linux/drivers/greybus/operation.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Greybus operations
   4 *
   5 * Copyright 2014-2015 Google Inc.
   6 * Copyright 2014-2015 Linaro Ltd.
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/module.h>
  12#include <linux/sched.h>
  13#include <linux/wait.h>
  14#include <linux/workqueue.h>
  15#include <linux/greybus.h>
  16
  17#include "greybus_trace.h"
  18
  19static struct kmem_cache *gb_operation_cache;
  20static struct kmem_cache *gb_message_cache;
  21
  22/* Workqueue to handle Greybus operation completions. */
  23static struct workqueue_struct *gb_operation_completion_wq;
  24
  25/* Wait queue for synchronous cancellations. */
  26static DECLARE_WAIT_QUEUE_HEAD(gb_operation_cancellation_queue);
  27
  28/*
  29 * Protects updates to operation->errno.
  30 */
  31static DEFINE_SPINLOCK(gb_operations_lock);
  32
  33static int gb_operation_response_send(struct gb_operation *operation,
  34                                      int errno);
  35
  36/*
  37 * Increment operation active count and add to connection list unless the
  38 * connection is going away.
  39 *
  40 * Caller holds operation reference.
  41 */
  42static int gb_operation_get_active(struct gb_operation *operation)
  43{
  44        struct gb_connection *connection = operation->connection;
  45        unsigned long flags;
  46
  47        spin_lock_irqsave(&connection->lock, flags);
  48        switch (connection->state) {
  49        case GB_CONNECTION_STATE_ENABLED:
  50                break;
  51        case GB_CONNECTION_STATE_ENABLED_TX:
  52                if (gb_operation_is_incoming(operation))
  53                        goto err_unlock;
  54                break;
  55        case GB_CONNECTION_STATE_DISCONNECTING:
  56                if (!gb_operation_is_core(operation))
  57                        goto err_unlock;
  58                break;
  59        default:
  60                goto err_unlock;
  61        }
  62
  63        if (operation->active++ == 0)
  64                list_add_tail(&operation->links, &connection->operations);
  65
  66        trace_gb_operation_get_active(operation);
  67
  68        spin_unlock_irqrestore(&connection->lock, flags);
  69
  70        return 0;
  71
  72err_unlock:
  73        spin_unlock_irqrestore(&connection->lock, flags);
  74
  75        return -ENOTCONN;
  76}
  77
  78/* Caller holds operation reference. */
  79static void gb_operation_put_active(struct gb_operation *operation)
  80{
  81        struct gb_connection *connection = operation->connection;
  82        unsigned long flags;
  83
  84        spin_lock_irqsave(&connection->lock, flags);
  85
  86        trace_gb_operation_put_active(operation);
  87
  88        if (--operation->active == 0) {
  89                list_del(&operation->links);
  90                if (atomic_read(&operation->waiters))
  91                        wake_up(&gb_operation_cancellation_queue);
  92        }
  93        spin_unlock_irqrestore(&connection->lock, flags);
  94}
  95
  96static bool gb_operation_is_active(struct gb_operation *operation)
  97{
  98        struct gb_connection *connection = operation->connection;
  99        unsigned long flags;
 100        bool ret;
 101
 102        spin_lock_irqsave(&connection->lock, flags);
 103        ret = operation->active;
 104        spin_unlock_irqrestore(&connection->lock, flags);
 105
 106        return ret;
 107}
 108
 109/*
 110 * Set an operation's result.
 111 *
 112 * Initially an outgoing operation's errno value is -EBADR.
 113 * If no error occurs before sending the request message the only
 114 * valid value operation->errno can be set to is -EINPROGRESS,
 115 * indicating the request has been (or rather is about to be) sent.
 116 * At that point nobody should be looking at the result until the
 117 * response arrives.
 118 *
 119 * The first time the result gets set after the request has been
 120 * sent, that result "sticks."  That is, if two concurrent threads
 121 * race to set the result, the first one wins.  The return value
 122 * tells the caller whether its result was recorded; if not the
 123 * caller has nothing more to do.
 124 *
 125 * The result value -EILSEQ is reserved to signal an implementation
 126 * error; if it's ever observed, the code performing the request has
 127 * done something fundamentally wrong.  It is an error to try to set
 128 * the result to -EBADR, and attempts to do so result in a warning,
 129 * and -EILSEQ is used instead.  Similarly, the only valid result
 130 * value to set for an operation in initial state is -EINPROGRESS.
 131 * Attempts to do otherwise will also record a (successful) -EILSEQ
 132 * operation result.
 133 */
 134static bool gb_operation_result_set(struct gb_operation *operation, int result)
 135{
 136        unsigned long flags;
 137        int prev;
 138
 139        if (result == -EINPROGRESS) {
 140                /*
 141                 * -EINPROGRESS is used to indicate the request is
 142                 * in flight.  It should be the first result value
 143                 * set after the initial -EBADR.  Issue a warning
 144                 * and record an implementation error if it's
 145                 * set at any other time.
 146                 */
 147                spin_lock_irqsave(&gb_operations_lock, flags);
 148                prev = operation->errno;
 149                if (prev == -EBADR)
 150                        operation->errno = result;
 151                else
 152                        operation->errno = -EILSEQ;
 153                spin_unlock_irqrestore(&gb_operations_lock, flags);
 154                WARN_ON(prev != -EBADR);
 155
 156                return true;
 157        }
 158
 159        /*
 160         * The first result value set after a request has been sent
 161         * will be the final result of the operation.  Subsequent
 162         * attempts to set the result are ignored.
 163         *
 164         * Note that -EBADR is a reserved "initial state" result
 165         * value.  Attempts to set this value result in a warning,
 166         * and the result code is set to -EILSEQ instead.
 167         */
 168        if (WARN_ON(result == -EBADR))
 169                result = -EILSEQ; /* Nobody should be setting -EBADR */
 170
 171        spin_lock_irqsave(&gb_operations_lock, flags);
 172        prev = operation->errno;
 173        if (prev == -EINPROGRESS)
 174                operation->errno = result;      /* First and final result */
 175        spin_unlock_irqrestore(&gb_operations_lock, flags);
 176
 177        return prev == -EINPROGRESS;
 178}
 179
 180int gb_operation_result(struct gb_operation *operation)
 181{
 182        int result = operation->errno;
 183
 184        WARN_ON(result == -EBADR);
 185        WARN_ON(result == -EINPROGRESS);
 186
 187        return result;
 188}
 189EXPORT_SYMBOL_GPL(gb_operation_result);
 190
 191/*
 192 * Looks up an outgoing operation on a connection and returns a refcounted
 193 * pointer if found, or NULL otherwise.
 194 */
 195static struct gb_operation *
 196gb_operation_find_outgoing(struct gb_connection *connection, u16 operation_id)
 197{
 198        struct gb_operation *operation;
 199        unsigned long flags;
 200        bool found = false;
 201
 202        spin_lock_irqsave(&connection->lock, flags);
 203        list_for_each_entry(operation, &connection->operations, links)
 204                if (operation->id == operation_id &&
 205                    !gb_operation_is_incoming(operation)) {
 206                        gb_operation_get(operation);
 207                        found = true;
 208                        break;
 209                }
 210        spin_unlock_irqrestore(&connection->lock, flags);
 211
 212        return found ? operation : NULL;
 213}
 214
 215static int gb_message_send(struct gb_message *message, gfp_t gfp)
 216{
 217        struct gb_connection *connection = message->operation->connection;
 218
 219        trace_gb_message_send(message);
 220        return connection->hd->driver->message_send(connection->hd,
 221                                        connection->hd_cport_id,
 222                                        message,
 223                                        gfp);
 224}
 225
 226/*
 227 * Cancel a message we have passed to the host device layer to be sent.
 228 */
 229static void gb_message_cancel(struct gb_message *message)
 230{
 231        struct gb_host_device *hd = message->operation->connection->hd;
 232
 233        hd->driver->message_cancel(message);
 234}
 235
 236static void gb_operation_request_handle(struct gb_operation *operation)
 237{
 238        struct gb_connection *connection = operation->connection;
 239        int status;
 240        int ret;
 241
 242        if (connection->handler) {
 243                status = connection->handler(operation);
 244        } else {
 245                dev_err(&connection->hd->dev,
 246                        "%s: unexpected incoming request of type 0x%02x\n",
 247                        connection->name, operation->type);
 248
 249                status = -EPROTONOSUPPORT;
 250        }
 251
 252        ret = gb_operation_response_send(operation, status);
 253        if (ret) {
 254                dev_err(&connection->hd->dev,
 255                        "%s: failed to send response %d for type 0x%02x: %d\n",
 256                        connection->name, status, operation->type, ret);
 257                return;
 258        }
 259}
 260
 261/*
 262 * Process operation work.
 263 *
 264 * For incoming requests, call the protocol request handler. The operation
 265 * result should be -EINPROGRESS at this point.
 266 *
 267 * For outgoing requests, the operation result value should have
 268 * been set before queueing this.  The operation callback function
 269 * allows the original requester to know the request has completed
 270 * and its result is available.
 271 */
 272static void gb_operation_work(struct work_struct *work)
 273{
 274        struct gb_operation *operation;
 275        int ret;
 276
 277        operation = container_of(work, struct gb_operation, work);
 278
 279        if (gb_operation_is_incoming(operation)) {
 280                gb_operation_request_handle(operation);
 281        } else {
 282                ret = del_timer_sync(&operation->timer);
 283                if (!ret) {
 284                        /* Cancel request message if scheduled by timeout. */
 285                        if (gb_operation_result(operation) == -ETIMEDOUT)
 286                                gb_message_cancel(operation->request);
 287                }
 288
 289                operation->callback(operation);
 290        }
 291
 292        gb_operation_put_active(operation);
 293        gb_operation_put(operation);
 294}
 295
 296static void gb_operation_timeout(struct timer_list *t)
 297{
 298        struct gb_operation *operation = from_timer(operation, t, timer);
 299
 300        if (gb_operation_result_set(operation, -ETIMEDOUT)) {
 301                /*
 302                 * A stuck request message will be cancelled from the
 303                 * workqueue.
 304                 */
 305                queue_work(gb_operation_completion_wq, &operation->work);
 306        }
 307}
 308
 309static void gb_operation_message_init(struct gb_host_device *hd,
 310                                      struct gb_message *message,
 311                                      u16 operation_id,
 312                                      size_t payload_size, u8 type)
 313{
 314        struct gb_operation_msg_hdr *header;
 315
 316        header = message->buffer;
 317
 318        message->header = header;
 319        message->payload = payload_size ? header + 1 : NULL;
 320        message->payload_size = payload_size;
 321
 322        /*
 323         * The type supplied for incoming message buffers will be
 324         * GB_REQUEST_TYPE_INVALID. Such buffers will be overwritten by
 325         * arriving data so there's no need to initialize the message header.
 326         */
 327        if (type != GB_REQUEST_TYPE_INVALID) {
 328                u16 message_size = (u16)(sizeof(*header) + payload_size);
 329
 330                /*
 331                 * For a request, the operation id gets filled in
 332                 * when the message is sent.  For a response, it
 333                 * will be copied from the request by the caller.
 334                 *
 335                 * The result field in a request message must be
 336                 * zero.  It will be set just prior to sending for
 337                 * a response.
 338                 */
 339                header->size = cpu_to_le16(message_size);
 340                header->operation_id = 0;
 341                header->type = type;
 342                header->result = 0;
 343        }
 344}
 345
 346/*
 347 * Allocate a message to be used for an operation request or response.
 348 * Both types of message contain a common header.  The request message
 349 * for an outgoing operation is outbound, as is the response message
 350 * for an incoming operation.  The message header for an outbound
 351 * message is partially initialized here.
 352 *
 353 * The headers for inbound messages don't need to be initialized;
 354 * they'll be filled in by arriving data.
 355 *
 356 * Our message buffers have the following layout:
 357 *      message header  \_ these combined are
 358 *      message payload /  the message size
 359 */
 360static struct gb_message *
 361gb_operation_message_alloc(struct gb_host_device *hd, u8 type,
 362                           size_t payload_size, gfp_t gfp_flags)
 363{
 364        struct gb_message *message;
 365        struct gb_operation_msg_hdr *header;
 366        size_t message_size = payload_size + sizeof(*header);
 367
 368        if (message_size > hd->buffer_size_max) {
 369                dev_warn(&hd->dev, "requested message size too big (%zu > %zu)\n",
 370                         message_size, hd->buffer_size_max);
 371                return NULL;
 372        }
 373
 374        /* Allocate the message structure and buffer. */
 375        message = kmem_cache_zalloc(gb_message_cache, gfp_flags);
 376        if (!message)
 377                return NULL;
 378
 379        message->buffer = kzalloc(message_size, gfp_flags);
 380        if (!message->buffer)
 381                goto err_free_message;
 382
 383        /* Initialize the message.  Operation id is filled in later. */
 384        gb_operation_message_init(hd, message, 0, payload_size, type);
 385
 386        return message;
 387
 388err_free_message:
 389        kmem_cache_free(gb_message_cache, message);
 390
 391        return NULL;
 392}
 393
 394static void gb_operation_message_free(struct gb_message *message)
 395{
 396        kfree(message->buffer);
 397        kmem_cache_free(gb_message_cache, message);
 398}
 399
 400/*
 401 * Map an enum gb_operation_status value (which is represented in a
 402 * message as a single byte) to an appropriate Linux negative errno.
 403 */
 404static int gb_operation_status_map(u8 status)
 405{
 406        switch (status) {
 407        case GB_OP_SUCCESS:
 408                return 0;
 409        case GB_OP_INTERRUPTED:
 410                return -EINTR;
 411        case GB_OP_TIMEOUT:
 412                return -ETIMEDOUT;
 413        case GB_OP_NO_MEMORY:
 414                return -ENOMEM;
 415        case GB_OP_PROTOCOL_BAD:
 416                return -EPROTONOSUPPORT;
 417        case GB_OP_OVERFLOW:
 418                return -EMSGSIZE;
 419        case GB_OP_INVALID:
 420                return -EINVAL;
 421        case GB_OP_RETRY:
 422                return -EAGAIN;
 423        case GB_OP_NONEXISTENT:
 424                return -ENODEV;
 425        case GB_OP_MALFUNCTION:
 426                return -EILSEQ;
 427        case GB_OP_UNKNOWN_ERROR:
 428        default:
 429                return -EIO;
 430        }
 431}
 432
 433/*
 434 * Map a Linux errno value (from operation->errno) into the value
 435 * that should represent it in a response message status sent
 436 * over the wire.  Returns an enum gb_operation_status value (which
 437 * is represented in a message as a single byte).
 438 */
 439static u8 gb_operation_errno_map(int errno)
 440{
 441        switch (errno) {
 442        case 0:
 443                return GB_OP_SUCCESS;
 444        case -EINTR:
 445                return GB_OP_INTERRUPTED;
 446        case -ETIMEDOUT:
 447                return GB_OP_TIMEOUT;
 448        case -ENOMEM:
 449                return GB_OP_NO_MEMORY;
 450        case -EPROTONOSUPPORT:
 451                return GB_OP_PROTOCOL_BAD;
 452        case -EMSGSIZE:
 453                return GB_OP_OVERFLOW;  /* Could be underflow too */
 454        case -EINVAL:
 455                return GB_OP_INVALID;
 456        case -EAGAIN:
 457                return GB_OP_RETRY;
 458        case -EILSEQ:
 459                return GB_OP_MALFUNCTION;
 460        case -ENODEV:
 461                return GB_OP_NONEXISTENT;
 462        case -EIO:
 463        default:
 464                return GB_OP_UNKNOWN_ERROR;
 465        }
 466}
 467
 468bool gb_operation_response_alloc(struct gb_operation *operation,
 469                                 size_t response_size, gfp_t gfp)
 470{
 471        struct gb_host_device *hd = operation->connection->hd;
 472        struct gb_operation_msg_hdr *request_header;
 473        struct gb_message *response;
 474        u8 type;
 475
 476        type = operation->type | GB_MESSAGE_TYPE_RESPONSE;
 477        response = gb_operation_message_alloc(hd, type, response_size, gfp);
 478        if (!response)
 479                return false;
 480        response->operation = operation;
 481
 482        /*
 483         * Size and type get initialized when the message is
 484         * allocated.  The errno will be set before sending.  All
 485         * that's left is the operation id, which we copy from the
 486         * request message header (as-is, in little-endian order).
 487         */
 488        request_header = operation->request->header;
 489        response->header->operation_id = request_header->operation_id;
 490        operation->response = response;
 491
 492        return true;
 493}
 494EXPORT_SYMBOL_GPL(gb_operation_response_alloc);
 495
 496/*
 497 * Create a Greybus operation to be sent over the given connection.
 498 * The request buffer will be big enough for a payload of the given
 499 * size.
 500 *
 501 * For outgoing requests, the request message's header will be
 502 * initialized with the type of the request and the message size.
 503 * Outgoing operations must also specify the response buffer size,
 504 * which must be sufficient to hold all expected response data.  The
 505 * response message header will eventually be overwritten, so there's
 506 * no need to initialize it here.
 507 *
 508 * Request messages for incoming operations can arrive in interrupt
 509 * context, so they must be allocated with GFP_ATOMIC.  In this case
 510 * the request buffer will be immediately overwritten, so there is
 511 * no need to initialize the message header.  Responsibility for
 512 * allocating a response buffer lies with the incoming request
 513 * handler for a protocol.  So we don't allocate that here.
 514 *
 515 * Returns a pointer to the new operation or a null pointer if an
 516 * error occurs.
 517 */
 518static struct gb_operation *
 519gb_operation_create_common(struct gb_connection *connection, u8 type,
 520                           size_t request_size, size_t response_size,
 521                           unsigned long op_flags, gfp_t gfp_flags)
 522{
 523        struct gb_host_device *hd = connection->hd;
 524        struct gb_operation *operation;
 525
 526        operation = kmem_cache_zalloc(gb_operation_cache, gfp_flags);
 527        if (!operation)
 528                return NULL;
 529        operation->connection = connection;
 530
 531        operation->request = gb_operation_message_alloc(hd, type, request_size,
 532                                                        gfp_flags);
 533        if (!operation->request)
 534                goto err_cache;
 535        operation->request->operation = operation;
 536
 537        /* Allocate the response buffer for outgoing operations */
 538        if (!(op_flags & GB_OPERATION_FLAG_INCOMING)) {
 539                if (!gb_operation_response_alloc(operation, response_size,
 540                                                 gfp_flags)) {
 541                        goto err_request;
 542                }
 543
 544                timer_setup(&operation->timer, gb_operation_timeout, 0);
 545        }
 546
 547        operation->flags = op_flags;
 548        operation->type = type;
 549        operation->errno = -EBADR;  /* Initial value--means "never set" */
 550
 551        INIT_WORK(&operation->work, gb_operation_work);
 552        init_completion(&operation->completion);
 553        kref_init(&operation->kref);
 554        atomic_set(&operation->waiters, 0);
 555
 556        return operation;
 557
 558err_request:
 559        gb_operation_message_free(operation->request);
 560err_cache:
 561        kmem_cache_free(gb_operation_cache, operation);
 562
 563        return NULL;
 564}
 565
 566/*
 567 * Create a new operation associated with the given connection.  The
 568 * request and response sizes provided are the number of bytes
 569 * required to hold the request/response payload only.  Both of
 570 * these are allowed to be 0.  Note that 0x00 is reserved as an
 571 * invalid operation type for all protocols, and this is enforced
 572 * here.
 573 */
 574struct gb_operation *
 575gb_operation_create_flags(struct gb_connection *connection,
 576                          u8 type, size_t request_size,
 577                          size_t response_size, unsigned long flags,
 578                          gfp_t gfp)
 579{
 580        struct gb_operation *operation;
 581
 582        if (WARN_ON_ONCE(type == GB_REQUEST_TYPE_INVALID))
 583                return NULL;
 584        if (WARN_ON_ONCE(type & GB_MESSAGE_TYPE_RESPONSE))
 585                type &= ~GB_MESSAGE_TYPE_RESPONSE;
 586
 587        if (WARN_ON_ONCE(flags & ~GB_OPERATION_FLAG_USER_MASK))
 588                flags &= GB_OPERATION_FLAG_USER_MASK;
 589
 590        operation = gb_operation_create_common(connection, type,
 591                                               request_size, response_size,
 592                                               flags, gfp);
 593        if (operation)
 594                trace_gb_operation_create(operation);
 595
 596        return operation;
 597}
 598EXPORT_SYMBOL_GPL(gb_operation_create_flags);
 599
 600struct gb_operation *
 601gb_operation_create_core(struct gb_connection *connection,
 602                         u8 type, size_t request_size,
 603                         size_t response_size, unsigned long flags,
 604                         gfp_t gfp)
 605{
 606        struct gb_operation *operation;
 607
 608        flags |= GB_OPERATION_FLAG_CORE;
 609
 610        operation = gb_operation_create_common(connection, type,
 611                                               request_size, response_size,
 612                                               flags, gfp);
 613        if (operation)
 614                trace_gb_operation_create_core(operation);
 615
 616        return operation;
 617}
 618
 619/* Do not export this function. */
 620
 621size_t gb_operation_get_payload_size_max(struct gb_connection *connection)
 622{
 623        struct gb_host_device *hd = connection->hd;
 624
 625        return hd->buffer_size_max - sizeof(struct gb_operation_msg_hdr);
 626}
 627EXPORT_SYMBOL_GPL(gb_operation_get_payload_size_max);
 628
 629static struct gb_operation *
 630gb_operation_create_incoming(struct gb_connection *connection, u16 id,
 631                             u8 type, void *data, size_t size)
 632{
 633        struct gb_operation *operation;
 634        size_t request_size;
 635        unsigned long flags = GB_OPERATION_FLAG_INCOMING;
 636
 637        /* Caller has made sure we at least have a message header. */
 638        request_size = size - sizeof(struct gb_operation_msg_hdr);
 639
 640        if (!id)
 641                flags |= GB_OPERATION_FLAG_UNIDIRECTIONAL;
 642
 643        operation = gb_operation_create_common(connection, type,
 644                                               request_size,
 645                                               GB_REQUEST_TYPE_INVALID,
 646                                               flags, GFP_ATOMIC);
 647        if (!operation)
 648                return NULL;
 649
 650        operation->id = id;
 651        memcpy(operation->request->header, data, size);
 652        trace_gb_operation_create_incoming(operation);
 653
 654        return operation;
 655}
 656
 657/*
 658 * Get an additional reference on an operation.
 659 */
 660void gb_operation_get(struct gb_operation *operation)
 661{
 662        kref_get(&operation->kref);
 663}
 664EXPORT_SYMBOL_GPL(gb_operation_get);
 665
 666/*
 667 * Destroy a previously created operation.
 668 */
 669static void _gb_operation_destroy(struct kref *kref)
 670{
 671        struct gb_operation *operation;
 672
 673        operation = container_of(kref, struct gb_operation, kref);
 674
 675        trace_gb_operation_destroy(operation);
 676
 677        if (operation->response)
 678                gb_operation_message_free(operation->response);
 679        gb_operation_message_free(operation->request);
 680
 681        kmem_cache_free(gb_operation_cache, operation);
 682}
 683
 684/*
 685 * Drop a reference on an operation, and destroy it when the last
 686 * one is gone.
 687 */
 688void gb_operation_put(struct gb_operation *operation)
 689{
 690        if (WARN_ON(!operation))
 691                return;
 692
 693        kref_put(&operation->kref, _gb_operation_destroy);
 694}
 695EXPORT_SYMBOL_GPL(gb_operation_put);
 696
 697/* Tell the requester we're done */
 698static void gb_operation_sync_callback(struct gb_operation *operation)
 699{
 700        complete(&operation->completion);
 701}
 702
 703/**
 704 * gb_operation_request_send() - send an operation request message
 705 * @operation:  the operation to initiate
 706 * @callback:   the operation completion callback
 707 * @timeout:    operation timeout in milliseconds, or zero for no timeout
 708 * @gfp:        the memory flags to use for any allocations
 709 *
 710 * The caller has filled in any payload so the request message is ready to go.
 711 * The callback function supplied will be called when the response message has
 712 * arrived, a unidirectional request has been sent, or the operation is
 713 * cancelled, indicating that the operation is complete. The callback function
 714 * can fetch the result of the operation using gb_operation_result() if
 715 * desired.
 716 *
 717 * Return: 0 if the request was successfully queued in the host-driver queues,
 718 * or a negative errno.
 719 */
 720int gb_operation_request_send(struct gb_operation *operation,
 721                              gb_operation_callback callback,
 722                              unsigned int timeout,
 723                              gfp_t gfp)
 724{
 725        struct gb_connection *connection = operation->connection;
 726        struct gb_operation_msg_hdr *header;
 727        unsigned int cycle;
 728        int ret;
 729
 730        if (gb_connection_is_offloaded(connection))
 731                return -EBUSY;
 732
 733        if (!callback)
 734                return -EINVAL;
 735
 736        /*
 737         * Record the callback function, which is executed in
 738         * non-atomic (workqueue) context when the final result
 739         * of an operation has been set.
 740         */
 741        operation->callback = callback;
 742
 743        /*
 744         * Assign the operation's id, and store it in the request header.
 745         * Zero is a reserved operation id for unidirectional operations.
 746         */
 747        if (gb_operation_is_unidirectional(operation)) {
 748                operation->id = 0;
 749        } else {
 750                cycle = (unsigned int)atomic_inc_return(&connection->op_cycle);
 751                operation->id = (u16)(cycle % U16_MAX + 1);
 752        }
 753
 754        header = operation->request->header;
 755        header->operation_id = cpu_to_le16(operation->id);
 756
 757        gb_operation_result_set(operation, -EINPROGRESS);
 758
 759        /*
 760         * Get an extra reference on the operation. It'll be dropped when the
 761         * operation completes.
 762         */
 763        gb_operation_get(operation);
 764        ret = gb_operation_get_active(operation);
 765        if (ret)
 766                goto err_put;
 767
 768        ret = gb_message_send(operation->request, gfp);
 769        if (ret)
 770                goto err_put_active;
 771
 772        if (timeout) {
 773                operation->timer.expires = jiffies + msecs_to_jiffies(timeout);
 774                add_timer(&operation->timer);
 775        }
 776
 777        return 0;
 778
 779err_put_active:
 780        gb_operation_put_active(operation);
 781err_put:
 782        gb_operation_put(operation);
 783
 784        return ret;
 785}
 786EXPORT_SYMBOL_GPL(gb_operation_request_send);
 787
 788/*
 789 * Send a synchronous operation.  This function is expected to
 790 * block, returning only when the response has arrived, (or when an
 791 * error is detected.  The return value is the result of the
 792 * operation.
 793 */
 794int gb_operation_request_send_sync_timeout(struct gb_operation *operation,
 795                                           unsigned int timeout)
 796{
 797        int ret;
 798
 799        ret = gb_operation_request_send(operation, gb_operation_sync_callback,
 800                                        timeout, GFP_KERNEL);
 801        if (ret)
 802                return ret;
 803
 804        ret = wait_for_completion_interruptible(&operation->completion);
 805        if (ret < 0) {
 806                /* Cancel the operation if interrupted */
 807                gb_operation_cancel(operation, -ECANCELED);
 808        }
 809
 810        return gb_operation_result(operation);
 811}
 812EXPORT_SYMBOL_GPL(gb_operation_request_send_sync_timeout);
 813
 814/*
 815 * Send a response for an incoming operation request.  A non-zero
 816 * errno indicates a failed operation.
 817 *
 818 * If there is any response payload, the incoming request handler is
 819 * responsible for allocating the response message.  Otherwise the
 820 * it can simply supply the result errno; this function will
 821 * allocate the response message if necessary.
 822 */
 823static int gb_operation_response_send(struct gb_operation *operation,
 824                                      int errno)
 825{
 826        struct gb_connection *connection = operation->connection;
 827        int ret;
 828
 829        if (!operation->response &&
 830            !gb_operation_is_unidirectional(operation)) {
 831                if (!gb_operation_response_alloc(operation, 0, GFP_KERNEL))
 832                        return -ENOMEM;
 833        }
 834
 835        /* Record the result */
 836        if (!gb_operation_result_set(operation, errno)) {
 837                dev_err(&connection->hd->dev, "request result already set\n");
 838                return -EIO;    /* Shouldn't happen */
 839        }
 840
 841        /* Sender of request does not care about response. */
 842        if (gb_operation_is_unidirectional(operation))
 843                return 0;
 844
 845        /* Reference will be dropped when message has been sent. */
 846        gb_operation_get(operation);
 847        ret = gb_operation_get_active(operation);
 848        if (ret)
 849                goto err_put;
 850
 851        /* Fill in the response header and send it */
 852        operation->response->header->result = gb_operation_errno_map(errno);
 853
 854        ret = gb_message_send(operation->response, GFP_KERNEL);
 855        if (ret)
 856                goto err_put_active;
 857
 858        return 0;
 859
 860err_put_active:
 861        gb_operation_put_active(operation);
 862err_put:
 863        gb_operation_put(operation);
 864
 865        return ret;
 866}
 867
 868/*
 869 * This function is called when a message send request has completed.
 870 */
 871void greybus_message_sent(struct gb_host_device *hd,
 872                          struct gb_message *message, int status)
 873{
 874        struct gb_operation *operation = message->operation;
 875        struct gb_connection *connection = operation->connection;
 876
 877        /*
 878         * If the message was a response, we just need to drop our
 879         * reference to the operation.  If an error occurred, report
 880         * it.
 881         *
 882         * For requests, if there's no error and the operation in not
 883         * unidirectional, there's nothing more to do until the response
 884         * arrives. If an error occurred attempting to send it, or if the
 885         * operation is unidrectional, record the result of the operation and
 886         * schedule its completion.
 887         */
 888        if (message == operation->response) {
 889                if (status) {
 890                        dev_err(&connection->hd->dev,
 891                                "%s: error sending response 0x%02x: %d\n",
 892                                connection->name, operation->type, status);
 893                }
 894
 895                gb_operation_put_active(operation);
 896                gb_operation_put(operation);
 897        } else if (status || gb_operation_is_unidirectional(operation)) {
 898                if (gb_operation_result_set(operation, status)) {
 899                        queue_work(gb_operation_completion_wq,
 900                                   &operation->work);
 901                }
 902        }
 903}
 904EXPORT_SYMBOL_GPL(greybus_message_sent);
 905
 906/*
 907 * We've received data on a connection, and it doesn't look like a
 908 * response, so we assume it's a request.
 909 *
 910 * This is called in interrupt context, so just copy the incoming
 911 * data into the request buffer and handle the rest via workqueue.
 912 */
 913static void gb_connection_recv_request(struct gb_connection *connection,
 914                                const struct gb_operation_msg_hdr *header,
 915                                void *data, size_t size)
 916{
 917        struct gb_operation *operation;
 918        u16 operation_id;
 919        u8 type;
 920        int ret;
 921
 922        operation_id = le16_to_cpu(header->operation_id);
 923        type = header->type;
 924
 925        operation = gb_operation_create_incoming(connection, operation_id,
 926                                                 type, data, size);
 927        if (!operation) {
 928                dev_err(&connection->hd->dev,
 929                        "%s: can't create incoming operation\n",
 930                        connection->name);
 931                return;
 932        }
 933
 934        ret = gb_operation_get_active(operation);
 935        if (ret) {
 936                gb_operation_put(operation);
 937                return;
 938        }
 939        trace_gb_message_recv_request(operation->request);
 940
 941        /*
 942         * The initial reference to the operation will be dropped when the
 943         * request handler returns.
 944         */
 945        if (gb_operation_result_set(operation, -EINPROGRESS))
 946                queue_work(connection->wq, &operation->work);
 947}
 948
 949/*
 950 * We've received data that appears to be an operation response
 951 * message.  Look up the operation, and record that we've received
 952 * its response.
 953 *
 954 * This is called in interrupt context, so just copy the incoming
 955 * data into the response buffer and handle the rest via workqueue.
 956 */
 957static void gb_connection_recv_response(struct gb_connection *connection,
 958                                const struct gb_operation_msg_hdr *header,
 959                                void *data, size_t size)
 960{
 961        struct gb_operation *operation;
 962        struct gb_message *message;
 963        size_t message_size;
 964        u16 operation_id;
 965        int errno;
 966
 967        operation_id = le16_to_cpu(header->operation_id);
 968
 969        if (!operation_id) {
 970                dev_err_ratelimited(&connection->hd->dev,
 971                                    "%s: invalid response id 0 received\n",
 972                                    connection->name);
 973                return;
 974        }
 975
 976        operation = gb_operation_find_outgoing(connection, operation_id);
 977        if (!operation) {
 978                dev_err_ratelimited(&connection->hd->dev,
 979                                    "%s: unexpected response id 0x%04x received\n",
 980                                    connection->name, operation_id);
 981                return;
 982        }
 983
 984        errno = gb_operation_status_map(header->result);
 985        message = operation->response;
 986        message_size = sizeof(*header) + message->payload_size;
 987        if (!errno && size > message_size) {
 988                dev_err_ratelimited(&connection->hd->dev,
 989                                    "%s: malformed response 0x%02x received (%zu > %zu)\n",
 990                                    connection->name, header->type,
 991                                    size, message_size);
 992                errno = -EMSGSIZE;
 993        } else if (!errno && size < message_size) {
 994                if (gb_operation_short_response_allowed(operation)) {
 995                        message->payload_size = size - sizeof(*header);
 996                } else {
 997                        dev_err_ratelimited(&connection->hd->dev,
 998                                            "%s: short response 0x%02x received (%zu < %zu)\n",
 999                                            connection->name, header->type,
1000                                            size, message_size);
1001                        errno = -EMSGSIZE;
1002                }
1003        }
1004
1005        /* We must ignore the payload if a bad status is returned */
1006        if (errno)
1007                size = sizeof(*header);
1008
1009        /* The rest will be handled in work queue context */
1010        if (gb_operation_result_set(operation, errno)) {
1011                memcpy(message->buffer, data, size);
1012
1013                trace_gb_message_recv_response(message);
1014
1015                queue_work(gb_operation_completion_wq, &operation->work);
1016        }
1017
1018        gb_operation_put(operation);
1019}
1020
1021/*
1022 * Handle data arriving on a connection.  As soon as we return the
1023 * supplied data buffer will be reused (so unless we do something
1024 * with, it's effectively dropped).
1025 */
1026void gb_connection_recv(struct gb_connection *connection,
1027                        void *data, size_t size)
1028{
1029        struct gb_operation_msg_hdr header;
1030        struct device *dev = &connection->hd->dev;
1031        size_t msg_size;
1032
1033        if (connection->state == GB_CONNECTION_STATE_DISABLED ||
1034            gb_connection_is_offloaded(connection)) {
1035                dev_warn_ratelimited(dev, "%s: dropping %zu received bytes\n",
1036                                     connection->name, size);
1037                return;
1038        }
1039
1040        if (size < sizeof(header)) {
1041                dev_err_ratelimited(dev, "%s: short message received\n",
1042                                    connection->name);
1043                return;
1044        }
1045
1046        /* Use memcpy as data may be unaligned */
1047        memcpy(&header, data, sizeof(header));
1048        msg_size = le16_to_cpu(header.size);
1049        if (size < msg_size) {
1050                dev_err_ratelimited(dev,
1051                                    "%s: incomplete message 0x%04x of type 0x%02x received (%zu < %zu)\n",
1052                                    connection->name,
1053                                    le16_to_cpu(header.operation_id),
1054                                    header.type, size, msg_size);
1055                return;         /* XXX Should still complete operation */
1056        }
1057
1058        if (header.type & GB_MESSAGE_TYPE_RESPONSE) {
1059                gb_connection_recv_response(connection, &header, data,
1060                                            msg_size);
1061        } else {
1062                gb_connection_recv_request(connection, &header, data,
1063                                           msg_size);
1064        }
1065}
1066
1067/*
1068 * Cancel an outgoing operation synchronously, and record the given error to
1069 * indicate why.
1070 */
1071void gb_operation_cancel(struct gb_operation *operation, int errno)
1072{
1073        if (WARN_ON(gb_operation_is_incoming(operation)))
1074                return;
1075
1076        if (gb_operation_result_set(operation, errno)) {
1077                gb_message_cancel(operation->request);
1078                queue_work(gb_operation_completion_wq, &operation->work);
1079        }
1080        trace_gb_message_cancel_outgoing(operation->request);
1081
1082        atomic_inc(&operation->waiters);
1083        wait_event(gb_operation_cancellation_queue,
1084                   !gb_operation_is_active(operation));
1085        atomic_dec(&operation->waiters);
1086}
1087EXPORT_SYMBOL_GPL(gb_operation_cancel);
1088
1089/*
1090 * Cancel an incoming operation synchronously. Called during connection tear
1091 * down.
1092 */
1093void gb_operation_cancel_incoming(struct gb_operation *operation, int errno)
1094{
1095        if (WARN_ON(!gb_operation_is_incoming(operation)))
1096                return;
1097
1098        if (!gb_operation_is_unidirectional(operation)) {
1099                /*
1100                 * Make sure the request handler has submitted the response
1101                 * before cancelling it.
1102                 */
1103                flush_work(&operation->work);
1104                if (!gb_operation_result_set(operation, errno))
1105                        gb_message_cancel(operation->response);
1106        }
1107        trace_gb_message_cancel_incoming(operation->response);
1108
1109        atomic_inc(&operation->waiters);
1110        wait_event(gb_operation_cancellation_queue,
1111                   !gb_operation_is_active(operation));
1112        atomic_dec(&operation->waiters);
1113}
1114
1115/**
1116 * gb_operation_sync_timeout() - implement a "simple" synchronous operation
1117 * @connection: the Greybus connection to send this to
1118 * @type: the type of operation to send
1119 * @request: pointer to a memory buffer to copy the request from
1120 * @request_size: size of @request
1121 * @response: pointer to a memory buffer to copy the response to
1122 * @response_size: the size of @response.
1123 * @timeout: operation timeout in milliseconds
1124 *
1125 * This function implements a simple synchronous Greybus operation.  It sends
1126 * the provided operation request and waits (sleeps) until the corresponding
1127 * operation response message has been successfully received, or an error
1128 * occurs.  @request and @response are buffers to hold the request and response
1129 * data respectively, and if they are not NULL, their size must be specified in
1130 * @request_size and @response_size.
1131 *
1132 * If a response payload is to come back, and @response is not NULL,
1133 * @response_size number of bytes will be copied into @response if the operation
1134 * is successful.
1135 *
1136 * If there is an error, the response buffer is left alone.
1137 */
1138int gb_operation_sync_timeout(struct gb_connection *connection, int type,
1139                              void *request, int request_size,
1140                              void *response, int response_size,
1141                              unsigned int timeout)
1142{
1143        struct gb_operation *operation;
1144        int ret;
1145
1146        if ((response_size && !response) ||
1147            (request_size && !request))
1148                return -EINVAL;
1149
1150        operation = gb_operation_create(connection, type,
1151                                        request_size, response_size,
1152                                        GFP_KERNEL);
1153        if (!operation)
1154                return -ENOMEM;
1155
1156        if (request_size)
1157                memcpy(operation->request->payload, request, request_size);
1158
1159        ret = gb_operation_request_send_sync_timeout(operation, timeout);
1160        if (ret) {
1161                dev_err(&connection->hd->dev,
1162                        "%s: synchronous operation id 0x%04x of type 0x%02x failed: %d\n",
1163                        connection->name, operation->id, type, ret);
1164        } else {
1165                if (response_size) {
1166                        memcpy(response, operation->response->payload,
1167                               response_size);
1168                }
1169        }
1170
1171        gb_operation_put(operation);
1172
1173        return ret;
1174}
1175EXPORT_SYMBOL_GPL(gb_operation_sync_timeout);
1176
1177/**
1178 * gb_operation_unidirectional_timeout() - initiate a unidirectional operation
1179 * @connection:         connection to use
1180 * @type:               type of operation to send
1181 * @request:            memory buffer to copy the request from
1182 * @request_size:       size of @request
1183 * @timeout:            send timeout in milliseconds
1184 *
1185 * Initiate a unidirectional operation by sending a request message and
1186 * waiting for it to be acknowledged as sent by the host device.
1187 *
1188 * Note that successful send of a unidirectional operation does not imply that
1189 * the request as actually reached the remote end of the connection.
1190 */
1191int gb_operation_unidirectional_timeout(struct gb_connection *connection,
1192                                        int type, void *request,
1193                                        int request_size,
1194                                        unsigned int timeout)
1195{
1196        struct gb_operation *operation;
1197        int ret;
1198
1199        if (request_size && !request)
1200                return -EINVAL;
1201
1202        operation = gb_operation_create_flags(connection, type,
1203                                              request_size, 0,
1204                                              GB_OPERATION_FLAG_UNIDIRECTIONAL,
1205                                              GFP_KERNEL);
1206        if (!operation)
1207                return -ENOMEM;
1208
1209        if (request_size)
1210                memcpy(operation->request->payload, request, request_size);
1211
1212        ret = gb_operation_request_send_sync_timeout(operation, timeout);
1213        if (ret) {
1214                dev_err(&connection->hd->dev,
1215                        "%s: unidirectional operation of type 0x%02x failed: %d\n",
1216                        connection->name, type, ret);
1217        }
1218
1219        gb_operation_put(operation);
1220
1221        return ret;
1222}
1223EXPORT_SYMBOL_GPL(gb_operation_unidirectional_timeout);
1224
1225int __init gb_operation_init(void)
1226{
1227        gb_message_cache = kmem_cache_create("gb_message_cache",
1228                                             sizeof(struct gb_message), 0, 0,
1229                                             NULL);
1230        if (!gb_message_cache)
1231                return -ENOMEM;
1232
1233        gb_operation_cache = kmem_cache_create("gb_operation_cache",
1234                                               sizeof(struct gb_operation), 0,
1235                                               0, NULL);
1236        if (!gb_operation_cache)
1237                goto err_destroy_message_cache;
1238
1239        gb_operation_completion_wq = alloc_workqueue("greybus_completion",
1240                                                     0, 0);
1241        if (!gb_operation_completion_wq)
1242                goto err_destroy_operation_cache;
1243
1244        return 0;
1245
1246err_destroy_operation_cache:
1247        kmem_cache_destroy(gb_operation_cache);
1248        gb_operation_cache = NULL;
1249err_destroy_message_cache:
1250        kmem_cache_destroy(gb_message_cache);
1251        gb_message_cache = NULL;
1252
1253        return -ENOMEM;
1254}
1255
1256void gb_operation_exit(void)
1257{
1258        destroy_workqueue(gb_operation_completion_wq);
1259        gb_operation_completion_wq = NULL;
1260        kmem_cache_destroy(gb_operation_cache);
1261        gb_operation_cache = NULL;
1262        kmem_cache_destroy(gb_message_cache);
1263        gb_message_cache = NULL;
1264}
1265