linux/drivers/mtd/nand/raw/stm32_fmc2_nand.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) STMicroelectronics 2018
   4 * Author: Christophe Kerello <christophe.kerello@st.com>
   5 */
   6
   7#include <linux/bitfield.h>
   8#include <linux/clk.h>
   9#include <linux/dmaengine.h>
  10#include <linux/dma-mapping.h>
  11#include <linux/errno.h>
  12#include <linux/interrupt.h>
  13#include <linux/iopoll.h>
  14#include <linux/mfd/syscon.h>
  15#include <linux/module.h>
  16#include <linux/mtd/rawnand.h>
  17#include <linux/of_address.h>
  18#include <linux/pinctrl/consumer.h>
  19#include <linux/platform_device.h>
  20#include <linux/regmap.h>
  21#include <linux/reset.h>
  22
  23/* Bad block marker length */
  24#define FMC2_BBM_LEN                    2
  25
  26/* ECC step size */
  27#define FMC2_ECC_STEP_SIZE              512
  28
  29/* BCHDSRx registers length */
  30#define FMC2_BCHDSRS_LEN                20
  31
  32/* HECCR length */
  33#define FMC2_HECCR_LEN                  4
  34
  35/* Max requests done for a 8k nand page size */
  36#define FMC2_MAX_SG                     16
  37
  38/* Max chip enable */
  39#define FMC2_MAX_CE                     2
  40
  41/* Max ECC buffer length */
  42#define FMC2_MAX_ECC_BUF_LEN            (FMC2_BCHDSRS_LEN * FMC2_MAX_SG)
  43
  44#define FMC2_TIMEOUT_MS                 5000
  45
  46/* Timings */
  47#define FMC2_THIZ                       1
  48#define FMC2_TIO                        8000
  49#define FMC2_TSYNC                      3000
  50#define FMC2_PCR_TIMING_MASK            0xf
  51#define FMC2_PMEM_PATT_TIMING_MASK      0xff
  52
  53/* FMC2 Controller Registers */
  54#define FMC2_BCR1                       0x0
  55#define FMC2_PCR                        0x80
  56#define FMC2_SR                         0x84
  57#define FMC2_PMEM                       0x88
  58#define FMC2_PATT                       0x8c
  59#define FMC2_HECCR                      0x94
  60#define FMC2_ISR                        0x184
  61#define FMC2_ICR                        0x188
  62#define FMC2_CSQCR                      0x200
  63#define FMC2_CSQCFGR1                   0x204
  64#define FMC2_CSQCFGR2                   0x208
  65#define FMC2_CSQCFGR3                   0x20c
  66#define FMC2_CSQAR1                     0x210
  67#define FMC2_CSQAR2                     0x214
  68#define FMC2_CSQIER                     0x220
  69#define FMC2_CSQISR                     0x224
  70#define FMC2_CSQICR                     0x228
  71#define FMC2_CSQEMSR                    0x230
  72#define FMC2_BCHIER                     0x250
  73#define FMC2_BCHISR                     0x254
  74#define FMC2_BCHICR                     0x258
  75#define FMC2_BCHPBR1                    0x260
  76#define FMC2_BCHPBR2                    0x264
  77#define FMC2_BCHPBR3                    0x268
  78#define FMC2_BCHPBR4                    0x26c
  79#define FMC2_BCHDSR0                    0x27c
  80#define FMC2_BCHDSR1                    0x280
  81#define FMC2_BCHDSR2                    0x284
  82#define FMC2_BCHDSR3                    0x288
  83#define FMC2_BCHDSR4                    0x28c
  84
  85/* Register: FMC2_BCR1 */
  86#define FMC2_BCR1_FMC2EN                BIT(31)
  87
  88/* Register: FMC2_PCR */
  89#define FMC2_PCR_PWAITEN                BIT(1)
  90#define FMC2_PCR_PBKEN                  BIT(2)
  91#define FMC2_PCR_PWID                   GENMASK(5, 4)
  92#define FMC2_PCR_PWID_BUSWIDTH_8        0
  93#define FMC2_PCR_PWID_BUSWIDTH_16       1
  94#define FMC2_PCR_ECCEN                  BIT(6)
  95#define FMC2_PCR_ECCALG                 BIT(8)
  96#define FMC2_PCR_TCLR                   GENMASK(12, 9)
  97#define FMC2_PCR_TCLR_DEFAULT           0xf
  98#define FMC2_PCR_TAR                    GENMASK(16, 13)
  99#define FMC2_PCR_TAR_DEFAULT            0xf
 100#define FMC2_PCR_ECCSS                  GENMASK(19, 17)
 101#define FMC2_PCR_ECCSS_512              1
 102#define FMC2_PCR_ECCSS_2048             3
 103#define FMC2_PCR_BCHECC                 BIT(24)
 104#define FMC2_PCR_WEN                    BIT(25)
 105
 106/* Register: FMC2_SR */
 107#define FMC2_SR_NWRF                    BIT(6)
 108
 109/* Register: FMC2_PMEM */
 110#define FMC2_PMEM_MEMSET                GENMASK(7, 0)
 111#define FMC2_PMEM_MEMWAIT               GENMASK(15, 8)
 112#define FMC2_PMEM_MEMHOLD               GENMASK(23, 16)
 113#define FMC2_PMEM_MEMHIZ                GENMASK(31, 24)
 114#define FMC2_PMEM_DEFAULT               0x0a0a0a0a
 115
 116/* Register: FMC2_PATT */
 117#define FMC2_PATT_ATTSET                GENMASK(7, 0)
 118#define FMC2_PATT_ATTWAIT               GENMASK(15, 8)
 119#define FMC2_PATT_ATTHOLD               GENMASK(23, 16)
 120#define FMC2_PATT_ATTHIZ                GENMASK(31, 24)
 121#define FMC2_PATT_DEFAULT               0x0a0a0a0a
 122
 123/* Register: FMC2_ISR */
 124#define FMC2_ISR_IHLF                   BIT(1)
 125
 126/* Register: FMC2_ICR */
 127#define FMC2_ICR_CIHLF                  BIT(1)
 128
 129/* Register: FMC2_CSQCR */
 130#define FMC2_CSQCR_CSQSTART             BIT(0)
 131
 132/* Register: FMC2_CSQCFGR1 */
 133#define FMC2_CSQCFGR1_CMD2EN            BIT(1)
 134#define FMC2_CSQCFGR1_DMADEN            BIT(2)
 135#define FMC2_CSQCFGR1_ACYNBR            GENMASK(6, 4)
 136#define FMC2_CSQCFGR1_CMD1              GENMASK(15, 8)
 137#define FMC2_CSQCFGR1_CMD2              GENMASK(23, 16)
 138#define FMC2_CSQCFGR1_CMD1T             BIT(24)
 139#define FMC2_CSQCFGR1_CMD2T             BIT(25)
 140
 141/* Register: FMC2_CSQCFGR2 */
 142#define FMC2_CSQCFGR2_SQSDTEN           BIT(0)
 143#define FMC2_CSQCFGR2_RCMD2EN           BIT(1)
 144#define FMC2_CSQCFGR2_DMASEN            BIT(2)
 145#define FMC2_CSQCFGR2_RCMD1             GENMASK(15, 8)
 146#define FMC2_CSQCFGR2_RCMD2             GENMASK(23, 16)
 147#define FMC2_CSQCFGR2_RCMD1T            BIT(24)
 148#define FMC2_CSQCFGR2_RCMD2T            BIT(25)
 149
 150/* Register: FMC2_CSQCFGR3 */
 151#define FMC2_CSQCFGR3_SNBR              GENMASK(13, 8)
 152#define FMC2_CSQCFGR3_AC1T              BIT(16)
 153#define FMC2_CSQCFGR3_AC2T              BIT(17)
 154#define FMC2_CSQCFGR3_AC3T              BIT(18)
 155#define FMC2_CSQCFGR3_AC4T              BIT(19)
 156#define FMC2_CSQCFGR3_AC5T              BIT(20)
 157#define FMC2_CSQCFGR3_SDT               BIT(21)
 158#define FMC2_CSQCFGR3_RAC1T             BIT(22)
 159#define FMC2_CSQCFGR3_RAC2T             BIT(23)
 160
 161/* Register: FMC2_CSQCAR1 */
 162#define FMC2_CSQCAR1_ADDC1              GENMASK(7, 0)
 163#define FMC2_CSQCAR1_ADDC2              GENMASK(15, 8)
 164#define FMC2_CSQCAR1_ADDC3              GENMASK(23, 16)
 165#define FMC2_CSQCAR1_ADDC4              GENMASK(31, 24)
 166
 167/* Register: FMC2_CSQCAR2 */
 168#define FMC2_CSQCAR2_ADDC5              GENMASK(7, 0)
 169#define FMC2_CSQCAR2_NANDCEN            GENMASK(11, 10)
 170#define FMC2_CSQCAR2_SAO                GENMASK(31, 16)
 171
 172/* Register: FMC2_CSQIER */
 173#define FMC2_CSQIER_TCIE                BIT(0)
 174
 175/* Register: FMC2_CSQICR */
 176#define FMC2_CSQICR_CLEAR_IRQ           GENMASK(4, 0)
 177
 178/* Register: FMC2_CSQEMSR */
 179#define FMC2_CSQEMSR_SEM                GENMASK(15, 0)
 180
 181/* Register: FMC2_BCHIER */
 182#define FMC2_BCHIER_DERIE               BIT(1)
 183#define FMC2_BCHIER_EPBRIE              BIT(4)
 184
 185/* Register: FMC2_BCHICR */
 186#define FMC2_BCHICR_CLEAR_IRQ           GENMASK(4, 0)
 187
 188/* Register: FMC2_BCHDSR0 */
 189#define FMC2_BCHDSR0_DUE                BIT(0)
 190#define FMC2_BCHDSR0_DEF                BIT(1)
 191#define FMC2_BCHDSR0_DEN                GENMASK(7, 4)
 192
 193/* Register: FMC2_BCHDSR1 */
 194#define FMC2_BCHDSR1_EBP1               GENMASK(12, 0)
 195#define FMC2_BCHDSR1_EBP2               GENMASK(28, 16)
 196
 197/* Register: FMC2_BCHDSR2 */
 198#define FMC2_BCHDSR2_EBP3               GENMASK(12, 0)
 199#define FMC2_BCHDSR2_EBP4               GENMASK(28, 16)
 200
 201/* Register: FMC2_BCHDSR3 */
 202#define FMC2_BCHDSR3_EBP5               GENMASK(12, 0)
 203#define FMC2_BCHDSR3_EBP6               GENMASK(28, 16)
 204
 205/* Register: FMC2_BCHDSR4 */
 206#define FMC2_BCHDSR4_EBP7               GENMASK(12, 0)
 207#define FMC2_BCHDSR4_EBP8               GENMASK(28, 16)
 208
 209enum stm32_fmc2_ecc {
 210        FMC2_ECC_HAM = 1,
 211        FMC2_ECC_BCH4 = 4,
 212        FMC2_ECC_BCH8 = 8
 213};
 214
 215enum stm32_fmc2_irq_state {
 216        FMC2_IRQ_UNKNOWN = 0,
 217        FMC2_IRQ_BCH,
 218        FMC2_IRQ_SEQ
 219};
 220
 221struct stm32_fmc2_timings {
 222        u8 tclr;
 223        u8 tar;
 224        u8 thiz;
 225        u8 twait;
 226        u8 thold_mem;
 227        u8 tset_mem;
 228        u8 thold_att;
 229        u8 tset_att;
 230};
 231
 232struct stm32_fmc2_nand {
 233        struct nand_chip chip;
 234        struct stm32_fmc2_timings timings;
 235        int ncs;
 236        int cs_used[FMC2_MAX_CE];
 237};
 238
 239static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
 240{
 241        return container_of(chip, struct stm32_fmc2_nand, chip);
 242}
 243
 244struct stm32_fmc2_nfc {
 245        struct nand_controller base;
 246        struct stm32_fmc2_nand nand;
 247        struct device *dev;
 248        struct device *cdev;
 249        struct regmap *regmap;
 250        void __iomem *data_base[FMC2_MAX_CE];
 251        void __iomem *cmd_base[FMC2_MAX_CE];
 252        void __iomem *addr_base[FMC2_MAX_CE];
 253        phys_addr_t io_phys_addr;
 254        phys_addr_t data_phys_addr[FMC2_MAX_CE];
 255        struct clk *clk;
 256        u8 irq_state;
 257
 258        struct dma_chan *dma_tx_ch;
 259        struct dma_chan *dma_rx_ch;
 260        struct dma_chan *dma_ecc_ch;
 261        struct sg_table dma_data_sg;
 262        struct sg_table dma_ecc_sg;
 263        u8 *ecc_buf;
 264        int dma_ecc_len;
 265
 266        struct completion complete;
 267        struct completion dma_data_complete;
 268        struct completion dma_ecc_complete;
 269
 270        u8 cs_assigned;
 271        int cs_sel;
 272};
 273
 274static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base)
 275{
 276        return container_of(base, struct stm32_fmc2_nfc, base);
 277}
 278
 279static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip)
 280{
 281        struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
 282        struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
 283        struct stm32_fmc2_timings *timings = &nand->timings;
 284        u32 pmem, patt;
 285
 286        /* Set tclr/tar timings */
 287        regmap_update_bits(nfc->regmap, FMC2_PCR,
 288                           FMC2_PCR_TCLR | FMC2_PCR_TAR,
 289                           FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) |
 290                           FIELD_PREP(FMC2_PCR_TAR, timings->tar));
 291
 292        /* Set tset/twait/thold/thiz timings in common bank */
 293        pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem);
 294        pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait);
 295        pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem);
 296        pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz);
 297        regmap_write(nfc->regmap, FMC2_PMEM, pmem);
 298
 299        /* Set tset/twait/thold/thiz timings in attribut bank */
 300        patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att);
 301        patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait);
 302        patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att);
 303        patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz);
 304        regmap_write(nfc->regmap, FMC2_PATT, patt);
 305}
 306
 307static void stm32_fmc2_nfc_setup(struct nand_chip *chip)
 308{
 309        struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
 310        u32 pcr = 0, pcr_mask;
 311
 312        /* Configure ECC algorithm (default configuration is Hamming) */
 313        pcr_mask = FMC2_PCR_ECCALG;
 314        pcr_mask |= FMC2_PCR_BCHECC;
 315        if (chip->ecc.strength == FMC2_ECC_BCH8) {
 316                pcr |= FMC2_PCR_ECCALG;
 317                pcr |= FMC2_PCR_BCHECC;
 318        } else if (chip->ecc.strength == FMC2_ECC_BCH4) {
 319                pcr |= FMC2_PCR_ECCALG;
 320        }
 321
 322        /* Set buswidth */
 323        pcr_mask |= FMC2_PCR_PWID;
 324        if (chip->options & NAND_BUSWIDTH_16)
 325                pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16);
 326
 327        /* Set ECC sector size */
 328        pcr_mask |= FMC2_PCR_ECCSS;
 329        pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512);
 330
 331        regmap_update_bits(nfc->regmap, FMC2_PCR, pcr_mask, pcr);
 332}
 333
 334static int stm32_fmc2_nfc_select_chip(struct nand_chip *chip, int chipnr)
 335{
 336        struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
 337        struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
 338        struct dma_slave_config dma_cfg;
 339        int ret;
 340
 341        if (nand->cs_used[chipnr] == nfc->cs_sel)
 342                return 0;
 343
 344        nfc->cs_sel = nand->cs_used[chipnr];
 345        stm32_fmc2_nfc_setup(chip);
 346        stm32_fmc2_nfc_timings_init(chip);
 347
 348        if (nfc->dma_tx_ch && nfc->dma_rx_ch) {
 349                memset(&dma_cfg, 0, sizeof(dma_cfg));
 350                dma_cfg.src_addr = nfc->data_phys_addr[nfc->cs_sel];
 351                dma_cfg.dst_addr = nfc->data_phys_addr[nfc->cs_sel];
 352                dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 353                dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 354                dma_cfg.src_maxburst = 32;
 355                dma_cfg.dst_maxburst = 32;
 356
 357                ret = dmaengine_slave_config(nfc->dma_tx_ch, &dma_cfg);
 358                if (ret) {
 359                        dev_err(nfc->dev, "tx DMA engine slave config failed\n");
 360                        return ret;
 361                }
 362
 363                ret = dmaengine_slave_config(nfc->dma_rx_ch, &dma_cfg);
 364                if (ret) {
 365                        dev_err(nfc->dev, "rx DMA engine slave config failed\n");
 366                        return ret;
 367                }
 368        }
 369
 370        if (nfc->dma_ecc_ch) {
 371                /*
 372                 * Hamming: we read HECCR register
 373                 * BCH4/BCH8: we read BCHDSRSx registers
 374                 */
 375                memset(&dma_cfg, 0, sizeof(dma_cfg));
 376                dma_cfg.src_addr = nfc->io_phys_addr;
 377                dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ?
 378                                    FMC2_HECCR : FMC2_BCHDSR0;
 379                dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 380
 381                ret = dmaengine_slave_config(nfc->dma_ecc_ch, &dma_cfg);
 382                if (ret) {
 383                        dev_err(nfc->dev, "ECC DMA engine slave config failed\n");
 384                        return ret;
 385                }
 386
 387                /* Calculate ECC length needed for one sector */
 388                nfc->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ?
 389                                   FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN;
 390        }
 391
 392        return 0;
 393}
 394
 395static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc, bool set)
 396{
 397        u32 pcr;
 398
 399        pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) :
 400                    FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8);
 401
 402        regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_PWID, pcr);
 403}
 404
 405static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable)
 406{
 407        regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_ECCEN,
 408                           enable ? FMC2_PCR_ECCEN : 0);
 409}
 410
 411static void stm32_fmc2_nfc_enable_seq_irq(struct stm32_fmc2_nfc *nfc)
 412{
 413        nfc->irq_state = FMC2_IRQ_SEQ;
 414
 415        regmap_update_bits(nfc->regmap, FMC2_CSQIER,
 416                           FMC2_CSQIER_TCIE, FMC2_CSQIER_TCIE);
 417}
 418
 419static void stm32_fmc2_nfc_disable_seq_irq(struct stm32_fmc2_nfc *nfc)
 420{
 421        regmap_update_bits(nfc->regmap, FMC2_CSQIER, FMC2_CSQIER_TCIE, 0);
 422
 423        nfc->irq_state = FMC2_IRQ_UNKNOWN;
 424}
 425
 426static void stm32_fmc2_nfc_clear_seq_irq(struct stm32_fmc2_nfc *nfc)
 427{
 428        regmap_write(nfc->regmap, FMC2_CSQICR, FMC2_CSQICR_CLEAR_IRQ);
 429}
 430
 431static void stm32_fmc2_nfc_enable_bch_irq(struct stm32_fmc2_nfc *nfc, int mode)
 432{
 433        nfc->irq_state = FMC2_IRQ_BCH;
 434
 435        if (mode == NAND_ECC_WRITE)
 436                regmap_update_bits(nfc->regmap, FMC2_BCHIER,
 437                                   FMC2_BCHIER_EPBRIE, FMC2_BCHIER_EPBRIE);
 438        else
 439                regmap_update_bits(nfc->regmap, FMC2_BCHIER,
 440                                   FMC2_BCHIER_DERIE, FMC2_BCHIER_DERIE);
 441}
 442
 443static void stm32_fmc2_nfc_disable_bch_irq(struct stm32_fmc2_nfc *nfc)
 444{
 445        regmap_update_bits(nfc->regmap, FMC2_BCHIER,
 446                           FMC2_BCHIER_DERIE | FMC2_BCHIER_EPBRIE, 0);
 447
 448        nfc->irq_state = FMC2_IRQ_UNKNOWN;
 449}
 450
 451static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc)
 452{
 453        regmap_write(nfc->regmap, FMC2_BCHICR, FMC2_BCHICR_CLEAR_IRQ);
 454}
 455
 456/*
 457 * Enable ECC logic and reset syndrome/parity bits previously calculated
 458 * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
 459 */
 460static void stm32_fmc2_nfc_hwctl(struct nand_chip *chip, int mode)
 461{
 462        struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
 463
 464        stm32_fmc2_nfc_set_ecc(nfc, false);
 465
 466        if (chip->ecc.strength != FMC2_ECC_HAM) {
 467                regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
 468                                   mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0);
 469
 470                reinit_completion(&nfc->complete);
 471                stm32_fmc2_nfc_clear_bch_irq(nfc);
 472                stm32_fmc2_nfc_enable_bch_irq(nfc, mode);
 473        }
 474
 475        stm32_fmc2_nfc_set_ecc(nfc, true);
 476}
 477
 478/*
 479 * ECC Hamming calculation
 480 * ECC is 3 bytes for 512 bytes of data (supports error correction up to
 481 * max of 1-bit)
 482 */
 483static void stm32_fmc2_nfc_ham_set_ecc(const u32 ecc_sta, u8 *ecc)
 484{
 485        ecc[0] = ecc_sta;
 486        ecc[1] = ecc_sta >> 8;
 487        ecc[2] = ecc_sta >> 16;
 488}
 489
 490static int stm32_fmc2_nfc_ham_calculate(struct nand_chip *chip, const u8 *data,
 491                                        u8 *ecc)
 492{
 493        struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
 494        u32 sr, heccr;
 495        int ret;
 496
 497        ret = regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
 498                                       sr & FMC2_SR_NWRF, 1,
 499                                       1000 * FMC2_TIMEOUT_MS);
 500        if (ret) {
 501                dev_err(nfc->dev, "ham timeout\n");
 502                return ret;
 503        }
 504
 505        regmap_read(nfc->regmap, FMC2_HECCR, &heccr);
 506        stm32_fmc2_nfc_ham_set_ecc(heccr, ecc);
 507        stm32_fmc2_nfc_set_ecc(nfc, false);
 508
 509        return 0;
 510}
 511
 512static int stm32_fmc2_nfc_ham_correct(struct nand_chip *chip, u8 *dat,
 513                                      u8 *read_ecc, u8 *calc_ecc)
 514{
 515        u8 bit_position = 0, b0, b1, b2;
 516        u32 byte_addr = 0, b;
 517        u32 i, shifting = 1;
 518
 519        /* Indicate which bit and byte is faulty (if any) */
 520        b0 = read_ecc[0] ^ calc_ecc[0];
 521        b1 = read_ecc[1] ^ calc_ecc[1];
 522        b2 = read_ecc[2] ^ calc_ecc[2];
 523        b = b0 | (b1 << 8) | (b2 << 16);
 524
 525        /* No errors */
 526        if (likely(!b))
 527                return 0;
 528
 529        /* Calculate bit position */
 530        for (i = 0; i < 3; i++) {
 531                switch (b % 4) {
 532                case 2:
 533                        bit_position += shifting;
 534                        break;
 535                case 1:
 536                        break;
 537                default:
 538                        return -EBADMSG;
 539                }
 540                shifting <<= 1;
 541                b >>= 2;
 542        }
 543
 544        /* Calculate byte position */
 545        shifting = 1;
 546        for (i = 0; i < 9; i++) {
 547                switch (b % 4) {
 548                case 2:
 549                        byte_addr += shifting;
 550                        break;
 551                case 1:
 552                        break;
 553                default:
 554                        return -EBADMSG;
 555                }
 556                shifting <<= 1;
 557                b >>= 2;
 558        }
 559
 560        /* Flip the bit */
 561        dat[byte_addr] ^= (1 << bit_position);
 562
 563        return 1;
 564}
 565
 566/*
 567 * ECC BCH calculation and correction
 568 * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
 569 * max of 4-bit/8-bit)
 570 */
 571static int stm32_fmc2_nfc_bch_calculate(struct nand_chip *chip, const u8 *data,
 572                                        u8 *ecc)
 573{
 574        struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
 575        u32 bchpbr;
 576
 577        /* Wait until the BCH code is ready */
 578        if (!wait_for_completion_timeout(&nfc->complete,
 579                                         msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
 580                dev_err(nfc->dev, "bch timeout\n");
 581                stm32_fmc2_nfc_disable_bch_irq(nfc);
 582                return -ETIMEDOUT;
 583        }
 584
 585        /* Read parity bits */
 586        regmap_read(nfc->regmap, FMC2_BCHPBR1, &bchpbr);
 587        ecc[0] = bchpbr;
 588        ecc[1] = bchpbr >> 8;
 589        ecc[2] = bchpbr >> 16;
 590        ecc[3] = bchpbr >> 24;
 591
 592        regmap_read(nfc->regmap, FMC2_BCHPBR2, &bchpbr);
 593        ecc[4] = bchpbr;
 594        ecc[5] = bchpbr >> 8;
 595        ecc[6] = bchpbr >> 16;
 596
 597        if (chip->ecc.strength == FMC2_ECC_BCH8) {
 598                ecc[7] = bchpbr >> 24;
 599
 600                regmap_read(nfc->regmap, FMC2_BCHPBR3, &bchpbr);
 601                ecc[8] = bchpbr;
 602                ecc[9] = bchpbr >> 8;
 603                ecc[10] = bchpbr >> 16;
 604                ecc[11] = bchpbr >> 24;
 605
 606                regmap_read(nfc->regmap, FMC2_BCHPBR4, &bchpbr);
 607                ecc[12] = bchpbr;
 608        }
 609
 610        stm32_fmc2_nfc_set_ecc(nfc, false);
 611
 612        return 0;
 613}
 614
 615static int stm32_fmc2_nfc_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta)
 616{
 617        u32 bchdsr0 = ecc_sta[0];
 618        u32 bchdsr1 = ecc_sta[1];
 619        u32 bchdsr2 = ecc_sta[2];
 620        u32 bchdsr3 = ecc_sta[3];
 621        u32 bchdsr4 = ecc_sta[4];
 622        u16 pos[8];
 623        int i, den;
 624        unsigned int nb_errs = 0;
 625
 626        /* No errors found */
 627        if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
 628                return 0;
 629
 630        /* Too many errors detected */
 631        if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
 632                return -EBADMSG;
 633
 634        pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1);
 635        pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1);
 636        pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2);
 637        pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2);
 638        pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3);
 639        pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3);
 640        pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4);
 641        pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4);
 642
 643        den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0);
 644        for (i = 0; i < den; i++) {
 645                if (pos[i] < eccsize * 8) {
 646                        change_bit(pos[i], (unsigned long *)dat);
 647                        nb_errs++;
 648                }
 649        }
 650
 651        return nb_errs;
 652}
 653
 654static int stm32_fmc2_nfc_bch_correct(struct nand_chip *chip, u8 *dat,
 655                                      u8 *read_ecc, u8 *calc_ecc)
 656{
 657        struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
 658        u32 ecc_sta[5];
 659
 660        /* Wait until the decoding error is ready */
 661        if (!wait_for_completion_timeout(&nfc->complete,
 662                                         msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
 663                dev_err(nfc->dev, "bch timeout\n");
 664                stm32_fmc2_nfc_disable_bch_irq(nfc);
 665                return -ETIMEDOUT;
 666        }
 667
 668        regmap_bulk_read(nfc->regmap, FMC2_BCHDSR0, ecc_sta, 5);
 669
 670        stm32_fmc2_nfc_set_ecc(nfc, false);
 671
 672        return stm32_fmc2_nfc_bch_decode(chip->ecc.size, dat, ecc_sta);
 673}
 674
 675static int stm32_fmc2_nfc_read_page(struct nand_chip *chip, u8 *buf,
 676                                    int oob_required, int page)
 677{
 678        struct mtd_info *mtd = nand_to_mtd(chip);
 679        int ret, i, s, stat, eccsize = chip->ecc.size;
 680        int eccbytes = chip->ecc.bytes;
 681        int eccsteps = chip->ecc.steps;
 682        int eccstrength = chip->ecc.strength;
 683        u8 *p = buf;
 684        u8 *ecc_calc = chip->ecc.calc_buf;
 685        u8 *ecc_code = chip->ecc.code_buf;
 686        unsigned int max_bitflips = 0;
 687
 688        ret = nand_read_page_op(chip, page, 0, NULL, 0);
 689        if (ret)
 690                return ret;
 691
 692        for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
 693             s++, i += eccbytes, p += eccsize) {
 694                chip->ecc.hwctl(chip, NAND_ECC_READ);
 695
 696                /* Read the nand page sector (512 bytes) */
 697                ret = nand_change_read_column_op(chip, s * eccsize, p,
 698                                                 eccsize, false);
 699                if (ret)
 700                        return ret;
 701
 702                /* Read the corresponding ECC bytes */
 703                ret = nand_change_read_column_op(chip, i, ecc_code,
 704                                                 eccbytes, false);
 705                if (ret)
 706                        return ret;
 707
 708                /* Correct the data */
 709                stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc);
 710                if (stat == -EBADMSG)
 711                        /* Check for empty pages with bitflips */
 712                        stat = nand_check_erased_ecc_chunk(p, eccsize,
 713                                                           ecc_code, eccbytes,
 714                                                           NULL, 0,
 715                                                           eccstrength);
 716
 717                if (stat < 0) {
 718                        mtd->ecc_stats.failed++;
 719                } else {
 720                        mtd->ecc_stats.corrected += stat;
 721                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
 722                }
 723        }
 724
 725        /* Read oob */
 726        if (oob_required) {
 727                ret = nand_change_read_column_op(chip, mtd->writesize,
 728                                                 chip->oob_poi, mtd->oobsize,
 729                                                 false);
 730                if (ret)
 731                        return ret;
 732        }
 733
 734        return max_bitflips;
 735}
 736
 737/* Sequencer read/write configuration */
 738static void stm32_fmc2_nfc_rw_page_init(struct nand_chip *chip, int page,
 739                                        int raw, bool write_data)
 740{
 741        struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
 742        struct mtd_info *mtd = nand_to_mtd(chip);
 743        u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN;
 744        /*
 745         * cfg[0] => csqcfgr1, cfg[1] => csqcfgr2, cfg[2] => csqcfgr3
 746         * cfg[3] => csqar1, cfg[4] => csqar2
 747         */
 748        u32 cfg[5];
 749
 750        regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
 751                           write_data ? FMC2_PCR_WEN : 0);
 752
 753        /*
 754         * - Set Program Page/Page Read command
 755         * - Enable DMA request data
 756         * - Set timings
 757         */
 758        cfg[0] = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T;
 759        if (write_data)
 760                cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_SEQIN);
 761        else
 762                cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_READ0) |
 763                          FMC2_CSQCFGR1_CMD2EN |
 764                          FIELD_PREP(FMC2_CSQCFGR1_CMD2, NAND_CMD_READSTART) |
 765                          FMC2_CSQCFGR1_CMD2T;
 766
 767        /*
 768         * - Set Random Data Input/Random Data Read command
 769         * - Enable the sequencer to access the Spare data area
 770         * - Enable  DMA request status decoding for read
 771         * - Set timings
 772         */
 773        if (write_data)
 774                cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDIN);
 775        else
 776                cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDOUT) |
 777                         FMC2_CSQCFGR2_RCMD2EN |
 778                         FIELD_PREP(FMC2_CSQCFGR2_RCMD2, NAND_CMD_RNDOUTSTART) |
 779                         FMC2_CSQCFGR2_RCMD1T |
 780                         FMC2_CSQCFGR2_RCMD2T;
 781        if (!raw) {
 782                cfg[1] |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN;
 783                cfg[1] |= FMC2_CSQCFGR2_SQSDTEN;
 784        }
 785
 786        /*
 787         * - Set the number of sectors to be written
 788         * - Set timings
 789         */
 790        cfg[2] = FIELD_PREP(FMC2_CSQCFGR3_SNBR, chip->ecc.steps - 1);
 791        if (write_data) {
 792                cfg[2] |= FMC2_CSQCFGR3_RAC2T;
 793                if (chip->options & NAND_ROW_ADDR_3)
 794                        cfg[2] |= FMC2_CSQCFGR3_AC5T;
 795                else
 796                        cfg[2] |= FMC2_CSQCFGR3_AC4T;
 797        }
 798
 799        /*
 800         * Set the fourth first address cycles
 801         * Byte 1 and byte 2 => column, we start at 0x0
 802         * Byte 3 and byte 4 => page
 803         */
 804        cfg[3] = FIELD_PREP(FMC2_CSQCAR1_ADDC3, page);
 805        cfg[3] |= FIELD_PREP(FMC2_CSQCAR1_ADDC4, page >> 8);
 806
 807        /*
 808         * - Set chip enable number
 809         * - Set ECC byte offset in the spare area
 810         * - Calculate the number of address cycles to be issued
 811         * - Set byte 5 of address cycle if needed
 812         */
 813        cfg[4] = FIELD_PREP(FMC2_CSQCAR2_NANDCEN, nfc->cs_sel);
 814        if (chip->options & NAND_BUSWIDTH_16)
 815                cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset >> 1);
 816        else
 817                cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset);
 818        if (chip->options & NAND_ROW_ADDR_3) {
 819                cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 5);
 820                cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_ADDC5, page >> 16);
 821        } else {
 822                cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 4);
 823        }
 824
 825        regmap_bulk_write(nfc->regmap, FMC2_CSQCFGR1, cfg, 5);
 826}
 827
 828static void stm32_fmc2_nfc_dma_callback(void *arg)
 829{
 830        complete((struct completion *)arg);
 831}
 832
 833/* Read/write data from/to a page */
 834static int stm32_fmc2_nfc_xfer(struct nand_chip *chip, const u8 *buf,
 835                               int raw, bool write_data)
 836{
 837        struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
 838        struct dma_async_tx_descriptor *desc_data, *desc_ecc;
 839        struct scatterlist *sg;
 840        struct dma_chan *dma_ch = nfc->dma_rx_ch;
 841        enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE;
 842        enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM;
 843        int eccsteps = chip->ecc.steps;
 844        int eccsize = chip->ecc.size;
 845        unsigned long timeout = msecs_to_jiffies(FMC2_TIMEOUT_MS);
 846        const u8 *p = buf;
 847        int s, ret;
 848
 849        /* Configure DMA data */
 850        if (write_data) {
 851                dma_data_dir = DMA_TO_DEVICE;
 852                dma_transfer_dir = DMA_MEM_TO_DEV;
 853                dma_ch = nfc->dma_tx_ch;
 854        }
 855
 856        for_each_sg(nfc->dma_data_sg.sgl, sg, eccsteps, s) {
 857                sg_set_buf(sg, p, eccsize);
 858                p += eccsize;
 859        }
 860
 861        ret = dma_map_sg(nfc->dev, nfc->dma_data_sg.sgl,
 862                         eccsteps, dma_data_dir);
 863        if (ret < 0)
 864                return ret;
 865
 866        desc_data = dmaengine_prep_slave_sg(dma_ch, nfc->dma_data_sg.sgl,
 867                                            eccsteps, dma_transfer_dir,
 868                                            DMA_PREP_INTERRUPT);
 869        if (!desc_data) {
 870                ret = -ENOMEM;
 871                goto err_unmap_data;
 872        }
 873
 874        reinit_completion(&nfc->dma_data_complete);
 875        reinit_completion(&nfc->complete);
 876        desc_data->callback = stm32_fmc2_nfc_dma_callback;
 877        desc_data->callback_param = &nfc->dma_data_complete;
 878        ret = dma_submit_error(dmaengine_submit(desc_data));
 879        if (ret)
 880                goto err_unmap_data;
 881
 882        dma_async_issue_pending(dma_ch);
 883
 884        if (!write_data && !raw) {
 885                /* Configure DMA ECC status */
 886                p = nfc->ecc_buf;
 887                for_each_sg(nfc->dma_ecc_sg.sgl, sg, eccsteps, s) {
 888                        sg_set_buf(sg, p, nfc->dma_ecc_len);
 889                        p += nfc->dma_ecc_len;
 890                }
 891
 892                ret = dma_map_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
 893                                 eccsteps, dma_data_dir);
 894                if (ret < 0)
 895                        goto err_unmap_data;
 896
 897                desc_ecc = dmaengine_prep_slave_sg(nfc->dma_ecc_ch,
 898                                                   nfc->dma_ecc_sg.sgl,
 899                                                   eccsteps, dma_transfer_dir,
 900                                                   DMA_PREP_INTERRUPT);
 901                if (!desc_ecc) {
 902                        ret = -ENOMEM;
 903                        goto err_unmap_ecc;
 904                }
 905
 906                reinit_completion(&nfc->dma_ecc_complete);
 907                desc_ecc->callback = stm32_fmc2_nfc_dma_callback;
 908                desc_ecc->callback_param = &nfc->dma_ecc_complete;
 909                ret = dma_submit_error(dmaengine_submit(desc_ecc));
 910                if (ret)
 911                        goto err_unmap_ecc;
 912
 913                dma_async_issue_pending(nfc->dma_ecc_ch);
 914        }
 915
 916        stm32_fmc2_nfc_clear_seq_irq(nfc);
 917        stm32_fmc2_nfc_enable_seq_irq(nfc);
 918
 919        /* Start the transfer */
 920        regmap_update_bits(nfc->regmap, FMC2_CSQCR,
 921                           FMC2_CSQCR_CSQSTART, FMC2_CSQCR_CSQSTART);
 922
 923        /* Wait end of sequencer transfer */
 924        if (!wait_for_completion_timeout(&nfc->complete, timeout)) {
 925                dev_err(nfc->dev, "seq timeout\n");
 926                stm32_fmc2_nfc_disable_seq_irq(nfc);
 927                dmaengine_terminate_all(dma_ch);
 928                if (!write_data && !raw)
 929                        dmaengine_terminate_all(nfc->dma_ecc_ch);
 930                ret = -ETIMEDOUT;
 931                goto err_unmap_ecc;
 932        }
 933
 934        /* Wait DMA data transfer completion */
 935        if (!wait_for_completion_timeout(&nfc->dma_data_complete, timeout)) {
 936                dev_err(nfc->dev, "data DMA timeout\n");
 937                dmaengine_terminate_all(dma_ch);
 938                ret = -ETIMEDOUT;
 939        }
 940
 941        /* Wait DMA ECC transfer completion */
 942        if (!write_data && !raw) {
 943                if (!wait_for_completion_timeout(&nfc->dma_ecc_complete,
 944                                                 timeout)) {
 945                        dev_err(nfc->dev, "ECC DMA timeout\n");
 946                        dmaengine_terminate_all(nfc->dma_ecc_ch);
 947                        ret = -ETIMEDOUT;
 948                }
 949        }
 950
 951err_unmap_ecc:
 952        if (!write_data && !raw)
 953                dma_unmap_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
 954                             eccsteps, dma_data_dir);
 955
 956err_unmap_data:
 957        dma_unmap_sg(nfc->dev, nfc->dma_data_sg.sgl, eccsteps, dma_data_dir);
 958
 959        return ret;
 960}
 961
 962static int stm32_fmc2_nfc_seq_write(struct nand_chip *chip, const u8 *buf,
 963                                    int oob_required, int page, int raw)
 964{
 965        struct mtd_info *mtd = nand_to_mtd(chip);
 966        int ret;
 967
 968        /* Configure the sequencer */
 969        stm32_fmc2_nfc_rw_page_init(chip, page, raw, true);
 970
 971        /* Write the page */
 972        ret = stm32_fmc2_nfc_xfer(chip, buf, raw, true);
 973        if (ret)
 974                return ret;
 975
 976        /* Write oob */
 977        if (oob_required) {
 978                ret = nand_change_write_column_op(chip, mtd->writesize,
 979                                                  chip->oob_poi, mtd->oobsize,
 980                                                  false);
 981                if (ret)
 982                        return ret;
 983        }
 984
 985        return nand_prog_page_end_op(chip);
 986}
 987
 988static int stm32_fmc2_nfc_seq_write_page(struct nand_chip *chip, const u8 *buf,
 989                                         int oob_required, int page)
 990{
 991        int ret;
 992
 993        ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
 994        if (ret)
 995                return ret;
 996
 997        return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, false);
 998}
 999
1000static int stm32_fmc2_nfc_seq_write_page_raw(struct nand_chip *chip,
1001                                             const u8 *buf, int oob_required,
1002                                             int page)
1003{
1004        int ret;
1005
1006        ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1007        if (ret)
1008                return ret;
1009
1010        return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, true);
1011}
1012
1013/* Get a status indicating which sectors have errors */
1014static u16 stm32_fmc2_nfc_get_mapping_status(struct stm32_fmc2_nfc *nfc)
1015{
1016        u32 csqemsr;
1017
1018        regmap_read(nfc->regmap, FMC2_CSQEMSR, &csqemsr);
1019
1020        return FIELD_GET(FMC2_CSQEMSR_SEM, csqemsr);
1021}
1022
1023static int stm32_fmc2_nfc_seq_correct(struct nand_chip *chip, u8 *dat,
1024                                      u8 *read_ecc, u8 *calc_ecc)
1025{
1026        struct mtd_info *mtd = nand_to_mtd(chip);
1027        struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1028        int eccbytes = chip->ecc.bytes;
1029        int eccsteps = chip->ecc.steps;
1030        int eccstrength = chip->ecc.strength;
1031        int i, s, eccsize = chip->ecc.size;
1032        u32 *ecc_sta = (u32 *)nfc->ecc_buf;
1033        u16 sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
1034        unsigned int max_bitflips = 0;
1035
1036        for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) {
1037                int stat = 0;
1038
1039                if (eccstrength == FMC2_ECC_HAM) {
1040                        /* Ecc_sta = FMC2_HECCR */
1041                        if (sta_map & BIT(s)) {
1042                                stm32_fmc2_nfc_ham_set_ecc(*ecc_sta,
1043                                                           &calc_ecc[i]);
1044                                stat = stm32_fmc2_nfc_ham_correct(chip, dat,
1045                                                                  &read_ecc[i],
1046                                                                  &calc_ecc[i]);
1047                        }
1048                        ecc_sta++;
1049                } else {
1050                        /*
1051                         * Ecc_sta[0] = FMC2_BCHDSR0
1052                         * Ecc_sta[1] = FMC2_BCHDSR1
1053                         * Ecc_sta[2] = FMC2_BCHDSR2
1054                         * Ecc_sta[3] = FMC2_BCHDSR3
1055                         * Ecc_sta[4] = FMC2_BCHDSR4
1056                         */
1057                        if (sta_map & BIT(s))
1058                                stat = stm32_fmc2_nfc_bch_decode(eccsize, dat,
1059                                                                 ecc_sta);
1060                        ecc_sta += 5;
1061                }
1062
1063                if (stat == -EBADMSG)
1064                        /* Check for empty pages with bitflips */
1065                        stat = nand_check_erased_ecc_chunk(dat, eccsize,
1066                                                           &read_ecc[i],
1067                                                           eccbytes,
1068                                                           NULL, 0,
1069                                                           eccstrength);
1070
1071                if (stat < 0) {
1072                        mtd->ecc_stats.failed++;
1073                } else {
1074                        mtd->ecc_stats.corrected += stat;
1075                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
1076                }
1077        }
1078
1079        return max_bitflips;
1080}
1081
1082static int stm32_fmc2_nfc_seq_read_page(struct nand_chip *chip, u8 *buf,
1083                                        int oob_required, int page)
1084{
1085        struct mtd_info *mtd = nand_to_mtd(chip);
1086        struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1087        u8 *ecc_calc = chip->ecc.calc_buf;
1088        u8 *ecc_code = chip->ecc.code_buf;
1089        u16 sta_map;
1090        int ret;
1091
1092        ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1093        if (ret)
1094                return ret;
1095
1096        /* Configure the sequencer */
1097        stm32_fmc2_nfc_rw_page_init(chip, page, 0, false);
1098
1099        /* Read the page */
1100        ret = stm32_fmc2_nfc_xfer(chip, buf, 0, false);
1101        if (ret)
1102                return ret;
1103
1104        sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
1105
1106        /* Check if errors happen */
1107        if (likely(!sta_map)) {
1108                if (oob_required)
1109                        return nand_change_read_column_op(chip, mtd->writesize,
1110                                                          chip->oob_poi,
1111                                                          mtd->oobsize, false);
1112
1113                return 0;
1114        }
1115
1116        /* Read oob */
1117        ret = nand_change_read_column_op(chip, mtd->writesize,
1118                                         chip->oob_poi, mtd->oobsize, false);
1119        if (ret)
1120                return ret;
1121
1122        ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1123                                         chip->ecc.total);
1124        if (ret)
1125                return ret;
1126
1127        /* Correct data */
1128        return chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
1129}
1130
1131static int stm32_fmc2_nfc_seq_read_page_raw(struct nand_chip *chip, u8 *buf,
1132                                            int oob_required, int page)
1133{
1134        struct mtd_info *mtd = nand_to_mtd(chip);
1135        int ret;
1136
1137        ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1138        if (ret)
1139                return ret;
1140
1141        /* Configure the sequencer */
1142        stm32_fmc2_nfc_rw_page_init(chip, page, 1, false);
1143
1144        /* Read the page */
1145        ret = stm32_fmc2_nfc_xfer(chip, buf, 1, false);
1146        if (ret)
1147                return ret;
1148
1149        /* Read oob */
1150        if (oob_required)
1151                return nand_change_read_column_op(chip, mtd->writesize,
1152                                                  chip->oob_poi, mtd->oobsize,
1153                                                  false);
1154
1155        return 0;
1156}
1157
1158static irqreturn_t stm32_fmc2_nfc_irq(int irq, void *dev_id)
1159{
1160        struct stm32_fmc2_nfc *nfc = (struct stm32_fmc2_nfc *)dev_id;
1161
1162        if (nfc->irq_state == FMC2_IRQ_SEQ)
1163                /* Sequencer is used */
1164                stm32_fmc2_nfc_disable_seq_irq(nfc);
1165        else if (nfc->irq_state == FMC2_IRQ_BCH)
1166                /* BCH is used */
1167                stm32_fmc2_nfc_disable_bch_irq(nfc);
1168
1169        complete(&nfc->complete);
1170
1171        return IRQ_HANDLED;
1172}
1173
1174static void stm32_fmc2_nfc_read_data(struct nand_chip *chip, void *buf,
1175                                     unsigned int len, bool force_8bit)
1176{
1177        struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1178        void __iomem *io_addr_r = nfc->data_base[nfc->cs_sel];
1179
1180        if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1181                /* Reconfigure bus width to 8-bit */
1182                stm32_fmc2_nfc_set_buswidth_16(nfc, false);
1183
1184        if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1185                if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1186                        *(u8 *)buf = readb_relaxed(io_addr_r);
1187                        buf += sizeof(u8);
1188                        len -= sizeof(u8);
1189                }
1190
1191                if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1192                    len >= sizeof(u16)) {
1193                        *(u16 *)buf = readw_relaxed(io_addr_r);
1194                        buf += sizeof(u16);
1195                        len -= sizeof(u16);
1196                }
1197        }
1198
1199        /* Buf is aligned */
1200        while (len >= sizeof(u32)) {
1201                *(u32 *)buf = readl_relaxed(io_addr_r);
1202                buf += sizeof(u32);
1203                len -= sizeof(u32);
1204        }
1205
1206        /* Read remaining bytes */
1207        if (len >= sizeof(u16)) {
1208                *(u16 *)buf = readw_relaxed(io_addr_r);
1209                buf += sizeof(u16);
1210                len -= sizeof(u16);
1211        }
1212
1213        if (len)
1214                *(u8 *)buf = readb_relaxed(io_addr_r);
1215
1216        if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1217                /* Reconfigure bus width to 16-bit */
1218                stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1219}
1220
1221static void stm32_fmc2_nfc_write_data(struct nand_chip *chip, const void *buf,
1222                                      unsigned int len, bool force_8bit)
1223{
1224        struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1225        void __iomem *io_addr_w = nfc->data_base[nfc->cs_sel];
1226
1227        if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1228                /* Reconfigure bus width to 8-bit */
1229                stm32_fmc2_nfc_set_buswidth_16(nfc, false);
1230
1231        if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1232                if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1233                        writeb_relaxed(*(u8 *)buf, io_addr_w);
1234                        buf += sizeof(u8);
1235                        len -= sizeof(u8);
1236                }
1237
1238                if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1239                    len >= sizeof(u16)) {
1240                        writew_relaxed(*(u16 *)buf, io_addr_w);
1241                        buf += sizeof(u16);
1242                        len -= sizeof(u16);
1243                }
1244        }
1245
1246        /* Buf is aligned */
1247        while (len >= sizeof(u32)) {
1248                writel_relaxed(*(u32 *)buf, io_addr_w);
1249                buf += sizeof(u32);
1250                len -= sizeof(u32);
1251        }
1252
1253        /* Write remaining bytes */
1254        if (len >= sizeof(u16)) {
1255                writew_relaxed(*(u16 *)buf, io_addr_w);
1256                buf += sizeof(u16);
1257                len -= sizeof(u16);
1258        }
1259
1260        if (len)
1261                writeb_relaxed(*(u8 *)buf, io_addr_w);
1262
1263        if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1264                /* Reconfigure bus width to 16-bit */
1265                stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1266}
1267
1268static int stm32_fmc2_nfc_waitrdy(struct nand_chip *chip,
1269                                  unsigned long timeout_ms)
1270{
1271        struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1272        const struct nand_sdr_timings *timings;
1273        u32 isr, sr;
1274
1275        /* Check if there is no pending requests to the NAND flash */
1276        if (regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
1277                                     sr & FMC2_SR_NWRF, 1,
1278                                     1000 * FMC2_TIMEOUT_MS))
1279                dev_warn(nfc->dev, "Waitrdy timeout\n");
1280
1281        /* Wait tWB before R/B# signal is low */
1282        timings = nand_get_sdr_timings(nand_get_interface_config(chip));
1283        ndelay(PSEC_TO_NSEC(timings->tWB_max));
1284
1285        /* R/B# signal is low, clear high level flag */
1286        regmap_write(nfc->regmap, FMC2_ICR, FMC2_ICR_CIHLF);
1287
1288        /* Wait R/B# signal is high */
1289        return regmap_read_poll_timeout(nfc->regmap, FMC2_ISR, isr,
1290                                        isr & FMC2_ISR_IHLF, 5,
1291                                        1000 * FMC2_TIMEOUT_MS);
1292}
1293
1294static int stm32_fmc2_nfc_exec_op(struct nand_chip *chip,
1295                                  const struct nand_operation *op,
1296                                  bool check_only)
1297{
1298        struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1299        const struct nand_op_instr *instr = NULL;
1300        unsigned int op_id, i, timeout;
1301        int ret;
1302
1303        if (check_only)
1304                return 0;
1305
1306        ret = stm32_fmc2_nfc_select_chip(chip, op->cs);
1307        if (ret)
1308                return ret;
1309
1310        for (op_id = 0; op_id < op->ninstrs; op_id++) {
1311                instr = &op->instrs[op_id];
1312
1313                switch (instr->type) {
1314                case NAND_OP_CMD_INSTR:
1315                        writeb_relaxed(instr->ctx.cmd.opcode,
1316                                       nfc->cmd_base[nfc->cs_sel]);
1317                        break;
1318
1319                case NAND_OP_ADDR_INSTR:
1320                        for (i = 0; i < instr->ctx.addr.naddrs; i++)
1321                                writeb_relaxed(instr->ctx.addr.addrs[i],
1322                                               nfc->addr_base[nfc->cs_sel]);
1323                        break;
1324
1325                case NAND_OP_DATA_IN_INSTR:
1326                        stm32_fmc2_nfc_read_data(chip, instr->ctx.data.buf.in,
1327                                                 instr->ctx.data.len,
1328                                                 instr->ctx.data.force_8bit);
1329                        break;
1330
1331                case NAND_OP_DATA_OUT_INSTR:
1332                        stm32_fmc2_nfc_write_data(chip, instr->ctx.data.buf.out,
1333                                                  instr->ctx.data.len,
1334                                                  instr->ctx.data.force_8bit);
1335                        break;
1336
1337                case NAND_OP_WAITRDY_INSTR:
1338                        timeout = instr->ctx.waitrdy.timeout_ms;
1339                        ret = stm32_fmc2_nfc_waitrdy(chip, timeout);
1340                        break;
1341                }
1342        }
1343
1344        return ret;
1345}
1346
1347static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc)
1348{
1349        u32 pcr;
1350
1351        regmap_read(nfc->regmap, FMC2_PCR, &pcr);
1352
1353        /* Set CS used to undefined */
1354        nfc->cs_sel = -1;
1355
1356        /* Enable wait feature and nand flash memory bank */
1357        pcr |= FMC2_PCR_PWAITEN;
1358        pcr |= FMC2_PCR_PBKEN;
1359
1360        /* Set buswidth to 8 bits mode for identification */
1361        pcr &= ~FMC2_PCR_PWID;
1362
1363        /* ECC logic is disabled */
1364        pcr &= ~FMC2_PCR_ECCEN;
1365
1366        /* Default mode */
1367        pcr &= ~FMC2_PCR_ECCALG;
1368        pcr &= ~FMC2_PCR_BCHECC;
1369        pcr &= ~FMC2_PCR_WEN;
1370
1371        /* Set default ECC sector size */
1372        pcr &= ~FMC2_PCR_ECCSS;
1373        pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048);
1374
1375        /* Set default tclr/tar timings */
1376        pcr &= ~FMC2_PCR_TCLR;
1377        pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT);
1378        pcr &= ~FMC2_PCR_TAR;
1379        pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT);
1380
1381        /* Enable FMC2 controller */
1382        if (nfc->dev == nfc->cdev)
1383                regmap_update_bits(nfc->regmap, FMC2_BCR1,
1384                                   FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN);
1385
1386        regmap_write(nfc->regmap, FMC2_PCR, pcr);
1387        regmap_write(nfc->regmap, FMC2_PMEM, FMC2_PMEM_DEFAULT);
1388        regmap_write(nfc->regmap, FMC2_PATT, FMC2_PATT_DEFAULT);
1389}
1390
1391static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip,
1392                                        const struct nand_sdr_timings *sdrt)
1393{
1394        struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1395        struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
1396        struct stm32_fmc2_timings *tims = &nand->timings;
1397        unsigned long hclk = clk_get_rate(nfc->clk);
1398        unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
1399        unsigned long timing, tar, tclr, thiz, twait;
1400        unsigned long tset_mem, tset_att, thold_mem, thold_att;
1401
1402        tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
1403        timing = DIV_ROUND_UP(tar, hclkp) - 1;
1404        tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1405
1406        tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
1407        timing = DIV_ROUND_UP(tclr, hclkp) - 1;
1408        tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1409
1410        tims->thiz = FMC2_THIZ;
1411        thiz = (tims->thiz + 1) * hclkp;
1412
1413        /*
1414         * tWAIT > tRP
1415         * tWAIT > tWP
1416         * tWAIT > tREA + tIO
1417         */
1418        twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
1419        twait = max_t(unsigned long, twait, sdrt->tWP_min);
1420        twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
1421        timing = DIV_ROUND_UP(twait, hclkp);
1422        tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1423
1424        /*
1425         * tSETUP_MEM > tCS - tWAIT
1426         * tSETUP_MEM > tALS - tWAIT
1427         * tSETUP_MEM > tDS - (tWAIT - tHIZ)
1428         */
1429        tset_mem = hclkp;
1430        if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
1431                tset_mem = sdrt->tCS_min - twait;
1432        if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
1433                tset_mem = sdrt->tALS_min - twait;
1434        if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1435            (tset_mem < sdrt->tDS_min - (twait - thiz)))
1436                tset_mem = sdrt->tDS_min - (twait - thiz);
1437        timing = DIV_ROUND_UP(tset_mem, hclkp);
1438        tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1439
1440        /*
1441         * tHOLD_MEM > tCH
1442         * tHOLD_MEM > tREH - tSETUP_MEM
1443         * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
1444         */
1445        thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
1446        if (sdrt->tREH_min > tset_mem &&
1447            (thold_mem < sdrt->tREH_min - tset_mem))
1448                thold_mem = sdrt->tREH_min - tset_mem;
1449        if ((sdrt->tRC_min > tset_mem + twait) &&
1450            (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
1451                thold_mem = sdrt->tRC_min - (tset_mem + twait);
1452        if ((sdrt->tWC_min > tset_mem + twait) &&
1453            (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
1454                thold_mem = sdrt->tWC_min - (tset_mem + twait);
1455        timing = DIV_ROUND_UP(thold_mem, hclkp);
1456        tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1457
1458        /*
1459         * tSETUP_ATT > tCS - tWAIT
1460         * tSETUP_ATT > tCLS - tWAIT
1461         * tSETUP_ATT > tALS - tWAIT
1462         * tSETUP_ATT > tRHW - tHOLD_MEM
1463         * tSETUP_ATT > tDS - (tWAIT - tHIZ)
1464         */
1465        tset_att = hclkp;
1466        if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
1467                tset_att = sdrt->tCS_min - twait;
1468        if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
1469                tset_att = sdrt->tCLS_min - twait;
1470        if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
1471                tset_att = sdrt->tALS_min - twait;
1472        if (sdrt->tRHW_min > thold_mem &&
1473            (tset_att < sdrt->tRHW_min - thold_mem))
1474                tset_att = sdrt->tRHW_min - thold_mem;
1475        if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1476            (tset_att < sdrt->tDS_min - (twait - thiz)))
1477                tset_att = sdrt->tDS_min - (twait - thiz);
1478        timing = DIV_ROUND_UP(tset_att, hclkp);
1479        tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1480
1481        /*
1482         * tHOLD_ATT > tALH
1483         * tHOLD_ATT > tCH
1484         * tHOLD_ATT > tCLH
1485         * tHOLD_ATT > tCOH
1486         * tHOLD_ATT > tDH
1487         * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
1488         * tHOLD_ATT > tADL - tSETUP_MEM
1489         * tHOLD_ATT > tWH - tSETUP_MEM
1490         * tHOLD_ATT > tWHR - tSETUP_MEM
1491         * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
1492         * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
1493         */
1494        thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
1495        thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
1496        thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
1497        thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
1498        thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
1499        if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
1500            (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
1501                thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
1502        if (sdrt->tADL_min > tset_mem &&
1503            (thold_att < sdrt->tADL_min - tset_mem))
1504                thold_att = sdrt->tADL_min - tset_mem;
1505        if (sdrt->tWH_min > tset_mem &&
1506            (thold_att < sdrt->tWH_min - tset_mem))
1507                thold_att = sdrt->tWH_min - tset_mem;
1508        if (sdrt->tWHR_min > tset_mem &&
1509            (thold_att < sdrt->tWHR_min - tset_mem))
1510                thold_att = sdrt->tWHR_min - tset_mem;
1511        if ((sdrt->tRC_min > tset_att + twait) &&
1512            (thold_att < sdrt->tRC_min - (tset_att + twait)))
1513                thold_att = sdrt->tRC_min - (tset_att + twait);
1514        if ((sdrt->tWC_min > tset_att + twait) &&
1515            (thold_att < sdrt->tWC_min - (tset_att + twait)))
1516                thold_att = sdrt->tWC_min - (tset_att + twait);
1517        timing = DIV_ROUND_UP(thold_att, hclkp);
1518        tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1519}
1520
1521static int stm32_fmc2_nfc_setup_interface(struct nand_chip *chip, int chipnr,
1522                                          const struct nand_interface_config *conf)
1523{
1524        const struct nand_sdr_timings *sdrt;
1525
1526        sdrt = nand_get_sdr_timings(conf);
1527        if (IS_ERR(sdrt))
1528                return PTR_ERR(sdrt);
1529
1530        if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
1531                return 0;
1532
1533        stm32_fmc2_nfc_calc_timings(chip, sdrt);
1534        stm32_fmc2_nfc_timings_init(chip);
1535
1536        return 0;
1537}
1538
1539static int stm32_fmc2_nfc_dma_setup(struct stm32_fmc2_nfc *nfc)
1540{
1541        int ret = 0;
1542
1543        nfc->dma_tx_ch = dma_request_chan(nfc->dev, "tx");
1544        if (IS_ERR(nfc->dma_tx_ch)) {
1545                ret = PTR_ERR(nfc->dma_tx_ch);
1546                if (ret != -ENODEV && ret != -EPROBE_DEFER)
1547                        dev_err(nfc->dev,
1548                                "failed to request tx DMA channel: %d\n", ret);
1549                nfc->dma_tx_ch = NULL;
1550                goto err_dma;
1551        }
1552
1553        nfc->dma_rx_ch = dma_request_chan(nfc->dev, "rx");
1554        if (IS_ERR(nfc->dma_rx_ch)) {
1555                ret = PTR_ERR(nfc->dma_rx_ch);
1556                if (ret != -ENODEV && ret != -EPROBE_DEFER)
1557                        dev_err(nfc->dev,
1558                                "failed to request rx DMA channel: %d\n", ret);
1559                nfc->dma_rx_ch = NULL;
1560                goto err_dma;
1561        }
1562
1563        nfc->dma_ecc_ch = dma_request_chan(nfc->dev, "ecc");
1564        if (IS_ERR(nfc->dma_ecc_ch)) {
1565                ret = PTR_ERR(nfc->dma_ecc_ch);
1566                if (ret != -ENODEV && ret != -EPROBE_DEFER)
1567                        dev_err(nfc->dev,
1568                                "failed to request ecc DMA channel: %d\n", ret);
1569                nfc->dma_ecc_ch = NULL;
1570                goto err_dma;
1571        }
1572
1573        ret = sg_alloc_table(&nfc->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL);
1574        if (ret)
1575                return ret;
1576
1577        /* Allocate a buffer to store ECC status registers */
1578        nfc->ecc_buf = devm_kzalloc(nfc->dev, FMC2_MAX_ECC_BUF_LEN, GFP_KERNEL);
1579        if (!nfc->ecc_buf)
1580                return -ENOMEM;
1581
1582        ret = sg_alloc_table(&nfc->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL);
1583        if (ret)
1584                return ret;
1585
1586        init_completion(&nfc->dma_data_complete);
1587        init_completion(&nfc->dma_ecc_complete);
1588
1589        return 0;
1590
1591err_dma:
1592        if (ret == -ENODEV) {
1593                dev_warn(nfc->dev,
1594                         "DMAs not defined in the DT, polling mode is used\n");
1595                ret = 0;
1596        }
1597
1598        return ret;
1599}
1600
1601static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip)
1602{
1603        struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1604
1605        /*
1606         * Specific callbacks to read/write a page depending on
1607         * the mode (polling/sequencer) and the algo used (Hamming, BCH).
1608         */
1609        if (nfc->dma_tx_ch && nfc->dma_rx_ch && nfc->dma_ecc_ch) {
1610                /* DMA => use sequencer mode callbacks */
1611                chip->ecc.correct = stm32_fmc2_nfc_seq_correct;
1612                chip->ecc.write_page = stm32_fmc2_nfc_seq_write_page;
1613                chip->ecc.read_page = stm32_fmc2_nfc_seq_read_page;
1614                chip->ecc.write_page_raw = stm32_fmc2_nfc_seq_write_page_raw;
1615                chip->ecc.read_page_raw = stm32_fmc2_nfc_seq_read_page_raw;
1616        } else {
1617                /* No DMA => use polling mode callbacks */
1618                chip->ecc.hwctl = stm32_fmc2_nfc_hwctl;
1619                if (chip->ecc.strength == FMC2_ECC_HAM) {
1620                        /* Hamming is used */
1621                        chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate;
1622                        chip->ecc.correct = stm32_fmc2_nfc_ham_correct;
1623                        chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
1624                } else {
1625                        /* BCH is used */
1626                        chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate;
1627                        chip->ecc.correct = stm32_fmc2_nfc_bch_correct;
1628                        chip->ecc.read_page = stm32_fmc2_nfc_read_page;
1629                }
1630        }
1631
1632        /* Specific configurations depending on the algo used */
1633        if (chip->ecc.strength == FMC2_ECC_HAM)
1634                chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
1635        else if (chip->ecc.strength == FMC2_ECC_BCH8)
1636                chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
1637        else
1638                chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
1639}
1640
1641static int stm32_fmc2_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1642                                        struct mtd_oob_region *oobregion)
1643{
1644        struct nand_chip *chip = mtd_to_nand(mtd);
1645        struct nand_ecc_ctrl *ecc = &chip->ecc;
1646
1647        if (section)
1648                return -ERANGE;
1649
1650        oobregion->length = ecc->total;
1651        oobregion->offset = FMC2_BBM_LEN;
1652
1653        return 0;
1654}
1655
1656static int stm32_fmc2_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1657                                         struct mtd_oob_region *oobregion)
1658{
1659        struct nand_chip *chip = mtd_to_nand(mtd);
1660        struct nand_ecc_ctrl *ecc = &chip->ecc;
1661
1662        if (section)
1663                return -ERANGE;
1664
1665        oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN;
1666        oobregion->offset = ecc->total + FMC2_BBM_LEN;
1667
1668        return 0;
1669}
1670
1671static const struct mtd_ooblayout_ops stm32_fmc2_nfc_ooblayout_ops = {
1672        .ecc = stm32_fmc2_nfc_ooblayout_ecc,
1673        .free = stm32_fmc2_nfc_ooblayout_free,
1674};
1675
1676static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength)
1677{
1678        /* Hamming */
1679        if (strength == FMC2_ECC_HAM)
1680                return 4;
1681
1682        /* BCH8 */
1683        if (strength == FMC2_ECC_BCH8)
1684                return 14;
1685
1686        /* BCH4 */
1687        return 8;
1688}
1689
1690NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes,
1691                     FMC2_ECC_STEP_SIZE,
1692                     FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
1693
1694static int stm32_fmc2_nfc_attach_chip(struct nand_chip *chip)
1695{
1696        struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1697        struct mtd_info *mtd = nand_to_mtd(chip);
1698        int ret;
1699
1700        /*
1701         * Only NAND_ECC_ENGINE_TYPE_ON_HOST mode is actually supported
1702         * Hamming => ecc.strength = 1
1703         * BCH4 => ecc.strength = 4
1704         * BCH8 => ecc.strength = 8
1705         * ECC sector size = 512
1706         */
1707        if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
1708                dev_err(nfc->dev,
1709                        "nand_ecc_engine_type is not well defined in the DT\n");
1710                return -EINVAL;
1711        }
1712
1713        /* Default ECC settings in case they are not set in the device tree */
1714        if (!chip->ecc.size)
1715                chip->ecc.size = FMC2_ECC_STEP_SIZE;
1716
1717        if (!chip->ecc.strength)
1718                chip->ecc.strength = FMC2_ECC_BCH8;
1719
1720        ret = nand_ecc_choose_conf(chip, &stm32_fmc2_nfc_ecc_caps,
1721                                   mtd->oobsize - FMC2_BBM_LEN);
1722        if (ret) {
1723                dev_err(nfc->dev, "no valid ECC settings set\n");
1724                return ret;
1725        }
1726
1727        if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) {
1728                dev_err(nfc->dev, "nand page size is not supported\n");
1729                return -EINVAL;
1730        }
1731
1732        if (chip->bbt_options & NAND_BBT_USE_FLASH)
1733                chip->bbt_options |= NAND_BBT_NO_OOB;
1734
1735        stm32_fmc2_nfc_nand_callbacks_setup(chip);
1736
1737        mtd_set_ooblayout(mtd, &stm32_fmc2_nfc_ooblayout_ops);
1738
1739        stm32_fmc2_nfc_setup(chip);
1740
1741        return 0;
1742}
1743
1744static const struct nand_controller_ops stm32_fmc2_nfc_controller_ops = {
1745        .attach_chip = stm32_fmc2_nfc_attach_chip,
1746        .exec_op = stm32_fmc2_nfc_exec_op,
1747        .setup_interface = stm32_fmc2_nfc_setup_interface,
1748};
1749
1750static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc,
1751                                      struct device_node *dn)
1752{
1753        struct stm32_fmc2_nand *nand = &nfc->nand;
1754        u32 cs;
1755        int ret, i;
1756
1757        if (!of_get_property(dn, "reg", &nand->ncs))
1758                return -EINVAL;
1759
1760        nand->ncs /= sizeof(u32);
1761        if (!nand->ncs) {
1762                dev_err(nfc->dev, "invalid reg property size\n");
1763                return -EINVAL;
1764        }
1765
1766        for (i = 0; i < nand->ncs; i++) {
1767                ret = of_property_read_u32_index(dn, "reg", i, &cs);
1768                if (ret) {
1769                        dev_err(nfc->dev, "could not retrieve reg property: %d\n",
1770                                ret);
1771                        return ret;
1772                }
1773
1774                if (cs >= FMC2_MAX_CE) {
1775                        dev_err(nfc->dev, "invalid reg value: %d\n", cs);
1776                        return -EINVAL;
1777                }
1778
1779                if (nfc->cs_assigned & BIT(cs)) {
1780                        dev_err(nfc->dev, "cs already assigned: %d\n", cs);
1781                        return -EINVAL;
1782                }
1783
1784                nfc->cs_assigned |= BIT(cs);
1785                nand->cs_used[i] = cs;
1786        }
1787
1788        nand_set_flash_node(&nand->chip, dn);
1789
1790        return 0;
1791}
1792
1793static int stm32_fmc2_nfc_parse_dt(struct stm32_fmc2_nfc *nfc)
1794{
1795        struct device_node *dn = nfc->dev->of_node;
1796        struct device_node *child;
1797        int nchips = of_get_child_count(dn);
1798        int ret = 0;
1799
1800        if (!nchips) {
1801                dev_err(nfc->dev, "NAND chip not defined\n");
1802                return -EINVAL;
1803        }
1804
1805        if (nchips > 1) {
1806                dev_err(nfc->dev, "too many NAND chips defined\n");
1807                return -EINVAL;
1808        }
1809
1810        for_each_child_of_node(dn, child) {
1811                ret = stm32_fmc2_nfc_parse_child(nfc, child);
1812                if (ret < 0) {
1813                        of_node_put(child);
1814                        return ret;
1815                }
1816        }
1817
1818        return ret;
1819}
1820
1821static int stm32_fmc2_nfc_set_cdev(struct stm32_fmc2_nfc *nfc)
1822{
1823        struct device *dev = nfc->dev;
1824        bool ebi_found = false;
1825
1826        if (dev->parent && of_device_is_compatible(dev->parent->of_node,
1827                                                   "st,stm32mp1-fmc2-ebi"))
1828                ebi_found = true;
1829
1830        if (of_device_is_compatible(dev->of_node, "st,stm32mp1-fmc2-nfc")) {
1831                if (ebi_found) {
1832                        nfc->cdev = dev->parent;
1833
1834                        return 0;
1835                }
1836
1837                return -EINVAL;
1838        }
1839
1840        if (ebi_found)
1841                return -EINVAL;
1842
1843        nfc->cdev = dev;
1844
1845        return 0;
1846}
1847
1848static int stm32_fmc2_nfc_probe(struct platform_device *pdev)
1849{
1850        struct device *dev = &pdev->dev;
1851        struct reset_control *rstc;
1852        struct stm32_fmc2_nfc *nfc;
1853        struct stm32_fmc2_nand *nand;
1854        struct resource *res;
1855        struct mtd_info *mtd;
1856        struct nand_chip *chip;
1857        struct resource cres;
1858        int chip_cs, mem_region, ret, irq;
1859        int start_region = 0;
1860
1861        nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1862        if (!nfc)
1863                return -ENOMEM;
1864
1865        nfc->dev = dev;
1866        nand_controller_init(&nfc->base);
1867        nfc->base.ops = &stm32_fmc2_nfc_controller_ops;
1868
1869        ret = stm32_fmc2_nfc_set_cdev(nfc);
1870        if (ret)
1871                return ret;
1872
1873        ret = stm32_fmc2_nfc_parse_dt(nfc);
1874        if (ret)
1875                return ret;
1876
1877        ret = of_address_to_resource(nfc->cdev->of_node, 0, &cres);
1878        if (ret)
1879                return ret;
1880
1881        nfc->io_phys_addr = cres.start;
1882
1883        nfc->regmap = device_node_to_regmap(nfc->cdev->of_node);
1884        if (IS_ERR(nfc->regmap))
1885                return PTR_ERR(nfc->regmap);
1886
1887        if (nfc->dev == nfc->cdev)
1888                start_region = 1;
1889
1890        for (chip_cs = 0, mem_region = start_region; chip_cs < FMC2_MAX_CE;
1891             chip_cs++, mem_region += 3) {
1892                if (!(nfc->cs_assigned & BIT(chip_cs)))
1893                        continue;
1894
1895                res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region);
1896                nfc->data_base[chip_cs] = devm_ioremap_resource(dev, res);
1897                if (IS_ERR(nfc->data_base[chip_cs]))
1898                        return PTR_ERR(nfc->data_base[chip_cs]);
1899
1900                nfc->data_phys_addr[chip_cs] = res->start;
1901
1902                res = platform_get_resource(pdev, IORESOURCE_MEM,
1903                                            mem_region + 1);
1904                nfc->cmd_base[chip_cs] = devm_ioremap_resource(dev, res);
1905                if (IS_ERR(nfc->cmd_base[chip_cs]))
1906                        return PTR_ERR(nfc->cmd_base[chip_cs]);
1907
1908                res = platform_get_resource(pdev, IORESOURCE_MEM,
1909                                            mem_region + 2);
1910                nfc->addr_base[chip_cs] = devm_ioremap_resource(dev, res);
1911                if (IS_ERR(nfc->addr_base[chip_cs]))
1912                        return PTR_ERR(nfc->addr_base[chip_cs]);
1913        }
1914
1915        irq = platform_get_irq(pdev, 0);
1916        if (irq < 0)
1917                return irq;
1918
1919        ret = devm_request_irq(dev, irq, stm32_fmc2_nfc_irq, 0,
1920                               dev_name(dev), nfc);
1921        if (ret) {
1922                dev_err(dev, "failed to request irq\n");
1923                return ret;
1924        }
1925
1926        init_completion(&nfc->complete);
1927
1928        nfc->clk = devm_clk_get(nfc->cdev, NULL);
1929        if (IS_ERR(nfc->clk))
1930                return PTR_ERR(nfc->clk);
1931
1932        ret = clk_prepare_enable(nfc->clk);
1933        if (ret) {
1934                dev_err(dev, "can not enable the clock\n");
1935                return ret;
1936        }
1937
1938        rstc = devm_reset_control_get(dev, NULL);
1939        if (IS_ERR(rstc)) {
1940                ret = PTR_ERR(rstc);
1941                if (ret == -EPROBE_DEFER)
1942                        goto err_clk_disable;
1943        } else {
1944                reset_control_assert(rstc);
1945                reset_control_deassert(rstc);
1946        }
1947
1948        ret = stm32_fmc2_nfc_dma_setup(nfc);
1949        if (ret)
1950                goto err_release_dma;
1951
1952        stm32_fmc2_nfc_init(nfc);
1953
1954        nand = &nfc->nand;
1955        chip = &nand->chip;
1956        mtd = nand_to_mtd(chip);
1957        mtd->dev.parent = dev;
1958
1959        chip->controller = &nfc->base;
1960        chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1961                         NAND_USES_DMA;
1962
1963        /* Scan to find existence of the device */
1964        ret = nand_scan(chip, nand->ncs);
1965        if (ret)
1966                goto err_release_dma;
1967
1968        ret = mtd_device_register(mtd, NULL, 0);
1969        if (ret)
1970                goto err_nand_cleanup;
1971
1972        platform_set_drvdata(pdev, nfc);
1973
1974        return 0;
1975
1976err_nand_cleanup:
1977        nand_cleanup(chip);
1978
1979err_release_dma:
1980        if (nfc->dma_ecc_ch)
1981                dma_release_channel(nfc->dma_ecc_ch);
1982        if (nfc->dma_tx_ch)
1983                dma_release_channel(nfc->dma_tx_ch);
1984        if (nfc->dma_rx_ch)
1985                dma_release_channel(nfc->dma_rx_ch);
1986
1987        sg_free_table(&nfc->dma_data_sg);
1988        sg_free_table(&nfc->dma_ecc_sg);
1989
1990err_clk_disable:
1991        clk_disable_unprepare(nfc->clk);
1992
1993        return ret;
1994}
1995
1996static int stm32_fmc2_nfc_remove(struct platform_device *pdev)
1997{
1998        struct stm32_fmc2_nfc *nfc = platform_get_drvdata(pdev);
1999        struct stm32_fmc2_nand *nand = &nfc->nand;
2000        struct nand_chip *chip = &nand->chip;
2001        int ret;
2002
2003        ret = mtd_device_unregister(nand_to_mtd(chip));
2004        WARN_ON(ret);
2005        nand_cleanup(chip);
2006
2007        if (nfc->dma_ecc_ch)
2008                dma_release_channel(nfc->dma_ecc_ch);
2009        if (nfc->dma_tx_ch)
2010                dma_release_channel(nfc->dma_tx_ch);
2011        if (nfc->dma_rx_ch)
2012                dma_release_channel(nfc->dma_rx_ch);
2013
2014        sg_free_table(&nfc->dma_data_sg);
2015        sg_free_table(&nfc->dma_ecc_sg);
2016
2017        clk_disable_unprepare(nfc->clk);
2018
2019        return 0;
2020}
2021
2022static int __maybe_unused stm32_fmc2_nfc_suspend(struct device *dev)
2023{
2024        struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
2025
2026        clk_disable_unprepare(nfc->clk);
2027
2028        pinctrl_pm_select_sleep_state(dev);
2029
2030        return 0;
2031}
2032
2033static int __maybe_unused stm32_fmc2_nfc_resume(struct device *dev)
2034{
2035        struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
2036        struct stm32_fmc2_nand *nand = &nfc->nand;
2037        int chip_cs, ret;
2038
2039        pinctrl_pm_select_default_state(dev);
2040
2041        ret = clk_prepare_enable(nfc->clk);
2042        if (ret) {
2043                dev_err(dev, "can not enable the clock\n");
2044                return ret;
2045        }
2046
2047        stm32_fmc2_nfc_init(nfc);
2048
2049        for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) {
2050                if (!(nfc->cs_assigned & BIT(chip_cs)))
2051                        continue;
2052
2053                nand_reset(&nand->chip, chip_cs);
2054        }
2055
2056        return 0;
2057}
2058
2059static SIMPLE_DEV_PM_OPS(stm32_fmc2_nfc_pm_ops, stm32_fmc2_nfc_suspend,
2060                         stm32_fmc2_nfc_resume);
2061
2062static const struct of_device_id stm32_fmc2_nfc_match[] = {
2063        {.compatible = "st,stm32mp15-fmc2"},
2064        {.compatible = "st,stm32mp1-fmc2-nfc"},
2065        {}
2066};
2067MODULE_DEVICE_TABLE(of, stm32_fmc2_nfc_match);
2068
2069static struct platform_driver stm32_fmc2_nfc_driver = {
2070        .probe  = stm32_fmc2_nfc_probe,
2071        .remove = stm32_fmc2_nfc_remove,
2072        .driver = {
2073                .name = "stm32_fmc2_nfc",
2074                .of_match_table = stm32_fmc2_nfc_match,
2075                .pm = &stm32_fmc2_nfc_pm_ops,
2076        },
2077};
2078module_platform_driver(stm32_fmc2_nfc_driver);
2079
2080MODULE_ALIAS("platform:stm32_fmc2_nfc");
2081MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>");
2082MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 NFC driver");
2083MODULE_LICENSE("GPL v2");
2084