linux/drivers/mmc/host/mmc_spi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Access SD/MMC cards through SPI master controllers
   4 *
   5 * (C) Copyright 2005, Intec Automation,
   6 *              Mike Lavender (mike@steroidmicros)
   7 * (C) Copyright 2006-2007, David Brownell
   8 * (C) Copyright 2007, Axis Communications,
   9 *              Hans-Peter Nilsson (hp@axis.com)
  10 * (C) Copyright 2007, ATRON electronic GmbH,
  11 *              Jan Nikitenko <jan.nikitenko@gmail.com>
  12 */
  13#include <linux/sched.h>
  14#include <linux/delay.h>
  15#include <linux/slab.h>
  16#include <linux/module.h>
  17#include <linux/bio.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/crc7.h>
  20#include <linux/crc-itu-t.h>
  21#include <linux/scatterlist.h>
  22
  23#include <linux/mmc/host.h>
  24#include <linux/mmc/mmc.h>              /* for R1_SPI_* bit values */
  25#include <linux/mmc/slot-gpio.h>
  26
  27#include <linux/spi/spi.h>
  28#include <linux/spi/mmc_spi.h>
  29
  30#include <asm/unaligned.h>
  31
  32
  33/* NOTES:
  34 *
  35 * - For now, we won't try to interoperate with a real mmc/sd/sdio
  36 *   controller, although some of them do have hardware support for
  37 *   SPI protocol.  The main reason for such configs would be mmc-ish
  38 *   cards like DataFlash, which don't support that "native" protocol.
  39 *
  40 *   We don't have a "DataFlash/MMC/SD/SDIO card slot" abstraction to
  41 *   switch between driver stacks, and in any case if "native" mode
  42 *   is available, it will be faster and hence preferable.
  43 *
  44 * - MMC depends on a different chipselect management policy than the
  45 *   SPI interface currently supports for shared bus segments:  it needs
  46 *   to issue multiple spi_message requests with the chipselect active,
  47 *   using the results of one message to decide the next one to issue.
  48 *
  49 *   Pending updates to the programming interface, this driver expects
  50 *   that it not share the bus with other drivers (precluding conflicts).
  51 *
  52 * - We tell the controller to keep the chipselect active from the
  53 *   beginning of an mmc_host_ops.request until the end.  So beware
  54 *   of SPI controller drivers that mis-handle the cs_change flag!
  55 *
  56 *   However, many cards seem OK with chipselect flapping up/down
  57 *   during that time ... at least on unshared bus segments.
  58 */
  59
  60
  61/*
  62 * Local protocol constants, internal to data block protocols.
  63 */
  64
  65/* Response tokens used to ack each block written: */
  66#define SPI_MMC_RESPONSE_CODE(x)        ((x) & 0x1f)
  67#define SPI_RESPONSE_ACCEPTED           ((2 << 1)|1)
  68#define SPI_RESPONSE_CRC_ERR            ((5 << 1)|1)
  69#define SPI_RESPONSE_WRITE_ERR          ((6 << 1)|1)
  70
  71/* Read and write blocks start with these tokens and end with crc;
  72 * on error, read tokens act like a subset of R2_SPI_* values.
  73 */
  74#define SPI_TOKEN_SINGLE        0xfe    /* single block r/w, multiblock read */
  75#define SPI_TOKEN_MULTI_WRITE   0xfc    /* multiblock write */
  76#define SPI_TOKEN_STOP_TRAN     0xfd    /* terminate multiblock write */
  77
  78#define MMC_SPI_BLOCKSIZE       512
  79
  80#define MMC_SPI_R1B_TIMEOUT_MS  3000
  81#define MMC_SPI_INIT_TIMEOUT_MS 3000
  82
  83/* One of the critical speed parameters is the amount of data which may
  84 * be transferred in one command. If this value is too low, the SD card
  85 * controller has to do multiple partial block writes (argggh!). With
  86 * today (2008) SD cards there is little speed gain if we transfer more
  87 * than 64 KBytes at a time. So use this value until there is any indication
  88 * that we should do more here.
  89 */
  90#define MMC_SPI_BLOCKSATONCE    128
  91
  92/****************************************************************************/
  93
  94/*
  95 * Local Data Structures
  96 */
  97
  98/* "scratch" is per-{command,block} data exchanged with the card */
  99struct scratch {
 100        u8                      status[29];
 101        u8                      data_token;
 102        __be16                  crc_val;
 103};
 104
 105struct mmc_spi_host {
 106        struct mmc_host         *mmc;
 107        struct spi_device       *spi;
 108
 109        unsigned char           power_mode;
 110        u16                     powerup_msecs;
 111
 112        struct mmc_spi_platform_data    *pdata;
 113
 114        /* for bulk data transfers */
 115        struct spi_transfer     token, t, crc, early_status;
 116        struct spi_message      m;
 117
 118        /* for status readback */
 119        struct spi_transfer     status;
 120        struct spi_message      readback;
 121
 122        /* underlying DMA-aware controller, or null */
 123        struct device           *dma_dev;
 124
 125        /* buffer used for commands and for message "overhead" */
 126        struct scratch          *data;
 127        dma_addr_t              data_dma;
 128
 129        /* Specs say to write ones most of the time, even when the card
 130         * has no need to read its input data; and many cards won't care.
 131         * This is our source of those ones.
 132         */
 133        void                    *ones;
 134        dma_addr_t              ones_dma;
 135};
 136
 137
 138/****************************************************************************/
 139
 140/*
 141 * MMC-over-SPI protocol glue, used by the MMC stack interface
 142 */
 143
 144static inline int mmc_cs_off(struct mmc_spi_host *host)
 145{
 146        /* chipselect will always be inactive after setup() */
 147        return spi_setup(host->spi);
 148}
 149
 150static int
 151mmc_spi_readbytes(struct mmc_spi_host *host, unsigned len)
 152{
 153        int status;
 154
 155        if (len > sizeof(*host->data)) {
 156                WARN_ON(1);
 157                return -EIO;
 158        }
 159
 160        host->status.len = len;
 161
 162        if (host->dma_dev)
 163                dma_sync_single_for_device(host->dma_dev,
 164                                host->data_dma, sizeof(*host->data),
 165                                DMA_FROM_DEVICE);
 166
 167        status = spi_sync_locked(host->spi, &host->readback);
 168
 169        if (host->dma_dev)
 170                dma_sync_single_for_cpu(host->dma_dev,
 171                                host->data_dma, sizeof(*host->data),
 172                                DMA_FROM_DEVICE);
 173
 174        return status;
 175}
 176
 177static int mmc_spi_skip(struct mmc_spi_host *host, unsigned long timeout,
 178                        unsigned n, u8 byte)
 179{
 180        u8 *cp = host->data->status;
 181        unsigned long start = jiffies;
 182
 183        while (1) {
 184                int             status;
 185                unsigned        i;
 186
 187                status = mmc_spi_readbytes(host, n);
 188                if (status < 0)
 189                        return status;
 190
 191                for (i = 0; i < n; i++) {
 192                        if (cp[i] != byte)
 193                                return cp[i];
 194                }
 195
 196                if (time_is_before_jiffies(start + timeout))
 197                        break;
 198
 199                /* If we need long timeouts, we may release the CPU.
 200                 * We use jiffies here because we want to have a relation
 201                 * between elapsed time and the blocking of the scheduler.
 202                 */
 203                if (time_is_before_jiffies(start + 1))
 204                        schedule();
 205        }
 206        return -ETIMEDOUT;
 207}
 208
 209static inline int
 210mmc_spi_wait_unbusy(struct mmc_spi_host *host, unsigned long timeout)
 211{
 212        return mmc_spi_skip(host, timeout, sizeof(host->data->status), 0);
 213}
 214
 215static int mmc_spi_readtoken(struct mmc_spi_host *host, unsigned long timeout)
 216{
 217        return mmc_spi_skip(host, timeout, 1, 0xff);
 218}
 219
 220
 221/*
 222 * Note that for SPI, cmd->resp[0] is not the same data as "native" protocol
 223 * hosts return!  The low byte holds R1_SPI bits.  The next byte may hold
 224 * R2_SPI bits ... for SEND_STATUS, or after data read errors.
 225 *
 226 * cmd->resp[1] holds any four-byte response, for R3 (READ_OCR) and on
 227 * newer cards R7 (IF_COND).
 228 */
 229
 230static char *maptype(struct mmc_command *cmd)
 231{
 232        switch (mmc_spi_resp_type(cmd)) {
 233        case MMC_RSP_SPI_R1:    return "R1";
 234        case MMC_RSP_SPI_R1B:   return "R1B";
 235        case MMC_RSP_SPI_R2:    return "R2/R5";
 236        case MMC_RSP_SPI_R3:    return "R3/R4/R7";
 237        default:                return "?";
 238        }
 239}
 240
 241/* return zero, else negative errno after setting cmd->error */
 242static int mmc_spi_response_get(struct mmc_spi_host *host,
 243                struct mmc_command *cmd, int cs_on)
 244{
 245        unsigned long timeout_ms;
 246        u8      *cp = host->data->status;
 247        u8      *end = cp + host->t.len;
 248        int     value = 0;
 249        int     bitshift;
 250        u8      leftover = 0;
 251        unsigned short rotator;
 252        int     i;
 253        char    tag[32];
 254
 255        snprintf(tag, sizeof(tag), "  ... CMD%d response SPI_%s",
 256                cmd->opcode, maptype(cmd));
 257
 258        /* Except for data block reads, the whole response will already
 259         * be stored in the scratch buffer.  It's somewhere after the
 260         * command and the first byte we read after it.  We ignore that
 261         * first byte.  After STOP_TRANSMISSION command it may include
 262         * two data bits, but otherwise it's all ones.
 263         */
 264        cp += 8;
 265        while (cp < end && *cp == 0xff)
 266                cp++;
 267
 268        /* Data block reads (R1 response types) may need more data... */
 269        if (cp == end) {
 270                cp = host->data->status;
 271                end = cp+1;
 272
 273                /* Card sends N(CR) (== 1..8) bytes of all-ones then one
 274                 * status byte ... and we already scanned 2 bytes.
 275                 *
 276                 * REVISIT block read paths use nasty byte-at-a-time I/O
 277                 * so it can always DMA directly into the target buffer.
 278                 * It'd probably be better to memcpy() the first chunk and
 279                 * avoid extra i/o calls...
 280                 *
 281                 * Note we check for more than 8 bytes, because in practice,
 282                 * some SD cards are slow...
 283                 */
 284                for (i = 2; i < 16; i++) {
 285                        value = mmc_spi_readbytes(host, 1);
 286                        if (value < 0)
 287                                goto done;
 288                        if (*cp != 0xff)
 289                                goto checkstatus;
 290                }
 291                value = -ETIMEDOUT;
 292                goto done;
 293        }
 294
 295checkstatus:
 296        bitshift = 0;
 297        if (*cp & 0x80) {
 298                /* Houston, we have an ugly card with a bit-shifted response */
 299                rotator = *cp++ << 8;
 300                /* read the next byte */
 301                if (cp == end) {
 302                        value = mmc_spi_readbytes(host, 1);
 303                        if (value < 0)
 304                                goto done;
 305                        cp = host->data->status;
 306                        end = cp+1;
 307                }
 308                rotator |= *cp++;
 309                while (rotator & 0x8000) {
 310                        bitshift++;
 311                        rotator <<= 1;
 312                }
 313                cmd->resp[0] = rotator >> 8;
 314                leftover = rotator;
 315        } else {
 316                cmd->resp[0] = *cp++;
 317        }
 318        cmd->error = 0;
 319
 320        /* Status byte: the entire seven-bit R1 response.  */
 321        if (cmd->resp[0] != 0) {
 322                if ((R1_SPI_PARAMETER | R1_SPI_ADDRESS)
 323                                & cmd->resp[0])
 324                        value = -EFAULT; /* Bad address */
 325                else if (R1_SPI_ILLEGAL_COMMAND & cmd->resp[0])
 326                        value = -ENOSYS; /* Function not implemented */
 327                else if (R1_SPI_COM_CRC & cmd->resp[0])
 328                        value = -EILSEQ; /* Illegal byte sequence */
 329                else if ((R1_SPI_ERASE_SEQ | R1_SPI_ERASE_RESET)
 330                                & cmd->resp[0])
 331                        value = -EIO;    /* I/O error */
 332                /* else R1_SPI_IDLE, "it's resetting" */
 333        }
 334
 335        switch (mmc_spi_resp_type(cmd)) {
 336
 337        /* SPI R1B == R1 + busy; STOP_TRANSMISSION (for multiblock reads)
 338         * and less-common stuff like various erase operations.
 339         */
 340        case MMC_RSP_SPI_R1B:
 341                /* maybe we read all the busy tokens already */
 342                while (cp < end && *cp == 0)
 343                        cp++;
 344                if (cp == end) {
 345                        timeout_ms = cmd->busy_timeout ? cmd->busy_timeout :
 346                                MMC_SPI_R1B_TIMEOUT_MS;
 347                        mmc_spi_wait_unbusy(host, msecs_to_jiffies(timeout_ms));
 348                }
 349                break;
 350
 351        /* SPI R2 == R1 + second status byte; SEND_STATUS
 352         * SPI R5 == R1 + data byte; IO_RW_DIRECT
 353         */
 354        case MMC_RSP_SPI_R2:
 355                /* read the next byte */
 356                if (cp == end) {
 357                        value = mmc_spi_readbytes(host, 1);
 358                        if (value < 0)
 359                                goto done;
 360                        cp = host->data->status;
 361                        end = cp+1;
 362                }
 363                if (bitshift) {
 364                        rotator = leftover << 8;
 365                        rotator |= *cp << bitshift;
 366                        cmd->resp[0] |= (rotator & 0xFF00);
 367                } else {
 368                        cmd->resp[0] |= *cp << 8;
 369                }
 370                break;
 371
 372        /* SPI R3, R4, or R7 == R1 + 4 bytes */
 373        case MMC_RSP_SPI_R3:
 374                rotator = leftover << 8;
 375                cmd->resp[1] = 0;
 376                for (i = 0; i < 4; i++) {
 377                        cmd->resp[1] <<= 8;
 378                        /* read the next byte */
 379                        if (cp == end) {
 380                                value = mmc_spi_readbytes(host, 1);
 381                                if (value < 0)
 382                                        goto done;
 383                                cp = host->data->status;
 384                                end = cp+1;
 385                        }
 386                        if (bitshift) {
 387                                rotator |= *cp++ << bitshift;
 388                                cmd->resp[1] |= (rotator >> 8);
 389                                rotator <<= 8;
 390                        } else {
 391                                cmd->resp[1] |= *cp++;
 392                        }
 393                }
 394                break;
 395
 396        /* SPI R1 == just one status byte */
 397        case MMC_RSP_SPI_R1:
 398                break;
 399
 400        default:
 401                dev_dbg(&host->spi->dev, "bad response type %04x\n",
 402                        mmc_spi_resp_type(cmd));
 403                if (value >= 0)
 404                        value = -EINVAL;
 405                goto done;
 406        }
 407
 408        if (value < 0)
 409                dev_dbg(&host->spi->dev, "%s: resp %04x %08x\n",
 410                        tag, cmd->resp[0], cmd->resp[1]);
 411
 412        /* disable chipselect on errors and some success cases */
 413        if (value >= 0 && cs_on)
 414                return value;
 415done:
 416        if (value < 0)
 417                cmd->error = value;
 418        mmc_cs_off(host);
 419        return value;
 420}
 421
 422/* Issue command and read its response.
 423 * Returns zero on success, negative for error.
 424 *
 425 * On error, caller must cope with mmc core retry mechanism.  That
 426 * means immediate low-level resubmit, which affects the bus lock...
 427 */
 428static int
 429mmc_spi_command_send(struct mmc_spi_host *host,
 430                struct mmc_request *mrq,
 431                struct mmc_command *cmd, int cs_on)
 432{
 433        struct scratch          *data = host->data;
 434        u8                      *cp = data->status;
 435        int                     status;
 436        struct spi_transfer     *t;
 437
 438        /* We can handle most commands (except block reads) in one full
 439         * duplex I/O operation before either starting the next transfer
 440         * (data block or command) or else deselecting the card.
 441         *
 442         * First, write 7 bytes:
 443         *  - an all-ones byte to ensure the card is ready
 444         *  - opcode byte (plus start and transmission bits)
 445         *  - four bytes of big-endian argument
 446         *  - crc7 (plus end bit) ... always computed, it's cheap
 447         *
 448         * We init the whole buffer to all-ones, which is what we need
 449         * to write while we're reading (later) response data.
 450         */
 451        memset(cp, 0xff, sizeof(data->status));
 452
 453        cp[1] = 0x40 | cmd->opcode;
 454        put_unaligned_be32(cmd->arg, cp + 2);
 455        cp[6] = crc7_be(0, cp + 1, 5) | 0x01;
 456        cp += 7;
 457
 458        /* Then, read up to 13 bytes (while writing all-ones):
 459         *  - N(CR) (== 1..8) bytes of all-ones
 460         *  - status byte (for all response types)
 461         *  - the rest of the response, either:
 462         *      + nothing, for R1 or R1B responses
 463         *      + second status byte, for R2 responses
 464         *      + four data bytes, for R3 and R7 responses
 465         *
 466         * Finally, read some more bytes ... in the nice cases we know in
 467         * advance how many, and reading 1 more is always OK:
 468         *  - N(EC) (== 0..N) bytes of all-ones, before deselect/finish
 469         *  - N(RC) (== 1..N) bytes of all-ones, before next command
 470         *  - N(WR) (== 1..N) bytes of all-ones, before data write
 471         *
 472         * So in those cases one full duplex I/O of at most 21 bytes will
 473         * handle the whole command, leaving the card ready to receive a
 474         * data block or new command.  We do that whenever we can, shaving
 475         * CPU and IRQ costs (especially when using DMA or FIFOs).
 476         *
 477         * There are two other cases, where it's not generally practical
 478         * to rely on a single I/O:
 479         *
 480         *  - R1B responses need at least N(EC) bytes of all-zeroes.
 481         *
 482         *    In this case we can *try* to fit it into one I/O, then
 483         *    maybe read more data later.
 484         *
 485         *  - Data block reads are more troublesome, since a variable
 486         *    number of padding bytes precede the token and data.
 487         *      + N(CX) (== 0..8) bytes of all-ones, before CSD or CID
 488         *      + N(AC) (== 1..many) bytes of all-ones
 489         *
 490         *    In this case we currently only have minimal speedups here:
 491         *    when N(CR) == 1 we can avoid I/O in response_get().
 492         */
 493        if (cs_on && (mrq->data->flags & MMC_DATA_READ)) {
 494                cp += 2;        /* min(N(CR)) + status */
 495                /* R1 */
 496        } else {
 497                cp += 10;       /* max(N(CR)) + status + min(N(RC),N(WR)) */
 498                if (cmd->flags & MMC_RSP_SPI_S2)        /* R2/R5 */
 499                        cp++;
 500                else if (cmd->flags & MMC_RSP_SPI_B4)   /* R3/R4/R7 */
 501                        cp += 4;
 502                else if (cmd->flags & MMC_RSP_BUSY)     /* R1B */
 503                        cp = data->status + sizeof(data->status);
 504                /* else:  R1 (most commands) */
 505        }
 506
 507        dev_dbg(&host->spi->dev, "  mmc_spi: CMD%d, resp %s\n",
 508                cmd->opcode, maptype(cmd));
 509
 510        /* send command, leaving chipselect active */
 511        spi_message_init(&host->m);
 512
 513        t = &host->t;
 514        memset(t, 0, sizeof(*t));
 515        t->tx_buf = t->rx_buf = data->status;
 516        t->tx_dma = t->rx_dma = host->data_dma;
 517        t->len = cp - data->status;
 518        t->cs_change = 1;
 519        spi_message_add_tail(t, &host->m);
 520
 521        if (host->dma_dev) {
 522                host->m.is_dma_mapped = 1;
 523                dma_sync_single_for_device(host->dma_dev,
 524                                host->data_dma, sizeof(*host->data),
 525                                DMA_BIDIRECTIONAL);
 526        }
 527        status = spi_sync_locked(host->spi, &host->m);
 528
 529        if (host->dma_dev)
 530                dma_sync_single_for_cpu(host->dma_dev,
 531                                host->data_dma, sizeof(*host->data),
 532                                DMA_BIDIRECTIONAL);
 533        if (status < 0) {
 534                dev_dbg(&host->spi->dev, "  ... write returned %d\n", status);
 535                cmd->error = status;
 536                return status;
 537        }
 538
 539        /* after no-data commands and STOP_TRANSMISSION, chipselect off */
 540        return mmc_spi_response_get(host, cmd, cs_on);
 541}
 542
 543/* Build data message with up to four separate transfers.  For TX, we
 544 * start by writing the data token.  And in most cases, we finish with
 545 * a status transfer.
 546 *
 547 * We always provide TX data for data and CRC.  The MMC/SD protocol
 548 * requires us to write ones; but Linux defaults to writing zeroes;
 549 * so we explicitly initialize it to all ones on RX paths.
 550 *
 551 * We also handle DMA mapping, so the underlying SPI controller does
 552 * not need to (re)do it for each message.
 553 */
 554static void
 555mmc_spi_setup_data_message(
 556        struct mmc_spi_host     *host,
 557        int                     multiple,
 558        enum dma_data_direction direction)
 559{
 560        struct spi_transfer     *t;
 561        struct scratch          *scratch = host->data;
 562        dma_addr_t              dma = host->data_dma;
 563
 564        spi_message_init(&host->m);
 565        if (dma)
 566                host->m.is_dma_mapped = 1;
 567
 568        /* for reads, readblock() skips 0xff bytes before finding
 569         * the token; for writes, this transfer issues that token.
 570         */
 571        if (direction == DMA_TO_DEVICE) {
 572                t = &host->token;
 573                memset(t, 0, sizeof(*t));
 574                t->len = 1;
 575                if (multiple)
 576                        scratch->data_token = SPI_TOKEN_MULTI_WRITE;
 577                else
 578                        scratch->data_token = SPI_TOKEN_SINGLE;
 579                t->tx_buf = &scratch->data_token;
 580                if (dma)
 581                        t->tx_dma = dma + offsetof(struct scratch, data_token);
 582                spi_message_add_tail(t, &host->m);
 583        }
 584
 585        /* Body of transfer is buffer, then CRC ...
 586         * either TX-only, or RX with TX-ones.
 587         */
 588        t = &host->t;
 589        memset(t, 0, sizeof(*t));
 590        t->tx_buf = host->ones;
 591        t->tx_dma = host->ones_dma;
 592        /* length and actual buffer info are written later */
 593        spi_message_add_tail(t, &host->m);
 594
 595        t = &host->crc;
 596        memset(t, 0, sizeof(*t));
 597        t->len = 2;
 598        if (direction == DMA_TO_DEVICE) {
 599                /* the actual CRC may get written later */
 600                t->tx_buf = &scratch->crc_val;
 601                if (dma)
 602                        t->tx_dma = dma + offsetof(struct scratch, crc_val);
 603        } else {
 604                t->tx_buf = host->ones;
 605                t->tx_dma = host->ones_dma;
 606                t->rx_buf = &scratch->crc_val;
 607                if (dma)
 608                        t->rx_dma = dma + offsetof(struct scratch, crc_val);
 609        }
 610        spi_message_add_tail(t, &host->m);
 611
 612        /*
 613         * A single block read is followed by N(EC) [0+] all-ones bytes
 614         * before deselect ... don't bother.
 615         *
 616         * Multiblock reads are followed by N(AC) [1+] all-ones bytes before
 617         * the next block is read, or a STOP_TRANSMISSION is issued.  We'll
 618         * collect that single byte, so readblock() doesn't need to.
 619         *
 620         * For a write, the one-byte data response follows immediately, then
 621         * come zero or more busy bytes, then N(WR) [1+] all-ones bytes.
 622         * Then single block reads may deselect, and multiblock ones issue
 623         * the next token (next data block, or STOP_TRAN).  We can try to
 624         * minimize I/O ops by using a single read to collect end-of-busy.
 625         */
 626        if (multiple || direction == DMA_TO_DEVICE) {
 627                t = &host->early_status;
 628                memset(t, 0, sizeof(*t));
 629                t->len = (direction == DMA_TO_DEVICE) ? sizeof(scratch->status) : 1;
 630                t->tx_buf = host->ones;
 631                t->tx_dma = host->ones_dma;
 632                t->rx_buf = scratch->status;
 633                if (dma)
 634                        t->rx_dma = dma + offsetof(struct scratch, status);
 635                t->cs_change = 1;
 636                spi_message_add_tail(t, &host->m);
 637        }
 638}
 639
 640/*
 641 * Write one block:
 642 *  - caller handled preceding N(WR) [1+] all-ones bytes
 643 *  - data block
 644 *      + token
 645 *      + data bytes
 646 *      + crc16
 647 *  - an all-ones byte ... card writes a data-response byte
 648 *  - followed by N(EC) [0+] all-ones bytes, card writes zero/'busy'
 649 *
 650 * Return negative errno, else success.
 651 */
 652static int
 653mmc_spi_writeblock(struct mmc_spi_host *host, struct spi_transfer *t,
 654        unsigned long timeout)
 655{
 656        struct spi_device       *spi = host->spi;
 657        int                     status, i;
 658        struct scratch          *scratch = host->data;
 659        u32                     pattern;
 660
 661        if (host->mmc->use_spi_crc)
 662                scratch->crc_val = cpu_to_be16(crc_itu_t(0, t->tx_buf, t->len));
 663        if (host->dma_dev)
 664                dma_sync_single_for_device(host->dma_dev,
 665                                host->data_dma, sizeof(*scratch),
 666                                DMA_BIDIRECTIONAL);
 667
 668        status = spi_sync_locked(spi, &host->m);
 669
 670        if (status != 0) {
 671                dev_dbg(&spi->dev, "write error (%d)\n", status);
 672                return status;
 673        }
 674
 675        if (host->dma_dev)
 676                dma_sync_single_for_cpu(host->dma_dev,
 677                                host->data_dma, sizeof(*scratch),
 678                                DMA_BIDIRECTIONAL);
 679
 680        /*
 681         * Get the transmission data-response reply.  It must follow
 682         * immediately after the data block we transferred.  This reply
 683         * doesn't necessarily tell whether the write operation succeeded;
 684         * it just says if the transmission was ok and whether *earlier*
 685         * writes succeeded; see the standard.
 686         *
 687         * In practice, there are (even modern SDHC-)cards which are late
 688         * in sending the response, and miss the time frame by a few bits,
 689         * so we have to cope with this situation and check the response
 690         * bit-by-bit. Arggh!!!
 691         */
 692        pattern = get_unaligned_be32(scratch->status);
 693
 694        /* First 3 bit of pattern are undefined */
 695        pattern |= 0xE0000000;
 696
 697        /* left-adjust to leading 0 bit */
 698        while (pattern & 0x80000000)
 699                pattern <<= 1;
 700        /* right-adjust for pattern matching. Code is in bit 4..0 now. */
 701        pattern >>= 27;
 702
 703        switch (pattern) {
 704        case SPI_RESPONSE_ACCEPTED:
 705                status = 0;
 706                break;
 707        case SPI_RESPONSE_CRC_ERR:
 708                /* host shall then issue MMC_STOP_TRANSMISSION */
 709                status = -EILSEQ;
 710                break;
 711        case SPI_RESPONSE_WRITE_ERR:
 712                /* host shall then issue MMC_STOP_TRANSMISSION,
 713                 * and should MMC_SEND_STATUS to sort it out
 714                 */
 715                status = -EIO;
 716                break;
 717        default:
 718                status = -EPROTO;
 719                break;
 720        }
 721        if (status != 0) {
 722                dev_dbg(&spi->dev, "write error %02x (%d)\n",
 723                        scratch->status[0], status);
 724                return status;
 725        }
 726
 727        t->tx_buf += t->len;
 728        if (host->dma_dev)
 729                t->tx_dma += t->len;
 730
 731        /* Return when not busy.  If we didn't collect that status yet,
 732         * we'll need some more I/O.
 733         */
 734        for (i = 4; i < sizeof(scratch->status); i++) {
 735                /* card is non-busy if the most recent bit is 1 */
 736                if (scratch->status[i] & 0x01)
 737                        return 0;
 738        }
 739        return mmc_spi_wait_unbusy(host, timeout);
 740}
 741
 742/*
 743 * Read one block:
 744 *  - skip leading all-ones bytes ... either
 745 *      + N(AC) [1..f(clock,CSD)] usually, else
 746 *      + N(CX) [0..8] when reading CSD or CID
 747 *  - data block
 748 *      + token ... if error token, no data or crc
 749 *      + data bytes
 750 *      + crc16
 751 *
 752 * After single block reads, we're done; N(EC) [0+] all-ones bytes follow
 753 * before dropping chipselect.
 754 *
 755 * For multiblock reads, caller either reads the next block or issues a
 756 * STOP_TRANSMISSION command.
 757 */
 758static int
 759mmc_spi_readblock(struct mmc_spi_host *host, struct spi_transfer *t,
 760        unsigned long timeout)
 761{
 762        struct spi_device       *spi = host->spi;
 763        int                     status;
 764        struct scratch          *scratch = host->data;
 765        unsigned int            bitshift;
 766        u8                      leftover;
 767
 768        /* At least one SD card sends an all-zeroes byte when N(CX)
 769         * applies, before the all-ones bytes ... just cope with that.
 770         */
 771        status = mmc_spi_readbytes(host, 1);
 772        if (status < 0)
 773                return status;
 774        status = scratch->status[0];
 775        if (status == 0xff || status == 0)
 776                status = mmc_spi_readtoken(host, timeout);
 777
 778        if (status < 0) {
 779                dev_dbg(&spi->dev, "read error %02x (%d)\n", status, status);
 780                return status;
 781        }
 782
 783        /* The token may be bit-shifted...
 784         * the first 0-bit precedes the data stream.
 785         */
 786        bitshift = 7;
 787        while (status & 0x80) {
 788                status <<= 1;
 789                bitshift--;
 790        }
 791        leftover = status << 1;
 792
 793        if (host->dma_dev) {
 794                dma_sync_single_for_device(host->dma_dev,
 795                                host->data_dma, sizeof(*scratch),
 796                                DMA_BIDIRECTIONAL);
 797                dma_sync_single_for_device(host->dma_dev,
 798                                t->rx_dma, t->len,
 799                                DMA_FROM_DEVICE);
 800        }
 801
 802        status = spi_sync_locked(spi, &host->m);
 803        if (status < 0) {
 804                dev_dbg(&spi->dev, "read error %d\n", status);
 805                return status;
 806        }
 807
 808        if (host->dma_dev) {
 809                dma_sync_single_for_cpu(host->dma_dev,
 810                                host->data_dma, sizeof(*scratch),
 811                                DMA_BIDIRECTIONAL);
 812                dma_sync_single_for_cpu(host->dma_dev,
 813                                t->rx_dma, t->len,
 814                                DMA_FROM_DEVICE);
 815        }
 816
 817        if (bitshift) {
 818                /* Walk through the data and the crc and do
 819                 * all the magic to get byte-aligned data.
 820                 */
 821                u8 *cp = t->rx_buf;
 822                unsigned int len;
 823                unsigned int bitright = 8 - bitshift;
 824                u8 temp;
 825                for (len = t->len; len; len--) {
 826                        temp = *cp;
 827                        *cp++ = leftover | (temp >> bitshift);
 828                        leftover = temp << bitright;
 829                }
 830                cp = (u8 *) &scratch->crc_val;
 831                temp = *cp;
 832                *cp++ = leftover | (temp >> bitshift);
 833                leftover = temp << bitright;
 834                temp = *cp;
 835                *cp = leftover | (temp >> bitshift);
 836        }
 837
 838        if (host->mmc->use_spi_crc) {
 839                u16 crc = crc_itu_t(0, t->rx_buf, t->len);
 840
 841                be16_to_cpus(&scratch->crc_val);
 842                if (scratch->crc_val != crc) {
 843                        dev_dbg(&spi->dev,
 844                                "read - crc error: crc_val=0x%04x, computed=0x%04x len=%d\n",
 845                                scratch->crc_val, crc, t->len);
 846                        return -EILSEQ;
 847                }
 848        }
 849
 850        t->rx_buf += t->len;
 851        if (host->dma_dev)
 852                t->rx_dma += t->len;
 853
 854        return 0;
 855}
 856
 857/*
 858 * An MMC/SD data stage includes one or more blocks, optional CRCs,
 859 * and inline handshaking.  That handhaking makes it unlike most
 860 * other SPI protocol stacks.
 861 */
 862static void
 863mmc_spi_data_do(struct mmc_spi_host *host, struct mmc_command *cmd,
 864                struct mmc_data *data, u32 blk_size)
 865{
 866        struct spi_device       *spi = host->spi;
 867        struct device           *dma_dev = host->dma_dev;
 868        struct spi_transfer     *t;
 869        enum dma_data_direction direction;
 870        struct scatterlist      *sg;
 871        unsigned                n_sg;
 872        int                     multiple = (data->blocks > 1);
 873        u32                     clock_rate;
 874        unsigned long           timeout;
 875
 876        direction = mmc_get_dma_dir(data);
 877        mmc_spi_setup_data_message(host, multiple, direction);
 878        t = &host->t;
 879
 880        if (t->speed_hz)
 881                clock_rate = t->speed_hz;
 882        else
 883                clock_rate = spi->max_speed_hz;
 884
 885        timeout = data->timeout_ns / 1000 +
 886                  data->timeout_clks * 1000000 / clock_rate;
 887        timeout = usecs_to_jiffies((unsigned int)timeout) + 1;
 888
 889        /* Handle scatterlist segments one at a time, with synch for
 890         * each 512-byte block
 891         */
 892        for_each_sg(data->sg, sg, data->sg_len, n_sg) {
 893                int                     status = 0;
 894                dma_addr_t              dma_addr = 0;
 895                void                    *kmap_addr;
 896                unsigned                length = sg->length;
 897                enum dma_data_direction dir = direction;
 898
 899                /* set up dma mapping for controller drivers that might
 900                 * use DMA ... though they may fall back to PIO
 901                 */
 902                if (dma_dev) {
 903                        /* never invalidate whole *shared* pages ... */
 904                        if ((sg->offset != 0 || length != PAGE_SIZE)
 905                                        && dir == DMA_FROM_DEVICE)
 906                                dir = DMA_BIDIRECTIONAL;
 907
 908                        dma_addr = dma_map_page(dma_dev, sg_page(sg), 0,
 909                                                PAGE_SIZE, dir);
 910                        if (dma_mapping_error(dma_dev, dma_addr)) {
 911                                data->error = -EFAULT;
 912                                break;
 913                        }
 914                        if (direction == DMA_TO_DEVICE)
 915                                t->tx_dma = dma_addr + sg->offset;
 916                        else
 917                                t->rx_dma = dma_addr + sg->offset;
 918                }
 919
 920                /* allow pio too; we don't allow highmem */
 921                kmap_addr = kmap(sg_page(sg));
 922                if (direction == DMA_TO_DEVICE)
 923                        t->tx_buf = kmap_addr + sg->offset;
 924                else
 925                        t->rx_buf = kmap_addr + sg->offset;
 926
 927                /* transfer each block, and update request status */
 928                while (length) {
 929                        t->len = min(length, blk_size);
 930
 931                        dev_dbg(&host->spi->dev,
 932                                "    mmc_spi: %s block, %d bytes\n",
 933                                (direction == DMA_TO_DEVICE) ? "write" : "read",
 934                                t->len);
 935
 936                        if (direction == DMA_TO_DEVICE)
 937                                status = mmc_spi_writeblock(host, t, timeout);
 938                        else
 939                                status = mmc_spi_readblock(host, t, timeout);
 940                        if (status < 0)
 941                                break;
 942
 943                        data->bytes_xfered += t->len;
 944                        length -= t->len;
 945
 946                        if (!multiple)
 947                                break;
 948                }
 949
 950                /* discard mappings */
 951                if (direction == DMA_FROM_DEVICE)
 952                        flush_kernel_dcache_page(sg_page(sg));
 953                kunmap(sg_page(sg));
 954                if (dma_dev)
 955                        dma_unmap_page(dma_dev, dma_addr, PAGE_SIZE, dir);
 956
 957                if (status < 0) {
 958                        data->error = status;
 959                        dev_dbg(&spi->dev, "%s status %d\n",
 960                                (direction == DMA_TO_DEVICE) ? "write" : "read",
 961                                status);
 962                        break;
 963                }
 964        }
 965
 966        /* NOTE some docs describe an MMC-only SET_BLOCK_COUNT (CMD23) that
 967         * can be issued before multiblock writes.  Unlike its more widely
 968         * documented analogue for SD cards (SET_WR_BLK_ERASE_COUNT, ACMD23),
 969         * that can affect the STOP_TRAN logic.   Complete (and current)
 970         * MMC specs should sort that out before Linux starts using CMD23.
 971         */
 972        if (direction == DMA_TO_DEVICE && multiple) {
 973                struct scratch  *scratch = host->data;
 974                int             tmp;
 975                const unsigned  statlen = sizeof(scratch->status);
 976
 977                dev_dbg(&spi->dev, "    mmc_spi: STOP_TRAN\n");
 978
 979                /* Tweak the per-block message we set up earlier by morphing
 980                 * it to hold single buffer with the token followed by some
 981                 * all-ones bytes ... skip N(BR) (0..1), scan the rest for
 982                 * "not busy any longer" status, and leave chip selected.
 983                 */
 984                INIT_LIST_HEAD(&host->m.transfers);
 985                list_add(&host->early_status.transfer_list,
 986                                &host->m.transfers);
 987
 988                memset(scratch->status, 0xff, statlen);
 989                scratch->status[0] = SPI_TOKEN_STOP_TRAN;
 990
 991                host->early_status.tx_buf = host->early_status.rx_buf;
 992                host->early_status.tx_dma = host->early_status.rx_dma;
 993                host->early_status.len = statlen;
 994
 995                if (host->dma_dev)
 996                        dma_sync_single_for_device(host->dma_dev,
 997                                        host->data_dma, sizeof(*scratch),
 998                                        DMA_BIDIRECTIONAL);
 999
1000                tmp = spi_sync_locked(spi, &host->m);
1001
1002                if (host->dma_dev)
1003                        dma_sync_single_for_cpu(host->dma_dev,
1004                                        host->data_dma, sizeof(*scratch),
1005                                        DMA_BIDIRECTIONAL);
1006
1007                if (tmp < 0) {
1008                        if (!data->error)
1009                                data->error = tmp;
1010                        return;
1011                }
1012
1013                /* Ideally we collected "not busy" status with one I/O,
1014                 * avoiding wasteful byte-at-a-time scanning... but more
1015                 * I/O is often needed.
1016                 */
1017                for (tmp = 2; tmp < statlen; tmp++) {
1018                        if (scratch->status[tmp] != 0)
1019                                return;
1020                }
1021                tmp = mmc_spi_wait_unbusy(host, timeout);
1022                if (tmp < 0 && !data->error)
1023                        data->error = tmp;
1024        }
1025}
1026
1027/****************************************************************************/
1028
1029/*
1030 * MMC driver implementation -- the interface to the MMC stack
1031 */
1032
1033static void mmc_spi_request(struct mmc_host *mmc, struct mmc_request *mrq)
1034{
1035        struct mmc_spi_host     *host = mmc_priv(mmc);
1036        int                     status = -EINVAL;
1037        int                     crc_retry = 5;
1038        struct mmc_command      stop;
1039
1040#ifdef DEBUG
1041        /* MMC core and layered drivers *MUST* issue SPI-aware commands */
1042        {
1043                struct mmc_command      *cmd;
1044                int                     invalid = 0;
1045
1046                cmd = mrq->cmd;
1047                if (!mmc_spi_resp_type(cmd)) {
1048                        dev_dbg(&host->spi->dev, "bogus command\n");
1049                        cmd->error = -EINVAL;
1050                        invalid = 1;
1051                }
1052
1053                cmd = mrq->stop;
1054                if (cmd && !mmc_spi_resp_type(cmd)) {
1055                        dev_dbg(&host->spi->dev, "bogus STOP command\n");
1056                        cmd->error = -EINVAL;
1057                        invalid = 1;
1058                }
1059
1060                if (invalid) {
1061                        dump_stack();
1062                        mmc_request_done(host->mmc, mrq);
1063                        return;
1064                }
1065        }
1066#endif
1067
1068        /* request exclusive bus access */
1069        spi_bus_lock(host->spi->master);
1070
1071crc_recover:
1072        /* issue command; then optionally data and stop */
1073        status = mmc_spi_command_send(host, mrq, mrq->cmd, mrq->data != NULL);
1074        if (status == 0 && mrq->data) {
1075                mmc_spi_data_do(host, mrq->cmd, mrq->data, mrq->data->blksz);
1076
1077                /*
1078                 * The SPI bus is not always reliable for large data transfers.
1079                 * If an occasional crc error is reported by the SD device with
1080                 * data read/write over SPI, it may be recovered by repeating
1081                 * the last SD command again. The retry count is set to 5 to
1082                 * ensure the driver passes stress tests.
1083                 */
1084                if (mrq->data->error == -EILSEQ && crc_retry) {
1085                        stop.opcode = MMC_STOP_TRANSMISSION;
1086                        stop.arg = 0;
1087                        stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1088                        status = mmc_spi_command_send(host, mrq, &stop, 0);
1089                        crc_retry--;
1090                        mrq->data->error = 0;
1091                        goto crc_recover;
1092                }
1093
1094                if (mrq->stop)
1095                        status = mmc_spi_command_send(host, mrq, mrq->stop, 0);
1096                else
1097                        mmc_cs_off(host);
1098        }
1099
1100        /* release the bus */
1101        spi_bus_unlock(host->spi->master);
1102
1103        mmc_request_done(host->mmc, mrq);
1104}
1105
1106/* See Section 6.4.1, in SD "Simplified Physical Layer Specification 2.0"
1107 *
1108 * NOTE that here we can't know that the card has just been powered up;
1109 * not all MMC/SD sockets support power switching.
1110 *
1111 * FIXME when the card is still in SPI mode, e.g. from a previous kernel,
1112 * this doesn't seem to do the right thing at all...
1113 */
1114static void mmc_spi_initsequence(struct mmc_spi_host *host)
1115{
1116        /* Try to be very sure any previous command has completed;
1117         * wait till not-busy, skip debris from any old commands.
1118         */
1119        mmc_spi_wait_unbusy(host, msecs_to_jiffies(MMC_SPI_INIT_TIMEOUT_MS));
1120        mmc_spi_readbytes(host, 10);
1121
1122        /*
1123         * Do a burst with chipselect active-high.  We need to do this to
1124         * meet the requirement of 74 clock cycles with both chipselect
1125         * and CMD (MOSI) high before CMD0 ... after the card has been
1126         * powered up to Vdd(min), and so is ready to take commands.
1127         *
1128         * Some cards are particularly needy of this (e.g. Viking "SD256")
1129         * while most others don't seem to care.
1130         *
1131         * Note that this is one of the places MMC/SD plays games with the
1132         * SPI protocol.  Another is that when chipselect is released while
1133         * the card returns BUSY status, the clock must issue several cycles
1134         * with chipselect high before the card will stop driving its output.
1135         *
1136         * SPI_CS_HIGH means "asserted" here. In some cases like when using
1137         * GPIOs for chip select, SPI_CS_HIGH is set but this will be logically
1138         * inverted by gpiolib, so if we want to ascertain to drive it high
1139         * we should toggle the default with an XOR as we do here.
1140         */
1141        host->spi->mode ^= SPI_CS_HIGH;
1142        if (spi_setup(host->spi) != 0) {
1143                /* Just warn; most cards work without it. */
1144                dev_warn(&host->spi->dev,
1145                                "can't change chip-select polarity\n");
1146                host->spi->mode ^= SPI_CS_HIGH;
1147        } else {
1148                mmc_spi_readbytes(host, 18);
1149
1150                host->spi->mode ^= SPI_CS_HIGH;
1151                if (spi_setup(host->spi) != 0) {
1152                        /* Wot, we can't get the same setup we had before? */
1153                        dev_err(&host->spi->dev,
1154                                        "can't restore chip-select polarity\n");
1155                }
1156        }
1157}
1158
1159static char *mmc_powerstring(u8 power_mode)
1160{
1161        switch (power_mode) {
1162        case MMC_POWER_OFF: return "off";
1163        case MMC_POWER_UP:  return "up";
1164        case MMC_POWER_ON:  return "on";
1165        }
1166        return "?";
1167}
1168
1169static void mmc_spi_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1170{
1171        struct mmc_spi_host *host = mmc_priv(mmc);
1172
1173        if (host->power_mode != ios->power_mode) {
1174                int             canpower;
1175
1176                canpower = host->pdata && host->pdata->setpower;
1177
1178                dev_dbg(&host->spi->dev, "mmc_spi: power %s (%d)%s\n",
1179                                mmc_powerstring(ios->power_mode),
1180                                ios->vdd,
1181                                canpower ? ", can switch" : "");
1182
1183                /* switch power on/off if possible, accounting for
1184                 * max 250msec powerup time if needed.
1185                 */
1186                if (canpower) {
1187                        switch (ios->power_mode) {
1188                        case MMC_POWER_OFF:
1189                        case MMC_POWER_UP:
1190                                host->pdata->setpower(&host->spi->dev,
1191                                                ios->vdd);
1192                                if (ios->power_mode == MMC_POWER_UP)
1193                                        msleep(host->powerup_msecs);
1194                        }
1195                }
1196
1197                /* See 6.4.1 in the simplified SD card physical spec 2.0 */
1198                if (ios->power_mode == MMC_POWER_ON)
1199                        mmc_spi_initsequence(host);
1200
1201                /* If powering down, ground all card inputs to avoid power
1202                 * delivery from data lines!  On a shared SPI bus, this
1203                 * will probably be temporary; 6.4.2 of the simplified SD
1204                 * spec says this must last at least 1msec.
1205                 *
1206                 *   - Clock low means CPOL 0, e.g. mode 0
1207                 *   - MOSI low comes from writing zero
1208                 *   - Chipselect is usually active low...
1209                 */
1210                if (canpower && ios->power_mode == MMC_POWER_OFF) {
1211                        int mres;
1212                        u8 nullbyte = 0;
1213
1214                        host->spi->mode &= ~(SPI_CPOL|SPI_CPHA);
1215                        mres = spi_setup(host->spi);
1216                        if (mres < 0)
1217                                dev_dbg(&host->spi->dev,
1218                                        "switch to SPI mode 0 failed\n");
1219
1220                        if (spi_write(host->spi, &nullbyte, 1) < 0)
1221                                dev_dbg(&host->spi->dev,
1222                                        "put spi signals to low failed\n");
1223
1224                        /*
1225                         * Now clock should be low due to spi mode 0;
1226                         * MOSI should be low because of written 0x00;
1227                         * chipselect should be low (it is active low)
1228                         * power supply is off, so now MMC is off too!
1229                         *
1230                         * FIXME no, chipselect can be high since the
1231                         * device is inactive and SPI_CS_HIGH is clear...
1232                         */
1233                        msleep(10);
1234                        if (mres == 0) {
1235                                host->spi->mode |= (SPI_CPOL|SPI_CPHA);
1236                                mres = spi_setup(host->spi);
1237                                if (mres < 0)
1238                                        dev_dbg(&host->spi->dev,
1239                                                "switch back to SPI mode 3 failed\n");
1240                        }
1241                }
1242
1243                host->power_mode = ios->power_mode;
1244        }
1245
1246        if (host->spi->max_speed_hz != ios->clock && ios->clock != 0) {
1247                int             status;
1248
1249                host->spi->max_speed_hz = ios->clock;
1250                status = spi_setup(host->spi);
1251                dev_dbg(&host->spi->dev,
1252                        "mmc_spi:  clock to %d Hz, %d\n",
1253                        host->spi->max_speed_hz, status);
1254        }
1255}
1256
1257static const struct mmc_host_ops mmc_spi_ops = {
1258        .request        = mmc_spi_request,
1259        .set_ios        = mmc_spi_set_ios,
1260        .get_ro         = mmc_gpio_get_ro,
1261        .get_cd         = mmc_gpio_get_cd,
1262};
1263
1264
1265/****************************************************************************/
1266
1267/*
1268 * SPI driver implementation
1269 */
1270
1271static irqreturn_t
1272mmc_spi_detect_irq(int irq, void *mmc)
1273{
1274        struct mmc_spi_host *host = mmc_priv(mmc);
1275        u16 delay_msec = max(host->pdata->detect_delay, (u16)100);
1276
1277        mmc_detect_change(mmc, msecs_to_jiffies(delay_msec));
1278        return IRQ_HANDLED;
1279}
1280
1281#ifdef CONFIG_HAS_DMA
1282static int mmc_spi_dma_alloc(struct mmc_spi_host *host)
1283{
1284        struct spi_device *spi = host->spi;
1285        struct device *dev;
1286
1287        if (!spi->master->dev.parent->dma_mask)
1288                return 0;
1289
1290        dev = spi->master->dev.parent;
1291
1292        host->ones_dma = dma_map_single(dev, host->ones, MMC_SPI_BLOCKSIZE,
1293                                        DMA_TO_DEVICE);
1294        if (dma_mapping_error(dev, host->ones_dma))
1295                return -ENOMEM;
1296
1297        host->data_dma = dma_map_single(dev, host->data, sizeof(*host->data),
1298                                        DMA_BIDIRECTIONAL);
1299        if (dma_mapping_error(dev, host->data_dma)) {
1300                dma_unmap_single(dev, host->ones_dma, MMC_SPI_BLOCKSIZE,
1301                                 DMA_TO_DEVICE);
1302                return -ENOMEM;
1303        }
1304
1305        dma_sync_single_for_cpu(dev, host->data_dma, sizeof(*host->data),
1306                                DMA_BIDIRECTIONAL);
1307
1308        host->dma_dev = dev;
1309        return 0;
1310}
1311
1312static void mmc_spi_dma_free(struct mmc_spi_host *host)
1313{
1314        if (!host->dma_dev)
1315                return;
1316
1317        dma_unmap_single(host->dma_dev, host->ones_dma, MMC_SPI_BLOCKSIZE,
1318                         DMA_TO_DEVICE);
1319        dma_unmap_single(host->dma_dev, host->data_dma, sizeof(*host->data),
1320                         DMA_BIDIRECTIONAL);
1321}
1322#else
1323static inline int mmc_spi_dma_alloc(struct mmc_spi_host *host) { return 0; }
1324static inline void mmc_spi_dma_free(struct mmc_spi_host *host) {}
1325#endif
1326
1327static int mmc_spi_probe(struct spi_device *spi)
1328{
1329        void                    *ones;
1330        struct mmc_host         *mmc;
1331        struct mmc_spi_host     *host;
1332        int                     status;
1333        bool                    has_ro = false;
1334
1335        /* We rely on full duplex transfers, mostly to reduce
1336         * per-transfer overheads (by making fewer transfers).
1337         */
1338        if (spi->master->flags & SPI_MASTER_HALF_DUPLEX)
1339                return -EINVAL;
1340
1341        /* MMC and SD specs only seem to care that sampling is on the
1342         * rising edge ... meaning SPI modes 0 or 3.  So either SPI mode
1343         * should be legit.  We'll use mode 0 since the steady state is 0,
1344         * which is appropriate for hotplugging, unless the platform data
1345         * specify mode 3 (if hardware is not compatible to mode 0).
1346         */
1347        if (spi->mode != SPI_MODE_3)
1348                spi->mode = SPI_MODE_0;
1349        spi->bits_per_word = 8;
1350
1351        status = spi_setup(spi);
1352        if (status < 0) {
1353                dev_dbg(&spi->dev, "needs SPI mode %02x, %d KHz; %d\n",
1354                                spi->mode, spi->max_speed_hz / 1000,
1355                                status);
1356                return status;
1357        }
1358
1359        /* We need a supply of ones to transmit.  This is the only time
1360         * the CPU touches these, so cache coherency isn't a concern.
1361         *
1362         * NOTE if many systems use more than one MMC-over-SPI connector
1363         * it'd save some memory to share this.  That's evidently rare.
1364         */
1365        status = -ENOMEM;
1366        ones = kmalloc(MMC_SPI_BLOCKSIZE, GFP_KERNEL);
1367        if (!ones)
1368                goto nomem;
1369        memset(ones, 0xff, MMC_SPI_BLOCKSIZE);
1370
1371        mmc = mmc_alloc_host(sizeof(*host), &spi->dev);
1372        if (!mmc)
1373                goto nomem;
1374
1375        mmc->ops = &mmc_spi_ops;
1376        mmc->max_blk_size = MMC_SPI_BLOCKSIZE;
1377        mmc->max_segs = MMC_SPI_BLOCKSATONCE;
1378        mmc->max_req_size = MMC_SPI_BLOCKSATONCE * MMC_SPI_BLOCKSIZE;
1379        mmc->max_blk_count = MMC_SPI_BLOCKSATONCE;
1380
1381        mmc->caps = MMC_CAP_SPI;
1382
1383        /* SPI doesn't need the lowspeed device identification thing for
1384         * MMC or SD cards, since it never comes up in open drain mode.
1385         * That's good; some SPI masters can't handle very low speeds!
1386         *
1387         * However, low speed SDIO cards need not handle over 400 KHz;
1388         * that's the only reason not to use a few MHz for f_min (until
1389         * the upper layer reads the target frequency from the CSD).
1390         */
1391        mmc->f_min = 400000;
1392        mmc->f_max = spi->max_speed_hz;
1393
1394        host = mmc_priv(mmc);
1395        host->mmc = mmc;
1396        host->spi = spi;
1397
1398        host->ones = ones;
1399
1400        dev_set_drvdata(&spi->dev, mmc);
1401
1402        /* Platform data is used to hook up things like card sensing
1403         * and power switching gpios.
1404         */
1405        host->pdata = mmc_spi_get_pdata(spi);
1406        if (host->pdata)
1407                mmc->ocr_avail = host->pdata->ocr_mask;
1408        if (!mmc->ocr_avail) {
1409                dev_warn(&spi->dev, "ASSUMING 3.2-3.4 V slot power\n");
1410                mmc->ocr_avail = MMC_VDD_32_33|MMC_VDD_33_34;
1411        }
1412        if (host->pdata && host->pdata->setpower) {
1413                host->powerup_msecs = host->pdata->powerup_msecs;
1414                if (!host->powerup_msecs || host->powerup_msecs > 250)
1415                        host->powerup_msecs = 250;
1416        }
1417
1418        /* preallocate dma buffers */
1419        host->data = kmalloc(sizeof(*host->data), GFP_KERNEL);
1420        if (!host->data)
1421                goto fail_nobuf1;
1422
1423        status = mmc_spi_dma_alloc(host);
1424        if (status)
1425                goto fail_dma;
1426
1427        /* setup message for status/busy readback */
1428        spi_message_init(&host->readback);
1429        host->readback.is_dma_mapped = (host->dma_dev != NULL);
1430
1431        spi_message_add_tail(&host->status, &host->readback);
1432        host->status.tx_buf = host->ones;
1433        host->status.tx_dma = host->ones_dma;
1434        host->status.rx_buf = &host->data->status;
1435        host->status.rx_dma = host->data_dma + offsetof(struct scratch, status);
1436        host->status.cs_change = 1;
1437
1438        /* register card detect irq */
1439        if (host->pdata && host->pdata->init) {
1440                status = host->pdata->init(&spi->dev, mmc_spi_detect_irq, mmc);
1441                if (status != 0)
1442                        goto fail_glue_init;
1443        }
1444
1445        /* pass platform capabilities, if any */
1446        if (host->pdata) {
1447                mmc->caps |= host->pdata->caps;
1448                mmc->caps2 |= host->pdata->caps2;
1449        }
1450
1451        status = mmc_add_host(mmc);
1452        if (status != 0)
1453                goto fail_add_host;
1454
1455        /*
1456         * Index 0 is card detect
1457         * Old boardfiles were specifying 1 ms as debounce
1458         */
1459        status = mmc_gpiod_request_cd(mmc, NULL, 0, false, 1000);
1460        if (status == -EPROBE_DEFER)
1461                goto fail_add_host;
1462        if (!status) {
1463                /*
1464                 * The platform has a CD GPIO signal that may support
1465                 * interrupts, so let mmc_gpiod_request_cd_irq() decide
1466                 * if polling is needed or not.
1467                 */
1468                mmc->caps &= ~MMC_CAP_NEEDS_POLL;
1469                mmc_gpiod_request_cd_irq(mmc);
1470        }
1471        mmc_detect_change(mmc, 0);
1472
1473        /* Index 1 is write protect/read only */
1474        status = mmc_gpiod_request_ro(mmc, NULL, 1, 0);
1475        if (status == -EPROBE_DEFER)
1476                goto fail_add_host;
1477        if (!status)
1478                has_ro = true;
1479
1480        dev_info(&spi->dev, "SD/MMC host %s%s%s%s%s\n",
1481                        dev_name(&mmc->class_dev),
1482                        host->dma_dev ? "" : ", no DMA",
1483                        has_ro ? "" : ", no WP",
1484                        (host->pdata && host->pdata->setpower)
1485                                ? "" : ", no poweroff",
1486                        (mmc->caps & MMC_CAP_NEEDS_POLL)
1487                                ? ", cd polling" : "");
1488        return 0;
1489
1490fail_add_host:
1491        mmc_remove_host(mmc);
1492fail_glue_init:
1493        mmc_spi_dma_free(host);
1494fail_dma:
1495        kfree(host->data);
1496fail_nobuf1:
1497        mmc_spi_put_pdata(spi);
1498        mmc_free_host(mmc);
1499nomem:
1500        kfree(ones);
1501        return status;
1502}
1503
1504
1505static int mmc_spi_remove(struct spi_device *spi)
1506{
1507        struct mmc_host         *mmc = dev_get_drvdata(&spi->dev);
1508        struct mmc_spi_host     *host = mmc_priv(mmc);
1509
1510        /* prevent new mmc_detect_change() calls */
1511        if (host->pdata && host->pdata->exit)
1512                host->pdata->exit(&spi->dev, mmc);
1513
1514        mmc_remove_host(mmc);
1515
1516        mmc_spi_dma_free(host);
1517        kfree(host->data);
1518        kfree(host->ones);
1519
1520        spi->max_speed_hz = mmc->f_max;
1521        mmc_spi_put_pdata(spi);
1522        mmc_free_host(mmc);
1523        return 0;
1524}
1525
1526static const struct of_device_id mmc_spi_of_match_table[] = {
1527        { .compatible = "mmc-spi-slot", },
1528        {},
1529};
1530MODULE_DEVICE_TABLE(of, mmc_spi_of_match_table);
1531
1532static struct spi_driver mmc_spi_driver = {
1533        .driver = {
1534                .name =         "mmc_spi",
1535                .of_match_table = mmc_spi_of_match_table,
1536        },
1537        .probe =        mmc_spi_probe,
1538        .remove =       mmc_spi_remove,
1539};
1540
1541module_spi_driver(mmc_spi_driver);
1542
1543MODULE_AUTHOR("Mike Lavender, David Brownell, Hans-Peter Nilsson, Jan Nikitenko");
1544MODULE_DESCRIPTION("SPI SD/MMC host driver");
1545MODULE_LICENSE("GPL");
1546MODULE_ALIAS("spi:mmc_spi");
1547