linux/drivers/net/ethernet/intel/fm10k/fm10k_main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2019 Intel Corporation. */
   3
   4#include <linux/types.h>
   5#include <linux/module.h>
   6#include <net/ipv6.h>
   7#include <net/ip.h>
   8#include <net/tcp.h>
   9#include <linux/if_macvlan.h>
  10#include <linux/prefetch.h>
  11
  12#include "fm10k.h"
  13
  14#define DRV_SUMMARY     "Intel(R) Ethernet Switch Host Interface Driver"
  15char fm10k_driver_name[] = "fm10k";
  16static const char fm10k_driver_string[] = DRV_SUMMARY;
  17static const char fm10k_copyright[] =
  18        "Copyright(c) 2013 - 2019 Intel Corporation.";
  19
  20MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  21MODULE_DESCRIPTION(DRV_SUMMARY);
  22MODULE_LICENSE("GPL v2");
  23
  24/* single workqueue for entire fm10k driver */
  25struct workqueue_struct *fm10k_workqueue;
  26
  27/**
  28 * fm10k_init_module - Driver Registration Routine
  29 *
  30 * fm10k_init_module is the first routine called when the driver is
  31 * loaded.  All it does is register with the PCI subsystem.
  32 **/
  33static int __init fm10k_init_module(void)
  34{
  35        pr_info("%s\n", fm10k_driver_string);
  36        pr_info("%s\n", fm10k_copyright);
  37
  38        /* create driver workqueue */
  39        fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
  40                                          fm10k_driver_name);
  41        if (!fm10k_workqueue)
  42                return -ENOMEM;
  43
  44        fm10k_dbg_init();
  45
  46        return fm10k_register_pci_driver();
  47}
  48module_init(fm10k_init_module);
  49
  50/**
  51 * fm10k_exit_module - Driver Exit Cleanup Routine
  52 *
  53 * fm10k_exit_module is called just before the driver is removed
  54 * from memory.
  55 **/
  56static void __exit fm10k_exit_module(void)
  57{
  58        fm10k_unregister_pci_driver();
  59
  60        fm10k_dbg_exit();
  61
  62        /* destroy driver workqueue */
  63        destroy_workqueue(fm10k_workqueue);
  64}
  65module_exit(fm10k_exit_module);
  66
  67static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
  68                                    struct fm10k_rx_buffer *bi)
  69{
  70        struct page *page = bi->page;
  71        dma_addr_t dma;
  72
  73        /* Only page will be NULL if buffer was consumed */
  74        if (likely(page))
  75                return true;
  76
  77        /* alloc new page for storage */
  78        page = dev_alloc_page();
  79        if (unlikely(!page)) {
  80                rx_ring->rx_stats.alloc_failed++;
  81                return false;
  82        }
  83
  84        /* map page for use */
  85        dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
  86
  87        /* if mapping failed free memory back to system since
  88         * there isn't much point in holding memory we can't use
  89         */
  90        if (dma_mapping_error(rx_ring->dev, dma)) {
  91                __free_page(page);
  92
  93                rx_ring->rx_stats.alloc_failed++;
  94                return false;
  95        }
  96
  97        bi->dma = dma;
  98        bi->page = page;
  99        bi->page_offset = 0;
 100
 101        return true;
 102}
 103
 104/**
 105 * fm10k_alloc_rx_buffers - Replace used receive buffers
 106 * @rx_ring: ring to place buffers on
 107 * @cleaned_count: number of buffers to replace
 108 **/
 109void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
 110{
 111        union fm10k_rx_desc *rx_desc;
 112        struct fm10k_rx_buffer *bi;
 113        u16 i = rx_ring->next_to_use;
 114
 115        /* nothing to do */
 116        if (!cleaned_count)
 117                return;
 118
 119        rx_desc = FM10K_RX_DESC(rx_ring, i);
 120        bi = &rx_ring->rx_buffer[i];
 121        i -= rx_ring->count;
 122
 123        do {
 124                if (!fm10k_alloc_mapped_page(rx_ring, bi))
 125                        break;
 126
 127                /* Refresh the desc even if buffer_addrs didn't change
 128                 * because each write-back erases this info.
 129                 */
 130                rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 131
 132                rx_desc++;
 133                bi++;
 134                i++;
 135                if (unlikely(!i)) {
 136                        rx_desc = FM10K_RX_DESC(rx_ring, 0);
 137                        bi = rx_ring->rx_buffer;
 138                        i -= rx_ring->count;
 139                }
 140
 141                /* clear the status bits for the next_to_use descriptor */
 142                rx_desc->d.staterr = 0;
 143
 144                cleaned_count--;
 145        } while (cleaned_count);
 146
 147        i += rx_ring->count;
 148
 149        if (rx_ring->next_to_use != i) {
 150                /* record the next descriptor to use */
 151                rx_ring->next_to_use = i;
 152
 153                /* update next to alloc since we have filled the ring */
 154                rx_ring->next_to_alloc = i;
 155
 156                /* Force memory writes to complete before letting h/w
 157                 * know there are new descriptors to fetch.  (Only
 158                 * applicable for weak-ordered memory model archs,
 159                 * such as IA-64).
 160                 */
 161                wmb();
 162
 163                /* notify hardware of new descriptors */
 164                writel(i, rx_ring->tail);
 165        }
 166}
 167
 168/**
 169 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
 170 * @rx_ring: rx descriptor ring to store buffers on
 171 * @old_buff: donor buffer to have page reused
 172 *
 173 * Synchronizes page for reuse by the interface
 174 **/
 175static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
 176                                struct fm10k_rx_buffer *old_buff)
 177{
 178        struct fm10k_rx_buffer *new_buff;
 179        u16 nta = rx_ring->next_to_alloc;
 180
 181        new_buff = &rx_ring->rx_buffer[nta];
 182
 183        /* update, and store next to alloc */
 184        nta++;
 185        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 186
 187        /* transfer page from old buffer to new buffer */
 188        *new_buff = *old_buff;
 189
 190        /* sync the buffer for use by the device */
 191        dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
 192                                         old_buff->page_offset,
 193                                         FM10K_RX_BUFSZ,
 194                                         DMA_FROM_DEVICE);
 195}
 196
 197static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
 198                                    struct page *page,
 199                                    unsigned int __maybe_unused truesize)
 200{
 201        /* avoid re-using remote and pfmemalloc pages */
 202        if (!dev_page_is_reusable(page))
 203                return false;
 204
 205#if (PAGE_SIZE < 8192)
 206        /* if we are only owner of page we can reuse it */
 207        if (unlikely(page_count(page) != 1))
 208                return false;
 209
 210        /* flip page offset to other buffer */
 211        rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
 212#else
 213        /* move offset up to the next cache line */
 214        rx_buffer->page_offset += truesize;
 215
 216        if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
 217                return false;
 218#endif
 219
 220        /* Even if we own the page, we are not allowed to use atomic_set()
 221         * This would break get_page_unless_zero() users.
 222         */
 223        page_ref_inc(page);
 224
 225        return true;
 226}
 227
 228/**
 229 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
 230 * @rx_buffer: buffer containing page to add
 231 * @size: packet size from rx_desc
 232 * @rx_desc: descriptor containing length of buffer written by hardware
 233 * @skb: sk_buff to place the data into
 234 *
 235 * This function will add the data contained in rx_buffer->page to the skb.
 236 * This is done either through a direct copy if the data in the buffer is
 237 * less than the skb header size, otherwise it will just attach the page as
 238 * a frag to the skb.
 239 *
 240 * The function will then update the page offset if necessary and return
 241 * true if the buffer can be reused by the interface.
 242 **/
 243static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
 244                              unsigned int size,
 245                              union fm10k_rx_desc *rx_desc,
 246                              struct sk_buff *skb)
 247{
 248        struct page *page = rx_buffer->page;
 249        unsigned char *va = page_address(page) + rx_buffer->page_offset;
 250#if (PAGE_SIZE < 8192)
 251        unsigned int truesize = FM10K_RX_BUFSZ;
 252#else
 253        unsigned int truesize = ALIGN(size, 512);
 254#endif
 255        unsigned int pull_len;
 256
 257        if (unlikely(skb_is_nonlinear(skb)))
 258                goto add_tail_frag;
 259
 260        if (likely(size <= FM10K_RX_HDR_LEN)) {
 261                memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
 262
 263                /* page is reusable, we can reuse buffer as-is */
 264                if (dev_page_is_reusable(page))
 265                        return true;
 266
 267                /* this page cannot be reused so discard it */
 268                __free_page(page);
 269                return false;
 270        }
 271
 272        /* we need the header to contain the greater of either ETH_HLEN or
 273         * 60 bytes if the skb->len is less than 60 for skb_pad.
 274         */
 275        pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN);
 276
 277        /* align pull length to size of long to optimize memcpy performance */
 278        memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
 279
 280        /* update all of the pointers */
 281        va += pull_len;
 282        size -= pull_len;
 283
 284add_tail_frag:
 285        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 286                        (unsigned long)va & ~PAGE_MASK, size, truesize);
 287
 288        return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
 289}
 290
 291static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
 292                                             union fm10k_rx_desc *rx_desc,
 293                                             struct sk_buff *skb)
 294{
 295        unsigned int size = le16_to_cpu(rx_desc->w.length);
 296        struct fm10k_rx_buffer *rx_buffer;
 297        struct page *page;
 298
 299        rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
 300        page = rx_buffer->page;
 301        prefetchw(page);
 302
 303        if (likely(!skb)) {
 304                void *page_addr = page_address(page) +
 305                                  rx_buffer->page_offset;
 306
 307                /* prefetch first cache line of first page */
 308                net_prefetch(page_addr);
 309
 310                /* allocate a skb to store the frags */
 311                skb = napi_alloc_skb(&rx_ring->q_vector->napi,
 312                                     FM10K_RX_HDR_LEN);
 313                if (unlikely(!skb)) {
 314                        rx_ring->rx_stats.alloc_failed++;
 315                        return NULL;
 316                }
 317
 318                /* we will be copying header into skb->data in
 319                 * pskb_may_pull so it is in our interest to prefetch
 320                 * it now to avoid a possible cache miss
 321                 */
 322                prefetchw(skb->data);
 323        }
 324
 325        /* we are reusing so sync this buffer for CPU use */
 326        dma_sync_single_range_for_cpu(rx_ring->dev,
 327                                      rx_buffer->dma,
 328                                      rx_buffer->page_offset,
 329                                      size,
 330                                      DMA_FROM_DEVICE);
 331
 332        /* pull page into skb */
 333        if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
 334                /* hand second half of page back to the ring */
 335                fm10k_reuse_rx_page(rx_ring, rx_buffer);
 336        } else {
 337                /* we are not reusing the buffer so unmap it */
 338                dma_unmap_page(rx_ring->dev, rx_buffer->dma,
 339                               PAGE_SIZE, DMA_FROM_DEVICE);
 340        }
 341
 342        /* clear contents of rx_buffer */
 343        rx_buffer->page = NULL;
 344
 345        return skb;
 346}
 347
 348static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
 349                                     union fm10k_rx_desc *rx_desc,
 350                                     struct sk_buff *skb)
 351{
 352        skb_checksum_none_assert(skb);
 353
 354        /* Rx checksum disabled via ethtool */
 355        if (!(ring->netdev->features & NETIF_F_RXCSUM))
 356                return;
 357
 358        /* TCP/UDP checksum error bit is set */
 359        if (fm10k_test_staterr(rx_desc,
 360                               FM10K_RXD_STATUS_L4E |
 361                               FM10K_RXD_STATUS_L4E2 |
 362                               FM10K_RXD_STATUS_IPE |
 363                               FM10K_RXD_STATUS_IPE2)) {
 364                ring->rx_stats.csum_err++;
 365                return;
 366        }
 367
 368        /* It must be a TCP or UDP packet with a valid checksum */
 369        if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
 370                skb->encapsulation = true;
 371        else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
 372                return;
 373
 374        skb->ip_summed = CHECKSUM_UNNECESSARY;
 375
 376        ring->rx_stats.csum_good++;
 377}
 378
 379#define FM10K_RSS_L4_TYPES_MASK \
 380        (BIT(FM10K_RSSTYPE_IPV4_TCP) | \
 381         BIT(FM10K_RSSTYPE_IPV4_UDP) | \
 382         BIT(FM10K_RSSTYPE_IPV6_TCP) | \
 383         BIT(FM10K_RSSTYPE_IPV6_UDP))
 384
 385static inline void fm10k_rx_hash(struct fm10k_ring *ring,
 386                                 union fm10k_rx_desc *rx_desc,
 387                                 struct sk_buff *skb)
 388{
 389        u16 rss_type;
 390
 391        if (!(ring->netdev->features & NETIF_F_RXHASH))
 392                return;
 393
 394        rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
 395        if (!rss_type)
 396                return;
 397
 398        skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
 399                     (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
 400                     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
 401}
 402
 403static void fm10k_type_trans(struct fm10k_ring *rx_ring,
 404                             union fm10k_rx_desc __maybe_unused *rx_desc,
 405                             struct sk_buff *skb)
 406{
 407        struct net_device *dev = rx_ring->netdev;
 408        struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
 409
 410        /* check to see if DGLORT belongs to a MACVLAN */
 411        if (l2_accel) {
 412                u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
 413
 414                idx -= l2_accel->dglort;
 415                if (idx < l2_accel->size && l2_accel->macvlan[idx])
 416                        dev = l2_accel->macvlan[idx];
 417                else
 418                        l2_accel = NULL;
 419        }
 420
 421        /* Record Rx queue, or update macvlan statistics */
 422        if (!l2_accel)
 423                skb_record_rx_queue(skb, rx_ring->queue_index);
 424        else
 425                macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
 426                                 false);
 427
 428        skb->protocol = eth_type_trans(skb, dev);
 429}
 430
 431/**
 432 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
 433 * @rx_ring: rx descriptor ring packet is being transacted on
 434 * @rx_desc: pointer to the EOP Rx descriptor
 435 * @skb: pointer to current skb being populated
 436 *
 437 * This function checks the ring, descriptor, and packet information in
 438 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 439 * other fields within the skb.
 440 **/
 441static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
 442                                             union fm10k_rx_desc *rx_desc,
 443                                             struct sk_buff *skb)
 444{
 445        unsigned int len = skb->len;
 446
 447        fm10k_rx_hash(rx_ring, rx_desc, skb);
 448
 449        fm10k_rx_checksum(rx_ring, rx_desc, skb);
 450
 451        FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
 452
 453        FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
 454
 455        FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
 456
 457        if (rx_desc->w.vlan) {
 458                u16 vid = le16_to_cpu(rx_desc->w.vlan);
 459
 460                if ((vid & VLAN_VID_MASK) != rx_ring->vid)
 461                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 462                else if (vid & VLAN_PRIO_MASK)
 463                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 464                                               vid & VLAN_PRIO_MASK);
 465        }
 466
 467        fm10k_type_trans(rx_ring, rx_desc, skb);
 468
 469        return len;
 470}
 471
 472/**
 473 * fm10k_is_non_eop - process handling of non-EOP buffers
 474 * @rx_ring: Rx ring being processed
 475 * @rx_desc: Rx descriptor for current buffer
 476 *
 477 * This function updates next to clean.  If the buffer is an EOP buffer
 478 * this function exits returning false, otherwise it will place the
 479 * sk_buff in the next buffer to be chained and return true indicating
 480 * that this is in fact a non-EOP buffer.
 481 **/
 482static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
 483                             union fm10k_rx_desc *rx_desc)
 484{
 485        u32 ntc = rx_ring->next_to_clean + 1;
 486
 487        /* fetch, update, and store next to clean */
 488        ntc = (ntc < rx_ring->count) ? ntc : 0;
 489        rx_ring->next_to_clean = ntc;
 490
 491        prefetch(FM10K_RX_DESC(rx_ring, ntc));
 492
 493        if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
 494                return false;
 495
 496        return true;
 497}
 498
 499/**
 500 * fm10k_cleanup_headers - Correct corrupted or empty headers
 501 * @rx_ring: rx descriptor ring packet is being transacted on
 502 * @rx_desc: pointer to the EOP Rx descriptor
 503 * @skb: pointer to current skb being fixed
 504 *
 505 * Address the case where we are pulling data in on pages only
 506 * and as such no data is present in the skb header.
 507 *
 508 * In addition if skb is not at least 60 bytes we need to pad it so that
 509 * it is large enough to qualify as a valid Ethernet frame.
 510 *
 511 * Returns true if an error was encountered and skb was freed.
 512 **/
 513static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
 514                                  union fm10k_rx_desc *rx_desc,
 515                                  struct sk_buff *skb)
 516{
 517        if (unlikely((fm10k_test_staterr(rx_desc,
 518                                         FM10K_RXD_STATUS_RXE)))) {
 519#define FM10K_TEST_RXD_BIT(rxd, bit) \
 520        ((rxd)->w.csum_err & cpu_to_le16(bit))
 521                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
 522                        rx_ring->rx_stats.switch_errors++;
 523                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
 524                        rx_ring->rx_stats.drops++;
 525                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
 526                        rx_ring->rx_stats.pp_errors++;
 527                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
 528                        rx_ring->rx_stats.link_errors++;
 529                if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
 530                        rx_ring->rx_stats.length_errors++;
 531                dev_kfree_skb_any(skb);
 532                rx_ring->rx_stats.errors++;
 533                return true;
 534        }
 535
 536        /* if eth_skb_pad returns an error the skb was freed */
 537        if (eth_skb_pad(skb))
 538                return true;
 539
 540        return false;
 541}
 542
 543/**
 544 * fm10k_receive_skb - helper function to handle rx indications
 545 * @q_vector: structure containing interrupt and ring information
 546 * @skb: packet to send up
 547 **/
 548static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
 549                              struct sk_buff *skb)
 550{
 551        napi_gro_receive(&q_vector->napi, skb);
 552}
 553
 554static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
 555                              struct fm10k_ring *rx_ring,
 556                              int budget)
 557{
 558        struct sk_buff *skb = rx_ring->skb;
 559        unsigned int total_bytes = 0, total_packets = 0;
 560        u16 cleaned_count = fm10k_desc_unused(rx_ring);
 561
 562        while (likely(total_packets < budget)) {
 563                union fm10k_rx_desc *rx_desc;
 564
 565                /* return some buffers to hardware, one at a time is too slow */
 566                if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
 567                        fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
 568                        cleaned_count = 0;
 569                }
 570
 571                rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
 572
 573                if (!rx_desc->d.staterr)
 574                        break;
 575
 576                /* This memory barrier is needed to keep us from reading
 577                 * any other fields out of the rx_desc until we know the
 578                 * descriptor has been written back
 579                 */
 580                dma_rmb();
 581
 582                /* retrieve a buffer from the ring */
 583                skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
 584
 585                /* exit if we failed to retrieve a buffer */
 586                if (!skb)
 587                        break;
 588
 589                cleaned_count++;
 590
 591                /* fetch next buffer in frame if non-eop */
 592                if (fm10k_is_non_eop(rx_ring, rx_desc))
 593                        continue;
 594
 595                /* verify the packet layout is correct */
 596                if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
 597                        skb = NULL;
 598                        continue;
 599                }
 600
 601                /* populate checksum, timestamp, VLAN, and protocol */
 602                total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
 603
 604                fm10k_receive_skb(q_vector, skb);
 605
 606                /* reset skb pointer */
 607                skb = NULL;
 608
 609                /* update budget accounting */
 610                total_packets++;
 611        }
 612
 613        /* place incomplete frames back on ring for completion */
 614        rx_ring->skb = skb;
 615
 616        u64_stats_update_begin(&rx_ring->syncp);
 617        rx_ring->stats.packets += total_packets;
 618        rx_ring->stats.bytes += total_bytes;
 619        u64_stats_update_end(&rx_ring->syncp);
 620        q_vector->rx.total_packets += total_packets;
 621        q_vector->rx.total_bytes += total_bytes;
 622
 623        return total_packets;
 624}
 625
 626#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
 627static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
 628{
 629        struct fm10k_intfc *interface = netdev_priv(skb->dev);
 630
 631        if (interface->vxlan_port != udp_hdr(skb)->dest)
 632                return NULL;
 633
 634        /* return offset of udp_hdr plus 8 bytes for VXLAN header */
 635        return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
 636}
 637
 638#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
 639#define NVGRE_TNI htons(0x2000)
 640struct fm10k_nvgre_hdr {
 641        __be16 flags;
 642        __be16 proto;
 643        __be32 tni;
 644};
 645
 646static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
 647{
 648        struct fm10k_nvgre_hdr *nvgre_hdr;
 649        int hlen = ip_hdrlen(skb);
 650
 651        /* currently only IPv4 is supported due to hlen above */
 652        if (vlan_get_protocol(skb) != htons(ETH_P_IP))
 653                return NULL;
 654
 655        /* our transport header should be NVGRE */
 656        nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
 657
 658        /* verify all reserved flags are 0 */
 659        if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
 660                return NULL;
 661
 662        /* report start of ethernet header */
 663        if (nvgre_hdr->flags & NVGRE_TNI)
 664                return (struct ethhdr *)(nvgre_hdr + 1);
 665
 666        return (struct ethhdr *)(&nvgre_hdr->tni);
 667}
 668
 669__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
 670{
 671        u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
 672        struct ethhdr *eth_hdr;
 673
 674        if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
 675            skb->inner_protocol != htons(ETH_P_TEB))
 676                return 0;
 677
 678        switch (vlan_get_protocol(skb)) {
 679        case htons(ETH_P_IP):
 680                l4_hdr = ip_hdr(skb)->protocol;
 681                break;
 682        case htons(ETH_P_IPV6):
 683                l4_hdr = ipv6_hdr(skb)->nexthdr;
 684                break;
 685        default:
 686                return 0;
 687        }
 688
 689        switch (l4_hdr) {
 690        case IPPROTO_UDP:
 691                eth_hdr = fm10k_port_is_vxlan(skb);
 692                break;
 693        case IPPROTO_GRE:
 694                eth_hdr = fm10k_gre_is_nvgre(skb);
 695                break;
 696        default:
 697                return 0;
 698        }
 699
 700        if (!eth_hdr)
 701                return 0;
 702
 703        switch (eth_hdr->h_proto) {
 704        case htons(ETH_P_IP):
 705                inner_l4_hdr = inner_ip_hdr(skb)->protocol;
 706                break;
 707        case htons(ETH_P_IPV6):
 708                inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
 709                break;
 710        default:
 711                return 0;
 712        }
 713
 714        switch (inner_l4_hdr) {
 715        case IPPROTO_TCP:
 716                inner_l4_hlen = inner_tcp_hdrlen(skb);
 717                break;
 718        case IPPROTO_UDP:
 719                inner_l4_hlen = 8;
 720                break;
 721        default:
 722                return 0;
 723        }
 724
 725        /* The hardware allows tunnel offloads only if the combined inner and
 726         * outer header is 184 bytes or less
 727         */
 728        if (skb_inner_transport_header(skb) + inner_l4_hlen -
 729            skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
 730                return 0;
 731
 732        return eth_hdr->h_proto;
 733}
 734
 735static int fm10k_tso(struct fm10k_ring *tx_ring,
 736                     struct fm10k_tx_buffer *first)
 737{
 738        struct sk_buff *skb = first->skb;
 739        struct fm10k_tx_desc *tx_desc;
 740        unsigned char *th;
 741        u8 hdrlen;
 742
 743        if (skb->ip_summed != CHECKSUM_PARTIAL)
 744                return 0;
 745
 746        if (!skb_is_gso(skb))
 747                return 0;
 748
 749        /* compute header lengths */
 750        if (skb->encapsulation) {
 751                if (!fm10k_tx_encap_offload(skb))
 752                        goto err_vxlan;
 753                th = skb_inner_transport_header(skb);
 754        } else {
 755                th = skb_transport_header(skb);
 756        }
 757
 758        /* compute offset from SOF to transport header and add header len */
 759        hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
 760
 761        first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 762
 763        /* update gso size and bytecount with header size */
 764        first->gso_segs = skb_shinfo(skb)->gso_segs;
 765        first->bytecount += (first->gso_segs - 1) * hdrlen;
 766
 767        /* populate Tx descriptor header size and mss */
 768        tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 769        tx_desc->hdrlen = hdrlen;
 770        tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
 771
 772        return 1;
 773
 774err_vxlan:
 775        tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
 776        if (net_ratelimit())
 777                netdev_err(tx_ring->netdev,
 778                           "TSO requested for unsupported tunnel, disabling offload\n");
 779        return -1;
 780}
 781
 782static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
 783                          struct fm10k_tx_buffer *first)
 784{
 785        struct sk_buff *skb = first->skb;
 786        struct fm10k_tx_desc *tx_desc;
 787        union {
 788                struct iphdr *ipv4;
 789                struct ipv6hdr *ipv6;
 790                u8 *raw;
 791        } network_hdr;
 792        u8 *transport_hdr;
 793        __be16 frag_off;
 794        __be16 protocol;
 795        u8 l4_hdr = 0;
 796
 797        if (skb->ip_summed != CHECKSUM_PARTIAL)
 798                goto no_csum;
 799
 800        if (skb->encapsulation) {
 801                protocol = fm10k_tx_encap_offload(skb);
 802                if (!protocol) {
 803                        if (skb_checksum_help(skb)) {
 804                                dev_warn(tx_ring->dev,
 805                                         "failed to offload encap csum!\n");
 806                                tx_ring->tx_stats.csum_err++;
 807                        }
 808                        goto no_csum;
 809                }
 810                network_hdr.raw = skb_inner_network_header(skb);
 811                transport_hdr = skb_inner_transport_header(skb);
 812        } else {
 813                protocol = vlan_get_protocol(skb);
 814                network_hdr.raw = skb_network_header(skb);
 815                transport_hdr = skb_transport_header(skb);
 816        }
 817
 818        switch (protocol) {
 819        case htons(ETH_P_IP):
 820                l4_hdr = network_hdr.ipv4->protocol;
 821                break;
 822        case htons(ETH_P_IPV6):
 823                l4_hdr = network_hdr.ipv6->nexthdr;
 824                if (likely((transport_hdr - network_hdr.raw) ==
 825                           sizeof(struct ipv6hdr)))
 826                        break;
 827                ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
 828                                      sizeof(struct ipv6hdr),
 829                                 &l4_hdr, &frag_off);
 830                if (unlikely(frag_off))
 831                        l4_hdr = NEXTHDR_FRAGMENT;
 832                break;
 833        default:
 834                break;
 835        }
 836
 837        switch (l4_hdr) {
 838        case IPPROTO_TCP:
 839        case IPPROTO_UDP:
 840                break;
 841        case IPPROTO_GRE:
 842                if (skb->encapsulation)
 843                        break;
 844                fallthrough;
 845        default:
 846                if (unlikely(net_ratelimit())) {
 847                        dev_warn(tx_ring->dev,
 848                                 "partial checksum, version=%d l4 proto=%x\n",
 849                                 protocol, l4_hdr);
 850                }
 851                skb_checksum_help(skb);
 852                tx_ring->tx_stats.csum_err++;
 853                goto no_csum;
 854        }
 855
 856        /* update TX checksum flag */
 857        first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 858        tx_ring->tx_stats.csum_good++;
 859
 860no_csum:
 861        /* populate Tx descriptor header size and mss */
 862        tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 863        tx_desc->hdrlen = 0;
 864        tx_desc->mss = 0;
 865}
 866
 867#define FM10K_SET_FLAG(_input, _flag, _result) \
 868        ((_flag <= _result) ? \
 869         ((u32)(_input & _flag) * (_result / _flag)) : \
 870         ((u32)(_input & _flag) / (_flag / _result)))
 871
 872static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
 873{
 874        /* set type for advanced descriptor with frame checksum insertion */
 875        u32 desc_flags = 0;
 876
 877        /* set checksum offload bits */
 878        desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
 879                                     FM10K_TXD_FLAG_CSUM);
 880
 881        return desc_flags;
 882}
 883
 884static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
 885                               struct fm10k_tx_desc *tx_desc, u16 i,
 886                               dma_addr_t dma, unsigned int size, u8 desc_flags)
 887{
 888        /* set RS and INT for last frame in a cache line */
 889        if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
 890                desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
 891
 892        /* record values to descriptor */
 893        tx_desc->buffer_addr = cpu_to_le64(dma);
 894        tx_desc->flags = desc_flags;
 895        tx_desc->buflen = cpu_to_le16(size);
 896
 897        /* return true if we just wrapped the ring */
 898        return i == tx_ring->count;
 899}
 900
 901static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 902{
 903        netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
 904
 905        /* Memory barrier before checking head and tail */
 906        smp_mb();
 907
 908        /* Check again in a case another CPU has just made room available */
 909        if (likely(fm10k_desc_unused(tx_ring) < size))
 910                return -EBUSY;
 911
 912        /* A reprieve! - use start_queue because it doesn't call schedule */
 913        netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
 914        ++tx_ring->tx_stats.restart_queue;
 915        return 0;
 916}
 917
 918static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 919{
 920        if (likely(fm10k_desc_unused(tx_ring) >= size))
 921                return 0;
 922        return __fm10k_maybe_stop_tx(tx_ring, size);
 923}
 924
 925static void fm10k_tx_map(struct fm10k_ring *tx_ring,
 926                         struct fm10k_tx_buffer *first)
 927{
 928        struct sk_buff *skb = first->skb;
 929        struct fm10k_tx_buffer *tx_buffer;
 930        struct fm10k_tx_desc *tx_desc;
 931        skb_frag_t *frag;
 932        unsigned char *data;
 933        dma_addr_t dma;
 934        unsigned int data_len, size;
 935        u32 tx_flags = first->tx_flags;
 936        u16 i = tx_ring->next_to_use;
 937        u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
 938
 939        tx_desc = FM10K_TX_DESC(tx_ring, i);
 940
 941        /* add HW VLAN tag */
 942        if (skb_vlan_tag_present(skb))
 943                tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
 944        else
 945                tx_desc->vlan = 0;
 946
 947        size = skb_headlen(skb);
 948        data = skb->data;
 949
 950        dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
 951
 952        data_len = skb->data_len;
 953        tx_buffer = first;
 954
 955        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 956                if (dma_mapping_error(tx_ring->dev, dma))
 957                        goto dma_error;
 958
 959                /* record length, and DMA address */
 960                dma_unmap_len_set(tx_buffer, len, size);
 961                dma_unmap_addr_set(tx_buffer, dma, dma);
 962
 963                while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
 964                        if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
 965                                               FM10K_MAX_DATA_PER_TXD, flags)) {
 966                                tx_desc = FM10K_TX_DESC(tx_ring, 0);
 967                                i = 0;
 968                        }
 969
 970                        dma += FM10K_MAX_DATA_PER_TXD;
 971                        size -= FM10K_MAX_DATA_PER_TXD;
 972                }
 973
 974                if (likely(!data_len))
 975                        break;
 976
 977                if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
 978                                       dma, size, flags)) {
 979                        tx_desc = FM10K_TX_DESC(tx_ring, 0);
 980                        i = 0;
 981                }
 982
 983                size = skb_frag_size(frag);
 984                data_len -= size;
 985
 986                dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
 987                                       DMA_TO_DEVICE);
 988
 989                tx_buffer = &tx_ring->tx_buffer[i];
 990        }
 991
 992        /* write last descriptor with LAST bit set */
 993        flags |= FM10K_TXD_FLAG_LAST;
 994
 995        if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
 996                i = 0;
 997
 998        /* record bytecount for BQL */
 999        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1000
1001        /* record SW timestamp if HW timestamp is not available */
1002        skb_tx_timestamp(first->skb);
1003
1004        /* Force memory writes to complete before letting h/w know there
1005         * are new descriptors to fetch.  (Only applicable for weak-ordered
1006         * memory model archs, such as IA-64).
1007         *
1008         * We also need this memory barrier to make certain all of the
1009         * status bits have been updated before next_to_watch is written.
1010         */
1011        wmb();
1012
1013        /* set next_to_watch value indicating a packet is present */
1014        first->next_to_watch = tx_desc;
1015
1016        tx_ring->next_to_use = i;
1017
1018        /* Make sure there is space in the ring for the next send. */
1019        fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1020
1021        /* notify HW of packet */
1022        if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1023                writel(i, tx_ring->tail);
1024        }
1025
1026        return;
1027dma_error:
1028        dev_err(tx_ring->dev, "TX DMA map failed\n");
1029
1030        /* clear dma mappings for failed tx_buffer map */
1031        for (;;) {
1032                tx_buffer = &tx_ring->tx_buffer[i];
1033                fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1034                if (tx_buffer == first)
1035                        break;
1036                if (i == 0)
1037                        i = tx_ring->count;
1038                i--;
1039        }
1040
1041        tx_ring->next_to_use = i;
1042}
1043
1044netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1045                                  struct fm10k_ring *tx_ring)
1046{
1047        u16 count = TXD_USE_COUNT(skb_headlen(skb));
1048        struct fm10k_tx_buffer *first;
1049        unsigned short f;
1050        u32 tx_flags = 0;
1051        int tso;
1052
1053        /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1054         *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1055         *       + 2 desc gap to keep tail from touching head
1056         * otherwise try next time
1057         */
1058        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1059                skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1060
1061                count += TXD_USE_COUNT(skb_frag_size(frag));
1062        }
1063
1064        if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1065                tx_ring->tx_stats.tx_busy++;
1066                return NETDEV_TX_BUSY;
1067        }
1068
1069        /* record the location of the first descriptor for this packet */
1070        first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1071        first->skb = skb;
1072        first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1073        first->gso_segs = 1;
1074
1075        /* record initial flags and protocol */
1076        first->tx_flags = tx_flags;
1077
1078        tso = fm10k_tso(tx_ring, first);
1079        if (tso < 0)
1080                goto out_drop;
1081        else if (!tso)
1082                fm10k_tx_csum(tx_ring, first);
1083
1084        fm10k_tx_map(tx_ring, first);
1085
1086        return NETDEV_TX_OK;
1087
1088out_drop:
1089        dev_kfree_skb_any(first->skb);
1090        first->skb = NULL;
1091
1092        return NETDEV_TX_OK;
1093}
1094
1095static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1096{
1097        return ring->stats.packets;
1098}
1099
1100/**
1101 * fm10k_get_tx_pending - how many Tx descriptors not processed
1102 * @ring: the ring structure
1103 * @in_sw: is tx_pending being checked in SW or in HW?
1104 */
1105u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1106{
1107        struct fm10k_intfc *interface = ring->q_vector->interface;
1108        struct fm10k_hw *hw = &interface->hw;
1109        u32 head, tail;
1110
1111        if (likely(in_sw)) {
1112                head = ring->next_to_clean;
1113                tail = ring->next_to_use;
1114        } else {
1115                head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1116                tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1117        }
1118
1119        return ((head <= tail) ? tail : tail + ring->count) - head;
1120}
1121
1122bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1123{
1124        u32 tx_done = fm10k_get_tx_completed(tx_ring);
1125        u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1126        u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1127
1128        clear_check_for_tx_hang(tx_ring);
1129
1130        /* Check for a hung queue, but be thorough. This verifies
1131         * that a transmit has been completed since the previous
1132         * check AND there is at least one packet pending. By
1133         * requiring this to fail twice we avoid races with
1134         * clearing the ARMED bit and conditions where we
1135         * run the check_tx_hang logic with a transmit completion
1136         * pending but without time to complete it yet.
1137         */
1138        if (!tx_pending || (tx_done_old != tx_done)) {
1139                /* update completed stats and continue */
1140                tx_ring->tx_stats.tx_done_old = tx_done;
1141                /* reset the countdown */
1142                clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1143
1144                return false;
1145        }
1146
1147        /* make sure it is true for two checks in a row */
1148        return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1149}
1150
1151/**
1152 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1153 * @interface: driver private struct
1154 **/
1155void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1156{
1157        /* Do the reset outside of interrupt context */
1158        if (!test_bit(__FM10K_DOWN, interface->state)) {
1159                interface->tx_timeout_count++;
1160                set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1161                fm10k_service_event_schedule(interface);
1162        }
1163}
1164
1165/**
1166 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1167 * @q_vector: structure containing interrupt and ring information
1168 * @tx_ring: tx ring to clean
1169 * @napi_budget: Used to determine if we are in netpoll
1170 **/
1171static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1172                               struct fm10k_ring *tx_ring, int napi_budget)
1173{
1174        struct fm10k_intfc *interface = q_vector->interface;
1175        struct fm10k_tx_buffer *tx_buffer;
1176        struct fm10k_tx_desc *tx_desc;
1177        unsigned int total_bytes = 0, total_packets = 0;
1178        unsigned int budget = q_vector->tx.work_limit;
1179        unsigned int i = tx_ring->next_to_clean;
1180
1181        if (test_bit(__FM10K_DOWN, interface->state))
1182                return true;
1183
1184        tx_buffer = &tx_ring->tx_buffer[i];
1185        tx_desc = FM10K_TX_DESC(tx_ring, i);
1186        i -= tx_ring->count;
1187
1188        do {
1189                struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1190
1191                /* if next_to_watch is not set then there is no work pending */
1192                if (!eop_desc)
1193                        break;
1194
1195                /* prevent any other reads prior to eop_desc */
1196                smp_rmb();
1197
1198                /* if DD is not set pending work has not been completed */
1199                if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1200                        break;
1201
1202                /* clear next_to_watch to prevent false hangs */
1203                tx_buffer->next_to_watch = NULL;
1204
1205                /* update the statistics for this packet */
1206                total_bytes += tx_buffer->bytecount;
1207                total_packets += tx_buffer->gso_segs;
1208
1209                /* free the skb */
1210                napi_consume_skb(tx_buffer->skb, napi_budget);
1211
1212                /* unmap skb header data */
1213                dma_unmap_single(tx_ring->dev,
1214                                 dma_unmap_addr(tx_buffer, dma),
1215                                 dma_unmap_len(tx_buffer, len),
1216                                 DMA_TO_DEVICE);
1217
1218                /* clear tx_buffer data */
1219                tx_buffer->skb = NULL;
1220                dma_unmap_len_set(tx_buffer, len, 0);
1221
1222                /* unmap remaining buffers */
1223                while (tx_desc != eop_desc) {
1224                        tx_buffer++;
1225                        tx_desc++;
1226                        i++;
1227                        if (unlikely(!i)) {
1228                                i -= tx_ring->count;
1229                                tx_buffer = tx_ring->tx_buffer;
1230                                tx_desc = FM10K_TX_DESC(tx_ring, 0);
1231                        }
1232
1233                        /* unmap any remaining paged data */
1234                        if (dma_unmap_len(tx_buffer, len)) {
1235                                dma_unmap_page(tx_ring->dev,
1236                                               dma_unmap_addr(tx_buffer, dma),
1237                                               dma_unmap_len(tx_buffer, len),
1238                                               DMA_TO_DEVICE);
1239                                dma_unmap_len_set(tx_buffer, len, 0);
1240                        }
1241                }
1242
1243                /* move us one more past the eop_desc for start of next pkt */
1244                tx_buffer++;
1245                tx_desc++;
1246                i++;
1247                if (unlikely(!i)) {
1248                        i -= tx_ring->count;
1249                        tx_buffer = tx_ring->tx_buffer;
1250                        tx_desc = FM10K_TX_DESC(tx_ring, 0);
1251                }
1252
1253                /* issue prefetch for next Tx descriptor */
1254                prefetch(tx_desc);
1255
1256                /* update budget accounting */
1257                budget--;
1258        } while (likely(budget));
1259
1260        i += tx_ring->count;
1261        tx_ring->next_to_clean = i;
1262        u64_stats_update_begin(&tx_ring->syncp);
1263        tx_ring->stats.bytes += total_bytes;
1264        tx_ring->stats.packets += total_packets;
1265        u64_stats_update_end(&tx_ring->syncp);
1266        q_vector->tx.total_bytes += total_bytes;
1267        q_vector->tx.total_packets += total_packets;
1268
1269        if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1270                /* schedule immediate reset if we believe we hung */
1271                struct fm10k_hw *hw = &interface->hw;
1272
1273                netif_err(interface, drv, tx_ring->netdev,
1274                          "Detected Tx Unit Hang\n"
1275                          "  Tx Queue             <%d>\n"
1276                          "  TDH, TDT             <%x>, <%x>\n"
1277                          "  next_to_use          <%x>\n"
1278                          "  next_to_clean        <%x>\n",
1279                          tx_ring->queue_index,
1280                          fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1281                          fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1282                          tx_ring->next_to_use, i);
1283
1284                netif_stop_subqueue(tx_ring->netdev,
1285                                    tx_ring->queue_index);
1286
1287                netif_info(interface, probe, tx_ring->netdev,
1288                           "tx hang %d detected on queue %d, resetting interface\n",
1289                           interface->tx_timeout_count + 1,
1290                           tx_ring->queue_index);
1291
1292                fm10k_tx_timeout_reset(interface);
1293
1294                /* the netdev is about to reset, no point in enabling stuff */
1295                return true;
1296        }
1297
1298        /* notify netdev of completed buffers */
1299        netdev_tx_completed_queue(txring_txq(tx_ring),
1300                                  total_packets, total_bytes);
1301
1302#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1303        if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1304                     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1305                /* Make sure that anybody stopping the queue after this
1306                 * sees the new next_to_clean.
1307                 */
1308                smp_mb();
1309                if (__netif_subqueue_stopped(tx_ring->netdev,
1310                                             tx_ring->queue_index) &&
1311                    !test_bit(__FM10K_DOWN, interface->state)) {
1312                        netif_wake_subqueue(tx_ring->netdev,
1313                                            tx_ring->queue_index);
1314                        ++tx_ring->tx_stats.restart_queue;
1315                }
1316        }
1317
1318        return !!budget;
1319}
1320
1321/**
1322 * fm10k_update_itr - update the dynamic ITR value based on packet size
1323 *
1324 *      Stores a new ITR value based on strictly on packet size.  The
1325 *      divisors and thresholds used by this function were determined based
1326 *      on theoretical maximum wire speed and testing data, in order to
1327 *      minimize response time while increasing bulk throughput.
1328 *
1329 * @ring_container: Container for rings to have ITR updated
1330 **/
1331static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1332{
1333        unsigned int avg_wire_size, packets, itr_round;
1334
1335        /* Only update ITR if we are using adaptive setting */
1336        if (!ITR_IS_ADAPTIVE(ring_container->itr))
1337                goto clear_counts;
1338
1339        packets = ring_container->total_packets;
1340        if (!packets)
1341                goto clear_counts;
1342
1343        avg_wire_size = ring_container->total_bytes / packets;
1344
1345        /* The following is a crude approximation of:
1346         *  wmem_default / (size + overhead) = desired_pkts_per_int
1347         *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1348         *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1349         *
1350         * Assuming wmem_default is 212992 and overhead is 640 bytes per
1351         * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1352         * formula down to
1353         *
1354         *  (34 * (size + 24)) / (size + 640) = ITR
1355         *
1356         * We first do some math on the packet size and then finally bitshift
1357         * by 8 after rounding up. We also have to account for PCIe link speed
1358         * difference as ITR scales based on this.
1359         */
1360        if (avg_wire_size <= 360) {
1361                /* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1362                avg_wire_size *= 8;
1363                avg_wire_size += 376;
1364        } else if (avg_wire_size <= 1152) {
1365                /* 77K ints/sec to 45K ints/sec */
1366                avg_wire_size *= 3;
1367                avg_wire_size += 2176;
1368        } else if (avg_wire_size <= 1920) {
1369                /* 45K ints/sec to 38K ints/sec */
1370                avg_wire_size += 4480;
1371        } else {
1372                /* plateau at a limit of 38K ints/sec */
1373                avg_wire_size = 6656;
1374        }
1375
1376        /* Perform final bitshift for division after rounding up to ensure
1377         * that the calculation will never get below a 1. The bit shift
1378         * accounts for changes in the ITR due to PCIe link speed.
1379         */
1380        itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1381        avg_wire_size += BIT(itr_round) - 1;
1382        avg_wire_size >>= itr_round;
1383
1384        /* write back value and retain adaptive flag */
1385        ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1386
1387clear_counts:
1388        ring_container->total_bytes = 0;
1389        ring_container->total_packets = 0;
1390}
1391
1392static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1393{
1394        /* Enable auto-mask and clear the current mask */
1395        u32 itr = FM10K_ITR_ENABLE;
1396
1397        /* Update Tx ITR */
1398        fm10k_update_itr(&q_vector->tx);
1399
1400        /* Update Rx ITR */
1401        fm10k_update_itr(&q_vector->rx);
1402
1403        /* Store Tx itr in timer slot 0 */
1404        itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1405
1406        /* Shift Rx itr to timer slot 1 */
1407        itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1408
1409        /* Write the final value to the ITR register */
1410        writel(itr, q_vector->itr);
1411}
1412
1413static int fm10k_poll(struct napi_struct *napi, int budget)
1414{
1415        struct fm10k_q_vector *q_vector =
1416                               container_of(napi, struct fm10k_q_vector, napi);
1417        struct fm10k_ring *ring;
1418        int per_ring_budget, work_done = 0;
1419        bool clean_complete = true;
1420
1421        fm10k_for_each_ring(ring, q_vector->tx) {
1422                if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1423                        clean_complete = false;
1424        }
1425
1426        /* Handle case where we are called by netpoll with a budget of 0 */
1427        if (budget <= 0)
1428                return budget;
1429
1430        /* attempt to distribute budget to each queue fairly, but don't
1431         * allow the budget to go below 1 because we'll exit polling
1432         */
1433        if (q_vector->rx.count > 1)
1434                per_ring_budget = max(budget / q_vector->rx.count, 1);
1435        else
1436                per_ring_budget = budget;
1437
1438        fm10k_for_each_ring(ring, q_vector->rx) {
1439                int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1440
1441                work_done += work;
1442                if (work >= per_ring_budget)
1443                        clean_complete = false;
1444        }
1445
1446        /* If all work not completed, return budget and keep polling */
1447        if (!clean_complete)
1448                return budget;
1449
1450        /* Exit the polling mode, but don't re-enable interrupts if stack might
1451         * poll us due to busy-polling
1452         */
1453        if (likely(napi_complete_done(napi, work_done)))
1454                fm10k_qv_enable(q_vector);
1455
1456        return min(work_done, budget - 1);
1457}
1458
1459/**
1460 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1461 * @interface: board private structure to initialize
1462 *
1463 * When QoS (Quality of Service) is enabled, allocate queues for
1464 * each traffic class.  If multiqueue isn't available,then abort QoS
1465 * initialization.
1466 *
1467 * This function handles all combinations of Qos and RSS.
1468 *
1469 **/
1470static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1471{
1472        struct net_device *dev = interface->netdev;
1473        struct fm10k_ring_feature *f;
1474        int rss_i, i;
1475        int pcs;
1476
1477        /* Map queue offset and counts onto allocated tx queues */
1478        pcs = netdev_get_num_tc(dev);
1479
1480        if (pcs <= 1)
1481                return false;
1482
1483        /* set QoS mask and indices */
1484        f = &interface->ring_feature[RING_F_QOS];
1485        f->indices = pcs;
1486        f->mask = BIT(fls(pcs - 1)) - 1;
1487
1488        /* determine the upper limit for our current DCB mode */
1489        rss_i = interface->hw.mac.max_queues / pcs;
1490        rss_i = BIT(fls(rss_i) - 1);
1491
1492        /* set RSS mask and indices */
1493        f = &interface->ring_feature[RING_F_RSS];
1494        rss_i = min_t(u16, rss_i, f->limit);
1495        f->indices = rss_i;
1496        f->mask = BIT(fls(rss_i - 1)) - 1;
1497
1498        /* configure pause class to queue mapping */
1499        for (i = 0; i < pcs; i++)
1500                netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1501
1502        interface->num_rx_queues = rss_i * pcs;
1503        interface->num_tx_queues = rss_i * pcs;
1504
1505        return true;
1506}
1507
1508/**
1509 * fm10k_set_rss_queues: Allocate queues for RSS
1510 * @interface: board private structure to initialize
1511 *
1512 * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1513 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1514 *
1515 **/
1516static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1517{
1518        struct fm10k_ring_feature *f;
1519        u16 rss_i;
1520
1521        f = &interface->ring_feature[RING_F_RSS];
1522        rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1523
1524        /* record indices and power of 2 mask for RSS */
1525        f->indices = rss_i;
1526        f->mask = BIT(fls(rss_i - 1)) - 1;
1527
1528        interface->num_rx_queues = rss_i;
1529        interface->num_tx_queues = rss_i;
1530
1531        return true;
1532}
1533
1534/**
1535 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1536 * @interface: board private structure to initialize
1537 *
1538 * This is the top level queue allocation routine.  The order here is very
1539 * important, starting with the "most" number of features turned on at once,
1540 * and ending with the smallest set of features.  This way large combinations
1541 * can be allocated if they're turned on, and smaller combinations are the
1542 * fall through conditions.
1543 *
1544 **/
1545static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1546{
1547        /* Attempt to setup QoS and RSS first */
1548        if (fm10k_set_qos_queues(interface))
1549                return;
1550
1551        /* If we don't have QoS, just fallback to only RSS. */
1552        fm10k_set_rss_queues(interface);
1553}
1554
1555/**
1556 * fm10k_reset_num_queues - Reset the number of queues to zero
1557 * @interface: board private structure
1558 *
1559 * This function should be called whenever we need to reset the number of
1560 * queues after an error condition.
1561 */
1562static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1563{
1564        interface->num_tx_queues = 0;
1565        interface->num_rx_queues = 0;
1566        interface->num_q_vectors = 0;
1567}
1568
1569/**
1570 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1571 * @interface: board private structure to initialize
1572 * @v_count: q_vectors allocated on interface, used for ring interleaving
1573 * @v_idx: index of vector in interface struct
1574 * @txr_count: total number of Tx rings to allocate
1575 * @txr_idx: index of first Tx ring to allocate
1576 * @rxr_count: total number of Rx rings to allocate
1577 * @rxr_idx: index of first Rx ring to allocate
1578 *
1579 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1580 **/
1581static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1582                                unsigned int v_count, unsigned int v_idx,
1583                                unsigned int txr_count, unsigned int txr_idx,
1584                                unsigned int rxr_count, unsigned int rxr_idx)
1585{
1586        struct fm10k_q_vector *q_vector;
1587        struct fm10k_ring *ring;
1588        int ring_count;
1589
1590        ring_count = txr_count + rxr_count;
1591
1592        /* allocate q_vector and rings */
1593        q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL);
1594        if (!q_vector)
1595                return -ENOMEM;
1596
1597        /* initialize NAPI */
1598        netif_napi_add(interface->netdev, &q_vector->napi,
1599                       fm10k_poll, NAPI_POLL_WEIGHT);
1600
1601        /* tie q_vector and interface together */
1602        interface->q_vector[v_idx] = q_vector;
1603        q_vector->interface = interface;
1604        q_vector->v_idx = v_idx;
1605
1606        /* initialize pointer to rings */
1607        ring = q_vector->ring;
1608
1609        /* save Tx ring container info */
1610        q_vector->tx.ring = ring;
1611        q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1612        q_vector->tx.itr = interface->tx_itr;
1613        q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1614        q_vector->tx.count = txr_count;
1615
1616        while (txr_count) {
1617                /* assign generic ring traits */
1618                ring->dev = &interface->pdev->dev;
1619                ring->netdev = interface->netdev;
1620
1621                /* configure backlink on ring */
1622                ring->q_vector = q_vector;
1623
1624                /* apply Tx specific ring traits */
1625                ring->count = interface->tx_ring_count;
1626                ring->queue_index = txr_idx;
1627
1628                /* assign ring to interface */
1629                interface->tx_ring[txr_idx] = ring;
1630
1631                /* update count and index */
1632                txr_count--;
1633                txr_idx += v_count;
1634
1635                /* push pointer to next ring */
1636                ring++;
1637        }
1638
1639        /* save Rx ring container info */
1640        q_vector->rx.ring = ring;
1641        q_vector->rx.itr = interface->rx_itr;
1642        q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1643        q_vector->rx.count = rxr_count;
1644
1645        while (rxr_count) {
1646                /* assign generic ring traits */
1647                ring->dev = &interface->pdev->dev;
1648                ring->netdev = interface->netdev;
1649                rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1650
1651                /* configure backlink on ring */
1652                ring->q_vector = q_vector;
1653
1654                /* apply Rx specific ring traits */
1655                ring->count = interface->rx_ring_count;
1656                ring->queue_index = rxr_idx;
1657
1658                /* assign ring to interface */
1659                interface->rx_ring[rxr_idx] = ring;
1660
1661                /* update count and index */
1662                rxr_count--;
1663                rxr_idx += v_count;
1664
1665                /* push pointer to next ring */
1666                ring++;
1667        }
1668
1669        fm10k_dbg_q_vector_init(q_vector);
1670
1671        return 0;
1672}
1673
1674/**
1675 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1676 * @interface: board private structure to initialize
1677 * @v_idx: Index of vector to be freed
1678 *
1679 * This function frees the memory allocated to the q_vector.  In addition if
1680 * NAPI is enabled it will delete any references to the NAPI struct prior
1681 * to freeing the q_vector.
1682 **/
1683static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1684{
1685        struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1686        struct fm10k_ring *ring;
1687
1688        fm10k_dbg_q_vector_exit(q_vector);
1689
1690        fm10k_for_each_ring(ring, q_vector->tx)
1691                interface->tx_ring[ring->queue_index] = NULL;
1692
1693        fm10k_for_each_ring(ring, q_vector->rx)
1694                interface->rx_ring[ring->queue_index] = NULL;
1695
1696        interface->q_vector[v_idx] = NULL;
1697        netif_napi_del(&q_vector->napi);
1698        kfree_rcu(q_vector, rcu);
1699}
1700
1701/**
1702 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1703 * @interface: board private structure to initialize
1704 *
1705 * We allocate one q_vector per queue interrupt.  If allocation fails we
1706 * return -ENOMEM.
1707 **/
1708static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1709{
1710        unsigned int q_vectors = interface->num_q_vectors;
1711        unsigned int rxr_remaining = interface->num_rx_queues;
1712        unsigned int txr_remaining = interface->num_tx_queues;
1713        unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1714        int err;
1715
1716        if (q_vectors >= (rxr_remaining + txr_remaining)) {
1717                for (; rxr_remaining; v_idx++) {
1718                        err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1719                                                   0, 0, 1, rxr_idx);
1720                        if (err)
1721                                goto err_out;
1722
1723                        /* update counts and index */
1724                        rxr_remaining--;
1725                        rxr_idx++;
1726                }
1727        }
1728
1729        for (; v_idx < q_vectors; v_idx++) {
1730                int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1731                int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1732
1733                err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1734                                           tqpv, txr_idx,
1735                                           rqpv, rxr_idx);
1736
1737                if (err)
1738                        goto err_out;
1739
1740                /* update counts and index */
1741                rxr_remaining -= rqpv;
1742                txr_remaining -= tqpv;
1743                rxr_idx++;
1744                txr_idx++;
1745        }
1746
1747        return 0;
1748
1749err_out:
1750        fm10k_reset_num_queues(interface);
1751
1752        while (v_idx--)
1753                fm10k_free_q_vector(interface, v_idx);
1754
1755        return -ENOMEM;
1756}
1757
1758/**
1759 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1760 * @interface: board private structure to initialize
1761 *
1762 * This function frees the memory allocated to the q_vectors.  In addition if
1763 * NAPI is enabled it will delete any references to the NAPI struct prior
1764 * to freeing the q_vector.
1765 **/
1766static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1767{
1768        int v_idx = interface->num_q_vectors;
1769
1770        fm10k_reset_num_queues(interface);
1771
1772        while (v_idx--)
1773                fm10k_free_q_vector(interface, v_idx);
1774}
1775
1776/**
1777 * fm10k_reset_msix_capability - reset MSI-X capability
1778 * @interface: board private structure to initialize
1779 *
1780 * Reset the MSI-X capability back to its starting state
1781 **/
1782static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1783{
1784        pci_disable_msix(interface->pdev);
1785        kfree(interface->msix_entries);
1786        interface->msix_entries = NULL;
1787}
1788
1789/**
1790 * fm10k_init_msix_capability - configure MSI-X capability
1791 * @interface: board private structure to initialize
1792 *
1793 * Attempt to configure the interrupts using the best available
1794 * capabilities of the hardware and the kernel.
1795 **/
1796static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1797{
1798        struct fm10k_hw *hw = &interface->hw;
1799        int v_budget, vector;
1800
1801        /* It's easy to be greedy for MSI-X vectors, but it really
1802         * doesn't do us much good if we have a lot more vectors
1803         * than CPU's.  So let's be conservative and only ask for
1804         * (roughly) the same number of vectors as there are CPU's.
1805         * the default is to use pairs of vectors
1806         */
1807        v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1808        v_budget = min_t(u16, v_budget, num_online_cpus());
1809
1810        /* account for vectors not related to queues */
1811        v_budget += NON_Q_VECTORS;
1812
1813        /* At the same time, hardware can only support a maximum of
1814         * hw.mac->max_msix_vectors vectors.  With features
1815         * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1816         * descriptor queues supported by our device.  Thus, we cap it off in
1817         * those rare cases where the cpu count also exceeds our vector limit.
1818         */
1819        v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1820
1821        /* A failure in MSI-X entry allocation is fatal. */
1822        interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1823                                          GFP_KERNEL);
1824        if (!interface->msix_entries)
1825                return -ENOMEM;
1826
1827        /* populate entry values */
1828        for (vector = 0; vector < v_budget; vector++)
1829                interface->msix_entries[vector].entry = vector;
1830
1831        /* Attempt to enable MSI-X with requested value */
1832        v_budget = pci_enable_msix_range(interface->pdev,
1833                                         interface->msix_entries,
1834                                         MIN_MSIX_COUNT(hw),
1835                                         v_budget);
1836        if (v_budget < 0) {
1837                kfree(interface->msix_entries);
1838                interface->msix_entries = NULL;
1839                return v_budget;
1840        }
1841
1842        /* record the number of queues available for q_vectors */
1843        interface->num_q_vectors = v_budget - NON_Q_VECTORS;
1844
1845        return 0;
1846}
1847
1848/**
1849 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1850 * @interface: Interface structure continaining rings and devices
1851 *
1852 * Cache the descriptor ring offsets for Qos
1853 **/
1854static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1855{
1856        struct net_device *dev = interface->netdev;
1857        int pc, offset, rss_i, i;
1858        u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1859        u8 num_pcs = netdev_get_num_tc(dev);
1860
1861        if (num_pcs <= 1)
1862                return false;
1863
1864        rss_i = interface->ring_feature[RING_F_RSS].indices;
1865
1866        for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1867                int q_idx = pc;
1868
1869                for (i = 0; i < rss_i; i++) {
1870                        interface->tx_ring[offset + i]->reg_idx = q_idx;
1871                        interface->tx_ring[offset + i]->qos_pc = pc;
1872                        interface->rx_ring[offset + i]->reg_idx = q_idx;
1873                        interface->rx_ring[offset + i]->qos_pc = pc;
1874                        q_idx += pc_stride;
1875                }
1876        }
1877
1878        return true;
1879}
1880
1881/**
1882 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1883 * @interface: Interface structure continaining rings and devices
1884 *
1885 * Cache the descriptor ring offsets for RSS
1886 **/
1887static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1888{
1889        int i;
1890
1891        for (i = 0; i < interface->num_rx_queues; i++)
1892                interface->rx_ring[i]->reg_idx = i;
1893
1894        for (i = 0; i < interface->num_tx_queues; i++)
1895                interface->tx_ring[i]->reg_idx = i;
1896}
1897
1898/**
1899 * fm10k_assign_rings - Map rings to network devices
1900 * @interface: Interface structure containing rings and devices
1901 *
1902 * This function is meant to go though and configure both the network
1903 * devices so that they contain rings, and configure the rings so that
1904 * they function with their network devices.
1905 **/
1906static void fm10k_assign_rings(struct fm10k_intfc *interface)
1907{
1908        if (fm10k_cache_ring_qos(interface))
1909                return;
1910
1911        fm10k_cache_ring_rss(interface);
1912}
1913
1914static void fm10k_init_reta(struct fm10k_intfc *interface)
1915{
1916        u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1917        u32 reta;
1918
1919        /* If the Rx flow indirection table has been configured manually, we
1920         * need to maintain it when possible.
1921         */
1922        if (netif_is_rxfh_configured(interface->netdev)) {
1923                for (i = FM10K_RETA_SIZE; i--;) {
1924                        reta = interface->reta[i];
1925                        if ((((reta << 24) >> 24) < rss_i) &&
1926                            (((reta << 16) >> 24) < rss_i) &&
1927                            (((reta <<  8) >> 24) < rss_i) &&
1928                            (((reta)       >> 24) < rss_i))
1929                                continue;
1930
1931                        /* this should never happen */
1932                        dev_err(&interface->pdev->dev,
1933                                "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1934                        goto repopulate_reta;
1935                }
1936
1937                /* do nothing if all of the elements are in bounds */
1938                return;
1939        }
1940
1941repopulate_reta:
1942        fm10k_write_reta(interface, NULL);
1943}
1944
1945/**
1946 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1947 * @interface: board private structure to initialize
1948 *
1949 * We determine which queueing scheme to use based on...
1950 * - Hardware queue count (num_*_queues)
1951 *   - defined by miscellaneous hardware support/features (RSS, etc.)
1952 **/
1953int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1954{
1955        int err;
1956
1957        /* Number of supported queues */
1958        fm10k_set_num_queues(interface);
1959
1960        /* Configure MSI-X capability */
1961        err = fm10k_init_msix_capability(interface);
1962        if (err) {
1963                dev_err(&interface->pdev->dev,
1964                        "Unable to initialize MSI-X capability\n");
1965                goto err_init_msix;
1966        }
1967
1968        /* Allocate memory for queues */
1969        err = fm10k_alloc_q_vectors(interface);
1970        if (err) {
1971                dev_err(&interface->pdev->dev,
1972                        "Unable to allocate queue vectors\n");
1973                goto err_alloc_q_vectors;
1974        }
1975
1976        /* Map rings to devices, and map devices to physical queues */
1977        fm10k_assign_rings(interface);
1978
1979        /* Initialize RSS redirection table */
1980        fm10k_init_reta(interface);
1981
1982        return 0;
1983
1984err_alloc_q_vectors:
1985        fm10k_reset_msix_capability(interface);
1986err_init_msix:
1987        fm10k_reset_num_queues(interface);
1988        return err;
1989}
1990
1991/**
1992 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
1993 * @interface: board private structure to clear queueing scheme on
1994 *
1995 * We go through and clear queueing specific resources and reset the structure
1996 * to pre-load conditions
1997 **/
1998void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
1999{
2000        fm10k_free_q_vectors(interface);
2001        fm10k_reset_msix_capability(interface);
2002}
2003