linux/drivers/net/dsa/bcm_sf2_cfp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Broadcom Starfighter 2 DSA switch CFP support
   4 *
   5 * Copyright (C) 2016, Broadcom
   6 */
   7
   8#include <linux/list.h>
   9#include <linux/ethtool.h>
  10#include <linux/if_ether.h>
  11#include <linux/in.h>
  12#include <linux/netdevice.h>
  13#include <net/dsa.h>
  14#include <linux/bitmap.h>
  15#include <net/flow_offload.h>
  16#include <net/switchdev.h>
  17#include <uapi/linux/if_bridge.h>
  18
  19#include "bcm_sf2.h"
  20#include "bcm_sf2_regs.h"
  21
  22struct cfp_rule {
  23        int port;
  24        struct ethtool_rx_flow_spec fs;
  25        struct list_head next;
  26};
  27
  28struct cfp_udf_slice_layout {
  29        u8 slices[UDFS_PER_SLICE];
  30        u32 mask_value;
  31        u32 base_offset;
  32};
  33
  34struct cfp_udf_layout {
  35        struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
  36};
  37
  38static const u8 zero_slice[UDFS_PER_SLICE] = { };
  39
  40/* UDF slices layout for a TCPv4/UDPv4 specification */
  41static const struct cfp_udf_layout udf_tcpip4_layout = {
  42        .udfs = {
  43                [1] = {
  44                        .slices = {
  45                                /* End of L2, byte offset 12, src IP[0:15] */
  46                                CFG_UDF_EOL2 | 6,
  47                                /* End of L2, byte offset 14, src IP[16:31] */
  48                                CFG_UDF_EOL2 | 7,
  49                                /* End of L2, byte offset 16, dst IP[0:15] */
  50                                CFG_UDF_EOL2 | 8,
  51                                /* End of L2, byte offset 18, dst IP[16:31] */
  52                                CFG_UDF_EOL2 | 9,
  53                                /* End of L3, byte offset 0, src port */
  54                                CFG_UDF_EOL3 | 0,
  55                                /* End of L3, byte offset 2, dst port */
  56                                CFG_UDF_EOL3 | 1,
  57                                0, 0, 0
  58                        },
  59                        .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
  60                        .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
  61                },
  62        },
  63};
  64
  65/* UDF slices layout for a TCPv6/UDPv6 specification */
  66static const struct cfp_udf_layout udf_tcpip6_layout = {
  67        .udfs = {
  68                [0] = {
  69                        .slices = {
  70                                /* End of L2, byte offset 8, src IP[0:15] */
  71                                CFG_UDF_EOL2 | 4,
  72                                /* End of L2, byte offset 10, src IP[16:31] */
  73                                CFG_UDF_EOL2 | 5,
  74                                /* End of L2, byte offset 12, src IP[32:47] */
  75                                CFG_UDF_EOL2 | 6,
  76                                /* End of L2, byte offset 14, src IP[48:63] */
  77                                CFG_UDF_EOL2 | 7,
  78                                /* End of L2, byte offset 16, src IP[64:79] */
  79                                CFG_UDF_EOL2 | 8,
  80                                /* End of L2, byte offset 18, src IP[80:95] */
  81                                CFG_UDF_EOL2 | 9,
  82                                /* End of L2, byte offset 20, src IP[96:111] */
  83                                CFG_UDF_EOL2 | 10,
  84                                /* End of L2, byte offset 22, src IP[112:127] */
  85                                CFG_UDF_EOL2 | 11,
  86                                /* End of L3, byte offset 0, src port */
  87                                CFG_UDF_EOL3 | 0,
  88                        },
  89                        .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
  90                        .base_offset = CORE_UDF_0_B_0_8_PORT_0,
  91                },
  92                [3] = {
  93                        .slices = {
  94                                /* End of L2, byte offset 24, dst IP[0:15] */
  95                                CFG_UDF_EOL2 | 12,
  96                                /* End of L2, byte offset 26, dst IP[16:31] */
  97                                CFG_UDF_EOL2 | 13,
  98                                /* End of L2, byte offset 28, dst IP[32:47] */
  99                                CFG_UDF_EOL2 | 14,
 100                                /* End of L2, byte offset 30, dst IP[48:63] */
 101                                CFG_UDF_EOL2 | 15,
 102                                /* End of L2, byte offset 32, dst IP[64:79] */
 103                                CFG_UDF_EOL2 | 16,
 104                                /* End of L2, byte offset 34, dst IP[80:95] */
 105                                CFG_UDF_EOL2 | 17,
 106                                /* End of L2, byte offset 36, dst IP[96:111] */
 107                                CFG_UDF_EOL2 | 18,
 108                                /* End of L2, byte offset 38, dst IP[112:127] */
 109                                CFG_UDF_EOL2 | 19,
 110                                /* End of L3, byte offset 2, dst port */
 111                                CFG_UDF_EOL3 | 1,
 112                        },
 113                        .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
 114                        .base_offset = CORE_UDF_0_D_0_11_PORT_0,
 115                },
 116        },
 117};
 118
 119static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
 120{
 121        unsigned int i, count = 0;
 122
 123        for (i = 0; i < UDFS_PER_SLICE; i++) {
 124                if (layout[i] != 0)
 125                        count++;
 126        }
 127
 128        return count;
 129}
 130
 131static inline u32 udf_upper_bits(int num_udf)
 132{
 133        return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
 134}
 135
 136static inline u32 udf_lower_bits(int num_udf)
 137{
 138        return (u8)GENMASK(num_udf - 1, 0);
 139}
 140
 141static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
 142                                             unsigned int start)
 143{
 144        const struct cfp_udf_slice_layout *slice_layout;
 145        unsigned int slice_idx;
 146
 147        for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
 148                slice_layout = &l->udfs[slice_idx];
 149                if (memcmp(slice_layout->slices, zero_slice,
 150                           sizeof(zero_slice)))
 151                        break;
 152        }
 153
 154        return slice_idx;
 155}
 156
 157static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
 158                                const struct cfp_udf_layout *layout,
 159                                unsigned int slice_num)
 160{
 161        u32 offset = layout->udfs[slice_num].base_offset;
 162        unsigned int i;
 163
 164        for (i = 0; i < UDFS_PER_SLICE; i++)
 165                core_writel(priv, layout->udfs[slice_num].slices[i],
 166                            offset + i * 4);
 167}
 168
 169static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
 170{
 171        unsigned int timeout = 1000;
 172        u32 reg;
 173
 174        reg = core_readl(priv, CORE_CFP_ACC);
 175        reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
 176        reg |= OP_STR_DONE | op;
 177        core_writel(priv, reg, CORE_CFP_ACC);
 178
 179        do {
 180                reg = core_readl(priv, CORE_CFP_ACC);
 181                if (!(reg & OP_STR_DONE))
 182                        break;
 183
 184                cpu_relax();
 185        } while (timeout--);
 186
 187        if (!timeout)
 188                return -ETIMEDOUT;
 189
 190        return 0;
 191}
 192
 193static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
 194                                             unsigned int addr)
 195{
 196        u32 reg;
 197
 198        WARN_ON(addr >= priv->num_cfp_rules);
 199
 200        reg = core_readl(priv, CORE_CFP_ACC);
 201        reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
 202        reg |= addr << XCESS_ADDR_SHIFT;
 203        core_writel(priv, reg, CORE_CFP_ACC);
 204}
 205
 206static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
 207{
 208        /* Entry #0 is reserved */
 209        return priv->num_cfp_rules - 1;
 210}
 211
 212static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
 213                                   unsigned int rule_index,
 214                                   int src_port,
 215                                   unsigned int port_num,
 216                                   unsigned int queue_num,
 217                                   bool fwd_map_change)
 218{
 219        int ret;
 220        u32 reg;
 221
 222        /* Replace ARL derived destination with DST_MAP derived, define
 223         * which port and queue this should be forwarded to.
 224         */
 225        if (fwd_map_change)
 226                reg = CHANGE_FWRD_MAP_IB_REP_ARL |
 227                      BIT(port_num + DST_MAP_IB_SHIFT) |
 228                      CHANGE_TC | queue_num << NEW_TC_SHIFT;
 229        else
 230                reg = 0;
 231
 232        /* Enable looping back to the original port */
 233        if (src_port == port_num)
 234                reg |= LOOP_BK_EN;
 235
 236        core_writel(priv, reg, CORE_ACT_POL_DATA0);
 237
 238        /* Set classification ID that needs to be put in Broadcom tag */
 239        core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
 240
 241        core_writel(priv, 0, CORE_ACT_POL_DATA2);
 242
 243        /* Configure policer RAM now */
 244        ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
 245        if (ret) {
 246                pr_err("Policer entry at %d failed\n", rule_index);
 247                return ret;
 248        }
 249
 250        /* Disable the policer */
 251        core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
 252
 253        /* Now the rate meter */
 254        ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
 255        if (ret) {
 256                pr_err("Meter entry at %d failed\n", rule_index);
 257                return ret;
 258        }
 259
 260        return 0;
 261}
 262
 263static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
 264                                   struct flow_dissector_key_ipv4_addrs *addrs,
 265                                   struct flow_dissector_key_ports *ports,
 266                                   const __be16 vlan_tci,
 267                                   unsigned int slice_num, u8 num_udf,
 268                                   bool mask)
 269{
 270        u32 reg, offset;
 271
 272        /* UDF_Valid[7:0]       [31:24]
 273         * S-Tag                [23:8]
 274         * C-Tag                [7:0]
 275         */
 276        reg = udf_lower_bits(num_udf) << 24 | be16_to_cpu(vlan_tci) >> 8;
 277        if (mask)
 278                core_writel(priv, reg, CORE_CFP_MASK_PORT(5));
 279        else
 280                core_writel(priv, reg, CORE_CFP_DATA_PORT(5));
 281
 282        /* C-Tag                [31:24]
 283         * UDF_n_A8             [23:8]
 284         * UDF_n_A7             [7:0]
 285         */
 286        reg = (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24;
 287        if (mask)
 288                offset = CORE_CFP_MASK_PORT(4);
 289        else
 290                offset = CORE_CFP_DATA_PORT(4);
 291        core_writel(priv, reg, offset);
 292
 293        /* UDF_n_A7             [31:24]
 294         * UDF_n_A6             [23:8]
 295         * UDF_n_A5             [7:0]
 296         */
 297        reg = be16_to_cpu(ports->dst) >> 8;
 298        if (mask)
 299                offset = CORE_CFP_MASK_PORT(3);
 300        else
 301                offset = CORE_CFP_DATA_PORT(3);
 302        core_writel(priv, reg, offset);
 303
 304        /* UDF_n_A5             [31:24]
 305         * UDF_n_A4             [23:8]
 306         * UDF_n_A3             [7:0]
 307         */
 308        reg = (be16_to_cpu(ports->dst) & 0xff) << 24 |
 309              (u32)be16_to_cpu(ports->src) << 8 |
 310              (be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8;
 311        if (mask)
 312                offset = CORE_CFP_MASK_PORT(2);
 313        else
 314                offset = CORE_CFP_DATA_PORT(2);
 315        core_writel(priv, reg, offset);
 316
 317        /* UDF_n_A3             [31:24]
 318         * UDF_n_A2             [23:8]
 319         * UDF_n_A1             [7:0]
 320         */
 321        reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 |
 322              (u32)(be32_to_cpu(addrs->dst) >> 16) << 8 |
 323              (be32_to_cpu(addrs->src) & 0x0000ff00) >> 8;
 324        if (mask)
 325                offset = CORE_CFP_MASK_PORT(1);
 326        else
 327                offset = CORE_CFP_DATA_PORT(1);
 328        core_writel(priv, reg, offset);
 329
 330        /* UDF_n_A1             [31:24]
 331         * UDF_n_A0             [23:8]
 332         * Reserved             [7:4]
 333         * Slice ID             [3:2]
 334         * Slice valid          [1:0]
 335         */
 336        reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 |
 337              (u32)(be32_to_cpu(addrs->src) >> 16) << 8 |
 338              SLICE_NUM(slice_num) | SLICE_VALID;
 339        if (mask)
 340                offset = CORE_CFP_MASK_PORT(0);
 341        else
 342                offset = CORE_CFP_DATA_PORT(0);
 343        core_writel(priv, reg, offset);
 344}
 345
 346static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
 347                                     unsigned int port_num,
 348                                     unsigned int queue_num,
 349                                     struct ethtool_rx_flow_spec *fs)
 350{
 351        __be16 vlan_tci = 0, vlan_m_tci = htons(0xffff);
 352        struct ethtool_rx_flow_spec_input input = {};
 353        const struct cfp_udf_layout *layout;
 354        unsigned int slice_num, rule_index;
 355        struct ethtool_rx_flow_rule *flow;
 356        struct flow_match_ipv4_addrs ipv4;
 357        struct flow_match_ports ports;
 358        struct flow_match_ip ip;
 359        u8 ip_proto, ip_frag;
 360        u8 num_udf;
 361        u32 reg;
 362        int ret;
 363
 364        switch (fs->flow_type & ~FLOW_EXT) {
 365        case TCP_V4_FLOW:
 366                ip_proto = IPPROTO_TCP;
 367                break;
 368        case UDP_V4_FLOW:
 369                ip_proto = IPPROTO_UDP;
 370                break;
 371        default:
 372                return -EINVAL;
 373        }
 374
 375        ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
 376
 377        /* Extract VLAN TCI */
 378        if (fs->flow_type & FLOW_EXT) {
 379                vlan_tci = fs->h_ext.vlan_tci;
 380                vlan_m_tci = fs->m_ext.vlan_tci;
 381        }
 382
 383        /* Locate the first rule available */
 384        if (fs->location == RX_CLS_LOC_ANY)
 385                rule_index = find_first_zero_bit(priv->cfp.used,
 386                                                 priv->num_cfp_rules);
 387        else
 388                rule_index = fs->location;
 389
 390        if (rule_index > bcm_sf2_cfp_rule_size(priv))
 391                return -ENOSPC;
 392
 393        input.fs = fs;
 394        flow = ethtool_rx_flow_rule_create(&input);
 395        if (IS_ERR(flow))
 396                return PTR_ERR(flow);
 397
 398        flow_rule_match_ipv4_addrs(flow->rule, &ipv4);
 399        flow_rule_match_ports(flow->rule, &ports);
 400        flow_rule_match_ip(flow->rule, &ip);
 401
 402        layout = &udf_tcpip4_layout;
 403        /* We only use one UDF slice for now */
 404        slice_num = bcm_sf2_get_slice_number(layout, 0);
 405        if (slice_num == UDF_NUM_SLICES) {
 406                ret = -EINVAL;
 407                goto out_err_flow_rule;
 408        }
 409
 410        num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 411
 412        /* Apply the UDF layout for this filter */
 413        bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 414
 415        /* Apply to all packets received through this port */
 416        core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
 417
 418        /* Source port map match */
 419        core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
 420
 421        /* S-Tag status         [31:30]
 422         * C-Tag status         [29:28]
 423         * L2 framing           [27:26]
 424         * L3 framing           [25:24]
 425         * IP ToS               [23:16]
 426         * IP proto             [15:08]
 427         * IP Fragm             [7]
 428         * Non 1st frag         [6]
 429         * IP Authen            [5]
 430         * TTL range            [4:3]
 431         * PPPoE session        [2]
 432         * Reserved             [1]
 433         * UDF_Valid[8]         [0]
 434         */
 435        core_writel(priv, ip.key->tos << IPTOS_SHIFT |
 436                    ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
 437                    udf_upper_bits(num_udf),
 438                    CORE_CFP_DATA_PORT(6));
 439
 440        /* Mask with the specific layout for IPv4 packets */
 441        core_writel(priv, layout->udfs[slice_num].mask_value |
 442                    udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
 443
 444        /* Program the match and the mask */
 445        bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, vlan_tci,
 446                               slice_num, num_udf, false);
 447        bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, vlan_m_tci,
 448                               SLICE_NUM_MASK, num_udf, true);
 449
 450        /* Insert into TCAM now */
 451        bcm_sf2_cfp_rule_addr_set(priv, rule_index);
 452
 453        ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 454        if (ret) {
 455                pr_err("TCAM entry at addr %d failed\n", rule_index);
 456                goto out_err_flow_rule;
 457        }
 458
 459        /* Insert into Action and policer RAMs now */
 460        ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num,
 461                                      queue_num, true);
 462        if (ret)
 463                goto out_err_flow_rule;
 464
 465        /* Turn on CFP for this rule now */
 466        reg = core_readl(priv, CORE_CFP_CTL_REG);
 467        reg |= BIT(port);
 468        core_writel(priv, reg, CORE_CFP_CTL_REG);
 469
 470        /* Flag the rule as being used and return it */
 471        set_bit(rule_index, priv->cfp.used);
 472        set_bit(rule_index, priv->cfp.unique);
 473        fs->location = rule_index;
 474
 475        return 0;
 476
 477out_err_flow_rule:
 478        ethtool_rx_flow_rule_destroy(flow);
 479        return ret;
 480}
 481
 482static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
 483                                   const __be32 *ip6_addr, const __be16 port,
 484                                   const __be16 vlan_tci,
 485                                   unsigned int slice_num, u32 udf_bits,
 486                                   bool mask)
 487{
 488        u32 reg, tmp, val, offset;
 489
 490        /* UDF_Valid[7:0]       [31:24]
 491         * S-Tag                [23:8]
 492         * C-Tag                [7:0]
 493         */
 494        reg = udf_bits << 24 | be16_to_cpu(vlan_tci) >> 8;
 495        if (mask)
 496                core_writel(priv, reg, CORE_CFP_MASK_PORT(5));
 497        else
 498                core_writel(priv, reg, CORE_CFP_DATA_PORT(5));
 499
 500        /* C-Tag                [31:24]
 501         * UDF_n_B8             [23:8]  (port)
 502         * UDF_n_B7 (upper)     [7:0]   (addr[15:8])
 503         */
 504        reg = be32_to_cpu(ip6_addr[3]);
 505        val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
 506        val |= (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24;
 507        if (mask)
 508                offset = CORE_CFP_MASK_PORT(4);
 509        else
 510                offset = CORE_CFP_DATA_PORT(4);
 511        core_writel(priv, val, offset);
 512
 513        /* UDF_n_B7 (lower)     [31:24] (addr[7:0])
 514         * UDF_n_B6             [23:8] (addr[31:16])
 515         * UDF_n_B5 (upper)     [7:0] (addr[47:40])
 516         */
 517        tmp = be32_to_cpu(ip6_addr[2]);
 518        val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
 519              ((tmp >> 8) & 0xff);
 520        if (mask)
 521                offset = CORE_CFP_MASK_PORT(3);
 522        else
 523                offset = CORE_CFP_DATA_PORT(3);
 524        core_writel(priv, val, offset);
 525
 526        /* UDF_n_B5 (lower)     [31:24] (addr[39:32])
 527         * UDF_n_B4             [23:8] (addr[63:48])
 528         * UDF_n_B3 (upper)     [7:0] (addr[79:72])
 529         */
 530        reg = be32_to_cpu(ip6_addr[1]);
 531        val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
 532              ((reg >> 8) & 0xff);
 533        if (mask)
 534                offset = CORE_CFP_MASK_PORT(2);
 535        else
 536                offset = CORE_CFP_DATA_PORT(2);
 537        core_writel(priv, val, offset);
 538
 539        /* UDF_n_B3 (lower)     [31:24] (addr[71:64])
 540         * UDF_n_B2             [23:8] (addr[95:80])
 541         * UDF_n_B1 (upper)     [7:0] (addr[111:104])
 542         */
 543        tmp = be32_to_cpu(ip6_addr[0]);
 544        val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
 545              ((tmp >> 8) & 0xff);
 546        if (mask)
 547                offset = CORE_CFP_MASK_PORT(1);
 548        else
 549                offset = CORE_CFP_DATA_PORT(1);
 550        core_writel(priv, val, offset);
 551
 552        /* UDF_n_B1 (lower)     [31:24] (addr[103:96])
 553         * UDF_n_B0             [23:8] (addr[127:112])
 554         * Reserved             [7:4]
 555         * Slice ID             [3:2]
 556         * Slice valid          [1:0]
 557         */
 558        reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
 559               SLICE_NUM(slice_num) | SLICE_VALID;
 560        if (mask)
 561                offset = CORE_CFP_MASK_PORT(0);
 562        else
 563                offset = CORE_CFP_DATA_PORT(0);
 564        core_writel(priv, reg, offset);
 565}
 566
 567static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv,
 568                                              int port, u32 location)
 569{
 570        struct cfp_rule *rule = NULL;
 571
 572        list_for_each_entry(rule, &priv->cfp.rules_list, next) {
 573                if (rule->port == port && rule->fs.location == location)
 574                        break;
 575        }
 576
 577        return rule;
 578}
 579
 580static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port,
 581                                struct ethtool_rx_flow_spec *fs)
 582{
 583        struct cfp_rule *rule = NULL;
 584        size_t fs_size = 0;
 585        int ret = 1;
 586
 587        if (list_empty(&priv->cfp.rules_list))
 588                return ret;
 589
 590        list_for_each_entry(rule, &priv->cfp.rules_list, next) {
 591                ret = 1;
 592                if (rule->port != port)
 593                        continue;
 594
 595                if (rule->fs.flow_type != fs->flow_type ||
 596                    rule->fs.ring_cookie != fs->ring_cookie ||
 597                    rule->fs.h_ext.data[0] != fs->h_ext.data[0])
 598                        continue;
 599
 600                switch (fs->flow_type & ~FLOW_EXT) {
 601                case TCP_V6_FLOW:
 602                case UDP_V6_FLOW:
 603                        fs_size = sizeof(struct ethtool_tcpip6_spec);
 604                        break;
 605                case TCP_V4_FLOW:
 606                case UDP_V4_FLOW:
 607                        fs_size = sizeof(struct ethtool_tcpip4_spec);
 608                        break;
 609                default:
 610                        continue;
 611                }
 612
 613                ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size);
 614                ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size);
 615                /* Compare VLAN TCI values as well */
 616                if (rule->fs.flow_type & FLOW_EXT) {
 617                        ret |= rule->fs.h_ext.vlan_tci != fs->h_ext.vlan_tci;
 618                        ret |= rule->fs.m_ext.vlan_tci != fs->m_ext.vlan_tci;
 619                }
 620                if (ret == 0)
 621                        break;
 622        }
 623
 624        return ret;
 625}
 626
 627static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
 628                                     unsigned int port_num,
 629                                     unsigned int queue_num,
 630                                     struct ethtool_rx_flow_spec *fs)
 631{
 632        __be16 vlan_tci = 0, vlan_m_tci = htons(0xffff);
 633        struct ethtool_rx_flow_spec_input input = {};
 634        unsigned int slice_num, rule_index[2];
 635        const struct cfp_udf_layout *layout;
 636        struct ethtool_rx_flow_rule *flow;
 637        struct flow_match_ipv6_addrs ipv6;
 638        struct flow_match_ports ports;
 639        u8 ip_proto, ip_frag;
 640        int ret = 0;
 641        u8 num_udf;
 642        u32 reg;
 643
 644        switch (fs->flow_type & ~FLOW_EXT) {
 645        case TCP_V6_FLOW:
 646                ip_proto = IPPROTO_TCP;
 647                break;
 648        case UDP_V6_FLOW:
 649                ip_proto = IPPROTO_UDP;
 650                break;
 651        default:
 652                return -EINVAL;
 653        }
 654
 655        ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1);
 656
 657        /* Extract VLAN TCI */
 658        if (fs->flow_type & FLOW_EXT) {
 659                vlan_tci = fs->h_ext.vlan_tci;
 660                vlan_m_tci = fs->m_ext.vlan_tci;
 661        }
 662
 663        layout = &udf_tcpip6_layout;
 664        slice_num = bcm_sf2_get_slice_number(layout, 0);
 665        if (slice_num == UDF_NUM_SLICES)
 666                return -EINVAL;
 667
 668        num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 669
 670        /* Negotiate two indexes, one for the second half which we are chained
 671         * from, which is what we will return to user-space, and a second one
 672         * which is used to store its first half. That first half does not
 673         * allow any choice of placement, so it just needs to find the next
 674         * available bit. We return the second half as fs->location because
 675         * that helps with the rule lookup later on since the second half is
 676         * chained from its first half, we can easily identify IPv6 CFP rules
 677         * by looking whether they carry a CHAIN_ID.
 678         *
 679         * We also want the second half to have a lower rule_index than its
 680         * first half because the HW search is by incrementing addresses.
 681         */
 682        if (fs->location == RX_CLS_LOC_ANY)
 683                rule_index[1] = find_first_zero_bit(priv->cfp.used,
 684                                                    priv->num_cfp_rules);
 685        else
 686                rule_index[1] = fs->location;
 687        if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
 688                return -ENOSPC;
 689
 690        /* Flag it as used (cleared on error path) such that we can immediately
 691         * obtain a second one to chain from.
 692         */
 693        set_bit(rule_index[1], priv->cfp.used);
 694
 695        rule_index[0] = find_first_zero_bit(priv->cfp.used,
 696                                            priv->num_cfp_rules);
 697        if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
 698                ret = -ENOSPC;
 699                goto out_err;
 700        }
 701
 702        input.fs = fs;
 703        flow = ethtool_rx_flow_rule_create(&input);
 704        if (IS_ERR(flow)) {
 705                ret = PTR_ERR(flow);
 706                goto out_err;
 707        }
 708        flow_rule_match_ipv6_addrs(flow->rule, &ipv6);
 709        flow_rule_match_ports(flow->rule, &ports);
 710
 711        /* Apply the UDF layout for this filter */
 712        bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 713
 714        /* Apply to all packets received through this port */
 715        core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
 716
 717        /* Source port map match */
 718        core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
 719
 720        /* S-Tag status         [31:30]
 721         * C-Tag status         [29:28]
 722         * L2 framing           [27:26]
 723         * L3 framing           [25:24]
 724         * IP ToS               [23:16]
 725         * IP proto             [15:08]
 726         * IP Fragm             [7]
 727         * Non 1st frag         [6]
 728         * IP Authen            [5]
 729         * TTL range            [4:3]
 730         * PPPoE session        [2]
 731         * Reserved             [1]
 732         * UDF_Valid[8]         [0]
 733         */
 734        reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
 735                ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
 736        core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
 737
 738        /* Mask with the specific layout for IPv6 packets including
 739         * UDF_Valid[8]
 740         */
 741        reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
 742        core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
 743
 744        /* Slice the IPv6 source address and port */
 745        bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32,
 746                               ports.key->src, vlan_tci, slice_num,
 747                               udf_lower_bits(num_udf), false);
 748        bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32,
 749                               ports.mask->src, vlan_m_tci, SLICE_NUM_MASK,
 750                               udf_lower_bits(num_udf), true);
 751
 752        /* Insert into TCAM now because we need to insert a second rule */
 753        bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
 754
 755        ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 756        if (ret) {
 757                pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
 758                goto out_err_flow_rule;
 759        }
 760
 761        /* Insert into Action and policer RAMs now */
 762        ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num,
 763                                      queue_num, false);
 764        if (ret)
 765                goto out_err_flow_rule;
 766
 767        /* Now deal with the second slice to chain this rule */
 768        slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
 769        if (slice_num == UDF_NUM_SLICES) {
 770                ret = -EINVAL;
 771                goto out_err_flow_rule;
 772        }
 773
 774        num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
 775
 776        /* Apply the UDF layout for this filter */
 777        bcm_sf2_cfp_udf_set(priv, layout, slice_num);
 778
 779        /* Chained rule, source port match is coming from the rule we are
 780         * chained from.
 781         */
 782        core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
 783        core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
 784
 785        /*
 786         * CHAIN ID             [31:24] chain to previous slice
 787         * Reserved             [23:20]
 788         * UDF_Valid[11:8]      [19:16]
 789         * UDF_Valid[7:0]       [15:8]
 790         * UDF_n_D11            [7:0]
 791         */
 792        reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
 793                udf_lower_bits(num_udf) << 8;
 794        core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
 795
 796        /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
 797        reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
 798                udf_lower_bits(num_udf) << 8;
 799        core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
 800
 801        bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32,
 802                               ports.key->dst, 0, slice_num,
 803                               0, false);
 804        bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32,
 805                               ports.key->dst, 0, SLICE_NUM_MASK,
 806                               0, true);
 807
 808        /* Insert into TCAM now */
 809        bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
 810
 811        ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 812        if (ret) {
 813                pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
 814                goto out_err_flow_rule;
 815        }
 816
 817        /* Insert into Action and policer RAMs now, set chain ID to
 818         * the one we are chained to
 819         */
 820        ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num,
 821                                      queue_num, true);
 822        if (ret)
 823                goto out_err_flow_rule;
 824
 825        /* Turn on CFP for this rule now */
 826        reg = core_readl(priv, CORE_CFP_CTL_REG);
 827        reg |= BIT(port);
 828        core_writel(priv, reg, CORE_CFP_CTL_REG);
 829
 830        /* Flag the second half rule as being used now, return it as the
 831         * location, and flag it as unique while dumping rules
 832         */
 833        set_bit(rule_index[0], priv->cfp.used);
 834        set_bit(rule_index[1], priv->cfp.unique);
 835        fs->location = rule_index[1];
 836
 837        return ret;
 838
 839out_err_flow_rule:
 840        ethtool_rx_flow_rule_destroy(flow);
 841out_err:
 842        clear_bit(rule_index[1], priv->cfp.used);
 843        return ret;
 844}
 845
 846static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port,
 847                                   struct ethtool_rx_flow_spec *fs)
 848{
 849        struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
 850        s8 cpu_port = dsa_to_port(ds, port)->cpu_dp->index;
 851        __u64 ring_cookie = fs->ring_cookie;
 852        struct switchdev_obj_port_vlan vlan;
 853        unsigned int queue_num, port_num;
 854        u16 vid;
 855        int ret;
 856
 857        /* This rule is a Wake-on-LAN filter and we must specifically
 858         * target the CPU port in order for it to be working.
 859         */
 860        if (ring_cookie == RX_CLS_FLOW_WAKE)
 861                ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
 862
 863        /* We do not support discarding packets, check that the
 864         * destination port is enabled and that we are within the
 865         * number of ports supported by the switch
 866         */
 867        port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
 868
 869        if (ring_cookie == RX_CLS_FLOW_DISC ||
 870            !(dsa_is_user_port(ds, port_num) ||
 871              dsa_is_cpu_port(ds, port_num)) ||
 872            port_num >= priv->hw_params.num_ports)
 873                return -EINVAL;
 874
 875        /* If the rule is matching a particular VLAN, make sure that we honor
 876         * the matching and have it tagged or untagged on the destination port,
 877         * we do this on egress with a VLAN entry. The egress tagging attribute
 878         * is expected to be provided in h_ext.data[1] bit 0. A 1 means untagged,
 879         * a 0 means tagged.
 880         */
 881        if (fs->flow_type & FLOW_EXT) {
 882                /* We cannot support matching multiple VLAN IDs yet */
 883                if ((be16_to_cpu(fs->m_ext.vlan_tci) & VLAN_VID_MASK) !=
 884                    VLAN_VID_MASK)
 885                        return -EINVAL;
 886
 887                vid = be16_to_cpu(fs->h_ext.vlan_tci) & VLAN_VID_MASK;
 888                vlan.vid = vid;
 889                if (be32_to_cpu(fs->h_ext.data[1]) & 1)
 890                        vlan.flags = BRIDGE_VLAN_INFO_UNTAGGED;
 891                else
 892                        vlan.flags = 0;
 893
 894                ret = ds->ops->port_vlan_add(ds, port_num, &vlan, NULL);
 895                if (ret)
 896                        return ret;
 897        }
 898
 899        /*
 900         * We have a small oddity where Port 6 just does not have a
 901         * valid bit here (so we substract by one).
 902         */
 903        queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
 904        if (port_num >= 7)
 905                port_num -= 1;
 906
 907        switch (fs->flow_type & ~FLOW_EXT) {
 908        case TCP_V4_FLOW:
 909        case UDP_V4_FLOW:
 910                ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
 911                                                queue_num, fs);
 912                break;
 913        case TCP_V6_FLOW:
 914        case UDP_V6_FLOW:
 915                ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
 916                                                queue_num, fs);
 917                break;
 918        default:
 919                ret = -EINVAL;
 920                break;
 921        }
 922
 923        return ret;
 924}
 925
 926static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
 927                                struct ethtool_rx_flow_spec *fs)
 928{
 929        struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
 930        struct cfp_rule *rule = NULL;
 931        int ret = -EINVAL;
 932
 933        /* Check for unsupported extensions */
 934        if (fs->flow_type & FLOW_MAC_EXT)
 935                return -EINVAL;
 936
 937        if (fs->location != RX_CLS_LOC_ANY &&
 938            fs->location > bcm_sf2_cfp_rule_size(priv))
 939                return -EINVAL;
 940
 941        if ((fs->flow_type & FLOW_EXT) &&
 942            !(ds->ops->port_vlan_add || ds->ops->port_vlan_del))
 943                return -EOPNOTSUPP;
 944
 945        if (fs->location != RX_CLS_LOC_ANY &&
 946            test_bit(fs->location, priv->cfp.used))
 947                return -EBUSY;
 948
 949        ret = bcm_sf2_cfp_rule_cmp(priv, port, fs);
 950        if (ret == 0)
 951                return -EEXIST;
 952
 953        rule = kzalloc(sizeof(*rule), GFP_KERNEL);
 954        if (!rule)
 955                return -ENOMEM;
 956
 957        ret = bcm_sf2_cfp_rule_insert(ds, port, fs);
 958        if (ret) {
 959                kfree(rule);
 960                return ret;
 961        }
 962
 963        rule->port = port;
 964        memcpy(&rule->fs, fs, sizeof(*fs));
 965        list_add_tail(&rule->next, &priv->cfp.rules_list);
 966
 967        return ret;
 968}
 969
 970static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
 971                                    u32 loc, u32 *next_loc)
 972{
 973        int ret;
 974        u32 reg;
 975
 976        /* Indicate which rule we want to read */
 977        bcm_sf2_cfp_rule_addr_set(priv, loc);
 978
 979        ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
 980        if (ret)
 981                return ret;
 982
 983        /* Check if this is possibly an IPv6 rule that would
 984         * indicate we need to delete its companion rule
 985         * as well
 986         */
 987        reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
 988        if (next_loc)
 989                *next_loc = (reg >> 24) & CHAIN_ID_MASK;
 990
 991        /* Clear its valid bits */
 992        reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
 993        reg &= ~SLICE_VALID;
 994        core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
 995
 996        /* Write back this entry into the TCAM now */
 997        ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
 998        if (ret)
 999                return ret;
1000
1001        clear_bit(loc, priv->cfp.used);
1002        clear_bit(loc, priv->cfp.unique);
1003
1004        return 0;
1005}
1006
1007static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port,
1008                                   u32 loc)
1009{
1010        u32 next_loc = 0;
1011        int ret;
1012
1013        ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
1014        if (ret)
1015                return ret;
1016
1017        /* If this was an IPv6 rule, delete is companion rule too */
1018        if (next_loc)
1019                ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
1020
1021        return ret;
1022}
1023
1024static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc)
1025{
1026        struct cfp_rule *rule;
1027        int ret;
1028
1029        if (loc > bcm_sf2_cfp_rule_size(priv))
1030                return -EINVAL;
1031
1032        /* Refuse deleting unused rules, and those that are not unique since
1033         * that could leave IPv6 rules with one of the chained rule in the
1034         * table.
1035         */
1036        if (!test_bit(loc, priv->cfp.unique) || loc == 0)
1037                return -EINVAL;
1038
1039        rule = bcm_sf2_cfp_rule_find(priv, port, loc);
1040        if (!rule)
1041                return -EINVAL;
1042
1043        ret = bcm_sf2_cfp_rule_remove(priv, port, loc);
1044
1045        list_del(&rule->next);
1046        kfree(rule);
1047
1048        return ret;
1049}
1050
1051static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
1052{
1053        unsigned int i;
1054
1055        for (i = 0; i < sizeof(flow->m_u); i++)
1056                flow->m_u.hdata[i] ^= 0xff;
1057
1058        flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
1059        flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
1060        flow->m_ext.data[0] ^= cpu_to_be32(~0);
1061        flow->m_ext.data[1] ^= cpu_to_be32(~0);
1062}
1063
1064static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
1065                                struct ethtool_rxnfc *nfc)
1066{
1067        struct cfp_rule *rule;
1068
1069        rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location);
1070        if (!rule)
1071                return -EINVAL;
1072
1073        memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs));
1074
1075        bcm_sf2_invert_masks(&nfc->fs);
1076
1077        /* Put the TCAM size here */
1078        nfc->data = bcm_sf2_cfp_rule_size(priv);
1079
1080        return 0;
1081}
1082
1083/* We implement the search doing a TCAM search operation */
1084static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
1085                                    int port, struct ethtool_rxnfc *nfc,
1086                                    u32 *rule_locs)
1087{
1088        unsigned int index = 1, rules_cnt = 0;
1089
1090        for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
1091                rule_locs[rules_cnt] = index;
1092                rules_cnt++;
1093        }
1094
1095        /* Put the TCAM size here */
1096        nfc->data = bcm_sf2_cfp_rule_size(priv);
1097        nfc->rule_cnt = rules_cnt;
1098
1099        return 0;
1100}
1101
1102int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
1103                      struct ethtool_rxnfc *nfc, u32 *rule_locs)
1104{
1105        struct net_device *p = dsa_to_port(ds, port)->cpu_dp->master;
1106        struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1107        int ret = 0;
1108
1109        mutex_lock(&priv->cfp.lock);
1110
1111        switch (nfc->cmd) {
1112        case ETHTOOL_GRXCLSRLCNT:
1113                /* Subtract the default, unusable rule */
1114                nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
1115                                              priv->num_cfp_rules) - 1;
1116                /* We support specifying rule locations */
1117                nfc->data |= RX_CLS_LOC_SPECIAL;
1118                break;
1119        case ETHTOOL_GRXCLSRULE:
1120                ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
1121                break;
1122        case ETHTOOL_GRXCLSRLALL:
1123                ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
1124                break;
1125        default:
1126                ret = -EOPNOTSUPP;
1127                break;
1128        }
1129
1130        mutex_unlock(&priv->cfp.lock);
1131
1132        if (ret)
1133                return ret;
1134
1135        /* Pass up the commands to the attached master network device */
1136        if (p->ethtool_ops->get_rxnfc) {
1137                ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
1138                if (ret == -EOPNOTSUPP)
1139                        ret = 0;
1140        }
1141
1142        return ret;
1143}
1144
1145int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
1146                      struct ethtool_rxnfc *nfc)
1147{
1148        struct net_device *p = dsa_to_port(ds, port)->cpu_dp->master;
1149        struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1150        int ret = 0;
1151
1152        mutex_lock(&priv->cfp.lock);
1153
1154        switch (nfc->cmd) {
1155        case ETHTOOL_SRXCLSRLINS:
1156                ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
1157                break;
1158
1159        case ETHTOOL_SRXCLSRLDEL:
1160                ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1161                break;
1162        default:
1163                ret = -EOPNOTSUPP;
1164                break;
1165        }
1166
1167        mutex_unlock(&priv->cfp.lock);
1168
1169        if (ret)
1170                return ret;
1171
1172        /* Pass up the commands to the attached master network device.
1173         * This can fail, so rollback the operation if we need to.
1174         */
1175        if (p->ethtool_ops->set_rxnfc) {
1176                ret = p->ethtool_ops->set_rxnfc(p, nfc);
1177                if (ret && ret != -EOPNOTSUPP) {
1178                        mutex_lock(&priv->cfp.lock);
1179                        bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
1180                        mutex_unlock(&priv->cfp.lock);
1181                } else {
1182                        ret = 0;
1183                }
1184        }
1185
1186        return ret;
1187}
1188
1189int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
1190{
1191        unsigned int timeout = 1000;
1192        u32 reg;
1193
1194        reg = core_readl(priv, CORE_CFP_ACC);
1195        reg |= TCAM_RESET;
1196        core_writel(priv, reg, CORE_CFP_ACC);
1197
1198        do {
1199                reg = core_readl(priv, CORE_CFP_ACC);
1200                if (!(reg & TCAM_RESET))
1201                        break;
1202
1203                cpu_relax();
1204        } while (timeout--);
1205
1206        if (!timeout)
1207                return -ETIMEDOUT;
1208
1209        return 0;
1210}
1211
1212void bcm_sf2_cfp_exit(struct dsa_switch *ds)
1213{
1214        struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1215        struct cfp_rule *rule, *n;
1216
1217        if (list_empty(&priv->cfp.rules_list))
1218                return;
1219
1220        list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next)
1221                bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location);
1222}
1223
1224int bcm_sf2_cfp_resume(struct dsa_switch *ds)
1225{
1226        struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1227        struct cfp_rule *rule;
1228        int ret = 0;
1229        u32 reg;
1230
1231        if (list_empty(&priv->cfp.rules_list))
1232                return ret;
1233
1234        reg = core_readl(priv, CORE_CFP_CTL_REG);
1235        reg &= ~CFP_EN_MAP_MASK;
1236        core_writel(priv, reg, CORE_CFP_CTL_REG);
1237
1238        ret = bcm_sf2_cfp_rst(priv);
1239        if (ret)
1240                return ret;
1241
1242        list_for_each_entry(rule, &priv->cfp.rules_list, next) {
1243                ret = bcm_sf2_cfp_rule_remove(priv, rule->port,
1244                                              rule->fs.location);
1245                if (ret) {
1246                        dev_err(ds->dev, "failed to remove rule\n");
1247                        return ret;
1248                }
1249
1250                ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs);
1251                if (ret) {
1252                        dev_err(ds->dev, "failed to restore rule\n");
1253                        return ret;
1254                }
1255        }
1256
1257        return ret;
1258}
1259
1260static const struct bcm_sf2_cfp_stat {
1261        unsigned int offset;
1262        unsigned int ram_loc;
1263        const char *name;
1264} bcm_sf2_cfp_stats[] = {
1265        {
1266                .offset = CORE_STAT_GREEN_CNTR,
1267                .ram_loc = GREEN_STAT_RAM,
1268                .name = "Green"
1269        },
1270        {
1271                .offset = CORE_STAT_YELLOW_CNTR,
1272                .ram_loc = YELLOW_STAT_RAM,
1273                .name = "Yellow"
1274        },
1275        {
1276                .offset = CORE_STAT_RED_CNTR,
1277                .ram_loc = RED_STAT_RAM,
1278                .name = "Red"
1279        },
1280};
1281
1282void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port,
1283                             u32 stringset, uint8_t *data)
1284{
1285        struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1286        unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1287        char buf[ETH_GSTRING_LEN];
1288        unsigned int i, j, iter;
1289
1290        if (stringset != ETH_SS_STATS)
1291                return;
1292
1293        for (i = 1; i < priv->num_cfp_rules; i++) {
1294                for (j = 0; j < s; j++) {
1295                        snprintf(buf, sizeof(buf),
1296                                 "CFP%03d_%sCntr",
1297                                 i, bcm_sf2_cfp_stats[j].name);
1298                        iter = (i - 1) * s + j;
1299                        strlcpy(data + iter * ETH_GSTRING_LEN,
1300                                buf, ETH_GSTRING_LEN);
1301                }
1302        }
1303}
1304
1305void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port,
1306                                   uint64_t *data)
1307{
1308        struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1309        unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
1310        const struct bcm_sf2_cfp_stat *stat;
1311        unsigned int i, j, iter;
1312        struct cfp_rule *rule;
1313        int ret;
1314
1315        mutex_lock(&priv->cfp.lock);
1316        for (i = 1; i < priv->num_cfp_rules; i++) {
1317                rule = bcm_sf2_cfp_rule_find(priv, port, i);
1318                if (!rule)
1319                        continue;
1320
1321                for (j = 0; j < s; j++) {
1322                        stat = &bcm_sf2_cfp_stats[j];
1323
1324                        bcm_sf2_cfp_rule_addr_set(priv, i);
1325                        ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ);
1326                        if (ret)
1327                                continue;
1328
1329                        iter = (i - 1) * s + j;
1330                        data[iter] = core_readl(priv, stat->offset);
1331                }
1332
1333        }
1334        mutex_unlock(&priv->cfp.lock);
1335}
1336
1337int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset)
1338{
1339        struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
1340
1341        if (sset != ETH_SS_STATS)
1342                return 0;
1343
1344        /* 3 counters per CFP rules */
1345        return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats);
1346}
1347