CR);
165 cr |= fttmr010->t1_enable_val;
166 writel(cr, fttmr010->base + TIMER_CR);
167
168 return 0;
169}
170
171static int ast2600_timer_shutdown(struct clock_event_device *evt)
172{
173 struct fttmr010 *fttmr010 = to_fttmr010(evt);
174
175
176 writel(fttmr010->t1_enable_val, fttmr010->base + AST2600_TIMER_CR_CLR);
177
178 return 0;
179}
180
181static int fttmr010_timer_shutdown(struct clock_event_device *evt)
182{
183 struct fttmr010 *fttmr010 = to_fttmr010(evt);
184 u32 cr;
185
186
187 cr = readl(fttmr010->base + TIMER_CR);
188 cr &= ~fttmr010->t1_enable_val;
189 writel(cr, fttmr010->base + TIMER_CR);
190
191 return 0;
192}
193
194static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
195{
196 struct fttmr010 *fttmr010 = to_fttmr010(evt);
197 u32 cr;
198
199
200 fttmr010->timer_shutdown(evt);
201
202
203 writel(0, fttmr010->base + TIMER1_COUNT);
204 if (fttmr010->is_aspeed) {
205 writel(~0, fttmr010->base + TIMER1_LOAD);
206 } else {
207 writel(0, fttmr010->base + TIMER1_LOAD);
208
209
210 cr = readl(fttmr010->base + TIMER_INTR_MASK);
211 cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
212 cr |= TIMER_1_INT_MATCH1;
213 writel(cr, fttmr010->base + TIMER_INTR_MASK);
214 }
215
216 return 0;
217}
218
219static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
220{
221 struct fttmr010 *fttmr010 = to_fttmr010(evt);
222 u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
223 u32 cr;
224
225
226 fttmr010->timer_shutdown(evt);
227
228
229 if (fttmr010->is_aspeed) {
230 writel(period, fttmr010->base + TIMER1_LOAD);
231 } else {
232 cr = 0xffffffff - (period - 1);
233 writel(cr, fttmr010->base + TIMER1_COUNT);
234 writel(cr, fttmr010->base + TIMER1_LOAD);
235
236
237 cr = readl(fttmr010->base + TIMER_INTR_MASK);
238 cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
239 cr |= TIMER_1_INT_OVERFLOW;
240 writel(cr, fttmr010->base + TIMER_INTR_MASK);
241 }
242
243
244 cr = readl(fttmr010->base + TIMER_CR);
245 cr |= fttmr010->t1_enable_val;
246 writel(cr, fttmr010->base + TIMER_CR);
247
248 return 0;
249}
250
251
252
253
254static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
255{
256 struct clock_event_device *evt = dev_id;
257
258 evt->event_handler(evt);
259 return IRQ_HANDLED;
260}
261
262static irqreturn_t ast2600_timer_interrupt(int irq, void *dev_id)
263{
264 struct clock_event_device *evt = dev_id;
265 struct fttmr010 *fttmr010 = to_fttmr010(evt);
266
267 writel(0x1, fttmr010->base + TIMER_INTR_STATE);
268
269 evt->event_handler(evt);
270 return IRQ_HANDLED;
271}
272
273static int __init fttmr010_common_init(struct device_node *np,
274 bool is_aspeed,
275 int (*timer_shutdown)(struct clock_event_device *),
276 irq_handler_t irq_handler)
277{
278 struct fttmr010 *fttmr010;
279 int irq;
280 struct clk *clk;
281 int ret;
282 u32 val;
283
284
285
286
287
288
289 clk = of_clk_get_by_name(np, "PCLK");
290 if (IS_ERR(clk)) {
291 pr_err("could not get PCLK\n");
292 return PTR_ERR(clk);
293 }
294 ret = clk_prepare_enable(clk);
295 if (ret) {
296 pr_err("failed to enable PCLK\n");
297 return ret;
298 }
299
300 fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
301 if (!fttmr010) {
302 ret = -ENOMEM;
303 goto out_disable_clock;
304 }
305 fttmr010->tick_rate = clk_get_rate(clk);
306
307 fttmr010->base = of_iomap(np, 0);
308 if (!fttmr010->base) {
309 pr_err("Can't remap registers\n");
310 ret = -ENXIO;
311 goto out_free;
312 }
313
314 irq = irq_of_parse_and_map(np, 0);
315 if (irq <= 0) {
316 pr_err("Can't parse IRQ\n");
317 ret = -EINVAL;
318 goto out_unmap;
319 }
320
321
322
323
324 if (is_aspeed) {
325 fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
326 TIMER_1_CR_ASPEED_INT;
327 fttmr010->is_aspeed = true;
328 } else {
329 fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
330
331
332
333
334 writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
335 writel(0, fttmr010->base + TIMER_INTR_STATE);
336 }
337
338
339
340
341
342 if (is_aspeed)
343 val = TIMER_2_CR_ASPEED_ENABLE;
344 else {
345 val = TIMER_2_CR_ENABLE | TIMER_1_CR_UPDOWN |
346 TIMER_2_CR_UPDOWN;
347 }
348 writel(val, fttmr010->base + TIMER_CR);
349
350
351
352
353
354 local_fttmr = fttmr010;
355 writel(0, fttmr010->base + TIMER2_COUNT);
356 writel(0, fttmr010->base + TIMER2_MATCH1);
357 writel(0, fttmr010->base + TIMER2_MATCH2);
358
359 if (fttmr010->is_aspeed) {
360 writel(~0, fttmr010->base + TIMER2_LOAD);
361 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
362 "FTTMR010-TIMER2",
363 fttmr010->tick_rate,
364 300, 32, clocksource_mmio_readl_down);
365 sched_clock_register(fttmr010_read_sched_clock_down, 32,
366 fttmr010->tick_rate);
367 } else {
368 writel(0, fttmr010->base + TIMER2_LOAD);
369 clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
370 "FTTMR010-TIMER2",
371 fttmr010->tick_rate,
372 300, 32, clocksource_mmio_readl_up);
373 sched_clock_register(fttmr010_read_sched_clock_up, 32,
374 fttmr010->tick_rate);
375 }
376
377 fttmr010->timer_shutdown = timer_shutdown;
378
379
380
381
382 writel(0, fttmr010->base + TIMER1_COUNT);
383 writel(0, fttmr010->base + TIMER1_LOAD);
384 writel(0, fttmr010->base + TIMER1_MATCH1);
385 writel(0, fttmr010->base + TIMER1_MATCH2);
386 ret = request_irq(irq, irq_handler, IRQF_TIMER,
387 "FTTMR010-TIMER1", &fttmr010->clkevt);
388 if (ret) {
389 pr_err("FTTMR010-TIMER1 no IRQ\n");
390 goto out_unmap;
391 }
392
393 fttmr010->clkevt.name = "FTTMR010-TIMER1";
394
395 fttmr010->clkevt.rating = 300;
396 fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
397 CLOCK_EVT_FEAT_ONESHOT;
398 fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
399 fttmr010->clkevt.set_state_shutdown = fttmr010->timer_shutdown;
400 fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
401 fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
402 fttmr010->clkevt.tick_resume = fttmr010->timer_shutdown;
403 fttmr010->clkevt.cpumask = cpumask_of(0);
404 fttmr010->clkevt.irq = irq;
405 clockevents_config_and_register(&fttmr010->clkevt,
406 fttmr010->tick_rate,
407 1, 0xffffffff);
408
409#ifdef CONFIG_ARM
410
411 if (fttmr010->is_aspeed)
412 fttmr010->delay_timer.read_current_timer =
413 fttmr010_read_current_timer_down;
414 else
415 fttmr010->delay_timer.read_current_timer =
416 fttmr010_read_current_timer_up;
417 fttmr010->delay_timer.freq = fttmr010->tick_rate;
418 register_current_timer_delay(&fttmr010->delay_timer);
419#endif
420
421 return 0;
422
423out_unmap:
424 iounmap(fttmr010->base);
425out_free:
426 kfree(fttmr010);
427out_disable_clock:
428 clk_disable_unprepare(clk);
429
430 return ret;
431}
432
433static __init int ast2600_timer_init(struct device_node *np)
434{
435 return fttmr010_common_init(np, true,
436 ast2600_timer_shutdown,
437 ast2600_timer_interrupt);
438}
439
440static __init int aspeed_timer_init(struct device_node *np)
441{
442 return fttmr010_common_init(np, true,
443 fttmr010_timer_shutdown,
444 fttmr010_timer_interrupt);
445}
446
447static __init int fttmr010_timer_init(struct device_node *np)
448{
449 return fttmr010_common_init(np, false,
450 fttmr010_timer_shutdown,
451 fttmr010_timer_interrupt);
452}
453
454TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
455TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
456TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
457TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
458TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);
459TIMER_OF_DECLARE(ast2600, "aspeed,ast2600-timer", ast2600_timer_init);
460