1
2
3
4#include <linux/types.h>
5#include <linux/module.h>
6#include <net/ipv6.h>
7#include <net/ip.h>
8#include <net/tcp.h>
9#include <linux/if_macvlan.h>
10#include <linux/prefetch.h>
11
12#include "fm10k.h"
13
14#define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver"
15char fm10k_driver_name[] = "fm10k";
16static const char fm10k_driver_string[] = DRV_SUMMARY;
17static const char fm10k_copyright[] =
18 "Copyright(c) 2013 - 2019 Intel Corporation.";
19
20MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
21MODULE_DESCRIPTION(DRV_SUMMARY);
22MODULE_LICENSE("GPL v2");
23
24
25struct workqueue_struct *fm10k_workqueue;
26
27
28
29
30
31
32
33static int __init fm10k_init_module(void)
34{
35 pr_info("%s\n", fm10k_driver_string);
36 pr_info("%s\n", fm10k_copyright);
37
38
39 fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
40 fm10k_driver_name);
41 if (!fm10k_workqueue)
42 return -ENOMEM;
43
44 fm10k_dbg_init();
45
46 return fm10k_register_pci_driver();
47}
48module_init(fm10k_init_module);
49
50
51
52
53
54
55
56static void __exit fm10k_exit_module(void)
57{
58 fm10k_unregister_pci_driver();
59
60 fm10k_dbg_exit();
61
62
63 destroy_workqueue(fm10k_workqueue);
64}
65module_exit(fm10k_exit_module);
66
67static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
68 struct fm10k_rx_buffer *bi)
69{
70 struct page *page = bi->page;
71 dma_addr_t dma;
72
73
74 if (likely(page))
75 return true;
76
77
78 page = dev_alloc_page();
79 if (unlikely(!page)) {
80 rx_ring->rx_stats.alloc_failed++;
81 return false;
82 }
83
84
85 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
86
87
88
89
90 if (dma_mapping_error(rx_ring->dev, dma)) {
91 __free_page(page);
92
93 rx_ring->rx_stats.alloc_failed++;
94 return false;
95 }
96
97 bi->dma = dma;
98 bi->page = page;
99 bi->page_offset = 0;
100
101 return true;
102}
103
104
105
106
107
108
109void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
110{
111 union fm10k_rx_desc *rx_desc;
112 struct fm10k_rx_buffer *bi;
113 u16 i = rx_ring->next_to_use;
114
115
116 if (!cleaned_count)
117 return;
118
119 rx_desc = FM10K_RX_DESC(rx_ring, i);
120 bi = &rx_ring->rx_buffer[i];
121 i -= rx_ring->count;
122
123 do {
124 if (!fm10k_alloc_mapped_page(rx_ring, bi))
125 break;
126
127
128
129
130 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
131
132 rx_desc++;
133 bi++;
134 i++;
135 if (unlikely(!i)) {
136 rx_desc = FM10K_RX_DESC(rx_ring, 0);
137 bi = rx_ring->rx_buffer;
138 i -= rx_ring->count;
139 }
140
141
142 rx_desc->d.staterr = 0;
143
144 cleaned_count--;
145 } while (cleaned_count);
146
147 i += rx_ring->count;
148
149 if (rx_ring->next_to_use != i) {
150
151 rx_ring->next_to_use = i;
152
153
154 rx_ring->next_to_alloc = i;
155
156
157
158
159
160
161 wmb();
162
163
164 writel(i, rx_ring->tail);
165 }
166}
167
168
169
170
171
172
173
174
175static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
176 struct fm10k_rx_buffer *old_buff)
177{
178 struct fm10k_rx_buffer *new_buff;
179 u16 nta = rx_ring->next_to_alloc;
180
181 new_buff = &rx_ring->rx_buffer[nta];
182
183
184 nta++;
185 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
186
187
188 *new_buff = *old_buff;
189
190
191 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
192 old_buff->page_offset,
193 FM10K_RX_BUFSZ,
194 DMA_FROM_DEVICE);
195}
196
197static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
198 struct page *page,
199 unsigned int __maybe_unused truesize)
200{
201
202 if (!dev_page_is_reusable(page))
203 return false;
204
205#if (PAGE_SIZE < 8192)
206
207 if (unlikely(page_count(page) != 1))
208 return false;
209
210
211 rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
212#else
213
214 rx_buffer->page_offset += truesize;
215
216 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
217 return false;
218#endif
219
220
221
222
223 page_ref_inc(page);
224
225 return true;
226}
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
244 unsigned int size,
245 union fm10k_rx_desc *rx_desc,
246 struct sk_buff *skb)
247{
248 struct page *page = rx_buffer->page;
249 unsigned char *va = page_address(page) + rx_buffer->page_offset;
250#if (PAGE_SIZE < 8192)
251 unsigned int truesize = FM10K_RX_BUFSZ;
252#else
253 unsigned int truesize = ALIGN(size, 512);
254#endif
255 unsigned int pull_len;
256
257 if (unlikely(skb_is_nonlinear(skb)))
258 goto add_tail_frag;
259
260 if (likely(size <= FM10K_RX_HDR_LEN)) {
261 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
262
263
264 if (dev_page_is_reusable(page))
265 return true;
266
267
268 __free_page(page);
269 return false;
270 }
271
272
273
274
275 pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN);
276
277
278 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
279
280
281 va += pull_len;
282 size -= pull_len;
283
284add_tail_frag:
285 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
286 (unsigned long)va & ~PAGE_MASK, size, truesize);
287
288 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
289}
290
291static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
292 union fm10k_rx_desc *rx_desc,
293 struct sk_buff *skb)
294{
295 unsigned int size = le16_to_cpu(rx_desc->w.length);
296 struct fm10k_rx_buffer *rx_buffer;
297 struct page *page;
298
299 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
300 page = rx_buffer->page;
301 prefetchw(page);
302
303 if (likely(!skb)) {
304 void *page_addr = page_address(page) +
305 rx_buffer->page_offset;
306
307
308 net_prefetch(page_addr);
309
310
311 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
312 FM10K_RX_HDR_LEN);
313 if (unlikely(!skb)) {
314 rx_ring->rx_stats.alloc_failed++;
315 return NULL;
316 }
317
318
319
320
321
322 prefetchw(skb->data);
323 }
324
325
326 dma_sync_single_range_for_cpu(rx_ring->dev,
327 rx_buffer->dma,
328 rx_buffer->page_offset,
329 size,
330 DMA_FROM_DEVICE);
331
332
333 if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
334
335 fm10k_reuse_rx_page(rx_ring, rx_buffer);
336 } else {
337
338 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
339 PAGE_SIZE, DMA_FROM_DEVICE);
340 }
341
342
343 rx_buffer->page = NULL;
344
345 return skb;
346}
347
348static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
349 union fm10k_rx_desc *rx_desc,
350 struct sk_buff *skb)
351{
352 skb_checksum_none_assert(skb);
353
354
355 if (!(ring->netdev->features & NETIF_F_RXCSUM))
356 return;
357
358
359 if (fm10k_test_staterr(rx_desc,
360 FM10K_RXD_STATUS_L4E |
361 FM10K_RXD_STATUS_L4E2 |
362 FM10K_RXD_STATUS_IPE |
363 FM10K_RXD_STATUS_IPE2)) {
364 ring->rx_stats.csum_err++;
365 return;
366 }
367
368
369 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
370 skb->encapsulation = true;
371 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
372 return;
373
374 skb->ip_summed = CHECKSUM_UNNECESSARY;
375
376 ring->rx_stats.csum_good++;
377}
378
379#define FM10K_RSS_L4_TYPES_MASK \
380 (BIT(FM10K_RSSTYPE_IPV4_TCP) | \
381 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
382 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
383 BIT(FM10K_RSSTYPE_IPV6_UDP))
384
385static inline void fm10k_rx_hash(struct fm10k_ring *ring,
386 union fm10k_rx_desc *rx_desc,
387 struct sk_buff *skb)
388{
389 u16 rss_type;
390
391 if (!(ring->netdev->features & NETIF_F_RXHASH))
392 return;
393
394 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
395 if (!rss_type)
396 return;
397
398 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
399 (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
400 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
401}
402
403static void fm10k_type_trans(struct fm10k_ring *rx_ring,
404 union fm10k_rx_desc __maybe_unused *rx_desc,
405 struct sk_buff *skb)
406{
407 struct net_device *dev = rx_ring->netdev;
408 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
409
410
411 if (l2_accel) {
412 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
413
414 idx -= l2_accel->dglort;
415 if (idx < l2_accel->size && l2_accel->macvlan[idx])
416 dev = l2_accel->macvlan[idx];
417 else
418 l2_accel = NULL;
419 }
420
421
422 if (!l2_accel)
423 skb_record_rx_queue(skb, rx_ring->queue_index);
424 else
425 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
426 false);
427
428 skb->protocol = eth_type_trans(skb, dev);
429}
430
431
432
433
434
435
436
437
438
439
440
441static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
442 union fm10k_rx_desc *rx_desc,
443 struct sk_buff *skb)
444{
445 unsigned int len = skb->len;
446
447 fm10k_rx_hash(rx_ring, rx_desc, skb);
448
449 fm10k_rx_checksum(rx_ring, rx_desc, skb);
450
451 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
452
453 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
454
455 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
456
457 if (rx_desc->w.vlan) {
458 u16 vid = le16_to_cpu(rx_desc->w.vlan);
459
460 if ((vid & VLAN_VID_MASK) != rx_ring->vid)
461 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
462 else if (vid & VLAN_PRIO_MASK)
463 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
464 vid & VLAN_PRIO_MASK);
465 }
466
467 fm10k_type_trans(rx_ring, rx_desc, skb);
468
469 return len;
470}
471
472
473
474
475
476
477
478
479
480
481
482static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
483 union fm10k_rx_desc *rx_desc)
484{
485 u32 ntc = rx_ring->next_to_clean + 1;
486
487
488 ntc = (ntc < rx_ring->count) ? ntc : 0;
489 rx_ring->next_to_clean = ntc;
490
491 prefetch(FM10K_RX_DESC(rx_ring, ntc));
492
493 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
494 return false;
495
496 return true;
497}
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
514 union fm10k_rx_desc *rx_desc,
515 struct sk_buff *skb)
516{
517 if (unlikely((fm10k_test_staterr(rx_desc,
518 FM10K_RXD_STATUS_RXE)))) {
519#define FM10K_TEST_RXD_BIT(rxd, bit) \
520 ((rxd)->w.csum_err & cpu_to_le16(bit))
521 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
522 rx_ring->rx_stats.switch_errors++;
523 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
524 rx_ring->rx_stats.drops++;
525 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
526 rx_ring->rx_stats.pp_errors++;
527 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
528 rx_ring->rx_stats.link_errors++;
529 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
530 rx_ring->rx_stats.length_errors++;
531 dev_kfree_skb_any(skb);
532 rx_ring->rx_stats.errors++;
533 return true;
534 }
535
536
537 if (eth_skb_pad(skb))
538 return true;
539
540 return false;
541}
542
543
544
545
546
547
548static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
549 struct sk_buff *skb)
550{
551 napi_gro_receive(&q_vector->napi, skb);
552}
553
554static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
555 struct fm10k_ring *rx_ring,
556 int budget)
557{
558 struct sk_buff *skb = rx_ring->skb;
559 unsigned int total_bytes = 0, total_packets = 0;
560 u16 cleaned_count = fm10k_desc_unused(rx_ring);
561
562 while (likely(total_packets < budget)) {
563 union fm10k_rx_desc *rx_desc;
564
565
566 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
567 fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
568 cleaned_count = 0;
569 }
570
571 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
572
573 if (!rx_desc->d.staterr)
574 break;
575
576
577
578
579
580 dma_rmb();
581
582
583 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
584
585
586 if (!skb)
587 break;
588
589 cleaned_count++;
590
591
592 if (fm10k_is_non_eop(rx_ring, rx_desc))
593 continue;
594
595
596 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
597 skb = NULL;
598 continue;
599 }
600
601
602 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
603
604 fm10k_receive_skb(q_vector, skb);
605
606
607 skb = NULL;
608
609
610 total_packets++;
611 }
612
613
614 rx_ring->skb = skb;
615
616 u64_stats_update_begin(&rx_ring->syncp);
617 rx_ring->stats.packets += total_packets;
618 rx_ring->stats.bytes += total_bytes;
619 u64_stats_update_end(&rx_ring->syncp);
620 q_vector->rx.total_packets += total_packets;
621 q_vector->rx.total_bytes += total_bytes;
622
623 return total_packets;
624}
625
626#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
627static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
628{
629 struct fm10k_intfc *interface = netdev_priv(skb->dev);
630
631 if (interface->vxlan_port != udp_hdr(skb)->dest)
632 return NULL;
633
634
635 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
636}
637
638#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
639#define NVGRE_TNI htons(0x2000)
640struct fm10k_nvgre_hdr {
641 __be16 flags;
642 __be16 proto;
643 __be32 tni;
644};
645
646static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
647{
648 struct fm10k_nvgre_hdr *nvgre_hdr;
649 int hlen = ip_hdrlen(skb);
650
651
652 if (vlan_get_protocol(skb) != htons(ETH_P_IP))
653 return NULL;
654
655
656 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
657
658
659 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
660 return NULL;
661
662
663 if (nvgre_hdr->flags & NVGRE_TNI)
664 return (struct ethhdr *)(nvgre_hdr + 1);
665
666 return (struct ethhdr *)(&nvgre_hdr->tni);
667}
668
669__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
670{
671 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
672 struct ethhdr *eth_hdr;
673
674 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
675 skb->inner_protocol != htons(ETH_P_TEB))
676 return 0;
677
678 switch (vlan_get_protocol(skb)) {
679 case htons(ETH_P_IP):
680 l4_hdr = ip_hdr(skb)->protocol;
681 break;
682 case htons(ETH_P_IPV6):
683 l4_hdr = ipv6_hdr(skb)->nexthdr;
684 break;
685 default:
686 return 0;
687 }
688
689 switch (l4_hdr) {
690 case IPPROTO_UDP:
691 eth_hdr = fm10k_port_is_vxlan(skb);
692 break;
693 case IPPROTO_GRE:
694 eth_hdr = fm10k_gre_is_nvgre(skb);
695 break;
696 default:
697 return 0;
698 }
699
700 if (!eth_hdr)
701 return 0;
702
703 switch (eth_hdr->h_proto) {
704 case htons(ETH_P_IP):
705 inner_l4_hdr = inner_ip_hdr(skb)->protocol;
706 break;
707 case htons(ETH_P_IPV6):
708 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
709 break;
710 default:
711 return 0;
712 }
713
714 switch (inner_l4_hdr) {
715 case IPPROTO_TCP:
716 inner_l4_hlen = inner_tcp_hdrlen(skb);
717 break;
718 case IPPROTO_UDP:
719 inner_l4_hlen = 8;
720 break;
721 default:
722 return 0;
723 }
724
725
726
727
728 if (skb_inner_transport_header(skb) + inner_l4_hlen -
729 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
730 return 0;
731
732 return eth_hdr->h_proto;
733}
734
735static int fm10k_tso(struct fm10k_ring *tx_ring,
736 struct fm10k_tx_buffer *first)
737{
738 struct sk_buff *skb = first->skb;
739 struct fm10k_tx_desc *tx_desc;
740 unsigned char *th;
741 u8 hdrlen;
742
743 if (skb->ip_summed != CHECKSUM_PARTIAL)
744 return 0;
745
746 if (!skb_is_gso(skb))
747 return 0;
748
749
750 if (skb->encapsulation) {
751 if (!fm10k_tx_encap_offload(skb))
752 goto err_vxlan;
753 th = skb_inner_transport_header(skb);
754 } else {
755 th = skb_transport_header(skb);
756 }
757
758
759 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
760
761 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
762
763
764 first->gso_segs = skb_shinfo(skb)->gso_segs;
765 first->bytecount += (first->gso_segs - 1) * hdrlen;
766
767
768 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
769 tx_desc->hdrlen = hdrlen;
770 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
771
772 return 1;
773
774err_vxlan:
775 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
776 if (net_ratelimit())
777 netdev_err(tx_ring->netdev,
778 "TSO requested for unsupported tunnel, disabling offload\n");
779 return -1;
780}
781
782static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
783 struct fm10k_tx_buffer *first)
784{
785 struct sk_buff *skb = first->skb;
786 struct fm10k_tx_desc *tx_desc;
787 union {
788 struct iphdr *ipv4;
789 struct ipv6hdr *ipv6;
790 u8 *raw;
791 } network_hdr;
792 u8 *transport_hdr;
793 __be16 frag_off;
794 __be16 protocol;
795 u8 l4_hdr = 0;
796
797 if (skb->ip_summed != CHECKSUM_PARTIAL)
798 goto no_csum;
799
800 if (skb->encapsulation) {
801 protocol = fm10k_tx_encap_offload(skb);
802 if (!protocol) {
803 if (skb_checksum_help(skb)) {
804 dev_warn(tx_ring->dev,
805 "failed to offload encap csum!\n");
806 tx_ring->tx_stats.csum_err++;
807 }
808 goto no_csum;
809 }
810 network_hdr.raw = skb_inner_network_header(skb);
811 transport_hdr = skb_inner_transport_header(skb);
812 } else {
813 protocol = vlan_get_protocol(skb);
814 network_hdr.raw = skb_network_header(skb);
815 transport_hdr = skb_transport_header(skb);
816 }
817
818 switch (protocol) {
819 case htons(ETH_P_IP):
820 l4_hdr = network_hdr.ipv4->protocol;
821 break;
822 case htons(ETH_P_IPV6):
823 l4_hdr = network_hdr.ipv6->nexthdr;
824 if (likely((transport_hdr - network_hdr.raw) ==
825 sizeof(struct ipv6hdr)))
826 break;
827 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
828 sizeof(struct ipv6hdr),
829 &l4_hdr, &frag_off);
830 if (unlikely(frag_off))
831 l4_hdr = NEXTHDR_FRAGMENT;
832 break;
833 default:
834 break;
835 }
836
837 switch (l4_hdr) {
838 case IPPROTO_TCP:
839 case IPPROTO_UDP:
840 break;
841 case IPPROTO_GRE:
842 if (skb->encapsulation)
843 break;
844 fallthrough;
845 default:
846 if (unlikely(net_ratelimit())) {
847 dev_warn(tx_ring->dev,
848 "partial checksum, version=%d l4 proto=%x\n",
849 protocol, l4_hdr);
850 }
851 skb_checksum_help(skb);
852 tx_ring->tx_stats.csum_err++;
853 goto no_csum;
854 }
855
856
857 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
858 tx_ring->tx_stats.csum_good++;
859
860no_csum:
861
862 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
863 tx_desc->hdrlen = 0;
864 tx_desc->mss = 0;
865}
866
867#define FM10K_SET_FLAG(_input, _flag, _result) \
868 ((_flag <= _result) ? \
869 ((u32)(_input & _flag) * (_result / _flag)) : \
870 ((u32)(_input & _flag) / (_flag / _result)))
871
872static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
873{
874
875 u32 desc_flags = 0;
876
877
878 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
879 FM10K_TXD_FLAG_CSUM);
880
881 return desc_flags;
882}
883
884static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
885 struct fm10k_tx_desc *tx_desc, u16 i,
886 dma_addr_t dma, unsigned int size, u8 desc_flags)
887{
888
889 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
890 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
891
892
893 tx_desc->buffer_addr = cpu_to_le64(dma);
894 tx_desc->flags = desc_flags;
895 tx_desc->buflen = cpu_to_le16(size);
896
897
898 return i == tx_ring->count;
899}
900
901static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
902{
903 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
904
905
906 smp_mb();
907
908
909 if (likely(fm10k_desc_unused(tx_ring) < size))
910 return -EBUSY;
911
912
913 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
914 ++tx_ring->tx_stats.restart_queue;
915 return 0;
916}
917
918static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
919{
920 if (likely(fm10k_desc_unused(tx_ring) >= size))
921 return 0;
922 return __fm10k_maybe_stop_tx(tx_ring, size);
923}
924
925static void fm10k_tx_map(struct fm10k_ring *tx_ring,
926 struct fm10k_tx_buffer *first)
927{
928 struct sk_buff *skb = first->skb;
929 struct fm10k_tx_buffer *tx_buffer;
930 struct fm10k_tx_desc *tx_desc;
931 skb_frag_t *frag;
932 unsigned char *data;
933 dma_addr_t dma;
934 unsigned int data_len, size;
935 u32 tx_flags = first->tx_flags;
936 u16 i = tx_ring->next_to_use;
937 u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
938
939 tx_desc = FM10K_TX_DESC(tx_ring, i);
940
941
942 if (skb_vlan_tag_present(skb))
943 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
944 else
945 tx_desc->vlan = 0;
946
947 size = skb_headlen(skb);
948 data = skb->data;
949
950 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
951
952 data_len = skb->data_len;
953 tx_buffer = first;
954
955 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
956 if (dma_mapping_error(tx_ring->dev, dma))
957 goto dma_error;
958
959
960 dma_unmap_len_set(tx_buffer, len, size);
961 dma_unmap_addr_set(tx_buffer, dma, dma);
962
963 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
964 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
965 FM10K_MAX_DATA_PER_TXD, flags)) {
966 tx_desc = FM10K_TX_DESC(tx_ring, 0);
967 i = 0;
968 }
969
970 dma += FM10K_MAX_DATA_PER_TXD;
971 size -= FM10K_MAX_DATA_PER_TXD;
972 }
973
974 if (likely(!data_len))
975 break;
976
977 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
978 dma, size, flags)) {
979 tx_desc = FM10K_TX_DESC(tx_ring, 0);
980 i = 0;
981 }
982
983 size = skb_frag_size(frag);
984 data_len -= size;
985
986 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
987 DMA_TO_DEVICE);
988
989 tx_buffer = &tx_ring->tx_buffer[i];
990 }
991
992
993 flags |= FM10K_TXD_FLAG_LAST;
994
995 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
996 i = 0;
997
998
999 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1000
1001
1002 skb_tx_timestamp(first->skb);
1003
1004
1005
1006
1007
1008
1009
1010
1011 wmb();
1012
1013
1014 first->next_to_watch = tx_desc;
1015
1016 tx_ring->next_to_use = i;
1017
1018
1019 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1020
1021
1022 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1023 writel(i, tx_ring->tail);
1024 }
1025
1026 return;
1027dma_error:
1028 dev_err(tx_ring->dev, "TX DMA map failed\n");
1029
1030
1031 for (;;) {
1032 tx_buffer = &tx_ring->tx_buffer[i];
1033 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1034 if (tx_buffer == first)
1035 break;
1036 if (i == 0)
1037 i = tx_ring->count;
1038 i--;
1039 }
1040
1041 tx_ring->next_to_use = i;
1042}
1043
1044netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1045 struct fm10k_ring *tx_ring)
1046{
1047 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1048 struct fm10k_tx_buffer *first;
1049 unsigned short f;
1050 u32 tx_flags = 0;
1051 int tso;
1052
1053
1054
1055
1056
1057
1058 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1059 skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1060
1061 count += TXD_USE_COUNT(skb_frag_size(frag));
1062 }
1063
1064 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1065 tx_ring->tx_stats.tx_busy++;
1066 return NETDEV_TX_BUSY;
1067 }
1068
1069
1070 first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1071 first->skb = skb;
1072 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1073 first->gso_segs = 1;
1074
1075
1076 first->tx_flags = tx_flags;
1077
1078 tso = fm10k_tso(tx_ring, first);
1079 if (tso < 0)
1080 goto out_drop;
1081 else if (!tso)
1082 fm10k_tx_csum(tx_ring, first);
1083
1084 fm10k_tx_map(tx_ring, first);
1085
1086 return NETDEV_TX_OK;
1087
1088out_drop:
1089 dev_kfree_skb_any(first->skb);
1090 first->skb = NULL;
1091
1092 return NETDEV_TX_OK;
1093}
1094
1095static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1096{
1097 return ring->stats.packets;
1098}
1099
1100
1101
1102
1103
1104
1105u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1106{
1107 struct fm10k_intfc *interface = ring->q_vector->interface;
1108 struct fm10k_hw *hw = &interface->hw;
1109 u32 head, tail;
1110
1111 if (likely(in_sw)) {
1112 head = ring->next_to_clean;
1113 tail = ring->next_to_use;
1114 } else {
1115 head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1116 tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1117 }
1118
1119 return ((head <= tail) ? tail : tail + ring->count) - head;
1120}
1121
1122bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1123{
1124 u32 tx_done = fm10k_get_tx_completed(tx_ring);
1125 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1126 u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1127
1128 clear_check_for_tx_hang(tx_ring);
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138 if (!tx_pending || (tx_done_old != tx_done)) {
1139
1140 tx_ring->tx_stats.tx_done_old = tx_done;
1141
1142 clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1143
1144 return false;
1145 }
1146
1147
1148 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1149}
1150
1151
1152
1153
1154
1155void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1156{
1157
1158 if (!test_bit(__FM10K_DOWN, interface->state)) {
1159 interface->tx_timeout_count++;
1160 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1161 fm10k_service_event_schedule(interface);
1162 }
1163}
1164
1165
1166
1167
1168
1169
1170
1171static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1172 struct fm10k_ring *tx_ring, int napi_budget)
1173{
1174 struct fm10k_intfc *interface = q_vector->interface;
1175 struct fm10k_tx_buffer *tx_buffer;
1176 struct fm10k_tx_desc *tx_desc;
1177 unsigned int total_bytes = 0, total_packets = 0;
1178 unsigned int budget = q_vector->tx.work_limit;
1179 unsigned int i = tx_ring->next_to_clean;
1180
1181 if (test_bit(__FM10K_DOWN, interface->state))
1182 return true;
1183
1184 tx_buffer = &tx_ring->tx_buffer[i];
1185 tx_desc = FM10K_TX_DESC(tx_ring, i);
1186 i -= tx_ring->count;
1187
1188 do {
1189 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1190
1191
1192 if (!eop_desc)
1193 break;
1194
1195
1196 smp_rmb();
1197
1198
1199 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1200 break;
1201
1202
1203 tx_buffer->next_to_watch = NULL;
1204
1205
1206 total_bytes += tx_buffer->bytecount;
1207 total_packets += tx_buffer->gso_segs;
1208
1209
1210 napi_consume_skb(tx_buffer->skb, napi_budget);
1211
1212
1213 dma_unmap_single(tx_ring->dev,
1214 dma_unmap_addr(tx_buffer, dma),
1215 dma_unmap_len(tx_buffer, len),
1216 DMA_TO_DEVICE);
1217
1218
1219 tx_buffer->skb = NULL;
1220 dma_unmap_len_set(tx_buffer, len, 0);
1221
1222
1223 while (tx_desc != eop_desc) {
1224 tx_buffer++;
1225 tx_desc++;
1226 i++;
1227 if (unlikely(!i)) {
1228 i -= tx_ring->count;
1229 tx_buffer = tx_ring->tx_buffer;
1230 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1231 }
1232
1233
1234 if (dma_unmap_len(tx_buffer, len)) {
1235 dma_unmap_page(tx_ring->dev,
1236 dma_unmap_addr(tx_buffer, dma),
1237 dma_unmap_len(tx_buffer, len),
1238 DMA_TO_DEVICE);
1239 dma_unmap_len_set(tx_buffer, len, 0);
1240 }
1241 }
1242
1243
1244 tx_buffer++;
1245 tx_desc++;
1246 i++;
1247 if (unlikely(!i)) {
1248 i -= tx_ring->count;
1249 tx_buffer = tx_ring->tx_buffer;
1250 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1251 }
1252
1253
1254 prefetch(tx_desc);
1255
1256
1257 budget--;
1258 } while (likely(budget));
1259
1260 i += tx_ring->count;
1261 tx_ring->next_to_clean = i;
1262 u64_stats_update_begin(&tx_ring->syncp);
1263 tx_ring->stats.bytes += total_bytes;
1264 tx_ring->stats.packets += total_packets;
1265 u64_stats_update_end(&tx_ring->syncp);
1266 q_vector->tx.total_bytes += total_bytes;
1267 q_vector->tx.total_packets += total_packets;
1268
1269 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1270
1271 struct fm10k_hw *hw = &interface->hw;
1272
1273 netif_err(interface, drv, tx_ring->netdev,
1274 "Detected Tx Unit Hang\n"
1275 " Tx Queue <%d>\n"
1276 " TDH, TDT <%x>, <%x>\n"
1277 " next_to_use <%x>\n"
1278 " next_to_clean <%x>\n",
1279 tx_ring->queue_index,
1280 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1281 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1282 tx_ring->next_to_use, i);
1283
1284 netif_stop_subqueue(tx_ring->netdev,
1285 tx_ring->queue_index);
1286
1287 netif_info(interface, probe, tx_ring->netdev,
1288 "tx hang %d detected on queue %d, resetting interface\n",
1289 interface->tx_timeout_count + 1,
1290 tx_ring->queue_index);
1291
1292 fm10k_tx_timeout_reset(interface);
1293
1294
1295 return true;
1296 }
1297
1298
1299 netdev_tx_completed_queue(txring_txq(tx_ring),
1300 total_packets, total_bytes);
1301
1302#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1303 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1304 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1305
1306
1307
1308 smp_mb();
1309 if (__netif_subqueue_stopped(tx_ring->netdev,
1310 tx_ring->queue_index) &&
1311 !test_bit(__FM10K_DOWN, interface->state)) {
1312 netif_wake_subqueue(tx_ring->netdev,
1313 tx_ring->queue_index);
1314 ++tx_ring->tx_stats.restart_queue;
1315 }
1316 }
1317
1318 return !!budget;
1319}
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1332{
1333 unsigned int avg_wire_size, packets, itr_round;
1334
1335
1336 if (!ITR_IS_ADAPTIVE(ring_container->itr))
1337 goto clear_counts;
1338
1339 packets = ring_container->total_packets;
1340 if (!packets)
1341 goto clear_counts;
1342
1343 avg_wire_size = ring_container->total_bytes / packets;
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360 if (avg_wire_size <= 360) {
1361
1362 avg_wire_size *= 8;
1363 avg_wire_size += 376;
1364 } else if (avg_wire_size <= 1152) {
1365
1366 avg_wire_size *= 3;
1367 avg_wire_size += 2176;
1368 } else if (avg_wire_size <= 1920) {
1369
1370 avg_wire_size += 4480;
1371 } else {
1372
1373 avg_wire_size = 6656;
1374 }
1375
1376
1377
1378
1379
1380 itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1381 avg_wire_size += BIT(itr_round) - 1;
1382 avg_wire_size >>= itr_round;
1383
1384
1385 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1386
1387clear_counts:
1388 ring_container->total_bytes = 0;
1389 ring_container->total_packets = 0;
1390}
1391
1392static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1393{
1394
1395 u32 itr = FM10K_ITR_ENABLE;
1396
1397
1398 fm10k_update_itr(&q_vector->tx);
1399
1400
1401 fm10k_update_itr(&q_vector->rx);
1402
1403
1404 itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1405
1406
1407 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1408
1409
1410 writel(itr, q_vector->itr);
1411}
1412
1413static int fm10k_poll(struct napi_struct *napi, int budget)
1414{
1415 struct fm10k_q_vector *q_vector =
1416 container_of(napi, struct fm10k_q_vector, napi);
1417 struct fm10k_ring *ring;
1418 int per_ring_budget, work_done = 0;
1419 bool clean_complete = true;
1420
1421 fm10k_for_each_ring(ring, q_vector->tx) {
1422 if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1423 clean_complete = false;
1424 }
1425
1426
1427 if (budget <= 0)
1428 return budget;
1429
1430
1431
1432
1433 if (q_vector->rx.count > 1)
1434 per_ring_budget = max(budget / q_vector->rx.count, 1);
1435 else
1436 per_ring_budget = budget;
1437
1438 fm10k_for_each_ring(ring, q_vector->rx) {
1439 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1440
1441 work_done += work;
1442 if (work >= per_ring_budget)
1443 clean_complete = false;
1444 }
1445
1446
1447 if (!clean_complete)
1448 return budget;
1449
1450
1451
1452
1453 if (likely(napi_complete_done(napi, work_done)))
1454 fm10k_qv_enable(q_vector);
1455
1456 return min(work_done, budget - 1);
1457}
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1471{
1472 struct net_device *dev = interface->netdev;
1473 struct fm10k_ring_feature *f;
1474 int rss_i, i;
1475 int pcs;
1476
1477
1478 pcs = netdev_get_num_tc(dev);
1479
1480 if (pcs <= 1)
1481 return false;
1482
1483
1484 f = &interface->ring_feature[RING_F_QOS];
1485 f->indices = pcs;
1486 f->mask = BIT(fls(pcs - 1)) - 1;
1487
1488
1489 rss_i = interface->hw.mac.max_queues / pcs;
1490 rss_i = BIT(fls(rss_i) - 1);
1491
1492
1493 f = &interface->ring_feature[RING_F_RSS];
1494 rss_i = min_t(u16, rss_i, f->limit);
1495 f->indices = rss_i;
1496 f->mask = BIT(fls(rss_i - 1)) - 1;
1497
1498
1499 for (i = 0; i < pcs; i++)
1500 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1501
1502 interface->num_rx_queues = rss_i * pcs;
1503 interface->num_tx_queues = rss_i * pcs;
1504
1505 return true;
1506}
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1517{
1518 struct fm10k_ring_feature *f;
1519 u16 rss_i;
1520
1521 f = &interface->ring_feature[RING_F_RSS];
1522 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1523
1524
1525 f->indices = rss_i;
1526 f->mask = BIT(fls(rss_i - 1)) - 1;
1527
1528 interface->num_rx_queues = rss_i;
1529 interface->num_tx_queues = rss_i;
1530
1531 return true;
1532}
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1546{
1547
1548 if (fm10k_set_qos_queues(interface))
1549 return;
1550
1551
1552 fm10k_set_rss_queues(interface);
1553}
1554
1555
1556
1557
1558
1559
1560
1561
1562static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1563{
1564 interface->num_tx_queues = 0;
1565 interface->num_rx_queues = 0;
1566 interface->num_q_vectors = 0;
1567}
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1582 unsigned int v_count, unsigned int v_idx,
1583 unsigned int txr_count, unsigned int txr_idx,
1584 unsigned int rxr_count, unsigned int rxr_idx)
1585{
1586 struct fm10k_q_vector *q_vector;
1587 struct fm10k_ring *ring;
1588 int ring_count;
1589
1590 ring_count = txr_count + rxr_count;
1591
1592
1593 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL);
1594 if (!q_vector)
1595 return -ENOMEM;
1596
1597
1598 netif_napi_add(interface->netdev, &q_vector->napi,
1599 fm10k_poll, NAPI_POLL_WEIGHT);
1600
1601
1602 interface->q_vector[v_idx] = q_vector;
1603 q_vector->interface = interface;
1604 q_vector->v_idx = v_idx;
1605
1606
1607 ring = q_vector->ring;
1608
1609
1610 q_vector->tx.ring = ring;
1611 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1612 q_vector->tx.itr = interface->tx_itr;
1613 q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1614 q_vector->tx.count = txr_count;
1615
1616 while (txr_count) {
1617
1618 ring->dev = &interface->pdev->dev;
1619 ring->netdev = interface->netdev;
1620
1621
1622 ring->q_vector = q_vector;
1623
1624
1625 ring->count = interface->tx_ring_count;
1626 ring->queue_index = txr_idx;
1627
1628
1629 interface->tx_ring[txr_idx] = ring;
1630
1631
1632 txr_count--;
1633 txr_idx += v_count;
1634
1635
1636 ring++;
1637 }
1638
1639
1640 q_vector->rx.ring = ring;
1641 q_vector->rx.itr = interface->rx_itr;
1642 q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1643 q_vector->rx.count = rxr_count;
1644
1645 while (rxr_count) {
1646
1647 ring->dev = &interface->pdev->dev;
1648 ring->netdev = interface->netdev;
1649 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1650
1651
1652 ring->q_vector = q_vector;
1653
1654
1655 ring->count = interface->rx_ring_count;
1656 ring->queue_index = rxr_idx;
1657
1658
1659 interface->rx_ring[rxr_idx] = ring;
1660
1661
1662 rxr_count--;
1663 rxr_idx += v_count;
1664
1665
1666 ring++;
1667 }
1668
1669 fm10k_dbg_q_vector_init(q_vector);
1670
1671 return 0;
1672}
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1684{
1685 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1686 struct fm10k_ring *ring;
1687
1688 fm10k_dbg_q_vector_exit(q_vector);
1689
1690 fm10k_for_each_ring(ring, q_vector->tx)
1691 interface->tx_ring[ring->queue_index] = NULL;
1692
1693 fm10k_for_each_ring(ring, q_vector->rx)
1694 interface->rx_ring[ring->queue_index] = NULL;
1695
1696 interface->q_vector[v_idx] = NULL;
1697 netif_napi_del(&q_vector->napi);
1698 kfree_rcu(q_vector, rcu);
1699}
1700
1701
1702
1703
1704
1705
1706
1707
1708static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1709{
1710 unsigned int q_vectors = interface->num_q_vectors;
1711 unsigned int rxr_remaining = interface->num_rx_queues;
1712 unsigned int txr_remaining = interface->num_tx_queues;
1713 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1714 int err;
1715
1716 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1717 for (; rxr_remaining; v_idx++) {
1718 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1719 0, 0, 1, rxr_idx);
1720 if (err)
1721 goto err_out;
1722
1723
1724 rxr_remaining--;
1725 rxr_idx++;
1726 }
1727 }
1728
1729 for (; v_idx < q_vectors; v_idx++) {
1730 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1731 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1732
1733 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1734 tqpv, txr_idx,
1735 rqpv, rxr_idx);
1736
1737 if (err)
1738 goto err_out;
1739
1740
1741 rxr_remaining -= rqpv;
1742 txr_remaining -= tqpv;
1743 rxr_idx++;
1744 txr_idx++;
1745 }
1746
1747 return 0;
1748
1749err_out:
1750 fm10k_reset_num_queues(interface);
1751
1752 while (v_idx--)
1753 fm10k_free_q_vector(interface, v_idx);
1754
1755 return -ENOMEM;
1756}
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1767{
1768 int v_idx = interface->num_q_vectors;
1769
1770 fm10k_reset_num_queues(interface);
1771
1772 while (v_idx--)
1773 fm10k_free_q_vector(interface, v_idx);
1774}
1775
1776
1777
1778
1779
1780
1781
1782static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1783{
1784 pci_disable_msix(interface->pdev);
1785 kfree(interface->msix_entries);
1786 interface->msix_entries = NULL;
1787}
1788
1789
1790
1791
1792
1793
1794
1795
1796static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1797{
1798 struct fm10k_hw *hw = &interface->hw;
1799 int v_budget, vector;
1800
1801
1802
1803
1804
1805
1806
1807 v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1808 v_budget = min_t(u16, v_budget, num_online_cpus());
1809
1810
1811 v_budget += NON_Q_VECTORS;
1812
1813
1814
1815
1816
1817
1818
1819 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1820
1821
1822 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1823 GFP_KERNEL);
1824 if (!interface->msix_entries)
1825 return -ENOMEM;
1826
1827
1828 for (vector = 0; vector < v_budget; vector++)
1829 interface->msix_entries[vector].entry = vector;
1830
1831
1832 v_budget = pci_enable_msix_range(interface->pdev,
1833 interface->msix_entries,
1834 MIN_MSIX_COUNT(hw),
1835 v_budget);
1836 if (v_budget < 0) {
1837 kfree(interface->msix_entries);
1838 interface->msix_entries = NULL;
1839 return v_budget;
1840 }
1841
1842
1843 interface->num_q_vectors = v_budget - NON_Q_VECTORS;
1844
1845 return 0;
1846}
1847
1848
1849
1850
1851
1852
1853
1854static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1855{
1856 struct net_device *dev = interface->netdev;
1857 int pc, offset, rss_i, i;
1858 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1859 u8 num_pcs = netdev_get_num_tc(dev);
1860
1861 if (num_pcs <= 1)
1862 return false;
1863
1864 rss_i = interface->ring_feature[RING_F_RSS].indices;
1865
1866 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1867 int q_idx = pc;
1868
1869 for (i = 0; i < rss_i; i++) {
1870 interface->tx_ring[offset + i]->reg_idx = q_idx;
1871 interface->tx_ring[offset + i]->qos_pc = pc;
1872 interface->rx_ring[offset + i]->reg_idx = q_idx;
1873 interface->rx_ring[offset + i]->qos_pc = pc;
1874 q_idx += pc_stride;
1875 }
1876 }
1877
1878 return true;
1879}
1880
1881
1882
1883
1884
1885
1886
1887static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1888{
1889 int i;
1890
1891 for (i = 0; i < interface->num_rx_queues; i++)
1892 interface->rx_ring[i]->reg_idx = i;
1893
1894 for (i = 0; i < interface->num_tx_queues; i++)
1895 interface->tx_ring[i]->reg_idx = i;
1896}
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906static void fm10k_assign_rings(struct fm10k_intfc *interface)
1907{
1908 if (fm10k_cache_ring_qos(interface))
1909 return;
1910
1911 fm10k_cache_ring_rss(interface);
1912}
1913
1914static void fm10k_init_reta(struct fm10k_intfc *interface)
1915{
1916 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1917 u32 reta;
1918
1919
1920
1921
1922 if (netif_is_rxfh_configured(interface->netdev)) {
1923 for (i = FM10K_RETA_SIZE; i--;) {
1924 reta = interface->reta[i];
1925 if ((((reta << 24) >> 24) < rss_i) &&
1926 (((reta << 16) >> 24) < rss_i) &&
1927 (((reta << 8) >> 24) < rss_i) &&
1928 (((reta) >> 24) < rss_i))
1929 continue;
1930
1931
1932 dev_err(&interface->pdev->dev,
1933 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1934 goto repopulate_reta;
1935 }
1936
1937
1938 return;
1939 }
1940
1941repopulate_reta:
1942 fm10k_write_reta(interface, NULL);
1943}
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1954{
1955 int err;
1956
1957
1958 fm10k_set_num_queues(interface);
1959
1960
1961 err = fm10k_init_msix_capability(interface);
1962 if (err) {
1963 dev_err(&interface->pdev->dev,
1964 "Unable to initialize MSI-X capability\n");
1965 goto err_init_msix;
1966 }
1967
1968
1969 err = fm10k_alloc_q_vectors(interface);
1970 if (err) {
1971 dev_err(&interface->pdev->dev,
1972 "Unable to allocate queue vectors\n");
1973 goto err_alloc_q_vectors;
1974 }
1975
1976
1977 fm10k_assign_rings(interface);
1978
1979
1980 fm10k_init_reta(interface);
1981
1982 return 0;
1983
1984err_alloc_q_vectors:
1985 fm10k_reset_msix_capability(interface);
1986err_init_msix:
1987 fm10k_reset_num_queues(interface);
1988 return err;
1989}
1990
1991
1992
1993
1994
1995
1996
1997
1998void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
1999{
2000 fm10k_free_q_vectors(interface);
2001 fm10k_reset_msix_capability(interface);
2002}
2003