linux/drivers/md/dm-verity-fec.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2015 Google, Inc.
   4 *
   5 * Author: Sami Tolvanen <samitolvanen@google.com>
   6 */
   7
   8#include "dm-verity-fec.h"
   9#include <linux/math64.h>
  10
  11#define DM_MSG_PREFIX   "verity-fec"
  12
  13/*
  14 * If error correction has been configured, returns true.
  15 */
  16bool verity_fec_is_enabled(struct dm_verity *v)
  17{
  18        return v->fec && v->fec->dev;
  19}
  20
  21/*
  22 * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
  23 * length fields.
  24 */
  25static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
  26{
  27        return (struct dm_verity_fec_io *) verity_io_digest_end(io->v, io);
  28}
  29
  30/*
  31 * Return an interleaved offset for a byte in RS block.
  32 */
  33static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
  34{
  35        u32 mod;
  36
  37        mod = do_div(offset, v->fec->rsn);
  38        return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
  39}
  40
  41/*
  42 * Decode an RS block using Reed-Solomon.
  43 */
  44static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio,
  45                          u8 *data, u8 *fec, int neras)
  46{
  47        int i;
  48        uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];
  49
  50        for (i = 0; i < v->fec->roots; i++)
  51                par[i] = fec[i];
  52
  53        return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras,
  54                          fio->erasures, 0, NULL);
  55}
  56
  57/*
  58 * Read error-correcting codes for the requested RS block. Returns a pointer
  59 * to the data block. Caller is responsible for releasing buf.
  60 */
  61static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
  62                           unsigned *offset, struct dm_buffer **buf)
  63{
  64        u64 position, block, rem;
  65        u8 *res;
  66
  67        position = (index + rsb) * v->fec->roots;
  68        block = div64_u64_rem(position, v->fec->io_size, &rem);
  69        *offset = (unsigned)rem;
  70
  71        res = dm_bufio_read(v->fec->bufio, block, buf);
  72        if (IS_ERR(res)) {
  73                DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
  74                      v->data_dev->name, (unsigned long long)rsb,
  75                      (unsigned long long)block, PTR_ERR(res));
  76                *buf = NULL;
  77        }
  78
  79        return res;
  80}
  81
  82/* Loop over each preallocated buffer slot. */
  83#define fec_for_each_prealloc_buffer(__i) \
  84        for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)
  85
  86/* Loop over each extra buffer slot. */
  87#define fec_for_each_extra_buffer(io, __i) \
  88        for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)
  89
  90/* Loop over each allocated buffer. */
  91#define fec_for_each_buffer(io, __i) \
  92        for (__i = 0; __i < (io)->nbufs; __i++)
  93
  94/* Loop over each RS block in each allocated buffer. */
  95#define fec_for_each_buffer_rs_block(io, __i, __j) \
  96        fec_for_each_buffer(io, __i) \
  97                for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)
  98
  99/*
 100 * Return a pointer to the current RS block when called inside
 101 * fec_for_each_buffer_rs_block.
 102 */
 103static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
 104                                      struct dm_verity_fec_io *fio,
 105                                      unsigned i, unsigned j)
 106{
 107        return &fio->bufs[i][j * v->fec->rsn];
 108}
 109
 110/*
 111 * Return an index to the current RS block when called inside
 112 * fec_for_each_buffer_rs_block.
 113 */
 114static inline unsigned fec_buffer_rs_index(unsigned i, unsigned j)
 115{
 116        return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
 117}
 118
 119/*
 120 * Decode all RS blocks from buffers and copy corrected bytes into fio->output
 121 * starting from block_offset.
 122 */
 123static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio,
 124                           u64 rsb, int byte_index, unsigned block_offset,
 125                           int neras)
 126{
 127        int r, corrected = 0, res;
 128        struct dm_buffer *buf;
 129        unsigned n, i, offset;
 130        u8 *par, *block;
 131
 132        par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
 133        if (IS_ERR(par))
 134                return PTR_ERR(par);
 135
 136        /*
 137         * Decode the RS blocks we have in bufs. Each RS block results in
 138         * one corrected target byte and consumes fec->roots parity bytes.
 139         */
 140        fec_for_each_buffer_rs_block(fio, n, i) {
 141                block = fec_buffer_rs_block(v, fio, n, i);
 142                res = fec_decode_rs8(v, fio, block, &par[offset], neras);
 143                if (res < 0) {
 144                        r = res;
 145                        goto error;
 146                }
 147
 148                corrected += res;
 149                fio->output[block_offset] = block[byte_index];
 150
 151                block_offset++;
 152                if (block_offset >= 1 << v->data_dev_block_bits)
 153                        goto done;
 154
 155                /* read the next block when we run out of parity bytes */
 156                offset += v->fec->roots;
 157                if (offset >= v->fec->io_size) {
 158                        dm_bufio_release(buf);
 159
 160                        par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
 161                        if (IS_ERR(par))
 162                                return PTR_ERR(par);
 163                }
 164        }
 165done:
 166        r = corrected;
 167error:
 168        dm_bufio_release(buf);
 169
 170        if (r < 0 && neras)
 171                DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
 172                            v->data_dev->name, (unsigned long long)rsb, r);
 173        else if (r > 0)
 174                DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
 175                             v->data_dev->name, (unsigned long long)rsb, r);
 176
 177        return r;
 178}
 179
 180/*
 181 * Locate data block erasures using verity hashes.
 182 */
 183static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
 184                          u8 *want_digest, u8 *data)
 185{
 186        if (unlikely(verity_hash(v, verity_io_hash_req(v, io),
 187                                 data, 1 << v->data_dev_block_bits,
 188                                 verity_io_real_digest(v, io))))
 189                return 0;
 190
 191        return memcmp(verity_io_real_digest(v, io), want_digest,
 192                      v->digest_size) != 0;
 193}
 194
 195/*
 196 * Read data blocks that are part of the RS block and deinterleave as much as
 197 * fits into buffers. Check for erasure locations if @neras is non-NULL.
 198 */
 199static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
 200                         u64 rsb, u64 target, unsigned block_offset,
 201                         int *neras)
 202{
 203        bool is_zero;
 204        int i, j, target_index = -1;
 205        struct dm_buffer *buf;
 206        struct dm_bufio_client *bufio;
 207        struct dm_verity_fec_io *fio = fec_io(io);
 208        u64 block, ileaved;
 209        u8 *bbuf, *rs_block;
 210        u8 want_digest[HASH_MAX_DIGESTSIZE];
 211        unsigned n, k;
 212
 213        if (neras)
 214                *neras = 0;
 215
 216        if (WARN_ON(v->digest_size > sizeof(want_digest)))
 217                return -EINVAL;
 218
 219        /*
 220         * read each of the rsn data blocks that are part of the RS block, and
 221         * interleave contents to available bufs
 222         */
 223        for (i = 0; i < v->fec->rsn; i++) {
 224                ileaved = fec_interleave(v, rsb * v->fec->rsn + i);
 225
 226                /*
 227                 * target is the data block we want to correct, target_index is
 228                 * the index of this block within the rsn RS blocks
 229                 */
 230                if (ileaved == target)
 231                        target_index = i;
 232
 233                block = ileaved >> v->data_dev_block_bits;
 234                bufio = v->fec->data_bufio;
 235
 236                if (block >= v->data_blocks) {
 237                        block -= v->data_blocks;
 238
 239                        /*
 240                         * blocks outside the area were assumed to contain
 241                         * zeros when encoding data was generated
 242                         */
 243                        if (unlikely(block >= v->fec->hash_blocks))
 244                                continue;
 245
 246                        block += v->hash_start;
 247                        bufio = v->bufio;
 248                }
 249
 250                bbuf = dm_bufio_read(bufio, block, &buf);
 251                if (IS_ERR(bbuf)) {
 252                        DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
 253                                     v->data_dev->name,
 254                                     (unsigned long long)rsb,
 255                                     (unsigned long long)block, PTR_ERR(bbuf));
 256
 257                        /* assume the block is corrupted */
 258                        if (neras && *neras <= v->fec->roots)
 259                                fio->erasures[(*neras)++] = i;
 260
 261                        continue;
 262                }
 263
 264                /* locate erasures if the block is on the data device */
 265                if (bufio == v->fec->data_bufio &&
 266                    verity_hash_for_block(v, io, block, want_digest,
 267                                          &is_zero) == 0) {
 268                        /* skip known zero blocks entirely */
 269                        if (is_zero)
 270                                goto done;
 271
 272                        /*
 273                         * skip if we have already found the theoretical
 274                         * maximum number (i.e. fec->roots) of erasures
 275                         */
 276                        if (neras && *neras <= v->fec->roots &&
 277                            fec_is_erasure(v, io, want_digest, bbuf))
 278                                fio->erasures[(*neras)++] = i;
 279                }
 280
 281                /*
 282                 * deinterleave and copy the bytes that fit into bufs,
 283                 * starting from block_offset
 284                 */
 285                fec_for_each_buffer_rs_block(fio, n, j) {
 286                        k = fec_buffer_rs_index(n, j) + block_offset;
 287
 288                        if (k >= 1 << v->data_dev_block_bits)
 289                                goto done;
 290
 291                        rs_block = fec_buffer_rs_block(v, fio, n, j);
 292                        rs_block[i] = bbuf[k];
 293                }
 294done:
 295                dm_bufio_release(buf);
 296        }
 297
 298        return target_index;
 299}
 300
 301/*
 302 * Allocate RS control structure and FEC buffers from preallocated mempools,
 303 * and attempt to allocate as many extra buffers as available.
 304 */
 305static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
 306{
 307        unsigned n;
 308
 309        if (!fio->rs)
 310                fio->rs = mempool_alloc(&v->fec->rs_pool, GFP_NOIO);
 311
 312        fec_for_each_prealloc_buffer(n) {
 313                if (fio->bufs[n])
 314                        continue;
 315
 316                fio->bufs[n] = mempool_alloc(&v->fec->prealloc_pool, GFP_NOWAIT);
 317                if (unlikely(!fio->bufs[n])) {
 318                        DMERR("failed to allocate FEC buffer");
 319                        return -ENOMEM;
 320                }
 321        }
 322
 323        /* try to allocate the maximum number of buffers */
 324        fec_for_each_extra_buffer(fio, n) {
 325                if (fio->bufs[n])
 326                        continue;
 327
 328                fio->bufs[n] = mempool_alloc(&v->fec->extra_pool, GFP_NOWAIT);
 329                /* we can manage with even one buffer if necessary */
 330                if (unlikely(!fio->bufs[n]))
 331                        break;
 332        }
 333        fio->nbufs = n;
 334
 335        if (!fio->output)
 336                fio->output = mempool_alloc(&v->fec->output_pool, GFP_NOIO);
 337
 338        return 0;
 339}
 340
 341/*
 342 * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
 343 * zeroed before deinterleaving.
 344 */
 345static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
 346{
 347        unsigned n;
 348
 349        fec_for_each_buffer(fio, n)
 350                memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);
 351
 352        memset(fio->erasures, 0, sizeof(fio->erasures));
 353}
 354
 355/*
 356 * Decode all RS blocks in a single data block and return the target block
 357 * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
 358 * hashes to locate erasures.
 359 */
 360static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
 361                          struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
 362                          bool use_erasures)
 363{
 364        int r, neras = 0;
 365        unsigned pos;
 366
 367        r = fec_alloc_bufs(v, fio);
 368        if (unlikely(r < 0))
 369                return r;
 370
 371        for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
 372                fec_init_bufs(v, fio);
 373
 374                r = fec_read_bufs(v, io, rsb, offset, pos,
 375                                  use_erasures ? &neras : NULL);
 376                if (unlikely(r < 0))
 377                        return r;
 378
 379                r = fec_decode_bufs(v, fio, rsb, r, pos, neras);
 380                if (r < 0)
 381                        return r;
 382
 383                pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
 384        }
 385
 386        /* Always re-validate the corrected block against the expected hash */
 387        r = verity_hash(v, verity_io_hash_req(v, io), fio->output,
 388                        1 << v->data_dev_block_bits,
 389                        verity_io_real_digest(v, io));
 390        if (unlikely(r < 0))
 391                return r;
 392
 393        if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
 394                   v->digest_size)) {
 395                DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
 396                            v->data_dev->name, (unsigned long long)rsb, neras);
 397                return -EILSEQ;
 398        }
 399
 400        return 0;
 401}
 402
 403static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data,
 404                       size_t len)
 405{
 406        struct dm_verity_fec_io *fio = fec_io(io);
 407
 408        memcpy(data, &fio->output[fio->output_pos], len);
 409        fio->output_pos += len;
 410
 411        return 0;
 412}
 413
 414/*
 415 * Correct errors in a block. Copies corrected block to dest if non-NULL,
 416 * otherwise to a bio_vec starting from iter.
 417 */
 418int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
 419                      enum verity_block_type type, sector_t block, u8 *dest,
 420                      struct bvec_iter *iter)
 421{
 422        int r;
 423        struct dm_verity_fec_io *fio = fec_io(io);
 424        u64 offset, res, rsb;
 425
 426        if (!verity_fec_is_enabled(v))
 427                return -EOPNOTSUPP;
 428
 429        if (fio->level >= DM_VERITY_FEC_MAX_RECURSION) {
 430                DMWARN_LIMIT("%s: FEC: recursion too deep", v->data_dev->name);
 431                return -EIO;
 432        }
 433
 434        fio->level++;
 435
 436        if (type == DM_VERITY_BLOCK_TYPE_METADATA)
 437                block = block - v->hash_start + v->data_blocks;
 438
 439        /*
 440         * For RS(M, N), the continuous FEC data is divided into blocks of N
 441         * bytes. Since block size may not be divisible by N, the last block
 442         * is zero padded when decoding.
 443         *
 444         * Each byte of the block is covered by a different RS(M, N) code,
 445         * and each code is interleaved over N blocks to make it less likely
 446         * that bursty corruption will leave us in unrecoverable state.
 447         */
 448
 449        offset = block << v->data_dev_block_bits;
 450        res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits);
 451
 452        /*
 453         * The base RS block we can feed to the interleaver to find out all
 454         * blocks required for decoding.
 455         */
 456        rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);
 457
 458        /*
 459         * Locating erasures is slow, so attempt to recover the block without
 460         * them first. Do a second attempt with erasures if the corruption is
 461         * bad enough.
 462         */
 463        r = fec_decode_rsb(v, io, fio, rsb, offset, false);
 464        if (r < 0) {
 465                r = fec_decode_rsb(v, io, fio, rsb, offset, true);
 466                if (r < 0)
 467                        goto done;
 468        }
 469
 470        if (dest)
 471                memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
 472        else if (iter) {
 473                fio->output_pos = 0;
 474                r = verity_for_bv_block(v, io, iter, fec_bv_copy);
 475        }
 476
 477done:
 478        fio->level--;
 479        return r;
 480}
 481
 482/*
 483 * Clean up per-bio data.
 484 */
 485void verity_fec_finish_io(struct dm_verity_io *io)
 486{
 487        unsigned n;
 488        struct dm_verity_fec *f = io->v->fec;
 489        struct dm_verity_fec_io *fio = fec_io(io);
 490
 491        if (!verity_fec_is_enabled(io->v))
 492                return;
 493
 494        mempool_free(fio->rs, &f->rs_pool);
 495
 496        fec_for_each_prealloc_buffer(n)
 497                mempool_free(fio->bufs[n], &f->prealloc_pool);
 498
 499        fec_for_each_extra_buffer(fio, n)
 500                mempool_free(fio->bufs[n], &f->extra_pool);
 501
 502        mempool_free(fio->output, &f->output_pool);
 503}
 504
 505/*
 506 * Initialize per-bio data.
 507 */
 508void verity_fec_init_io(struct dm_verity_io *io)
 509{
 510        struct dm_verity_fec_io *fio = fec_io(io);
 511
 512        if (!verity_fec_is_enabled(io->v))
 513                return;
 514
 515        fio->rs = NULL;
 516        memset(fio->bufs, 0, sizeof(fio->bufs));
 517        fio->nbufs = 0;
 518        fio->output = NULL;
 519        fio->level = 0;
 520}
 521
 522/*
 523 * Append feature arguments and values to the status table.
 524 */
 525unsigned verity_fec_status_table(struct dm_verity *v, unsigned sz,
 526                                 char *result, unsigned maxlen)
 527{
 528        if (!verity_fec_is_enabled(v))
 529                return sz;
 530
 531        DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
 532               DM_VERITY_OPT_FEC_BLOCKS " %llu "
 533               DM_VERITY_OPT_FEC_START " %llu "
 534               DM_VERITY_OPT_FEC_ROOTS " %d",
 535               v->fec->dev->name,
 536               (unsigned long long)v->fec->blocks,
 537               (unsigned long long)v->fec->start,
 538               v->fec->roots);
 539
 540        return sz;
 541}
 542
 543void verity_fec_dtr(struct dm_verity *v)
 544{
 545        struct dm_verity_fec *f = v->fec;
 546
 547        if (!verity_fec_is_enabled(v))
 548                goto out;
 549
 550        mempool_exit(&f->rs_pool);
 551        mempool_exit(&f->prealloc_pool);
 552        mempool_exit(&f->extra_pool);
 553        mempool_exit(&f->output_pool);
 554        kmem_cache_destroy(f->cache);
 555
 556        if (f->data_bufio)
 557                dm_bufio_client_destroy(f->data_bufio);
 558        if (f->bufio)
 559                dm_bufio_client_destroy(f->bufio);
 560
 561        if (f->dev)
 562                dm_put_device(v->ti, f->dev);
 563out:
 564        kfree(f);
 565        v->fec = NULL;
 566}
 567
 568static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
 569{
 570        struct dm_verity *v = (struct dm_verity *)pool_data;
 571
 572        return init_rs_gfp(8, 0x11d, 0, 1, v->fec->roots, gfp_mask);
 573}
 574
 575static void fec_rs_free(void *element, void *pool_data)
 576{
 577        struct rs_control *rs = (struct rs_control *)element;
 578
 579        if (rs)
 580                free_rs(rs);
 581}
 582
 583bool verity_is_fec_opt_arg(const char *arg_name)
 584{
 585        return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
 586                !strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
 587                !strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
 588                !strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
 589}
 590
 591int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
 592                              unsigned *argc, const char *arg_name)
 593{
 594        int r;
 595        struct dm_target *ti = v->ti;
 596        const char *arg_value;
 597        unsigned long long num_ll;
 598        unsigned char num_c;
 599        char dummy;
 600
 601        if (!*argc) {
 602                ti->error = "FEC feature arguments require a value";
 603                return -EINVAL;
 604        }
 605
 606        arg_value = dm_shift_arg(as);
 607        (*argc)--;
 608
 609        if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
 610                r = dm_get_device(ti, arg_value, FMODE_READ, &v->fec->dev);
 611                if (r) {
 612                        ti->error = "FEC device lookup failed";
 613                        return r;
 614                }
 615
 616        } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
 617                if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
 618                    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
 619                     >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
 620                        ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
 621                        return -EINVAL;
 622                }
 623                v->fec->blocks = num_ll;
 624
 625        } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
 626                if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
 627                    ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
 628                     (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
 629                        ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
 630                        return -EINVAL;
 631                }
 632                v->fec->start = num_ll;
 633
 634        } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
 635                if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
 636                    num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
 637                    num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
 638                        ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
 639                        return -EINVAL;
 640                }
 641                v->fec->roots = num_c;
 642
 643        } else {
 644                ti->error = "Unrecognized verity FEC feature request";
 645                return -EINVAL;
 646        }
 647
 648        return 0;
 649}
 650
 651/*
 652 * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
 653 */
 654int verity_fec_ctr_alloc(struct dm_verity *v)
 655{
 656        struct dm_verity_fec *f;
 657
 658        f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
 659        if (!f) {
 660                v->ti->error = "Cannot allocate FEC structure";
 661                return -ENOMEM;
 662        }
 663        v->fec = f;
 664
 665        return 0;
 666}
 667
 668/*
 669 * Validate arguments and preallocate memory. Must be called after arguments
 670 * have been parsed using verity_fec_parse_opt_args.
 671 */
 672int verity_fec_ctr(struct dm_verity *v)
 673{
 674        struct dm_verity_fec *f = v->fec;
 675        struct dm_target *ti = v->ti;
 676        u64 hash_blocks, fec_blocks;
 677        int ret;
 678
 679        if (!verity_fec_is_enabled(v)) {
 680                verity_fec_dtr(v);
 681                return 0;
 682        }
 683
 684        /*
 685         * FEC is computed over data blocks, possible metadata, and
 686         * hash blocks. In other words, FEC covers total of fec_blocks
 687         * blocks consisting of the following:
 688         *
 689         *  data blocks | hash blocks | metadata (optional)
 690         *
 691         * We allow metadata after hash blocks to support a use case
 692         * where all data is stored on the same device and FEC covers
 693         * the entire area.
 694         *
 695         * If metadata is included, we require it to be available on the
 696         * hash device after the hash blocks.
 697         */
 698
 699        hash_blocks = v->hash_blocks - v->hash_start;
 700
 701        /*
 702         * Require matching block sizes for data and hash devices for
 703         * simplicity.
 704         */
 705        if (v->data_dev_block_bits != v->hash_dev_block_bits) {
 706                ti->error = "Block sizes must match to use FEC";
 707                return -EINVAL;
 708        }
 709
 710        if (!f->roots) {
 711                ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
 712                return -EINVAL;
 713        }
 714        f->rsn = DM_VERITY_FEC_RSM - f->roots;
 715
 716        if (!f->blocks) {
 717                ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
 718                return -EINVAL;
 719        }
 720
 721        f->rounds = f->blocks;
 722        if (sector_div(f->rounds, f->rsn))
 723                f->rounds++;
 724
 725        /*
 726         * Due to optional metadata, f->blocks can be larger than
 727         * data_blocks and hash_blocks combined.
 728         */
 729        if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
 730                ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
 731                return -EINVAL;
 732        }
 733
 734        /*
 735         * Metadata is accessed through the hash device, so we require
 736         * it to be large enough.
 737         */
 738        f->hash_blocks = f->blocks - v->data_blocks;
 739        if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
 740                ti->error = "Hash device is too small for "
 741                        DM_VERITY_OPT_FEC_BLOCKS;
 742                return -E2BIG;
 743        }
 744
 745        if ((f->roots << SECTOR_SHIFT) & ((1 << v->data_dev_block_bits) - 1))
 746                f->io_size = 1 << v->data_dev_block_bits;
 747        else
 748                f->io_size = v->fec->roots << SECTOR_SHIFT;
 749
 750        f->bufio = dm_bufio_client_create(f->dev->bdev,
 751                                          f->io_size,
 752                                          1, 0, NULL, NULL);
 753        if (IS_ERR(f->bufio)) {
 754                ti->error = "Cannot initialize FEC bufio client";
 755                return PTR_ERR(f->bufio);
 756        }
 757
 758        dm_bufio_set_sector_offset(f->bufio, f->start << (v->data_dev_block_bits - SECTOR_SHIFT));
 759
 760        fec_blocks = div64_u64(f->rounds * f->roots, v->fec->roots << SECTOR_SHIFT);
 761        if (dm_bufio_get_device_size(f->bufio) < fec_blocks) {
 762                ti->error = "FEC device is too small";
 763                return -E2BIG;
 764        }
 765
 766        f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
 767                                               1 << v->data_dev_block_bits,
 768                                               1, 0, NULL, NULL);
 769        if (IS_ERR(f->data_bufio)) {
 770                ti->error = "Cannot initialize FEC data bufio client";
 771                return PTR_ERR(f->data_bufio);
 772        }
 773
 774        if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
 775                ti->error = "Data device is too small";
 776                return -E2BIG;
 777        }
 778
 779        /* Preallocate an rs_control structure for each worker thread */
 780        ret = mempool_init(&f->rs_pool, num_online_cpus(), fec_rs_alloc,
 781                           fec_rs_free, (void *) v);
 782        if (ret) {
 783                ti->error = "Cannot allocate RS pool";
 784                return ret;
 785        }
 786
 787        f->cache = kmem_cache_create("dm_verity_fec_buffers",
 788                                     f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
 789                                     0, 0, NULL);
 790        if (!f->cache) {
 791                ti->error = "Cannot create FEC buffer cache";
 792                return -ENOMEM;
 793        }
 794
 795        /* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
 796        ret = mempool_init_slab_pool(&f->prealloc_pool, num_online_cpus() *
 797                                     DM_VERITY_FEC_BUF_PREALLOC,
 798                                     f->cache);
 799        if (ret) {
 800                ti->error = "Cannot allocate FEC buffer prealloc pool";
 801                return ret;
 802        }
 803
 804        ret = mempool_init_slab_pool(&f->extra_pool, 0, f->cache);
 805        if (ret) {
 806                ti->error = "Cannot allocate FEC buffer extra pool";
 807                return ret;
 808        }
 809
 810        /* Preallocate an output buffer for each thread */
 811        ret = mempool_init_kmalloc_pool(&f->output_pool, num_online_cpus(),
 812                                        1 << v->data_dev_block_bits);
 813        if (ret) {
 814                ti->error = "Cannot allocate FEC output pool";
 815                return ret;
 816        }
 817
 818        /* Reserve space for our per-bio data */
 819        ti->per_io_data_size += sizeof(struct dm_verity_fec_io);
 820
 821        return 0;
 822}
 823