linux/drivers/net/ethernet/intel/igb/igb_main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2007 - 2018 Intel Corporation. */
   3
   4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   5
   6#include <linux/module.h>
   7#include <linux/types.h>
   8#include <linux/init.h>
   9#include <linux/bitops.h>
  10#include <linux/vmalloc.h>
  11#include <linux/pagemap.h>
  12#include <linux/netdevice.h>
  13#include <linux/ipv6.h>
  14#include <linux/slab.h>
  15#include <net/checksum.h>
  16#include <net/ip6_checksum.h>
  17#include <net/pkt_sched.h>
  18#include <net/pkt_cls.h>
  19#include <linux/net_tstamp.h>
  20#include <linux/mii.h>
  21#include <linux/ethtool.h>
  22#include <linux/if.h>
  23#include <linux/if_vlan.h>
  24#include <linux/pci.h>
  25#include <linux/delay.h>
  26#include <linux/interrupt.h>
  27#include <linux/ip.h>
  28#include <linux/tcp.h>
  29#include <linux/sctp.h>
  30#include <linux/if_ether.h>
  31#include <linux/aer.h>
  32#include <linux/prefetch.h>
  33#include <linux/bpf.h>
  34#include <linux/bpf_trace.h>
  35#include <linux/pm_runtime.h>
  36#include <linux/etherdevice.h>
  37#ifdef CONFIG_IGB_DCA
  38#include <linux/dca.h>
  39#endif
  40#include <linux/i2c.h>
  41#include "igb.h"
  42
  43enum queue_mode {
  44        QUEUE_MODE_STRICT_PRIORITY,
  45        QUEUE_MODE_STREAM_RESERVATION,
  46};
  47
  48enum tx_queue_prio {
  49        TX_QUEUE_PRIO_HIGH,
  50        TX_QUEUE_PRIO_LOW,
  51};
  52
  53char igb_driver_name[] = "igb";
  54static const char igb_driver_string[] =
  55                                "Intel(R) Gigabit Ethernet Network Driver";
  56static const char igb_copyright[] =
  57                                "Copyright (c) 2007-2014 Intel Corporation.";
  58
  59static const struct e1000_info *igb_info_tbl[] = {
  60        [board_82575] = &e1000_82575_info,
  61};
  62
  63static const struct pci_device_id igb_pci_tbl[] = {
  64        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
  65        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
  66        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
  67        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
  68        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
  69        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
  70        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
  71        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
  72        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
  73        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
  74        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
  75        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
  76        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
  77        { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
  78        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
  79        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
  80        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
  81        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
  82        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
  83        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
  84        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
  85        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
  86        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
  87        { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
  88        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
  89        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
  90        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
  91        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
  92        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
  93        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
  94        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
  95        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
  96        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
  97        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
  98        { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
  99        /* required last entry */
 100        {0, }
 101};
 102
 103MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
 104
 105static int igb_setup_all_tx_resources(struct igb_adapter *);
 106static int igb_setup_all_rx_resources(struct igb_adapter *);
 107static void igb_free_all_tx_resources(struct igb_adapter *);
 108static void igb_free_all_rx_resources(struct igb_adapter *);
 109static void igb_setup_mrqc(struct igb_adapter *);
 110static int igb_probe(struct pci_dev *, const struct pci_device_id *);
 111static void igb_remove(struct pci_dev *pdev);
 112static int igb_sw_init(struct igb_adapter *);
 113int igb_open(struct net_device *);
 114int igb_close(struct net_device *);
 115static void igb_configure(struct igb_adapter *);
 116static void igb_configure_tx(struct igb_adapter *);
 117static void igb_configure_rx(struct igb_adapter *);
 118static void igb_clean_all_tx_rings(struct igb_adapter *);
 119static void igb_clean_all_rx_rings(struct igb_adapter *);
 120static void igb_clean_tx_ring(struct igb_ring *);
 121static void igb_clean_rx_ring(struct igb_ring *);
 122static void igb_set_rx_mode(struct net_device *);
 123static void igb_update_phy_info(struct timer_list *);
 124static void igb_watchdog(struct timer_list *);
 125static void igb_watchdog_task(struct work_struct *);
 126static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
 127static void igb_get_stats64(struct net_device *dev,
 128                            struct rtnl_link_stats64 *stats);
 129static int igb_change_mtu(struct net_device *, int);
 130static int igb_set_mac(struct net_device *, void *);
 131static void igb_set_uta(struct igb_adapter *adapter, bool set);
 132static irqreturn_t igb_intr(int irq, void *);
 133static irqreturn_t igb_intr_msi(int irq, void *);
 134static irqreturn_t igb_msix_other(int irq, void *);
 135static irqreturn_t igb_msix_ring(int irq, void *);
 136#ifdef CONFIG_IGB_DCA
 137static void igb_update_dca(struct igb_q_vector *);
 138static void igb_setup_dca(struct igb_adapter *);
 139#endif /* CONFIG_IGB_DCA */
 140static int igb_poll(struct napi_struct *, int);
 141static bool igb_clean_tx_irq(struct igb_q_vector *, int);
 142static int igb_clean_rx_irq(struct igb_q_vector *, int);
 143static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
 144static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
 145static void igb_reset_task(struct work_struct *);
 146static void igb_vlan_mode(struct net_device *netdev,
 147                          netdev_features_t features);
 148static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
 149static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
 150static void igb_restore_vlan(struct igb_adapter *);
 151static void igb_rar_set_index(struct igb_adapter *, u32);
 152static void igb_ping_all_vfs(struct igb_adapter *);
 153static void igb_msg_task(struct igb_adapter *);
 154static void igb_vmm_control(struct igb_adapter *);
 155static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
 156static void igb_flush_mac_table(struct igb_adapter *);
 157static int igb_available_rars(struct igb_adapter *, u8);
 158static void igb_set_default_mac_filter(struct igb_adapter *);
 159static int igb_uc_sync(struct net_device *, const unsigned char *);
 160static int igb_uc_unsync(struct net_device *, const unsigned char *);
 161static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
 162static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
 163static int igb_ndo_set_vf_vlan(struct net_device *netdev,
 164                               int vf, u16 vlan, u8 qos, __be16 vlan_proto);
 165static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
 166static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
 167                                   bool setting);
 168static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
 169                                bool setting);
 170static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
 171                                 struct ifla_vf_info *ivi);
 172static void igb_check_vf_rate_limit(struct igb_adapter *);
 173static void igb_nfc_filter_exit(struct igb_adapter *adapter);
 174static void igb_nfc_filter_restore(struct igb_adapter *adapter);
 175
 176#ifdef CONFIG_PCI_IOV
 177static int igb_vf_configure(struct igb_adapter *adapter, int vf);
 178static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
 179static int igb_disable_sriov(struct pci_dev *dev);
 180static int igb_pci_disable_sriov(struct pci_dev *dev);
 181#endif
 182
 183static int igb_suspend(struct device *);
 184static int igb_resume(struct device *);
 185static int igb_runtime_suspend(struct device *dev);
 186static int igb_runtime_resume(struct device *dev);
 187static int igb_runtime_idle(struct device *dev);
 188static const struct dev_pm_ops igb_pm_ops = {
 189        SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
 190        SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
 191                        igb_runtime_idle)
 192};
 193static void igb_shutdown(struct pci_dev *);
 194static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
 195#ifdef CONFIG_IGB_DCA
 196static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
 197static struct notifier_block dca_notifier = {
 198        .notifier_call  = igb_notify_dca,
 199        .next           = NULL,
 200        .priority       = 0
 201};
 202#endif
 203#ifdef CONFIG_PCI_IOV
 204static unsigned int max_vfs;
 205module_param(max_vfs, uint, 0);
 206MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
 207#endif /* CONFIG_PCI_IOV */
 208
 209static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
 210                     pci_channel_state_t);
 211static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
 212static void igb_io_resume(struct pci_dev *);
 213
 214static const struct pci_error_handlers igb_err_handler = {
 215        .error_detected = igb_io_error_detected,
 216        .slot_reset = igb_io_slot_reset,
 217        .resume = igb_io_resume,
 218};
 219
 220static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
 221
 222static struct pci_driver igb_driver = {
 223        .name     = igb_driver_name,
 224        .id_table = igb_pci_tbl,
 225        .probe    = igb_probe,
 226        .remove   = igb_remove,
 227#ifdef CONFIG_PM
 228        .driver.pm = &igb_pm_ops,
 229#endif
 230        .shutdown = igb_shutdown,
 231        .sriov_configure = igb_pci_sriov_configure,
 232        .err_handler = &igb_err_handler
 233};
 234
 235MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
 236MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
 237MODULE_LICENSE("GPL v2");
 238
 239#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 240static int debug = -1;
 241module_param(debug, int, 0);
 242MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 243
 244struct igb_reg_info {
 245        u32 ofs;
 246        char *name;
 247};
 248
 249static const struct igb_reg_info igb_reg_info_tbl[] = {
 250
 251        /* General Registers */
 252        {E1000_CTRL, "CTRL"},
 253        {E1000_STATUS, "STATUS"},
 254        {E1000_CTRL_EXT, "CTRL_EXT"},
 255
 256        /* Interrupt Registers */
 257        {E1000_ICR, "ICR"},
 258
 259        /* RX Registers */
 260        {E1000_RCTL, "RCTL"},
 261        {E1000_RDLEN(0), "RDLEN"},
 262        {E1000_RDH(0), "RDH"},
 263        {E1000_RDT(0), "RDT"},
 264        {E1000_RXDCTL(0), "RXDCTL"},
 265        {E1000_RDBAL(0), "RDBAL"},
 266        {E1000_RDBAH(0), "RDBAH"},
 267
 268        /* TX Registers */
 269        {E1000_TCTL, "TCTL"},
 270        {E1000_TDBAL(0), "TDBAL"},
 271        {E1000_TDBAH(0), "TDBAH"},
 272        {E1000_TDLEN(0), "TDLEN"},
 273        {E1000_TDH(0), "TDH"},
 274        {E1000_TDT(0), "TDT"},
 275        {E1000_TXDCTL(0), "TXDCTL"},
 276        {E1000_TDFH, "TDFH"},
 277        {E1000_TDFT, "TDFT"},
 278        {E1000_TDFHS, "TDFHS"},
 279        {E1000_TDFPC, "TDFPC"},
 280
 281        /* List Terminator */
 282        {}
 283};
 284
 285/* igb_regdump - register printout routine */
 286static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
 287{
 288        int n = 0;
 289        char rname[16];
 290        u32 regs[8];
 291
 292        switch (reginfo->ofs) {
 293        case E1000_RDLEN(0):
 294                for (n = 0; n < 4; n++)
 295                        regs[n] = rd32(E1000_RDLEN(n));
 296                break;
 297        case E1000_RDH(0):
 298                for (n = 0; n < 4; n++)
 299                        regs[n] = rd32(E1000_RDH(n));
 300                break;
 301        case E1000_RDT(0):
 302                for (n = 0; n < 4; n++)
 303                        regs[n] = rd32(E1000_RDT(n));
 304                break;
 305        case E1000_RXDCTL(0):
 306                for (n = 0; n < 4; n++)
 307                        regs[n] = rd32(E1000_RXDCTL(n));
 308                break;
 309        case E1000_RDBAL(0):
 310                for (n = 0; n < 4; n++)
 311                        regs[n] = rd32(E1000_RDBAL(n));
 312                break;
 313        case E1000_RDBAH(0):
 314                for (n = 0; n < 4; n++)
 315                        regs[n] = rd32(E1000_RDBAH(n));
 316                break;
 317        case E1000_TDBAL(0):
 318                for (n = 0; n < 4; n++)
 319                        regs[n] = rd32(E1000_TDBAL(n));
 320                break;
 321        case E1000_TDBAH(0):
 322                for (n = 0; n < 4; n++)
 323                        regs[n] = rd32(E1000_TDBAH(n));
 324                break;
 325        case E1000_TDLEN(0):
 326                for (n = 0; n < 4; n++)
 327                        regs[n] = rd32(E1000_TDLEN(n));
 328                break;
 329        case E1000_TDH(0):
 330                for (n = 0; n < 4; n++)
 331                        regs[n] = rd32(E1000_TDH(n));
 332                break;
 333        case E1000_TDT(0):
 334                for (n = 0; n < 4; n++)
 335                        regs[n] = rd32(E1000_TDT(n));
 336                break;
 337        case E1000_TXDCTL(0):
 338                for (n = 0; n < 4; n++)
 339                        regs[n] = rd32(E1000_TXDCTL(n));
 340                break;
 341        default:
 342                pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
 343                return;
 344        }
 345
 346        snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
 347        pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
 348                regs[2], regs[3]);
 349}
 350
 351/* igb_dump - Print registers, Tx-rings and Rx-rings */
 352static void igb_dump(struct igb_adapter *adapter)
 353{
 354        struct net_device *netdev = adapter->netdev;
 355        struct e1000_hw *hw = &adapter->hw;
 356        struct igb_reg_info *reginfo;
 357        struct igb_ring *tx_ring;
 358        union e1000_adv_tx_desc *tx_desc;
 359        struct my_u0 { u64 a; u64 b; } *u0;
 360        struct igb_ring *rx_ring;
 361        union e1000_adv_rx_desc *rx_desc;
 362        u32 staterr;
 363        u16 i, n;
 364
 365        if (!netif_msg_hw(adapter))
 366                return;
 367
 368        /* Print netdevice Info */
 369        if (netdev) {
 370                dev_info(&adapter->pdev->dev, "Net device Info\n");
 371                pr_info("Device Name     state            trans_start\n");
 372                pr_info("%-15s %016lX %016lX\n", netdev->name,
 373                        netdev->state, dev_trans_start(netdev));
 374        }
 375
 376        /* Print Registers */
 377        dev_info(&adapter->pdev->dev, "Register Dump\n");
 378        pr_info(" Register Name   Value\n");
 379        for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
 380             reginfo->name; reginfo++) {
 381                igb_regdump(hw, reginfo);
 382        }
 383
 384        /* Print TX Ring Summary */
 385        if (!netdev || !netif_running(netdev))
 386                goto exit;
 387
 388        dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
 389        pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 390        for (n = 0; n < adapter->num_tx_queues; n++) {
 391                struct igb_tx_buffer *buffer_info;
 392                tx_ring = adapter->tx_ring[n];
 393                buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
 394                pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
 395                        n, tx_ring->next_to_use, tx_ring->next_to_clean,
 396                        (u64)dma_unmap_addr(buffer_info, dma),
 397                        dma_unmap_len(buffer_info, len),
 398                        buffer_info->next_to_watch,
 399                        (u64)buffer_info->time_stamp);
 400        }
 401
 402        /* Print TX Rings */
 403        if (!netif_msg_tx_done(adapter))
 404                goto rx_ring_summary;
 405
 406        dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
 407
 408        /* Transmit Descriptor Formats
 409         *
 410         * Advanced Transmit Descriptor
 411         *   +--------------------------------------------------------------+
 412         * 0 |         Buffer Address [63:0]                                |
 413         *   +--------------------------------------------------------------+
 414         * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
 415         *   +--------------------------------------------------------------+
 416         *   63      46 45    40 39 38 36 35 32 31   24             15       0
 417         */
 418
 419        for (n = 0; n < adapter->num_tx_queues; n++) {
 420                tx_ring = adapter->tx_ring[n];
 421                pr_info("------------------------------------\n");
 422                pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
 423                pr_info("------------------------------------\n");
 424                pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
 425
 426                for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 427                        const char *next_desc;
 428                        struct igb_tx_buffer *buffer_info;
 429                        tx_desc = IGB_TX_DESC(tx_ring, i);
 430                        buffer_info = &tx_ring->tx_buffer_info[i];
 431                        u0 = (struct my_u0 *)tx_desc;
 432                        if (i == tx_ring->next_to_use &&
 433                            i == tx_ring->next_to_clean)
 434                                next_desc = " NTC/U";
 435                        else if (i == tx_ring->next_to_use)
 436                                next_desc = " NTU";
 437                        else if (i == tx_ring->next_to_clean)
 438                                next_desc = " NTC";
 439                        else
 440                                next_desc = "";
 441
 442                        pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
 443                                i, le64_to_cpu(u0->a),
 444                                le64_to_cpu(u0->b),
 445                                (u64)dma_unmap_addr(buffer_info, dma),
 446                                dma_unmap_len(buffer_info, len),
 447                                buffer_info->next_to_watch,
 448                                (u64)buffer_info->time_stamp,
 449                                buffer_info->skb, next_desc);
 450
 451                        if (netif_msg_pktdata(adapter) && buffer_info->skb)
 452                                print_hex_dump(KERN_INFO, "",
 453                                        DUMP_PREFIX_ADDRESS,
 454                                        16, 1, buffer_info->skb->data,
 455                                        dma_unmap_len(buffer_info, len),
 456                                        true);
 457                }
 458        }
 459
 460        /* Print RX Rings Summary */
 461rx_ring_summary:
 462        dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
 463        pr_info("Queue [NTU] [NTC]\n");
 464        for (n = 0; n < adapter->num_rx_queues; n++) {
 465                rx_ring = adapter->rx_ring[n];
 466                pr_info(" %5d %5X %5X\n",
 467                        n, rx_ring->next_to_use, rx_ring->next_to_clean);
 468        }
 469
 470        /* Print RX Rings */
 471        if (!netif_msg_rx_status(adapter))
 472                goto exit;
 473
 474        dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
 475
 476        /* Advanced Receive Descriptor (Read) Format
 477         *    63                                           1        0
 478         *    +-----------------------------------------------------+
 479         *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
 480         *    +----------------------------------------------+------+
 481         *  8 |       Header Buffer Address [63:1]           |  DD  |
 482         *    +-----------------------------------------------------+
 483         *
 484         *
 485         * Advanced Receive Descriptor (Write-Back) Format
 486         *
 487         *   63       48 47    32 31  30      21 20 17 16   4 3     0
 488         *   +------------------------------------------------------+
 489         * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
 490         *   | Checksum   Ident  |   |           |    | Type | Type |
 491         *   +------------------------------------------------------+
 492         * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 493         *   +------------------------------------------------------+
 494         *   63       48 47    32 31            20 19               0
 495         */
 496
 497        for (n = 0; n < adapter->num_rx_queues; n++) {
 498                rx_ring = adapter->rx_ring[n];
 499                pr_info("------------------------------------\n");
 500                pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
 501                pr_info("------------------------------------\n");
 502                pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
 503                pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
 504
 505                for (i = 0; i < rx_ring->count; i++) {
 506                        const char *next_desc;
 507                        struct igb_rx_buffer *buffer_info;
 508                        buffer_info = &rx_ring->rx_buffer_info[i];
 509                        rx_desc = IGB_RX_DESC(rx_ring, i);
 510                        u0 = (struct my_u0 *)rx_desc;
 511                        staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 512
 513                        if (i == rx_ring->next_to_use)
 514                                next_desc = " NTU";
 515                        else if (i == rx_ring->next_to_clean)
 516                                next_desc = " NTC";
 517                        else
 518                                next_desc = "";
 519
 520                        if (staterr & E1000_RXD_STAT_DD) {
 521                                /* Descriptor Done */
 522                                pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
 523                                        "RWB", i,
 524                                        le64_to_cpu(u0->a),
 525                                        le64_to_cpu(u0->b),
 526                                        next_desc);
 527                        } else {
 528                                pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
 529                                        "R  ", i,
 530                                        le64_to_cpu(u0->a),
 531                                        le64_to_cpu(u0->b),
 532                                        (u64)buffer_info->dma,
 533                                        next_desc);
 534
 535                                if (netif_msg_pktdata(adapter) &&
 536                                    buffer_info->dma && buffer_info->page) {
 537                                        print_hex_dump(KERN_INFO, "",
 538                                          DUMP_PREFIX_ADDRESS,
 539                                          16, 1,
 540                                          page_address(buffer_info->page) +
 541                                                      buffer_info->page_offset,
 542                                          igb_rx_bufsz(rx_ring), true);
 543                                }
 544                        }
 545                }
 546        }
 547
 548exit:
 549        return;
 550}
 551
 552/**
 553 *  igb_get_i2c_data - Reads the I2C SDA data bit
 554 *  @data: opaque pointer to adapter struct
 555 *
 556 *  Returns the I2C data bit value
 557 **/
 558static int igb_get_i2c_data(void *data)
 559{
 560        struct igb_adapter *adapter = (struct igb_adapter *)data;
 561        struct e1000_hw *hw = &adapter->hw;
 562        s32 i2cctl = rd32(E1000_I2CPARAMS);
 563
 564        return !!(i2cctl & E1000_I2C_DATA_IN);
 565}
 566
 567/**
 568 *  igb_set_i2c_data - Sets the I2C data bit
 569 *  @data: pointer to hardware structure
 570 *  @state: I2C data value (0 or 1) to set
 571 *
 572 *  Sets the I2C data bit
 573 **/
 574static void igb_set_i2c_data(void *data, int state)
 575{
 576        struct igb_adapter *adapter = (struct igb_adapter *)data;
 577        struct e1000_hw *hw = &adapter->hw;
 578        s32 i2cctl = rd32(E1000_I2CPARAMS);
 579
 580        if (state)
 581                i2cctl |= E1000_I2C_DATA_OUT;
 582        else
 583                i2cctl &= ~E1000_I2C_DATA_OUT;
 584
 585        i2cctl &= ~E1000_I2C_DATA_OE_N;
 586        i2cctl |= E1000_I2C_CLK_OE_N;
 587        wr32(E1000_I2CPARAMS, i2cctl);
 588        wrfl();
 589
 590}
 591
 592/**
 593 *  igb_set_i2c_clk - Sets the I2C SCL clock
 594 *  @data: pointer to hardware structure
 595 *  @state: state to set clock
 596 *
 597 *  Sets the I2C clock line to state
 598 **/
 599static void igb_set_i2c_clk(void *data, int state)
 600{
 601        struct igb_adapter *adapter = (struct igb_adapter *)data;
 602        struct e1000_hw *hw = &adapter->hw;
 603        s32 i2cctl = rd32(E1000_I2CPARAMS);
 604
 605        if (state) {
 606                i2cctl |= E1000_I2C_CLK_OUT;
 607                i2cctl &= ~E1000_I2C_CLK_OE_N;
 608        } else {
 609                i2cctl &= ~E1000_I2C_CLK_OUT;
 610                i2cctl &= ~E1000_I2C_CLK_OE_N;
 611        }
 612        wr32(E1000_I2CPARAMS, i2cctl);
 613        wrfl();
 614}
 615
 616/**
 617 *  igb_get_i2c_clk - Gets the I2C SCL clock state
 618 *  @data: pointer to hardware structure
 619 *
 620 *  Gets the I2C clock state
 621 **/
 622static int igb_get_i2c_clk(void *data)
 623{
 624        struct igb_adapter *adapter = (struct igb_adapter *)data;
 625        struct e1000_hw *hw = &adapter->hw;
 626        s32 i2cctl = rd32(E1000_I2CPARAMS);
 627
 628        return !!(i2cctl & E1000_I2C_CLK_IN);
 629}
 630
 631static const struct i2c_algo_bit_data igb_i2c_algo = {
 632        .setsda         = igb_set_i2c_data,
 633        .setscl         = igb_set_i2c_clk,
 634        .getsda         = igb_get_i2c_data,
 635        .getscl         = igb_get_i2c_clk,
 636        .udelay         = 5,
 637        .timeout        = 20,
 638};
 639
 640/**
 641 *  igb_get_hw_dev - return device
 642 *  @hw: pointer to hardware structure
 643 *
 644 *  used by hardware layer to print debugging information
 645 **/
 646struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
 647{
 648        struct igb_adapter *adapter = hw->back;
 649        return adapter->netdev;
 650}
 651
 652/**
 653 *  igb_init_module - Driver Registration Routine
 654 *
 655 *  igb_init_module is the first routine called when the driver is
 656 *  loaded. All it does is register with the PCI subsystem.
 657 **/
 658static int __init igb_init_module(void)
 659{
 660        int ret;
 661
 662        pr_info("%s\n", igb_driver_string);
 663        pr_info("%s\n", igb_copyright);
 664
 665#ifdef CONFIG_IGB_DCA
 666        dca_register_notify(&dca_notifier);
 667#endif
 668        ret = pci_register_driver(&igb_driver);
 669        return ret;
 670}
 671
 672module_init(igb_init_module);
 673
 674/**
 675 *  igb_exit_module - Driver Exit Cleanup Routine
 676 *
 677 *  igb_exit_module is called just before the driver is removed
 678 *  from memory.
 679 **/
 680static void __exit igb_exit_module(void)
 681{
 682#ifdef CONFIG_IGB_DCA
 683        dca_unregister_notify(&dca_notifier);
 684#endif
 685        pci_unregister_driver(&igb_driver);
 686}
 687
 688module_exit(igb_exit_module);
 689
 690#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
 691/**
 692 *  igb_cache_ring_register - Descriptor ring to register mapping
 693 *  @adapter: board private structure to initialize
 694 *
 695 *  Once we know the feature-set enabled for the device, we'll cache
 696 *  the register offset the descriptor ring is assigned to.
 697 **/
 698static void igb_cache_ring_register(struct igb_adapter *adapter)
 699{
 700        int i = 0, j = 0;
 701        u32 rbase_offset = adapter->vfs_allocated_count;
 702
 703        switch (adapter->hw.mac.type) {
 704        case e1000_82576:
 705                /* The queues are allocated for virtualization such that VF 0
 706                 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
 707                 * In order to avoid collision we start at the first free queue
 708                 * and continue consuming queues in the same sequence
 709                 */
 710                if (adapter->vfs_allocated_count) {
 711                        for (; i < adapter->rss_queues; i++)
 712                                adapter->rx_ring[i]->reg_idx = rbase_offset +
 713                                                               Q_IDX_82576(i);
 714                }
 715                fallthrough;
 716        case e1000_82575:
 717        case e1000_82580:
 718        case e1000_i350:
 719        case e1000_i354:
 720        case e1000_i210:
 721        case e1000_i211:
 722        default:
 723                for (; i < adapter->num_rx_queues; i++)
 724                        adapter->rx_ring[i]->reg_idx = rbase_offset + i;
 725                for (; j < adapter->num_tx_queues; j++)
 726                        adapter->tx_ring[j]->reg_idx = rbase_offset + j;
 727                break;
 728        }
 729}
 730
 731u32 igb_rd32(struct e1000_hw *hw, u32 reg)
 732{
 733        struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
 734        u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
 735        u32 value = 0;
 736
 737        if (E1000_REMOVED(hw_addr))
 738                return ~value;
 739
 740        value = readl(&hw_addr[reg]);
 741
 742        /* reads should not return all F's */
 743        if (!(~value) && (!reg || !(~readl(hw_addr)))) {
 744                struct net_device *netdev = igb->netdev;
 745                hw->hw_addr = NULL;
 746                netdev_err(netdev, "PCIe link lost\n");
 747                WARN(pci_device_is_present(igb->pdev),
 748                     "igb: Failed to read reg 0x%x!\n", reg);
 749        }
 750
 751        return value;
 752}
 753
 754/**
 755 *  igb_write_ivar - configure ivar for given MSI-X vector
 756 *  @hw: pointer to the HW structure
 757 *  @msix_vector: vector number we are allocating to a given ring
 758 *  @index: row index of IVAR register to write within IVAR table
 759 *  @offset: column offset of in IVAR, should be multiple of 8
 760 *
 761 *  This function is intended to handle the writing of the IVAR register
 762 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
 763 *  each containing an cause allocation for an Rx and Tx ring, and a
 764 *  variable number of rows depending on the number of queues supported.
 765 **/
 766static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
 767                           int index, int offset)
 768{
 769        u32 ivar = array_rd32(E1000_IVAR0, index);
 770
 771        /* clear any bits that are currently set */
 772        ivar &= ~((u32)0xFF << offset);
 773
 774        /* write vector and valid bit */
 775        ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
 776
 777        array_wr32(E1000_IVAR0, index, ivar);
 778}
 779
 780#define IGB_N0_QUEUE -1
 781static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
 782{
 783        struct igb_adapter *adapter = q_vector->adapter;
 784        struct e1000_hw *hw = &adapter->hw;
 785        int rx_queue = IGB_N0_QUEUE;
 786        int tx_queue = IGB_N0_QUEUE;
 787        u32 msixbm = 0;
 788
 789        if (q_vector->rx.ring)
 790                rx_queue = q_vector->rx.ring->reg_idx;
 791        if (q_vector->tx.ring)
 792                tx_queue = q_vector->tx.ring->reg_idx;
 793
 794        switch (hw->mac.type) {
 795        case e1000_82575:
 796                /* The 82575 assigns vectors using a bitmask, which matches the
 797                 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
 798                 * or more queues to a vector, we write the appropriate bits
 799                 * into the MSIXBM register for that vector.
 800                 */
 801                if (rx_queue > IGB_N0_QUEUE)
 802                        msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
 803                if (tx_queue > IGB_N0_QUEUE)
 804                        msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
 805                if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
 806                        msixbm |= E1000_EIMS_OTHER;
 807                array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
 808                q_vector->eims_value = msixbm;
 809                break;
 810        case e1000_82576:
 811                /* 82576 uses a table that essentially consists of 2 columns
 812                 * with 8 rows.  The ordering is column-major so we use the
 813                 * lower 3 bits as the row index, and the 4th bit as the
 814                 * column offset.
 815                 */
 816                if (rx_queue > IGB_N0_QUEUE)
 817                        igb_write_ivar(hw, msix_vector,
 818                                       rx_queue & 0x7,
 819                                       (rx_queue & 0x8) << 1);
 820                if (tx_queue > IGB_N0_QUEUE)
 821                        igb_write_ivar(hw, msix_vector,
 822                                       tx_queue & 0x7,
 823                                       ((tx_queue & 0x8) << 1) + 8);
 824                q_vector->eims_value = BIT(msix_vector);
 825                break;
 826        case e1000_82580:
 827        case e1000_i350:
 828        case e1000_i354:
 829        case e1000_i210:
 830        case e1000_i211:
 831                /* On 82580 and newer adapters the scheme is similar to 82576
 832                 * however instead of ordering column-major we have things
 833                 * ordered row-major.  So we traverse the table by using
 834                 * bit 0 as the column offset, and the remaining bits as the
 835                 * row index.
 836                 */
 837                if (rx_queue > IGB_N0_QUEUE)
 838                        igb_write_ivar(hw, msix_vector,
 839                                       rx_queue >> 1,
 840                                       (rx_queue & 0x1) << 4);
 841                if (tx_queue > IGB_N0_QUEUE)
 842                        igb_write_ivar(hw, msix_vector,
 843                                       tx_queue >> 1,
 844                                       ((tx_queue & 0x1) << 4) + 8);
 845                q_vector->eims_value = BIT(msix_vector);
 846                break;
 847        default:
 848                BUG();
 849                break;
 850        }
 851
 852        /* add q_vector eims value to global eims_enable_mask */
 853        adapter->eims_enable_mask |= q_vector->eims_value;
 854
 855        /* configure q_vector to set itr on first interrupt */
 856        q_vector->set_itr = 1;
 857}
 858
 859/**
 860 *  igb_configure_msix - Configure MSI-X hardware
 861 *  @adapter: board private structure to initialize
 862 *
 863 *  igb_configure_msix sets up the hardware to properly
 864 *  generate MSI-X interrupts.
 865 **/
 866static void igb_configure_msix(struct igb_adapter *adapter)
 867{
 868        u32 tmp;
 869        int i, vector = 0;
 870        struct e1000_hw *hw = &adapter->hw;
 871
 872        adapter->eims_enable_mask = 0;
 873
 874        /* set vector for other causes, i.e. link changes */
 875        switch (hw->mac.type) {
 876        case e1000_82575:
 877                tmp = rd32(E1000_CTRL_EXT);
 878                /* enable MSI-X PBA support*/
 879                tmp |= E1000_CTRL_EXT_PBA_CLR;
 880
 881                /* Auto-Mask interrupts upon ICR read. */
 882                tmp |= E1000_CTRL_EXT_EIAME;
 883                tmp |= E1000_CTRL_EXT_IRCA;
 884
 885                wr32(E1000_CTRL_EXT, tmp);
 886
 887                /* enable msix_other interrupt */
 888                array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
 889                adapter->eims_other = E1000_EIMS_OTHER;
 890
 891                break;
 892
 893        case e1000_82576:
 894        case e1000_82580:
 895        case e1000_i350:
 896        case e1000_i354:
 897        case e1000_i210:
 898        case e1000_i211:
 899                /* Turn on MSI-X capability first, or our settings
 900                 * won't stick.  And it will take days to debug.
 901                 */
 902                wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
 903                     E1000_GPIE_PBA | E1000_GPIE_EIAME |
 904                     E1000_GPIE_NSICR);
 905
 906                /* enable msix_other interrupt */
 907                adapter->eims_other = BIT(vector);
 908                tmp = (vector++ | E1000_IVAR_VALID) << 8;
 909
 910                wr32(E1000_IVAR_MISC, tmp);
 911                break;
 912        default:
 913                /* do nothing, since nothing else supports MSI-X */
 914                break;
 915        } /* switch (hw->mac.type) */
 916
 917        adapter->eims_enable_mask |= adapter->eims_other;
 918
 919        for (i = 0; i < adapter->num_q_vectors; i++)
 920                igb_assign_vector(adapter->q_vector[i], vector++);
 921
 922        wrfl();
 923}
 924
 925/**
 926 *  igb_request_msix - Initialize MSI-X interrupts
 927 *  @adapter: board private structure to initialize
 928 *
 929 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
 930 *  kernel.
 931 **/
 932static int igb_request_msix(struct igb_adapter *adapter)
 933{
 934        struct net_device *netdev = adapter->netdev;
 935        int i, err = 0, vector = 0, free_vector = 0;
 936
 937        err = request_irq(adapter->msix_entries[vector].vector,
 938                          igb_msix_other, 0, netdev->name, adapter);
 939        if (err)
 940                goto err_out;
 941
 942        for (i = 0; i < adapter->num_q_vectors; i++) {
 943                struct igb_q_vector *q_vector = adapter->q_vector[i];
 944
 945                vector++;
 946
 947                q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
 948
 949                if (q_vector->rx.ring && q_vector->tx.ring)
 950                        sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
 951                                q_vector->rx.ring->queue_index);
 952                else if (q_vector->tx.ring)
 953                        sprintf(q_vector->name, "%s-tx-%u", netdev->name,
 954                                q_vector->tx.ring->queue_index);
 955                else if (q_vector->rx.ring)
 956                        sprintf(q_vector->name, "%s-rx-%u", netdev->name,
 957                                q_vector->rx.ring->queue_index);
 958                else
 959                        sprintf(q_vector->name, "%s-unused", netdev->name);
 960
 961                err = request_irq(adapter->msix_entries[vector].vector,
 962                                  igb_msix_ring, 0, q_vector->name,
 963                                  q_vector);
 964                if (err)
 965                        goto err_free;
 966        }
 967
 968        igb_configure_msix(adapter);
 969        return 0;
 970
 971err_free:
 972        /* free already assigned IRQs */
 973        free_irq(adapter->msix_entries[free_vector++].vector, adapter);
 974
 975        vector--;
 976        for (i = 0; i < vector; i++) {
 977                free_irq(adapter->msix_entries[free_vector++].vector,
 978                         adapter->q_vector[i]);
 979        }
 980err_out:
 981        return err;
 982}
 983
 984/**
 985 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
 986 *  @adapter: board private structure to initialize
 987 *  @v_idx: Index of vector to be freed
 988 *
 989 *  This function frees the memory allocated to the q_vector.
 990 **/
 991static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
 992{
 993        struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
 994
 995        adapter->q_vector[v_idx] = NULL;
 996
 997        /* igb_get_stats64() might access the rings on this vector,
 998         * we must wait a grace period before freeing it.
 999         */
1000        if (q_vector)
1001                kfree_rcu(q_vector, rcu);
1002}
1003
1004/**
1005 *  igb_reset_q_vector - Reset config for interrupt vector
1006 *  @adapter: board private structure to initialize
1007 *  @v_idx: Index of vector to be reset
1008 *
1009 *  If NAPI is enabled it will delete any references to the
1010 *  NAPI struct. This is preparation for igb_free_q_vector.
1011 **/
1012static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1013{
1014        struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1015
1016        /* Coming from igb_set_interrupt_capability, the vectors are not yet
1017         * allocated. So, q_vector is NULL so we should stop here.
1018         */
1019        if (!q_vector)
1020                return;
1021
1022        if (q_vector->tx.ring)
1023                adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1024
1025        if (q_vector->rx.ring)
1026                adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1027
1028        netif_napi_del(&q_vector->napi);
1029
1030}
1031
1032static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1033{
1034        int v_idx = adapter->num_q_vectors;
1035
1036        if (adapter->flags & IGB_FLAG_HAS_MSIX)
1037                pci_disable_msix(adapter->pdev);
1038        else if (adapter->flags & IGB_FLAG_HAS_MSI)
1039                pci_disable_msi(adapter->pdev);
1040
1041        while (v_idx--)
1042                igb_reset_q_vector(adapter, v_idx);
1043}
1044
1045/**
1046 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1047 *  @adapter: board private structure to initialize
1048 *
1049 *  This function frees the memory allocated to the q_vectors.  In addition if
1050 *  NAPI is enabled it will delete any references to the NAPI struct prior
1051 *  to freeing the q_vector.
1052 **/
1053static void igb_free_q_vectors(struct igb_adapter *adapter)
1054{
1055        int v_idx = adapter->num_q_vectors;
1056
1057        adapter->num_tx_queues = 0;
1058        adapter->num_rx_queues = 0;
1059        adapter->num_q_vectors = 0;
1060
1061        while (v_idx--) {
1062                igb_reset_q_vector(adapter, v_idx);
1063                igb_free_q_vector(adapter, v_idx);
1064        }
1065}
1066
1067/**
1068 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1069 *  @adapter: board private structure to initialize
1070 *
1071 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1072 *  MSI-X interrupts allocated.
1073 */
1074static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1075{
1076        igb_free_q_vectors(adapter);
1077        igb_reset_interrupt_capability(adapter);
1078}
1079
1080/**
1081 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1082 *  @adapter: board private structure to initialize
1083 *  @msix: boolean value of MSIX capability
1084 *
1085 *  Attempt to configure interrupts using the best available
1086 *  capabilities of the hardware and kernel.
1087 **/
1088static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1089{
1090        int err;
1091        int numvecs, i;
1092
1093        if (!msix)
1094                goto msi_only;
1095        adapter->flags |= IGB_FLAG_HAS_MSIX;
1096
1097        /* Number of supported queues. */
1098        adapter->num_rx_queues = adapter->rss_queues;
1099        if (adapter->vfs_allocated_count)
1100                adapter->num_tx_queues = 1;
1101        else
1102                adapter->num_tx_queues = adapter->rss_queues;
1103
1104        /* start with one vector for every Rx queue */
1105        numvecs = adapter->num_rx_queues;
1106
1107        /* if Tx handler is separate add 1 for every Tx queue */
1108        if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1109                numvecs += adapter->num_tx_queues;
1110
1111        /* store the number of vectors reserved for queues */
1112        adapter->num_q_vectors = numvecs;
1113
1114        /* add 1 vector for link status interrupts */
1115        numvecs++;
1116        for (i = 0; i < numvecs; i++)
1117                adapter->msix_entries[i].entry = i;
1118
1119        err = pci_enable_msix_range(adapter->pdev,
1120                                    adapter->msix_entries,
1121                                    numvecs,
1122                                    numvecs);
1123        if (err > 0)
1124                return;
1125
1126        igb_reset_interrupt_capability(adapter);
1127
1128        /* If we can't do MSI-X, try MSI */
1129msi_only:
1130        adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1131#ifdef CONFIG_PCI_IOV
1132        /* disable SR-IOV for non MSI-X configurations */
1133        if (adapter->vf_data) {
1134                struct e1000_hw *hw = &adapter->hw;
1135                /* disable iov and allow time for transactions to clear */
1136                pci_disable_sriov(adapter->pdev);
1137                msleep(500);
1138
1139                kfree(adapter->vf_mac_list);
1140                adapter->vf_mac_list = NULL;
1141                kfree(adapter->vf_data);
1142                adapter->vf_data = NULL;
1143                wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1144                wrfl();
1145                msleep(100);
1146                dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1147        }
1148#endif
1149        adapter->vfs_allocated_count = 0;
1150        adapter->rss_queues = 1;
1151        adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1152        adapter->num_rx_queues = 1;
1153        adapter->num_tx_queues = 1;
1154        adapter->num_q_vectors = 1;
1155        if (!pci_enable_msi(adapter->pdev))
1156                adapter->flags |= IGB_FLAG_HAS_MSI;
1157}
1158
1159static void igb_add_ring(struct igb_ring *ring,
1160                         struct igb_ring_container *head)
1161{
1162        head->ring = ring;
1163        head->count++;
1164}
1165
1166/**
1167 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1168 *  @adapter: board private structure to initialize
1169 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1170 *  @v_idx: index of vector in adapter struct
1171 *  @txr_count: total number of Tx rings to allocate
1172 *  @txr_idx: index of first Tx ring to allocate
1173 *  @rxr_count: total number of Rx rings to allocate
1174 *  @rxr_idx: index of first Rx ring to allocate
1175 *
1176 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1177 **/
1178static int igb_alloc_q_vector(struct igb_adapter *adapter,
1179                              int v_count, int v_idx,
1180                              int txr_count, int txr_idx,
1181                              int rxr_count, int rxr_idx)
1182{
1183        struct igb_q_vector *q_vector;
1184        struct igb_ring *ring;
1185        int ring_count;
1186        size_t size;
1187
1188        /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1189        if (txr_count > 1 || rxr_count > 1)
1190                return -ENOMEM;
1191
1192        ring_count = txr_count + rxr_count;
1193        size = struct_size(q_vector, ring, ring_count);
1194
1195        /* allocate q_vector and rings */
1196        q_vector = adapter->q_vector[v_idx];
1197        if (!q_vector) {
1198                q_vector = kzalloc(size, GFP_KERNEL);
1199        } else if (size > ksize(q_vector)) {
1200                kfree_rcu(q_vector, rcu);
1201                q_vector = kzalloc(size, GFP_KERNEL);
1202        } else {
1203                memset(q_vector, 0, size);
1204        }
1205        if (!q_vector)
1206                return -ENOMEM;
1207
1208        /* initialize NAPI */
1209        netif_napi_add(adapter->netdev, &q_vector->napi,
1210                       igb_poll, 64);
1211
1212        /* tie q_vector and adapter together */
1213        adapter->q_vector[v_idx] = q_vector;
1214        q_vector->adapter = adapter;
1215
1216        /* initialize work limits */
1217        q_vector->tx.work_limit = adapter->tx_work_limit;
1218
1219        /* initialize ITR configuration */
1220        q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1221        q_vector->itr_val = IGB_START_ITR;
1222
1223        /* initialize pointer to rings */
1224        ring = q_vector->ring;
1225
1226        /* intialize ITR */
1227        if (rxr_count) {
1228                /* rx or rx/tx vector */
1229                if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1230                        q_vector->itr_val = adapter->rx_itr_setting;
1231        } else {
1232                /* tx only vector */
1233                if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1234                        q_vector->itr_val = adapter->tx_itr_setting;
1235        }
1236
1237        if (txr_count) {
1238                /* assign generic ring traits */
1239                ring->dev = &adapter->pdev->dev;
1240                ring->netdev = adapter->netdev;
1241
1242                /* configure backlink on ring */
1243                ring->q_vector = q_vector;
1244
1245                /* update q_vector Tx values */
1246                igb_add_ring(ring, &q_vector->tx);
1247
1248                /* For 82575, context index must be unique per ring. */
1249                if (adapter->hw.mac.type == e1000_82575)
1250                        set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1251
1252                /* apply Tx specific ring traits */
1253                ring->count = adapter->tx_ring_count;
1254                ring->queue_index = txr_idx;
1255
1256                ring->cbs_enable = false;
1257                ring->idleslope = 0;
1258                ring->sendslope = 0;
1259                ring->hicredit = 0;
1260                ring->locredit = 0;
1261
1262                u64_stats_init(&ring->tx_syncp);
1263                u64_stats_init(&ring->tx_syncp2);
1264
1265                /* assign ring to adapter */
1266                adapter->tx_ring[txr_idx] = ring;
1267
1268                /* push pointer to next ring */
1269                ring++;
1270        }
1271
1272        if (rxr_count) {
1273                /* assign generic ring traits */
1274                ring->dev = &adapter->pdev->dev;
1275                ring->netdev = adapter->netdev;
1276
1277                /* configure backlink on ring */
1278                ring->q_vector = q_vector;
1279
1280                /* update q_vector Rx values */
1281                igb_add_ring(ring, &q_vector->rx);
1282
1283                /* set flag indicating ring supports SCTP checksum offload */
1284                if (adapter->hw.mac.type >= e1000_82576)
1285                        set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1286
1287                /* On i350, i354, i210, and i211, loopback VLAN packets
1288                 * have the tag byte-swapped.
1289                 */
1290                if (adapter->hw.mac.type >= e1000_i350)
1291                        set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1292
1293                /* apply Rx specific ring traits */
1294                ring->count = adapter->rx_ring_count;
1295                ring->queue_index = rxr_idx;
1296
1297                u64_stats_init(&ring->rx_syncp);
1298
1299                /* assign ring to adapter */
1300                adapter->rx_ring[rxr_idx] = ring;
1301        }
1302
1303        return 0;
1304}
1305
1306
1307/**
1308 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1309 *  @adapter: board private structure to initialize
1310 *
1311 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1312 *  return -ENOMEM.
1313 **/
1314static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1315{
1316        int q_vectors = adapter->num_q_vectors;
1317        int rxr_remaining = adapter->num_rx_queues;
1318        int txr_remaining = adapter->num_tx_queues;
1319        int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1320        int err;
1321
1322        if (q_vectors >= (rxr_remaining + txr_remaining)) {
1323                for (; rxr_remaining; v_idx++) {
1324                        err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1325                                                 0, 0, 1, rxr_idx);
1326
1327                        if (err)
1328                                goto err_out;
1329
1330                        /* update counts and index */
1331                        rxr_remaining--;
1332                        rxr_idx++;
1333                }
1334        }
1335
1336        for (; v_idx < q_vectors; v_idx++) {
1337                int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1338                int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1339
1340                err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1341                                         tqpv, txr_idx, rqpv, rxr_idx);
1342
1343                if (err)
1344                        goto err_out;
1345
1346                /* update counts and index */
1347                rxr_remaining -= rqpv;
1348                txr_remaining -= tqpv;
1349                rxr_idx++;
1350                txr_idx++;
1351        }
1352
1353        return 0;
1354
1355err_out:
1356        adapter->num_tx_queues = 0;
1357        adapter->num_rx_queues = 0;
1358        adapter->num_q_vectors = 0;
1359
1360        while (v_idx--)
1361                igb_free_q_vector(adapter, v_idx);
1362
1363        return -ENOMEM;
1364}
1365
1366/**
1367 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1368 *  @adapter: board private structure to initialize
1369 *  @msix: boolean value of MSIX capability
1370 *
1371 *  This function initializes the interrupts and allocates all of the queues.
1372 **/
1373static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1374{
1375        struct pci_dev *pdev = adapter->pdev;
1376        int err;
1377
1378        igb_set_interrupt_capability(adapter, msix);
1379
1380        err = igb_alloc_q_vectors(adapter);
1381        if (err) {
1382                dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1383                goto err_alloc_q_vectors;
1384        }
1385
1386        igb_cache_ring_register(adapter);
1387
1388        return 0;
1389
1390err_alloc_q_vectors:
1391        igb_reset_interrupt_capability(adapter);
1392        return err;
1393}
1394
1395/**
1396 *  igb_request_irq - initialize interrupts
1397 *  @adapter: board private structure to initialize
1398 *
1399 *  Attempts to configure interrupts using the best available
1400 *  capabilities of the hardware and kernel.
1401 **/
1402static int igb_request_irq(struct igb_adapter *adapter)
1403{
1404        struct net_device *netdev = adapter->netdev;
1405        struct pci_dev *pdev = adapter->pdev;
1406        int err = 0;
1407
1408        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1409                err = igb_request_msix(adapter);
1410                if (!err)
1411                        goto request_done;
1412                /* fall back to MSI */
1413                igb_free_all_tx_resources(adapter);
1414                igb_free_all_rx_resources(adapter);
1415
1416                igb_clear_interrupt_scheme(adapter);
1417                err = igb_init_interrupt_scheme(adapter, false);
1418                if (err)
1419                        goto request_done;
1420
1421                igb_setup_all_tx_resources(adapter);
1422                igb_setup_all_rx_resources(adapter);
1423                igb_configure(adapter);
1424        }
1425
1426        igb_assign_vector(adapter->q_vector[0], 0);
1427
1428        if (adapter->flags & IGB_FLAG_HAS_MSI) {
1429                err = request_irq(pdev->irq, igb_intr_msi, 0,
1430                                  netdev->name, adapter);
1431                if (!err)
1432                        goto request_done;
1433
1434                /* fall back to legacy interrupts */
1435                igb_reset_interrupt_capability(adapter);
1436                adapter->flags &= ~IGB_FLAG_HAS_MSI;
1437        }
1438
1439        err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1440                          netdev->name, adapter);
1441
1442        if (err)
1443                dev_err(&pdev->dev, "Error %d getting interrupt\n",
1444                        err);
1445
1446request_done:
1447        return err;
1448}
1449
1450static void igb_free_irq(struct igb_adapter *adapter)
1451{
1452        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1453                int vector = 0, i;
1454
1455                free_irq(adapter->msix_entries[vector++].vector, adapter);
1456
1457                for (i = 0; i < adapter->num_q_vectors; i++)
1458                        free_irq(adapter->msix_entries[vector++].vector,
1459                                 adapter->q_vector[i]);
1460        } else {
1461                free_irq(adapter->pdev->irq, adapter);
1462        }
1463}
1464
1465/**
1466 *  igb_irq_disable - Mask off interrupt generation on the NIC
1467 *  @adapter: board private structure
1468 **/
1469static void igb_irq_disable(struct igb_adapter *adapter)
1470{
1471        struct e1000_hw *hw = &adapter->hw;
1472
1473        /* we need to be careful when disabling interrupts.  The VFs are also
1474         * mapped into these registers and so clearing the bits can cause
1475         * issues on the VF drivers so we only need to clear what we set
1476         */
1477        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1478                u32 regval = rd32(E1000_EIAM);
1479
1480                wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1481                wr32(E1000_EIMC, adapter->eims_enable_mask);
1482                regval = rd32(E1000_EIAC);
1483                wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1484        }
1485
1486        wr32(E1000_IAM, 0);
1487        wr32(E1000_IMC, ~0);
1488        wrfl();
1489        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1490                int i;
1491
1492                for (i = 0; i < adapter->num_q_vectors; i++)
1493                        synchronize_irq(adapter->msix_entries[i].vector);
1494        } else {
1495                synchronize_irq(adapter->pdev->irq);
1496        }
1497}
1498
1499/**
1500 *  igb_irq_enable - Enable default interrupt generation settings
1501 *  @adapter: board private structure
1502 **/
1503static void igb_irq_enable(struct igb_adapter *adapter)
1504{
1505        struct e1000_hw *hw = &adapter->hw;
1506
1507        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1508                u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1509                u32 regval = rd32(E1000_EIAC);
1510
1511                wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1512                regval = rd32(E1000_EIAM);
1513                wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1514                wr32(E1000_EIMS, adapter->eims_enable_mask);
1515                if (adapter->vfs_allocated_count) {
1516                        wr32(E1000_MBVFIMR, 0xFF);
1517                        ims |= E1000_IMS_VMMB;
1518                }
1519                wr32(E1000_IMS, ims);
1520        } else {
1521                wr32(E1000_IMS, IMS_ENABLE_MASK |
1522                                E1000_IMS_DRSTA);
1523                wr32(E1000_IAM, IMS_ENABLE_MASK |
1524                                E1000_IMS_DRSTA);
1525        }
1526}
1527
1528static void igb_update_mng_vlan(struct igb_adapter *adapter)
1529{
1530        struct e1000_hw *hw = &adapter->hw;
1531        u16 pf_id = adapter->vfs_allocated_count;
1532        u16 vid = adapter->hw.mng_cookie.vlan_id;
1533        u16 old_vid = adapter->mng_vlan_id;
1534
1535        if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1536                /* add VID to filter table */
1537                igb_vfta_set(hw, vid, pf_id, true, true);
1538                adapter->mng_vlan_id = vid;
1539        } else {
1540                adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1541        }
1542
1543        if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1544            (vid != old_vid) &&
1545            !test_bit(old_vid, adapter->active_vlans)) {
1546                /* remove VID from filter table */
1547                igb_vfta_set(hw, vid, pf_id, false, true);
1548        }
1549}
1550
1551/**
1552 *  igb_release_hw_control - release control of the h/w to f/w
1553 *  @adapter: address of board private structure
1554 *
1555 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1556 *  For ASF and Pass Through versions of f/w this means that the
1557 *  driver is no longer loaded.
1558 **/
1559static void igb_release_hw_control(struct igb_adapter *adapter)
1560{
1561        struct e1000_hw *hw = &adapter->hw;
1562        u32 ctrl_ext;
1563
1564        /* Let firmware take over control of h/w */
1565        ctrl_ext = rd32(E1000_CTRL_EXT);
1566        wr32(E1000_CTRL_EXT,
1567                        ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1568}
1569
1570/**
1571 *  igb_get_hw_control - get control of the h/w from f/w
1572 *  @adapter: address of board private structure
1573 *
1574 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1575 *  For ASF and Pass Through versions of f/w this means that
1576 *  the driver is loaded.
1577 **/
1578static void igb_get_hw_control(struct igb_adapter *adapter)
1579{
1580        struct e1000_hw *hw = &adapter->hw;
1581        u32 ctrl_ext;
1582
1583        /* Let firmware know the driver has taken over */
1584        ctrl_ext = rd32(E1000_CTRL_EXT);
1585        wr32(E1000_CTRL_EXT,
1586                        ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1587}
1588
1589static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1590{
1591        struct net_device *netdev = adapter->netdev;
1592        struct e1000_hw *hw = &adapter->hw;
1593
1594        WARN_ON(hw->mac.type != e1000_i210);
1595
1596        if (enable)
1597                adapter->flags |= IGB_FLAG_FQTSS;
1598        else
1599                adapter->flags &= ~IGB_FLAG_FQTSS;
1600
1601        if (netif_running(netdev))
1602                schedule_work(&adapter->reset_task);
1603}
1604
1605static bool is_fqtss_enabled(struct igb_adapter *adapter)
1606{
1607        return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1608}
1609
1610static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1611                                   enum tx_queue_prio prio)
1612{
1613        u32 val;
1614
1615        WARN_ON(hw->mac.type != e1000_i210);
1616        WARN_ON(queue < 0 || queue > 4);
1617
1618        val = rd32(E1000_I210_TXDCTL(queue));
1619
1620        if (prio == TX_QUEUE_PRIO_HIGH)
1621                val |= E1000_TXDCTL_PRIORITY;
1622        else
1623                val &= ~E1000_TXDCTL_PRIORITY;
1624
1625        wr32(E1000_I210_TXDCTL(queue), val);
1626}
1627
1628static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1629{
1630        u32 val;
1631
1632        WARN_ON(hw->mac.type != e1000_i210);
1633        WARN_ON(queue < 0 || queue > 1);
1634
1635        val = rd32(E1000_I210_TQAVCC(queue));
1636
1637        if (mode == QUEUE_MODE_STREAM_RESERVATION)
1638                val |= E1000_TQAVCC_QUEUEMODE;
1639        else
1640                val &= ~E1000_TQAVCC_QUEUEMODE;
1641
1642        wr32(E1000_I210_TQAVCC(queue), val);
1643}
1644
1645static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1646{
1647        int i;
1648
1649        for (i = 0; i < adapter->num_tx_queues; i++) {
1650                if (adapter->tx_ring[i]->cbs_enable)
1651                        return true;
1652        }
1653
1654        return false;
1655}
1656
1657static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1658{
1659        int i;
1660
1661        for (i = 0; i < adapter->num_tx_queues; i++) {
1662                if (adapter->tx_ring[i]->launchtime_enable)
1663                        return true;
1664        }
1665
1666        return false;
1667}
1668
1669/**
1670 *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1671 *  @adapter: pointer to adapter struct
1672 *  @queue: queue number
1673 *
1674 *  Configure CBS and Launchtime for a given hardware queue.
1675 *  Parameters are retrieved from the correct Tx ring, so
1676 *  igb_save_cbs_params() and igb_save_txtime_params() should be used
1677 *  for setting those correctly prior to this function being called.
1678 **/
1679static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1680{
1681        struct igb_ring *ring = adapter->tx_ring[queue];
1682        struct net_device *netdev = adapter->netdev;
1683        struct e1000_hw *hw = &adapter->hw;
1684        u32 tqavcc, tqavctrl;
1685        u16 value;
1686
1687        WARN_ON(hw->mac.type != e1000_i210);
1688        WARN_ON(queue < 0 || queue > 1);
1689
1690        /* If any of the Qav features is enabled, configure queues as SR and
1691         * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1692         * as SP.
1693         */
1694        if (ring->cbs_enable || ring->launchtime_enable) {
1695                set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1696                set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1697        } else {
1698                set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1699                set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1700        }
1701
1702        /* If CBS is enabled, set DataTranARB and config its parameters. */
1703        if (ring->cbs_enable || queue == 0) {
1704                /* i210 does not allow the queue 0 to be in the Strict
1705                 * Priority mode while the Qav mode is enabled, so,
1706                 * instead of disabling strict priority mode, we give
1707                 * queue 0 the maximum of credits possible.
1708                 *
1709                 * See section 8.12.19 of the i210 datasheet, "Note:
1710                 * Queue0 QueueMode must be set to 1b when
1711                 * TransmitMode is set to Qav."
1712                 */
1713                if (queue == 0 && !ring->cbs_enable) {
1714                        /* max "linkspeed" idleslope in kbps */
1715                        ring->idleslope = 1000000;
1716                        ring->hicredit = ETH_FRAME_LEN;
1717                }
1718
1719                /* Always set data transfer arbitration to credit-based
1720                 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1721                 * the queues.
1722                 */
1723                tqavctrl = rd32(E1000_I210_TQAVCTRL);
1724                tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1725                wr32(E1000_I210_TQAVCTRL, tqavctrl);
1726
1727                /* According to i210 datasheet section 7.2.7.7, we should set
1728                 * the 'idleSlope' field from TQAVCC register following the
1729                 * equation:
1730                 *
1731                 * For 100 Mbps link speed:
1732                 *
1733                 *     value = BW * 0x7735 * 0.2                          (E1)
1734                 *
1735                 * For 1000Mbps link speed:
1736                 *
1737                 *     value = BW * 0x7735 * 2                            (E2)
1738                 *
1739                 * E1 and E2 can be merged into one equation as shown below.
1740                 * Note that 'link-speed' is in Mbps.
1741                 *
1742                 *     value = BW * 0x7735 * 2 * link-speed
1743                 *                           --------------               (E3)
1744                 *                                1000
1745                 *
1746                 * 'BW' is the percentage bandwidth out of full link speed
1747                 * which can be found with the following equation. Note that
1748                 * idleSlope here is the parameter from this function which
1749                 * is in kbps.
1750                 *
1751                 *     BW =     idleSlope
1752                 *          -----------------                             (E4)
1753                 *          link-speed * 1000
1754                 *
1755                 * That said, we can come up with a generic equation to
1756                 * calculate the value we should set it TQAVCC register by
1757                 * replacing 'BW' in E3 by E4. The resulting equation is:
1758                 *
1759                 * value =     idleSlope     * 0x7735 * 2 * link-speed
1760                 *         -----------------            --------------    (E5)
1761                 *         link-speed * 1000                 1000
1762                 *
1763                 * 'link-speed' is present in both sides of the fraction so
1764                 * it is canceled out. The final equation is the following:
1765                 *
1766                 *     value = idleSlope * 61034
1767                 *             -----------------                          (E6)
1768                 *                  1000000
1769                 *
1770                 * NOTE: For i210, given the above, we can see that idleslope
1771                 *       is represented in 16.38431 kbps units by the value at
1772                 *       the TQAVCC register (1Gbps / 61034), which reduces
1773                 *       the granularity for idleslope increments.
1774                 *       For instance, if you want to configure a 2576kbps
1775                 *       idleslope, the value to be written on the register
1776                 *       would have to be 157.23. If rounded down, you end
1777                 *       up with less bandwidth available than originally
1778                 *       required (~2572 kbps). If rounded up, you end up
1779                 *       with a higher bandwidth (~2589 kbps). Below the
1780                 *       approach we take is to always round up the
1781                 *       calculated value, so the resulting bandwidth might
1782                 *       be slightly higher for some configurations.
1783                 */
1784                value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1785
1786                tqavcc = rd32(E1000_I210_TQAVCC(queue));
1787                tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1788                tqavcc |= value;
1789                wr32(E1000_I210_TQAVCC(queue), tqavcc);
1790
1791                wr32(E1000_I210_TQAVHC(queue),
1792                     0x80000000 + ring->hicredit * 0x7735);
1793        } else {
1794
1795                /* Set idleSlope to zero. */
1796                tqavcc = rd32(E1000_I210_TQAVCC(queue));
1797                tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1798                wr32(E1000_I210_TQAVCC(queue), tqavcc);
1799
1800                /* Set hiCredit to zero. */
1801                wr32(E1000_I210_TQAVHC(queue), 0);
1802
1803                /* If CBS is not enabled for any queues anymore, then return to
1804                 * the default state of Data Transmission Arbitration on
1805                 * TQAVCTRL.
1806                 */
1807                if (!is_any_cbs_enabled(adapter)) {
1808                        tqavctrl = rd32(E1000_I210_TQAVCTRL);
1809                        tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1810                        wr32(E1000_I210_TQAVCTRL, tqavctrl);
1811                }
1812        }
1813
1814        /* If LaunchTime is enabled, set DataTranTIM. */
1815        if (ring->launchtime_enable) {
1816                /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1817                 * for any of the SR queues, and configure fetchtime delta.
1818                 * XXX NOTE:
1819                 *     - LaunchTime will be enabled for all SR queues.
1820                 *     - A fixed offset can be added relative to the launch
1821                 *       time of all packets if configured at reg LAUNCH_OS0.
1822                 *       We are keeping it as 0 for now (default value).
1823                 */
1824                tqavctrl = rd32(E1000_I210_TQAVCTRL);
1825                tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1826                       E1000_TQAVCTRL_FETCHTIME_DELTA;
1827                wr32(E1000_I210_TQAVCTRL, tqavctrl);
1828        } else {
1829                /* If Launchtime is not enabled for any SR queues anymore,
1830                 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1831                 * effectively disabling Launchtime.
1832                 */
1833                if (!is_any_txtime_enabled(adapter)) {
1834                        tqavctrl = rd32(E1000_I210_TQAVCTRL);
1835                        tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1836                        tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1837                        wr32(E1000_I210_TQAVCTRL, tqavctrl);
1838                }
1839        }
1840
1841        /* XXX: In i210 controller the sendSlope and loCredit parameters from
1842         * CBS are not configurable by software so we don't do any 'controller
1843         * configuration' in respect to these parameters.
1844         */
1845
1846        netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1847                   ring->cbs_enable ? "enabled" : "disabled",
1848                   ring->launchtime_enable ? "enabled" : "disabled",
1849                   queue,
1850                   ring->idleslope, ring->sendslope,
1851                   ring->hicredit, ring->locredit);
1852}
1853
1854static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1855                                  bool enable)
1856{
1857        struct igb_ring *ring;
1858
1859        if (queue < 0 || queue > adapter->num_tx_queues)
1860                return -EINVAL;
1861
1862        ring = adapter->tx_ring[queue];
1863        ring->launchtime_enable = enable;
1864
1865        return 0;
1866}
1867
1868static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1869                               bool enable, int idleslope, int sendslope,
1870                               int hicredit, int locredit)
1871{
1872        struct igb_ring *ring;
1873
1874        if (queue < 0 || queue > adapter->num_tx_queues)
1875                return -EINVAL;
1876
1877        ring = adapter->tx_ring[queue];
1878
1879        ring->cbs_enable = enable;
1880        ring->idleslope = idleslope;
1881        ring->sendslope = sendslope;
1882        ring->hicredit = hicredit;
1883        ring->locredit = locredit;
1884
1885        return 0;
1886}
1887
1888/**
1889 *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1890 *  @adapter: pointer to adapter struct
1891 *
1892 *  Configure TQAVCTRL register switching the controller's Tx mode
1893 *  if FQTSS mode is enabled or disabled. Additionally, will issue
1894 *  a call to igb_config_tx_modes() per queue so any previously saved
1895 *  Tx parameters are applied.
1896 **/
1897static void igb_setup_tx_mode(struct igb_adapter *adapter)
1898{
1899        struct net_device *netdev = adapter->netdev;
1900        struct e1000_hw *hw = &adapter->hw;
1901        u32 val;
1902
1903        /* Only i210 controller supports changing the transmission mode. */
1904        if (hw->mac.type != e1000_i210)
1905                return;
1906
1907        if (is_fqtss_enabled(adapter)) {
1908                int i, max_queue;
1909
1910                /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1911                 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1912                 * so SP queues wait for SR ones.
1913                 */
1914                val = rd32(E1000_I210_TQAVCTRL);
1915                val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1916                val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1917                wr32(E1000_I210_TQAVCTRL, val);
1918
1919                /* Configure Tx and Rx packet buffers sizes as described in
1920                 * i210 datasheet section 7.2.7.7.
1921                 */
1922                val = rd32(E1000_TXPBS);
1923                val &= ~I210_TXPBSIZE_MASK;
1924                val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1925                        I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1926                wr32(E1000_TXPBS, val);
1927
1928                val = rd32(E1000_RXPBS);
1929                val &= ~I210_RXPBSIZE_MASK;
1930                val |= I210_RXPBSIZE_PB_30KB;
1931                wr32(E1000_RXPBS, val);
1932
1933                /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1934                 * register should not exceed the buffer size programmed in
1935                 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1936                 * so according to the datasheet we should set MAX_TPKT_SIZE to
1937                 * 4kB / 64.
1938                 *
1939                 * However, when we do so, no frame from queue 2 and 3 are
1940                 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
1941                 * or _equal_ to the buffer size programmed in TXPBS. For this
1942                 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1943                 */
1944                val = (4096 - 1) / 64;
1945                wr32(E1000_I210_DTXMXPKTSZ, val);
1946
1947                /* Since FQTSS mode is enabled, apply any CBS configuration
1948                 * previously set. If no previous CBS configuration has been
1949                 * done, then the initial configuration is applied, which means
1950                 * CBS is disabled.
1951                 */
1952                max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1953                            adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1954
1955                for (i = 0; i < max_queue; i++) {
1956                        igb_config_tx_modes(adapter, i);
1957                }
1958        } else {
1959                wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1960                wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1961                wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1962
1963                val = rd32(E1000_I210_TQAVCTRL);
1964                /* According to Section 8.12.21, the other flags we've set when
1965                 * enabling FQTSS are not relevant when disabling FQTSS so we
1966                 * don't set they here.
1967                 */
1968                val &= ~E1000_TQAVCTRL_XMIT_MODE;
1969                wr32(E1000_I210_TQAVCTRL, val);
1970        }
1971
1972        netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1973                   "enabled" : "disabled");
1974}
1975
1976/**
1977 *  igb_configure - configure the hardware for RX and TX
1978 *  @adapter: private board structure
1979 **/
1980static void igb_configure(struct igb_adapter *adapter)
1981{
1982        struct net_device *netdev = adapter->netdev;
1983        int i;
1984
1985        igb_get_hw_control(adapter);
1986        igb_set_rx_mode(netdev);
1987        igb_setup_tx_mode(adapter);
1988
1989        igb_restore_vlan(adapter);
1990
1991        igb_setup_tctl(adapter);
1992        igb_setup_mrqc(adapter);
1993        igb_setup_rctl(adapter);
1994
1995        igb_nfc_filter_restore(adapter);
1996        igb_configure_tx(adapter);
1997        igb_configure_rx(adapter);
1998
1999        igb_rx_fifo_flush_82575(&adapter->hw);
2000
2001        /* call igb_desc_unused which always leaves
2002         * at least 1 descriptor unused to make sure
2003         * next_to_use != next_to_clean
2004         */
2005        for (i = 0; i < adapter->num_rx_queues; i++) {
2006                struct igb_ring *ring = adapter->rx_ring[i];
2007                igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2008        }
2009}
2010
2011/**
2012 *  igb_power_up_link - Power up the phy/serdes link
2013 *  @adapter: address of board private structure
2014 **/
2015void igb_power_up_link(struct igb_adapter *adapter)
2016{
2017        igb_reset_phy(&adapter->hw);
2018
2019        if (adapter->hw.phy.media_type == e1000_media_type_copper)
2020                igb_power_up_phy_copper(&adapter->hw);
2021        else
2022                igb_power_up_serdes_link_82575(&adapter->hw);
2023
2024        igb_setup_link(&adapter->hw);
2025}
2026
2027/**
2028 *  igb_power_down_link - Power down the phy/serdes link
2029 *  @adapter: address of board private structure
2030 */
2031static void igb_power_down_link(struct igb_adapter *adapter)
2032{
2033        if (adapter->hw.phy.media_type == e1000_media_type_copper)
2034                igb_power_down_phy_copper_82575(&adapter->hw);
2035        else
2036                igb_shutdown_serdes_link_82575(&adapter->hw);
2037}
2038
2039/**
2040 * igb_check_swap_media -  Detect and switch function for Media Auto Sense
2041 * @adapter: address of the board private structure
2042 **/
2043static void igb_check_swap_media(struct igb_adapter *adapter)
2044{
2045        struct e1000_hw *hw = &adapter->hw;
2046        u32 ctrl_ext, connsw;
2047        bool swap_now = false;
2048
2049        ctrl_ext = rd32(E1000_CTRL_EXT);
2050        connsw = rd32(E1000_CONNSW);
2051
2052        /* need to live swap if current media is copper and we have fiber/serdes
2053         * to go to.
2054         */
2055
2056        if ((hw->phy.media_type == e1000_media_type_copper) &&
2057            (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2058                swap_now = true;
2059        } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2060                   !(connsw & E1000_CONNSW_SERDESD)) {
2061                /* copper signal takes time to appear */
2062                if (adapter->copper_tries < 4) {
2063                        adapter->copper_tries++;
2064                        connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2065                        wr32(E1000_CONNSW, connsw);
2066                        return;
2067                } else {
2068                        adapter->copper_tries = 0;
2069                        if ((connsw & E1000_CONNSW_PHYSD) &&
2070                            (!(connsw & E1000_CONNSW_PHY_PDN))) {
2071                                swap_now = true;
2072                                connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2073                                wr32(E1000_CONNSW, connsw);
2074                        }
2075                }
2076        }
2077
2078        if (!swap_now)
2079                return;
2080
2081        switch (hw->phy.media_type) {
2082        case e1000_media_type_copper:
2083                netdev_info(adapter->netdev,
2084                        "MAS: changing media to fiber/serdes\n");
2085                ctrl_ext |=
2086                        E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2087                adapter->flags |= IGB_FLAG_MEDIA_RESET;
2088                adapter->copper_tries = 0;
2089                break;
2090        case e1000_media_type_internal_serdes:
2091        case e1000_media_type_fiber:
2092                netdev_info(adapter->netdev,
2093                        "MAS: changing media to copper\n");
2094                ctrl_ext &=
2095                        ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2096                adapter->flags |= IGB_FLAG_MEDIA_RESET;
2097                break;
2098        default:
2099                /* shouldn't get here during regular operation */
2100                netdev_err(adapter->netdev,
2101                        "AMS: Invalid media type found, returning\n");
2102                break;
2103        }
2104        wr32(E1000_CTRL_EXT, ctrl_ext);
2105}
2106
2107/**
2108 *  igb_up - Open the interface and prepare it to handle traffic
2109 *  @adapter: board private structure
2110 **/
2111int igb_up(struct igb_adapter *adapter)
2112{
2113        struct e1000_hw *hw = &adapter->hw;
2114        int i;
2115
2116        /* hardware has been reset, we need to reload some things */
2117        igb_configure(adapter);
2118
2119        clear_bit(__IGB_DOWN, &adapter->state);
2120
2121        for (i = 0; i < adapter->num_q_vectors; i++)
2122                napi_enable(&(adapter->q_vector[i]->napi));
2123
2124        if (adapter->flags & IGB_FLAG_HAS_MSIX)
2125                igb_configure_msix(adapter);
2126        else
2127                igb_assign_vector(adapter->q_vector[0], 0);
2128
2129        /* Clear any pending interrupts. */
2130        rd32(E1000_TSICR);
2131        rd32(E1000_ICR);
2132        igb_irq_enable(adapter);
2133
2134        /* notify VFs that reset has been completed */
2135        if (adapter->vfs_allocated_count) {
2136                u32 reg_data = rd32(E1000_CTRL_EXT);
2137
2138                reg_data |= E1000_CTRL_EXT_PFRSTD;
2139                wr32(E1000_CTRL_EXT, reg_data);
2140        }
2141
2142        netif_tx_start_all_queues(adapter->netdev);
2143
2144        /* start the watchdog. */
2145        hw->mac.get_link_status = 1;
2146        schedule_work(&adapter->watchdog_task);
2147
2148        if ((adapter->flags & IGB_FLAG_EEE) &&
2149            (!hw->dev_spec._82575.eee_disable))
2150                adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2151
2152        return 0;
2153}
2154
2155void igb_down(struct igb_adapter *adapter)
2156{
2157        struct net_device *netdev = adapter->netdev;
2158        struct e1000_hw *hw = &adapter->hw;
2159        u32 tctl, rctl;
2160        int i;
2161
2162        /* signal that we're down so the interrupt handler does not
2163         * reschedule our watchdog timer
2164         */
2165        set_bit(__IGB_DOWN, &adapter->state);
2166
2167        /* disable receives in the hardware */
2168        rctl = rd32(E1000_RCTL);
2169        wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2170        /* flush and sleep below */
2171
2172        igb_nfc_filter_exit(adapter);
2173
2174        netif_carrier_off(netdev);
2175        netif_tx_stop_all_queues(netdev);
2176
2177        /* disable transmits in the hardware */
2178        tctl = rd32(E1000_TCTL);
2179        tctl &= ~E1000_TCTL_EN;
2180        wr32(E1000_TCTL, tctl);
2181        /* flush both disables and wait for them to finish */
2182        wrfl();
2183        usleep_range(10000, 11000);
2184
2185        igb_irq_disable(adapter);
2186
2187        adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2188
2189        for (i = 0; i < adapter->num_q_vectors; i++) {
2190                if (adapter->q_vector[i]) {
2191                        napi_synchronize(&adapter->q_vector[i]->napi);
2192                        napi_disable(&adapter->q_vector[i]->napi);
2193                }
2194        }
2195
2196        del_timer_sync(&adapter->watchdog_timer);
2197        del_timer_sync(&adapter->phy_info_timer);
2198
2199        /* record the stats before reset*/
2200        spin_lock(&adapter->stats64_lock);
2201        igb_update_stats(adapter);
2202        spin_unlock(&adapter->stats64_lock);
2203
2204        adapter->link_speed = 0;
2205        adapter->link_duplex = 0;
2206
2207        if (!pci_channel_offline(adapter->pdev))
2208                igb_reset(adapter);
2209
2210        /* clear VLAN promisc flag so VFTA will be updated if necessary */
2211        adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2212
2213        igb_clean_all_tx_rings(adapter);
2214        igb_clean_all_rx_rings(adapter);
2215#ifdef CONFIG_IGB_DCA
2216
2217        /* since we reset the hardware DCA settings were cleared */
2218        igb_setup_dca(adapter);
2219#endif
2220}
2221
2222void igb_reinit_locked(struct igb_adapter *adapter)
2223{
2224        while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2225                usleep_range(1000, 2000);
2226        igb_down(adapter);
2227        igb_up(adapter);
2228        clear_bit(__IGB_RESETTING, &adapter->state);
2229}
2230
2231/** igb_enable_mas - Media Autosense re-enable after swap
2232 *
2233 * @adapter: adapter struct
2234 **/
2235static void igb_enable_mas(struct igb_adapter *adapter)
2236{
2237        struct e1000_hw *hw = &adapter->hw;
2238        u32 connsw = rd32(E1000_CONNSW);
2239
2240        /* configure for SerDes media detect */
2241        if ((hw->phy.media_type == e1000_media_type_copper) &&
2242            (!(connsw & E1000_CONNSW_SERDESD))) {
2243                connsw |= E1000_CONNSW_ENRGSRC;
2244                connsw |= E1000_CONNSW_AUTOSENSE_EN;
2245                wr32(E1000_CONNSW, connsw);
2246                wrfl();
2247        }
2248}
2249
2250void igb_reset(struct igb_adapter *adapter)
2251{
2252        struct pci_dev *pdev = adapter->pdev;
2253        struct e1000_hw *hw = &adapter->hw;
2254        struct e1000_mac_info *mac = &hw->mac;
2255        struct e1000_fc_info *fc = &hw->fc;
2256        u32 pba, hwm;
2257
2258        /* Repartition Pba for greater than 9k mtu
2259         * To take effect CTRL.RST is required.
2260         */
2261        switch (mac->type) {
2262        case e1000_i350:
2263        case e1000_i354:
2264        case e1000_82580:
2265                pba = rd32(E1000_RXPBS);
2266                pba = igb_rxpbs_adjust_82580(pba);
2267                break;
2268        case e1000_82576:
2269                pba = rd32(E1000_RXPBS);
2270                pba &= E1000_RXPBS_SIZE_MASK_82576;
2271                break;
2272        case e1000_82575:
2273        case e1000_i210:
2274        case e1000_i211:
2275        default:
2276                pba = E1000_PBA_34K;
2277                break;
2278        }
2279
2280        if (mac->type == e1000_82575) {
2281                u32 min_rx_space, min_tx_space, needed_tx_space;
2282
2283                /* write Rx PBA so that hardware can report correct Tx PBA */
2284                wr32(E1000_PBA, pba);
2285
2286                /* To maintain wire speed transmits, the Tx FIFO should be
2287                 * large enough to accommodate two full transmit packets,
2288                 * rounded up to the next 1KB and expressed in KB.  Likewise,
2289                 * the Rx FIFO should be large enough to accommodate at least
2290                 * one full receive packet and is similarly rounded up and
2291                 * expressed in KB.
2292                 */
2293                min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2294
2295                /* The Tx FIFO also stores 16 bytes of information about the Tx
2296                 * but don't include Ethernet FCS because hardware appends it.
2297                 * We only need to round down to the nearest 512 byte block
2298                 * count since the value we care about is 2 frames, not 1.
2299                 */
2300                min_tx_space = adapter->max_frame_size;
2301                min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2302                min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2303
2304                /* upper 16 bits has Tx packet buffer allocation size in KB */
2305                needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2306
2307                /* If current Tx allocation is less than the min Tx FIFO size,
2308                 * and the min Tx FIFO size is less than the current Rx FIFO
2309                 * allocation, take space away from current Rx allocation.
2310                 */
2311                if (needed_tx_space < pba) {
2312                        pba -= needed_tx_space;
2313
2314                        /* if short on Rx space, Rx wins and must trump Tx
2315                         * adjustment
2316                         */
2317                        if (pba < min_rx_space)
2318                                pba = min_rx_space;
2319                }
2320
2321                /* adjust PBA for jumbo frames */
2322                wr32(E1000_PBA, pba);
2323        }
2324
2325        /* flow control settings
2326         * The high water mark must be low enough to fit one full frame
2327         * after transmitting the pause frame.  As such we must have enough
2328         * space to allow for us to complete our current transmit and then
2329         * receive the frame that is in progress from the link partner.
2330         * Set it to:
2331         * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2332         */
2333        hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2334
2335        fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
2336        fc->low_water = fc->high_water - 16;
2337        fc->pause_time = 0xFFFF;
2338        fc->send_xon = 1;
2339        fc->current_mode = fc->requested_mode;
2340
2341        /* disable receive for all VFs and wait one second */
2342        if (adapter->vfs_allocated_count) {
2343                int i;
2344
2345                for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2346                        adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2347
2348                /* ping all the active vfs to let them know we are going down */
2349                igb_ping_all_vfs(adapter);
2350
2351                /* disable transmits and receives */
2352                wr32(E1000_VFRE, 0);
2353                wr32(E1000_VFTE, 0);
2354        }
2355
2356        /* Allow time for pending master requests to run */
2357        hw->mac.ops.reset_hw(hw);
2358        wr32(E1000_WUC, 0);
2359
2360        if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2361                /* need to resetup here after media swap */
2362                adapter->ei.get_invariants(hw);
2363                adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2364        }
2365        if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2366            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2367                igb_enable_mas(adapter);
2368        }
2369        if (hw->mac.ops.init_hw(hw))
2370                dev_err(&pdev->dev, "Hardware Error\n");
2371
2372        /* RAR registers were cleared during init_hw, clear mac table */
2373        igb_flush_mac_table(adapter);
2374        __dev_uc_unsync(adapter->netdev, NULL);
2375
2376        /* Recover default RAR entry */
2377        igb_set_default_mac_filter(adapter);
2378
2379        /* Flow control settings reset on hardware reset, so guarantee flow
2380         * control is off when forcing speed.
2381         */
2382        if (!hw->mac.autoneg)
2383                igb_force_mac_fc(hw);
2384
2385        igb_init_dmac(adapter, pba);
2386#ifdef CONFIG_IGB_HWMON
2387        /* Re-initialize the thermal sensor on i350 devices. */
2388        if (!test_bit(__IGB_DOWN, &adapter->state)) {
2389                if (mac->type == e1000_i350 && hw->bus.func == 0) {
2390                        /* If present, re-initialize the external thermal sensor
2391                         * interface.
2392                         */
2393                        if (adapter->ets)
2394                                mac->ops.init_thermal_sensor_thresh(hw);
2395                }
2396        }
2397#endif
2398        /* Re-establish EEE setting */
2399        if (hw->phy.media_type == e1000_media_type_copper) {
2400                switch (mac->type) {
2401                case e1000_i350:
2402                case e1000_i210:
2403                case e1000_i211:
2404                        igb_set_eee_i350(hw, true, true);
2405                        break;
2406                case e1000_i354:
2407                        igb_set_eee_i354(hw, true, true);
2408                        break;
2409                default:
2410                        break;
2411                }
2412        }
2413        if (!netif_running(adapter->netdev))
2414                igb_power_down_link(adapter);
2415
2416        igb_update_mng_vlan(adapter);
2417
2418        /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2419        wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2420
2421        /* Re-enable PTP, where applicable. */
2422        if (adapter->ptp_flags & IGB_PTP_ENABLED)
2423                igb_ptp_reset(adapter);
2424
2425        igb_get_phy_info(hw);
2426}
2427
2428static netdev_features_t igb_fix_features(struct net_device *netdev,
2429        netdev_features_t features)
2430{
2431        /* Since there is no support for separate Rx/Tx vlan accel
2432         * enable/disable make sure Tx flag is always in same state as Rx.
2433         */
2434        if (features & NETIF_F_HW_VLAN_CTAG_RX)
2435                features |= NETIF_F_HW_VLAN_CTAG_TX;
2436        else
2437                features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2438
2439        return features;
2440}
2441
2442static int igb_set_features(struct net_device *netdev,
2443        netdev_features_t features)
2444{
2445        netdev_features_t changed = netdev->features ^ features;
2446        struct igb_adapter *adapter = netdev_priv(netdev);
2447
2448        if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2449                igb_vlan_mode(netdev, features);
2450
2451        if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2452                return 0;
2453
2454        if (!(features & NETIF_F_NTUPLE)) {
2455                struct hlist_node *node2;
2456                struct igb_nfc_filter *rule;
2457
2458                spin_lock(&adapter->nfc_lock);
2459                hlist_for_each_entry_safe(rule, node2,
2460                                          &adapter->nfc_filter_list, nfc_node) {
2461                        igb_erase_filter(adapter, rule);
2462                        hlist_del(&rule->nfc_node);
2463                        kfree(rule);
2464                }
2465                spin_unlock(&adapter->nfc_lock);
2466                adapter->nfc_filter_count = 0;
2467        }
2468
2469        netdev->features = features;
2470
2471        if (netif_running(netdev))
2472                igb_reinit_locked(adapter);
2473        else
2474                igb_reset(adapter);
2475
2476        return 1;
2477}
2478
2479static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2480                           struct net_device *dev,
2481                           const unsigned char *addr, u16 vid,
2482                           u16 flags,
2483                           struct netlink_ext_ack *extack)
2484{
2485        /* guarantee we can provide a unique filter for the unicast address */
2486        if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2487                struct igb_adapter *adapter = netdev_priv(dev);
2488                int vfn = adapter->vfs_allocated_count;
2489
2490                if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2491                        return -ENOMEM;
2492        }
2493
2494        return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2495}
2496
2497#define IGB_MAX_MAC_HDR_LEN     127
2498#define IGB_MAX_NETWORK_HDR_LEN 511
2499
2500static netdev_features_t
2501igb_features_check(struct sk_buff *skb, struct net_device *dev,
2502                   netdev_features_t features)
2503{
2504        unsigned int network_hdr_len, mac_hdr_len;
2505
2506        /* Make certain the headers can be described by a context descriptor */
2507        mac_hdr_len = skb_network_header(skb) - skb->data;
2508        if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2509                return features & ~(NETIF_F_HW_CSUM |
2510                                    NETIF_F_SCTP_CRC |
2511                                    NETIF_F_GSO_UDP_L4 |
2512                                    NETIF_F_HW_VLAN_CTAG_TX |
2513                                    NETIF_F_TSO |
2514                                    NETIF_F_TSO6);
2515
2516        network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2517        if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
2518                return features & ~(NETIF_F_HW_CSUM |
2519                                    NETIF_F_SCTP_CRC |
2520                                    NETIF_F_GSO_UDP_L4 |
2521                                    NETIF_F_TSO |
2522                                    NETIF_F_TSO6);
2523
2524        /* We can only support IPV4 TSO in tunnels if we can mangle the
2525         * inner IP ID field, so strip TSO if MANGLEID is not supported.
2526         */
2527        if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2528                features &= ~NETIF_F_TSO;
2529
2530        return features;
2531}
2532
2533static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2534{
2535        if (!is_fqtss_enabled(adapter)) {
2536                enable_fqtss(adapter, true);
2537                return;
2538        }
2539
2540        igb_config_tx_modes(adapter, queue);
2541
2542        if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2543                enable_fqtss(adapter, false);
2544}
2545
2546static int igb_offload_cbs(struct igb_adapter *adapter,
2547                           struct tc_cbs_qopt_offload *qopt)
2548{
2549        struct e1000_hw *hw = &adapter->hw;
2550        int err;
2551
2552        /* CBS offloading is only supported by i210 controller. */
2553        if (hw->mac.type != e1000_i210)
2554                return -EOPNOTSUPP;
2555
2556        /* CBS offloading is only supported by queue 0 and queue 1. */
2557        if (qopt->queue < 0 || qopt->queue > 1)
2558                return -EINVAL;
2559
2560        err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2561                                  qopt->idleslope, qopt->sendslope,
2562                                  qopt->hicredit, qopt->locredit);
2563        if (err)
2564                return err;
2565
2566        igb_offload_apply(adapter, qopt->queue);
2567
2568        return 0;
2569}
2570
2571#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2572#define VLAN_PRIO_FULL_MASK (0x07)
2573
2574static int igb_parse_cls_flower(struct igb_adapter *adapter,
2575                                struct flow_cls_offload *f,
2576                                int traffic_class,
2577                                struct igb_nfc_filter *input)
2578{
2579        struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2580        struct flow_dissector *dissector = rule->match.dissector;
2581        struct netlink_ext_ack *extack = f->common.extack;
2582
2583        if (dissector->used_keys &
2584            ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2585              BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2586              BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2587              BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2588                NL_SET_ERR_MSG_MOD(extack,
2589                                   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2590                return -EOPNOTSUPP;
2591        }
2592
2593        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2594                struct flow_match_eth_addrs match;
2595
2596                flow_rule_match_eth_addrs(rule, &match);
2597                if (!is_zero_ether_addr(match.mask->dst)) {
2598                        if (!is_broadcast_ether_addr(match.mask->dst)) {
2599                                NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2600                                return -EINVAL;
2601                        }
2602
2603                        input->filter.match_flags |=
2604                                IGB_FILTER_FLAG_DST_MAC_ADDR;
2605                        ether_addr_copy(input->filter.dst_addr, match.key->dst);
2606                }
2607
2608                if (!is_zero_ether_addr(match.mask->src)) {
2609                        if (!is_broadcast_ether_addr(match.mask->src)) {
2610                                NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2611                                return -EINVAL;
2612                        }
2613
2614                        input->filter.match_flags |=
2615                                IGB_FILTER_FLAG_SRC_MAC_ADDR;
2616                        ether_addr_copy(input->filter.src_addr, match.key->src);
2617                }
2618        }
2619
2620        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2621                struct flow_match_basic match;
2622
2623                flow_rule_match_basic(rule, &match);
2624                if (match.mask->n_proto) {
2625                        if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2626                                NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2627                                return -EINVAL;
2628                        }
2629
2630                        input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2631                        input->filter.etype = match.key->n_proto;
2632                }
2633        }
2634
2635        if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2636                struct flow_match_vlan match;
2637
2638                flow_rule_match_vlan(rule, &match);
2639                if (match.mask->vlan_priority) {
2640                        if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2641                                NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2642                                return -EINVAL;
2643                        }
2644
2645                        input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2646                        input->filter.vlan_tci = match.key->vlan_priority;
2647                }
2648        }
2649
2650        input->action = traffic_class;
2651        input->cookie = f->cookie;
2652
2653        return 0;
2654}
2655
2656static int igb_configure_clsflower(struct igb_adapter *adapter,
2657                                   struct flow_cls_offload *cls_flower)
2658{
2659        struct netlink_ext_ack *extack = cls_flower->common.extack;
2660        struct igb_nfc_filter *filter, *f;
2661        int err, tc;
2662
2663        tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2664        if (tc < 0) {
2665                NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2666                return -EINVAL;
2667        }
2668
2669        filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2670        if (!filter)
2671                return -ENOMEM;
2672
2673        err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2674        if (err < 0)
2675                goto err_parse;
2676
2677        spin_lock(&adapter->nfc_lock);
2678
2679        hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2680                if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2681                        err = -EEXIST;
2682                        NL_SET_ERR_MSG_MOD(extack,
2683                                           "This filter is already set in ethtool");
2684                        goto err_locked;
2685                }
2686        }
2687
2688        hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2689                if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2690                        err = -EEXIST;
2691                        NL_SET_ERR_MSG_MOD(extack,
2692                                           "This filter is already set in cls_flower");
2693                        goto err_locked;
2694                }
2695        }
2696
2697        err = igb_add_filter(adapter, filter);
2698        if (err < 0) {
2699                NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2700                goto err_locked;
2701        }
2702
2703        hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2704
2705        spin_unlock(&adapter->nfc_lock);
2706
2707        return 0;
2708
2709err_locked:
2710        spin_unlock(&adapter->nfc_lock);
2711
2712err_parse:
2713        kfree(filter);
2714
2715        return err;
2716}
2717
2718static int igb_delete_clsflower(struct igb_adapter *adapter,
2719                                struct flow_cls_offload *cls_flower)
2720{
2721        struct igb_nfc_filter *filter;
2722        int err;
2723
2724        spin_lock(&adapter->nfc_lock);
2725
2726        hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2727                if (filter->cookie == cls_flower->cookie)
2728                        break;
2729
2730        if (!filter) {
2731                err = -ENOENT;
2732                goto out;
2733        }
2734
2735        err = igb_erase_filter(adapter, filter);
2736        if (err < 0)
2737                goto out;
2738
2739        hlist_del(&filter->nfc_node);
2740        kfree(filter);
2741
2742out:
2743        spin_unlock(&adapter->nfc_lock);
2744
2745        return err;
2746}
2747
2748static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2749                                   struct flow_cls_offload *cls_flower)
2750{
2751        switch (cls_flower->command) {
2752        case FLOW_CLS_REPLACE:
2753                return igb_configure_clsflower(adapter, cls_flower);
2754        case FLOW_CLS_DESTROY:
2755                return igb_delete_clsflower(adapter, cls_flower);
2756        case FLOW_CLS_STATS:
2757                return -EOPNOTSUPP;
2758        default:
2759                return -EOPNOTSUPP;
2760        }
2761}
2762
2763static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2764                                 void *cb_priv)
2765{
2766        struct igb_adapter *adapter = cb_priv;
2767
2768        if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2769                return -EOPNOTSUPP;
2770
2771        switch (type) {
2772        case TC_SETUP_CLSFLOWER:
2773                return igb_setup_tc_cls_flower(adapter, type_data);
2774
2775        default:
2776                return -EOPNOTSUPP;
2777        }
2778}
2779
2780static int igb_offload_txtime(struct igb_adapter *adapter,
2781                              struct tc_etf_qopt_offload *qopt)
2782{
2783        struct e1000_hw *hw = &adapter->hw;
2784        int err;
2785
2786        /* Launchtime offloading is only supported by i210 controller. */
2787        if (hw->mac.type != e1000_i210)
2788                return -EOPNOTSUPP;
2789
2790        /* Launchtime offloading is only supported by queues 0 and 1. */
2791        if (qopt->queue < 0 || qopt->queue > 1)
2792                return -EINVAL;
2793
2794        err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2795        if (err)
2796                return err;
2797
2798        igb_offload_apply(adapter, qopt->queue);
2799
2800        return 0;
2801}
2802
2803static LIST_HEAD(igb_block_cb_list);
2804
2805static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2806                        void *type_data)
2807{
2808        struct igb_adapter *adapter = netdev_priv(dev);
2809
2810        switch (type) {
2811        case TC_SETUP_QDISC_CBS:
2812                return igb_offload_cbs(adapter, type_data);
2813        case TC_SETUP_BLOCK:
2814                return flow_block_cb_setup_simple(type_data,
2815                                                  &igb_block_cb_list,
2816                                                  igb_setup_tc_block_cb,
2817                                                  adapter, adapter, true);
2818
2819        case TC_SETUP_QDISC_ETF:
2820                return igb_offload_txtime(adapter, type_data);
2821
2822        default:
2823                return -EOPNOTSUPP;
2824        }
2825}
2826
2827static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2828{
2829        int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2830        struct igb_adapter *adapter = netdev_priv(dev);
2831        struct bpf_prog *prog = bpf->prog, *old_prog;
2832        bool running = netif_running(dev);
2833        bool need_reset;
2834
2835        /* verify igb ring attributes are sufficient for XDP */
2836        for (i = 0; i < adapter->num_rx_queues; i++) {
2837                struct igb_ring *ring = adapter->rx_ring[i];
2838
2839                if (frame_size > igb_rx_bufsz(ring)) {
2840                        NL_SET_ERR_MSG_MOD(bpf->extack,
2841                                           "The RX buffer size is too small for the frame size");
2842                        netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
2843                                    igb_rx_bufsz(ring), frame_size);
2844                        return -EINVAL;
2845                }
2846        }
2847
2848        old_prog = xchg(&adapter->xdp_prog, prog);
2849        need_reset = (!!prog != !!old_prog);
2850
2851        /* device is up and bpf is added/removed, must setup the RX queues */
2852        if (need_reset && running) {
2853                igb_close(dev);
2854        } else {
2855                for (i = 0; i < adapter->num_rx_queues; i++)
2856                        (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2857                            adapter->xdp_prog);
2858        }
2859
2860        if (old_prog)
2861                bpf_prog_put(old_prog);
2862
2863        /* bpf is just replaced, RXQ and MTU are already setup */
2864        if (!need_reset)
2865                return 0;
2866
2867        if (running)
2868                igb_open(dev);
2869
2870        return 0;
2871}
2872
2873static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2874{
2875        switch (xdp->command) {
2876        case XDP_SETUP_PROG:
2877                return igb_xdp_setup(dev, xdp);
2878        default:
2879                return -EINVAL;
2880        }
2881}
2882
2883static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2884{
2885        /* Force memory writes to complete before letting h/w know there
2886         * are new descriptors to fetch.
2887         */
2888        wmb();
2889        writel(ring->next_to_use, ring->tail);
2890}
2891
2892static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2893{
2894        unsigned int r_idx = smp_processor_id();
2895
2896        if (r_idx >= adapter->num_tx_queues)
2897                r_idx = r_idx % adapter->num_tx_queues;
2898
2899        return adapter->tx_ring[r_idx];
2900}
2901
2902static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2903{
2904        struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2905        int cpu = smp_processor_id();
2906        struct igb_ring *tx_ring;
2907        struct netdev_queue *nq;
2908        u32 ret;
2909
2910        if (unlikely(!xdpf))
2911                return IGB_XDP_CONSUMED;
2912
2913        /* During program transitions its possible adapter->xdp_prog is assigned
2914         * but ring has not been configured yet. In this case simply abort xmit.
2915         */
2916        tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2917        if (unlikely(!tx_ring))
2918                return IGB_XDP_CONSUMED;
2919
2920        nq = txring_txq(tx_ring);
2921        __netif_tx_lock(nq, cpu);
2922        /* Avoid transmit queue timeout since we share it with the slow path */
2923        nq->trans_start = jiffies;
2924        ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2925        __netif_tx_unlock(nq);
2926
2927        return ret;
2928}
2929
2930static int igb_xdp_xmit(struct net_device *dev, int n,
2931                        struct xdp_frame **frames, u32 flags)
2932{
2933        struct igb_adapter *adapter = netdev_priv(dev);
2934        int cpu = smp_processor_id();
2935        struct igb_ring *tx_ring;
2936        struct netdev_queue *nq;
2937        int nxmit = 0;
2938        int i;
2939
2940        if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
2941                return -ENETDOWN;
2942
2943        if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2944                return -EINVAL;
2945
2946        /* During program transitions its possible adapter->xdp_prog is assigned
2947         * but ring has not been configured yet. In this case simply abort xmit.
2948         */
2949        tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2950        if (unlikely(!tx_ring))
2951                return -ENXIO;
2952
2953        nq = txring_txq(tx_ring);
2954        __netif_tx_lock(nq, cpu);
2955
2956        /* Avoid transmit queue timeout since we share it with the slow path */
2957        nq->trans_start = jiffies;
2958
2959        for (i = 0; i < n; i++) {
2960                struct xdp_frame *xdpf = frames[i];
2961                int err;
2962
2963                err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
2964                if (err != IGB_XDP_TX)
2965                        break;
2966                nxmit++;
2967        }
2968
2969        __netif_tx_unlock(nq);
2970
2971        if (unlikely(flags & XDP_XMIT_FLUSH))
2972                igb_xdp_ring_update_tail(tx_ring);
2973
2974        return nxmit;
2975}
2976
2977static const struct net_device_ops igb_netdev_ops = {
2978        .ndo_open               = igb_open,
2979        .ndo_stop               = igb_close,
2980        .ndo_start_xmit         = igb_xmit_frame,
2981        .ndo_get_stats64        = igb_get_stats64,
2982        .ndo_set_rx_mode        = igb_set_rx_mode,
2983        .ndo_set_mac_address    = igb_set_mac,
2984        .ndo_change_mtu         = igb_change_mtu,
2985        .ndo_do_ioctl           = igb_ioctl,
2986        .ndo_tx_timeout         = igb_tx_timeout,
2987        .ndo_validate_addr      = eth_validate_addr,
2988        .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2989        .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2990        .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2991        .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2992        .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2993        .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2994        .ndo_set_vf_trust       = igb_ndo_set_vf_trust,
2995        .ndo_get_vf_config      = igb_ndo_get_vf_config,
2996        .ndo_fix_features       = igb_fix_features,
2997        .ndo_set_features       = igb_set_features,
2998        .ndo_fdb_add            = igb_ndo_fdb_add,
2999        .ndo_features_check     = igb_features_check,
3000        .ndo_setup_tc           = igb_setup_tc,
3001        .ndo_bpf                = igb_xdp,
3002        .ndo_xdp_xmit           = igb_xdp_xmit,
3003};
3004
3005/**
3006 * igb_set_fw_version - Configure version string for ethtool
3007 * @adapter: adapter struct
3008 **/
3009void igb_set_fw_version(struct igb_adapter *adapter)
3010{
3011        struct e1000_hw *hw = &adapter->hw;
3012        struct e1000_fw_version fw;
3013
3014        igb_get_fw_version(hw, &fw);
3015
3016        switch (hw->mac.type) {
3017        case e1000_i210:
3018        case e1000_i211:
3019                if (!(igb_get_flash_presence_i210(hw))) {
3020                        snprintf(adapter->fw_version,
3021                                 sizeof(adapter->fw_version),
3022                                 "%2d.%2d-%d",
3023                                 fw.invm_major, fw.invm_minor,
3024                                 fw.invm_img_type);
3025                        break;
3026                }
3027                fallthrough;
3028        default:
3029                /* if option is rom valid, display its version too */
3030                if (fw.or_valid) {
3031                        snprintf(adapter->fw_version,
3032                                 sizeof(adapter->fw_version),
3033                                 "%d.%d, 0x%08x, %d.%d.%d",
3034                                 fw.eep_major, fw.eep_minor, fw.etrack_id,
3035                                 fw.or_major, fw.or_build, fw.or_patch);
3036                /* no option rom */
3037                } else if (fw.etrack_id != 0X0000) {
3038                        snprintf(adapter->fw_version,
3039                            sizeof(adapter->fw_version),
3040                            "%d.%d, 0x%08x",
3041                            fw.eep_major, fw.eep_minor, fw.etrack_id);
3042                } else {
3043                snprintf(adapter->fw_version,
3044                    sizeof(adapter->fw_version),
3045                    "%d.%d.%d",
3046                    fw.eep_major, fw.eep_minor, fw.eep_build);
3047                }
3048                break;
3049        }
3050}
3051
3052/**
3053 * igb_init_mas - init Media Autosense feature if enabled in the NVM
3054 *
3055 * @adapter: adapter struct
3056 **/
3057static void igb_init_mas(struct igb_adapter *adapter)
3058{
3059        struct e1000_hw *hw = &adapter->hw;
3060        u16 eeprom_data;
3061
3062        hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3063        switch (hw->bus.func) {
3064        case E1000_FUNC_0:
3065                if (eeprom_data & IGB_MAS_ENABLE_0) {
3066                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
3067                        netdev_info(adapter->netdev,
3068                                "MAS: Enabling Media Autosense for port %d\n",
3069                                hw->bus.func);
3070                }
3071                break;
3072        case E1000_FUNC_1:
3073                if (eeprom_data & IGB_MAS_ENABLE_1) {
3074                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
3075                        netdev_info(adapter->netdev,
3076                                "MAS: Enabling Media Autosense for port %d\n",
3077                                hw->bus.func);
3078                }
3079                break;
3080        case E1000_FUNC_2:
3081                if (eeprom_data & IGB_MAS_ENABLE_2) {
3082                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
3083                        netdev_info(adapter->netdev,
3084                                "MAS: Enabling Media Autosense for port %d\n",
3085                                hw->bus.func);
3086                }
3087                break;
3088        case E1000_FUNC_3:
3089                if (eeprom_data & IGB_MAS_ENABLE_3) {
3090                        adapter->flags |= IGB_FLAG_MAS_ENABLE;
3091                        netdev_info(adapter->netdev,
3092                                "MAS: Enabling Media Autosense for port %d\n",
3093                                hw->bus.func);
3094                }
3095                break;
3096        default:
3097                /* Shouldn't get here */
3098                netdev_err(adapter->netdev,
3099                        "MAS: Invalid port configuration, returning\n");
3100                break;
3101        }
3102}
3103
3104/**
3105 *  igb_init_i2c - Init I2C interface
3106 *  @adapter: pointer to adapter structure
3107 **/
3108static s32 igb_init_i2c(struct igb_adapter *adapter)
3109{
3110        s32 status = 0;
3111
3112        /* I2C interface supported on i350 devices */
3113        if (adapter->hw.mac.type != e1000_i350)
3114                return 0;
3115
3116        /* Initialize the i2c bus which is controlled by the registers.
3117         * This bus will use the i2c_algo_bit structure that implements
3118         * the protocol through toggling of the 4 bits in the register.
3119         */
3120        adapter->i2c_adap.owner = THIS_MODULE;
3121        adapter->i2c_algo = igb_i2c_algo;
3122        adapter->i2c_algo.data = adapter;
3123        adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3124        adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3125        strlcpy(adapter->i2c_adap.name, "igb BB",
3126                sizeof(adapter->i2c_adap.name));
3127        status = i2c_bit_add_bus(&adapter->i2c_adap);
3128        return status;
3129}
3130
3131/**
3132 *  igb_probe - Device Initialization Routine
3133 *  @pdev: PCI device information struct
3134 *  @ent: entry in igb_pci_tbl
3135 *
3136 *  Returns 0 on success, negative on failure
3137 *
3138 *  igb_probe initializes an adapter identified by a pci_dev structure.
3139 *  The OS initialization, configuring of the adapter private structure,
3140 *  and a hardware reset occur.
3141 **/
3142static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3143{
3144        struct net_device *netdev;
3145        struct igb_adapter *adapter;
3146        struct e1000_hw *hw;
3147        u16 eeprom_data = 0;
3148        s32 ret_val;
3149        static int global_quad_port_a; /* global quad port a indication */
3150        const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3151        int err, pci_using_dac;
3152        u8 part_str[E1000_PBANUM_LENGTH];
3153
3154        /* Catch broken hardware that put the wrong VF device ID in
3155         * the PCIe SR-IOV capability.
3156         */
3157        if (pdev->is_virtfn) {
3158                WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3159                        pci_name(pdev), pdev->vendor, pdev->device);
3160                return -EINVAL;
3161        }
3162
3163        err = pci_enable_device_mem(pdev);
3164        if (err)
3165                return err;
3166
3167        pci_using_dac = 0;
3168        err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3169        if (!err) {
3170                pci_using_dac = 1;
3171        } else {
3172                err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3173                if (err) {
3174                        dev_err(&pdev->dev,
3175                                "No usable DMA configuration, aborting\n");
3176                        goto err_dma;
3177                }
3178        }
3179
3180        err = pci_request_mem_regions(pdev, igb_driver_name);
3181        if (err)
3182                goto err_pci_reg;
3183
3184        pci_enable_pcie_error_reporting(pdev);
3185
3186        pci_set_master(pdev);
3187        pci_save_state(pdev);
3188
3189        err = -ENOMEM;
3190        netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3191                                   IGB_MAX_TX_QUEUES);
3192        if (!netdev)
3193                goto err_alloc_etherdev;
3194
3195        SET_NETDEV_DEV(netdev, &pdev->dev);
3196
3197        pci_set_drvdata(pdev, netdev);
3198        adapter = netdev_priv(netdev);
3199        adapter->netdev = netdev;
3200        adapter->pdev = pdev;
3201        hw = &adapter->hw;
3202        hw->back = adapter;
3203        adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3204
3205        err = -EIO;
3206        adapter->io_addr = pci_iomap(pdev, 0, 0);
3207        if (!adapter->io_addr)
3208                goto err_ioremap;
3209        /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3210        hw->hw_addr = adapter->io_addr;
3211
3212        netdev->netdev_ops = &igb_netdev_ops;
3213        igb_set_ethtool_ops(netdev);
3214        netdev->watchdog_timeo = 5 * HZ;
3215
3216        strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3217
3218        netdev->mem_start = pci_resource_start(pdev, 0);
3219        netdev->mem_end = pci_resource_end(pdev, 0);
3220
3221        /* PCI config space info */
3222        hw->vendor_id = pdev->vendor;
3223        hw->device_id = pdev->device;
3224        hw->revision_id = pdev->revision;
3225        hw->subsystem_vendor_id = pdev->subsystem_vendor;
3226        hw->subsystem_device_id = pdev->subsystem_device;
3227
3228        /* Copy the default MAC, PHY and NVM function pointers */
3229        memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3230        memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3231        memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3232        /* Initialize skew-specific constants */
3233        err = ei->get_invariants(hw);
3234        if (err)
3235                goto err_sw_init;
3236
3237        /* setup the private structure */
3238        err = igb_sw_init(adapter);
3239        if (err)
3240                goto err_sw_init;
3241
3242        igb_get_bus_info_pcie(hw);
3243
3244        hw->phy.autoneg_wait_to_complete = false;
3245
3246        /* Copper options */
3247        if (hw->phy.media_type == e1000_media_type_copper) {
3248                hw->phy.mdix = AUTO_ALL_MODES;
3249                hw->phy.disable_polarity_correction = false;
3250                hw->phy.ms_type = e1000_ms_hw_default;
3251        }
3252
3253        if (igb_check_reset_block(hw))
3254                dev_info(&pdev->dev,
3255                        "PHY reset is blocked due to SOL/IDER session.\n");
3256
3257        /* features is initialized to 0 in allocation, it might have bits
3258         * set by igb_sw_init so we should use an or instead of an
3259         * assignment.
3260         */
3261        netdev->features |= NETIF_F_SG |
3262                            NETIF_F_TSO |
3263                            NETIF_F_TSO6 |
3264                            NETIF_F_RXHASH |
3265                            NETIF_F_RXCSUM |
3266                            NETIF_F_HW_CSUM;
3267
3268        if (hw->mac.type >= e1000_82576)
3269                netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3270
3271        if (hw->mac.type >= e1000_i350)
3272                netdev->features |= NETIF_F_HW_TC;
3273
3274#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3275                                  NETIF_F_GSO_GRE_CSUM | \
3276                                  NETIF_F_GSO_IPXIP4 | \
3277                                  NETIF_F_GSO_IPXIP6 | \
3278                                  NETIF_F_GSO_UDP_TUNNEL | \
3279                                  NETIF_F_GSO_UDP_TUNNEL_CSUM)
3280
3281        netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3282        netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3283
3284        /* copy netdev features into list of user selectable features */
3285        netdev->hw_features |= netdev->features |
3286                               NETIF_F_HW_VLAN_CTAG_RX |
3287                               NETIF_F_HW_VLAN_CTAG_TX |
3288                               NETIF_F_RXALL;
3289
3290        if (hw->mac.type >= e1000_i350)
3291                netdev->hw_features |= NETIF_F_NTUPLE;
3292
3293        if (pci_using_dac)
3294                netdev->features |= NETIF_F_HIGHDMA;
3295
3296        netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3297        netdev->mpls_features |= NETIF_F_HW_CSUM;
3298        netdev->hw_enc_features |= netdev->vlan_features;
3299
3300        /* set this bit last since it cannot be part of vlan_features */
3301        netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3302                            NETIF_F_HW_VLAN_CTAG_RX |
3303                            NETIF_F_HW_VLAN_CTAG_TX;
3304
3305        netdev->priv_flags |= IFF_SUPP_NOFCS;
3306
3307        netdev->priv_flags |= IFF_UNICAST_FLT;
3308
3309        /* MTU range: 68 - 9216 */
3310        netdev->min_mtu = ETH_MIN_MTU;
3311        netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3312
3313        adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3314
3315        /* before reading the NVM, reset the controller to put the device in a
3316         * known good starting state
3317         */
3318        hw->mac.ops.reset_hw(hw);
3319
3320        /* make sure the NVM is good , i211/i210 parts can have special NVM
3321         * that doesn't contain a checksum
3322         */
3323        switch (hw->mac.type) {
3324        case e1000_i210:
3325        case e1000_i211:
3326                if (igb_get_flash_presence_i210(hw)) {
3327                        if (hw->nvm.ops.validate(hw) < 0) {
3328                                dev_err(&pdev->dev,
3329                                        "The NVM Checksum Is Not Valid\n");
3330                                err = -EIO;
3331                                goto err_eeprom;
3332                        }
3333                }
3334                break;
3335        default:
3336                if (hw->nvm.ops.validate(hw) < 0) {
3337                        dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3338                        err = -EIO;
3339                        goto err_eeprom;
3340                }
3341                break;
3342        }
3343
3344        if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3345                /* copy the MAC address out of the NVM */
3346                if (hw->mac.ops.read_mac_addr(hw))
3347                        dev_err(&pdev->dev, "NVM Read Error\n");
3348        }
3349
3350        memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3351
3352        if (!is_valid_ether_addr(netdev->dev_addr)) {
3353                dev_err(&pdev->dev, "Invalid MAC Address\n");
3354                err = -EIO;
3355                goto err_eeprom;
3356        }
3357
3358        igb_set_default_mac_filter(adapter);
3359
3360        /* get firmware version for ethtool -i */
3361        igb_set_fw_version(adapter);
3362
3363        /* configure RXPBSIZE and TXPBSIZE */
3364        if (hw->mac.type == e1000_i210) {
3365                wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3366                wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3367        }
3368
3369        timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3370        timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3371
3372        INIT_WORK(&adapter->reset_task, igb_reset_task);
3373        INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3374
3375        /* Initialize link properties that are user-changeable */
3376        adapter->fc_autoneg = true;
3377        hw->mac.autoneg = true;
3378        hw->phy.autoneg_advertised = 0x2f;
3379
3380        hw->fc.requested_mode = e1000_fc_default;
3381        hw->fc.current_mode = e1000_fc_default;
3382
3383        igb_validate_mdi_setting(hw);
3384
3385        /* By default, support wake on port A */
3386        if (hw->bus.func == 0)
3387                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3388
3389        /* Check the NVM for wake support on non-port A ports */
3390        if (hw->mac.type >= e1000_82580)
3391                hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3392                                 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3393                                 &eeprom_data);
3394        else if (hw->bus.func == 1)
3395                hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3396
3397        if (eeprom_data & IGB_EEPROM_APME)
3398                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3399
3400        /* now that we have the eeprom settings, apply the special cases where
3401         * the eeprom may be wrong or the board simply won't support wake on
3402         * lan on a particular port
3403         */
3404        switch (pdev->device) {
3405        case E1000_DEV_ID_82575GB_QUAD_COPPER:
3406                adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3407                break;
3408        case E1000_DEV_ID_82575EB_FIBER_SERDES:
3409        case E1000_DEV_ID_82576_FIBER:
3410        case E1000_DEV_ID_82576_SERDES:
3411                /* Wake events only supported on port A for dual fiber
3412                 * regardless of eeprom setting
3413                 */
3414                if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3415                        adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3416                break;
3417        case E1000_DEV_ID_82576_QUAD_COPPER:
3418        case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3419                /* if quad port adapter, disable WoL on all but port A */
3420                if (global_quad_port_a != 0)
3421                        adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3422                else
3423                        adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3424                /* Reset for multiple quad port adapters */
3425                if (++global_quad_port_a == 4)
3426                        global_quad_port_a = 0;
3427                break;
3428        default:
3429                /* If the device can't wake, don't set software support */
3430                if (!device_can_wakeup(&adapter->pdev->dev))
3431                        adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3432        }
3433
3434        /* initialize the wol settings based on the eeprom settings */
3435        if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3436                adapter->wol |= E1000_WUFC_MAG;
3437
3438        /* Some vendors want WoL disabled by default, but still supported */
3439        if ((hw->mac.type == e1000_i350) &&
3440            (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3441                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3442                adapter->wol = 0;
3443        }
3444
3445        /* Some vendors want the ability to Use the EEPROM setting as
3446         * enable/disable only, and not for capability
3447         */
3448        if (((hw->mac.type == e1000_i350) ||
3449             (hw->mac.type == e1000_i354)) &&
3450            (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3451                adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3452                adapter->wol = 0;
3453        }
3454        if (hw->mac.type == e1000_i350) {
3455                if (((pdev->subsystem_device == 0x5001) ||
3456                     (pdev->subsystem_device == 0x5002)) &&
3457                                (hw->bus.func == 0)) {
3458                        adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3459                        adapter->wol = 0;
3460                }
3461                if (pdev->subsystem_device == 0x1F52)
3462                        adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3463        }
3464
3465        device_set_wakeup_enable(&adapter->pdev->dev,
3466                                 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3467
3468        /* reset the hardware with the new settings */
3469        igb_reset(adapter);
3470
3471        /* Init the I2C interface */
3472        err = igb_init_i2c(adapter);
3473        if (err) {
3474                dev_err(&pdev->dev, "failed to init i2c interface\n");
3475                goto err_eeprom;
3476        }
3477
3478        /* let the f/w know that the h/w is now under the control of the
3479         * driver.
3480         */
3481        igb_get_hw_control(adapter);
3482
3483        strcpy(netdev->name, "eth%d");
3484        err = register_netdev(netdev);
3485        if (err)
3486                goto err_register;
3487
3488        /* carrier off reporting is important to ethtool even BEFORE open */
3489        netif_carrier_off(netdev);
3490
3491#ifdef CONFIG_IGB_DCA
3492        if (dca_add_requester(&pdev->dev) == 0) {
3493                adapter->flags |= IGB_FLAG_DCA_ENABLED;
3494                dev_info(&pdev->dev, "DCA enabled\n");
3495                igb_setup_dca(adapter);
3496        }
3497
3498#endif
3499#ifdef CONFIG_IGB_HWMON
3500        /* Initialize the thermal sensor on i350 devices. */
3501        if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3502                u16 ets_word;
3503
3504                /* Read the NVM to determine if this i350 device supports an
3505                 * external thermal sensor.
3506                 */
3507                hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3508                if (ets_word != 0x0000 && ets_word != 0xFFFF)
3509                        adapter->ets = true;
3510                else
3511                        adapter->ets = false;
3512                if (igb_sysfs_init(adapter))
3513                        dev_err(&pdev->dev,
3514                                "failed to allocate sysfs resources\n");
3515        } else {
3516                adapter->ets = false;
3517        }
3518#endif
3519        /* Check if Media Autosense is enabled */
3520        adapter->ei = *ei;
3521        if (hw->dev_spec._82575.mas_capable)
3522                igb_init_mas(adapter);
3523
3524        /* do hw tstamp init after resetting */
3525        igb_ptp_init(adapter);
3526
3527        dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3528        /* print bus type/speed/width info, not applicable to i354 */
3529        if (hw->mac.type != e1000_i354) {
3530                dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3531                         netdev->name,
3532                         ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3533                          (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3534                           "unknown"),
3535                         ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3536                          "Width x4" :
3537                          (hw->bus.width == e1000_bus_width_pcie_x2) ?
3538                          "Width x2" :
3539                          (hw->bus.width == e1000_bus_width_pcie_x1) ?
3540                          "Width x1" : "unknown"), netdev->dev_addr);
3541        }
3542
3543        if ((hw->mac.type == e1000_82576 &&
3544             rd32(E1000_EECD) & E1000_EECD_PRES) ||
3545            (hw->mac.type >= e1000_i210 ||
3546             igb_get_flash_presence_i210(hw))) {
3547                ret_val = igb_read_part_string(hw, part_str,
3548                                               E1000_PBANUM_LENGTH);
3549        } else {
3550                ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3551        }
3552
3553        if (ret_val)
3554                strcpy(part_str, "Unknown");
3555        dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3556        dev_info(&pdev->dev,
3557                "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3558                (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3559                (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3560                adapter->num_rx_queues, adapter->num_tx_queues);
3561        if (hw->phy.media_type == e1000_media_type_copper) {
3562                switch (hw->mac.type) {
3563                case e1000_i350:
3564                case e1000_i210:
3565                case e1000_i211:
3566                        /* Enable EEE for internal copper PHY devices */
3567                        err = igb_set_eee_i350(hw, true, true);
3568                        if ((!err) &&
3569                            (!hw->dev_spec._82575.eee_disable)) {
3570                                adapter->eee_advert =
3571                                        MDIO_EEE_100TX | MDIO_EEE_1000T;
3572                                adapter->flags |= IGB_FLAG_EEE;
3573                        }
3574                        break;
3575                case e1000_i354:
3576                        if ((rd32(E1000_CTRL_EXT) &
3577                            E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3578                                err = igb_set_eee_i354(hw, true, true);
3579                                if ((!err) &&
3580                                        (!hw->dev_spec._82575.eee_disable)) {
3581                                        adapter->eee_advert =
3582                                           MDIO_EEE_100TX | MDIO_EEE_1000T;
3583                                        adapter->flags |= IGB_FLAG_EEE;
3584                                }
3585                        }
3586                        break;
3587                default:
3588                        break;
3589                }
3590        }
3591
3592        dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3593
3594        pm_runtime_put_noidle(&pdev->dev);
3595        return 0;
3596
3597err_register:
3598        igb_release_hw_control(adapter);
3599        memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3600err_eeprom:
3601        if (!igb_check_reset_block(hw))
3602                igb_reset_phy(hw);
3603
3604        if (hw->flash_address)
3605                iounmap(hw->flash_address);
3606err_sw_init:
3607        kfree(adapter->mac_table);
3608        kfree(adapter->shadow_vfta);
3609        igb_clear_interrupt_scheme(adapter);
3610#ifdef CONFIG_PCI_IOV
3611        igb_disable_sriov(pdev);
3612#endif
3613        pci_iounmap(pdev, adapter->io_addr);
3614err_ioremap:
3615        free_netdev(netdev);
3616err_alloc_etherdev:
3617        pci_release_mem_regions(pdev);
3618err_pci_reg:
3619err_dma:
3620        pci_disable_device(pdev);
3621        return err;
3622}
3623
3624#ifdef CONFIG_PCI_IOV
3625static int igb_disable_sriov(struct pci_dev *pdev)
3626{
3627        struct net_device *netdev = pci_get_drvdata(pdev);
3628        struct igb_adapter *adapter = netdev_priv(netdev);
3629        struct e1000_hw *hw = &adapter->hw;
3630
3631        /* reclaim resources allocated to VFs */
3632        if (adapter->vf_data) {
3633                /* disable iov and allow time for transactions to clear */
3634                if (pci_vfs_assigned(pdev)) {
3635                        dev_warn(&pdev->dev,
3636                                 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3637                        return -EPERM;
3638                } else {
3639                        pci_disable_sriov(pdev);
3640                        msleep(500);
3641                }
3642
3643                kfree(adapter->vf_mac_list);
3644                adapter->vf_mac_list = NULL;
3645                kfree(adapter->vf_data);
3646                adapter->vf_data = NULL;
3647                adapter->vfs_allocated_count = 0;
3648                wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3649                wrfl();
3650                msleep(100);
3651                dev_info(&pdev->dev, "IOV Disabled\n");
3652
3653                /* Re-enable DMA Coalescing flag since IOV is turned off */
3654                adapter->flags |= IGB_FLAG_DMAC;
3655        }
3656
3657        return 0;
3658}
3659
3660static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3661{
3662        struct net_device *netdev = pci_get_drvdata(pdev);
3663        struct igb_adapter *adapter = netdev_priv(netdev);
3664        int old_vfs = pci_num_vf(pdev);
3665        struct vf_mac_filter *mac_list;
3666        int err = 0;
3667        int num_vf_mac_filters, i;
3668
3669        if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3670                err = -EPERM;
3671                goto out;
3672        }
3673        if (!num_vfs)
3674                goto out;
3675
3676        if (old_vfs) {
3677                dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3678                         old_vfs, max_vfs);
3679                adapter->vfs_allocated_count = old_vfs;
3680        } else
3681                adapter->vfs_allocated_count = num_vfs;
3682
3683        adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3684                                sizeof(struct vf_data_storage), GFP_KERNEL);
3685
3686        /* if allocation failed then we do not support SR-IOV */
3687        if (!adapter->vf_data) {
3688                adapter->vfs_allocated_count = 0;
3689                err = -ENOMEM;
3690                goto out;
3691        }
3692
3693        /* Due to the limited number of RAR entries calculate potential
3694         * number of MAC filters available for the VFs. Reserve entries
3695         * for PF default MAC, PF MAC filters and at least one RAR entry
3696         * for each VF for VF MAC.
3697         */
3698        num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3699                             (1 + IGB_PF_MAC_FILTERS_RESERVED +
3700                              adapter->vfs_allocated_count);
3701
3702        adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3703                                       sizeof(struct vf_mac_filter),
3704                                       GFP_KERNEL);
3705
3706        mac_list = adapter->vf_mac_list;
3707        INIT_LIST_HEAD(&adapter->vf_macs.l);
3708
3709        if (adapter->vf_mac_list) {
3710                /* Initialize list of VF MAC filters */
3711                for (i = 0; i < num_vf_mac_filters; i++) {
3712                        mac_list->vf = -1;
3713                        mac_list->free = true;
3714                        list_add(&mac_list->l, &adapter->vf_macs.l);
3715                        mac_list++;
3716                }
3717        } else {
3718                /* If we could not allocate memory for the VF MAC filters
3719                 * we can continue without this feature but warn user.
3720                 */
3721                dev_err(&pdev->dev,
3722                        "Unable to allocate memory for VF MAC filter list\n");
3723        }
3724
3725        /* only call pci_enable_sriov() if no VFs are allocated already */
3726        if (!old_vfs) {
3727                err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3728                if (err)
3729                        goto err_out;
3730        }
3731        dev_info(&pdev->dev, "%d VFs allocated\n",
3732                 adapter->vfs_allocated_count);
3733        for (i = 0; i < adapter->vfs_allocated_count; i++)
3734                igb_vf_configure(adapter, i);
3735
3736        /* DMA Coalescing is not supported in IOV mode. */
3737        adapter->flags &= ~IGB_FLAG_DMAC;
3738        goto out;
3739
3740err_out:
3741        kfree(adapter->vf_mac_list);
3742        adapter->vf_mac_list = NULL;
3743        kfree(adapter->vf_data);
3744        adapter->vf_data = NULL;
3745        adapter->vfs_allocated_count = 0;
3746out:
3747        return err;
3748}
3749
3750#endif
3751/**
3752 *  igb_remove_i2c - Cleanup  I2C interface
3753 *  @adapter: pointer to adapter structure
3754 **/
3755static void igb_remove_i2c(struct igb_adapter *adapter)
3756{
3757        /* free the adapter bus structure */
3758        i2c_del_adapter(&adapter->i2c_adap);
3759}
3760
3761/**
3762 *  igb_remove - Device Removal Routine
3763 *  @pdev: PCI device information struct
3764 *
3765 *  igb_remove is called by the PCI subsystem to alert the driver
3766 *  that it should release a PCI device.  The could be caused by a
3767 *  Hot-Plug event, or because the driver is going to be removed from
3768 *  memory.
3769 **/
3770static void igb_remove(struct pci_dev *pdev)
3771{
3772        struct net_device *netdev = pci_get_drvdata(pdev);
3773        struct igb_adapter *adapter = netdev_priv(netdev);
3774        struct e1000_hw *hw = &adapter->hw;
3775
3776        pm_runtime_get_noresume(&pdev->dev);
3777#ifdef CONFIG_IGB_HWMON
3778        igb_sysfs_exit(adapter);
3779#endif
3780        igb_remove_i2c(adapter);
3781        igb_ptp_stop(adapter);
3782        /* The watchdog timer may be rescheduled, so explicitly
3783         * disable watchdog from being rescheduled.
3784         */
3785        set_bit(__IGB_DOWN, &adapter->state);
3786        del_timer_sync(&adapter->watchdog_timer);
3787        del_timer_sync(&adapter->phy_info_timer);
3788
3789        cancel_work_sync(&adapter->reset_task);
3790        cancel_work_sync(&adapter->watchdog_task);
3791
3792#ifdef CONFIG_IGB_DCA
3793        if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3794                dev_info(&pdev->dev, "DCA disabled\n");
3795                dca_remove_requester(&pdev->dev);
3796                adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3797                wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3798        }
3799#endif
3800
3801        /* Release control of h/w to f/w.  If f/w is AMT enabled, this
3802         * would have already happened in close and is redundant.
3803         */
3804        igb_release_hw_control(adapter);
3805
3806#ifdef CONFIG_PCI_IOV
3807        igb_disable_sriov(pdev);
3808#endif
3809
3810        unregister_netdev(netdev);
3811
3812        igb_clear_interrupt_scheme(adapter);
3813
3814        pci_iounmap(pdev, adapter->io_addr);
3815        if (hw->flash_address)
3816                iounmap(hw->flash_address);
3817        pci_release_mem_regions(pdev);
3818
3819        kfree(adapter->mac_table);
3820        kfree(adapter->shadow_vfta);
3821        free_netdev(netdev);
3822
3823        pci_disable_pcie_error_reporting(pdev);
3824
3825        pci_disable_device(pdev);
3826}
3827
3828/**
3829 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3830 *  @adapter: board private structure to initialize
3831 *
3832 *  This function initializes the vf specific data storage and then attempts to
3833 *  allocate the VFs.  The reason for ordering it this way is because it is much
3834 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
3835 *  the memory for the VFs.
3836 **/
3837static void igb_probe_vfs(struct igb_adapter *adapter)
3838{
3839#ifdef CONFIG_PCI_IOV
3840        struct pci_dev *pdev = adapter->pdev;
3841        struct e1000_hw *hw = &adapter->hw;
3842
3843        /* Virtualization features not supported on i210 family. */
3844        if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3845                return;
3846
3847        /* Of the below we really only want the effect of getting
3848         * IGB_FLAG_HAS_MSIX set (if available), without which
3849         * igb_enable_sriov() has no effect.
3850         */
3851        igb_set_interrupt_capability(adapter, true);
3852        igb_reset_interrupt_capability(adapter);
3853
3854        pci_sriov_set_totalvfs(pdev, 7);
3855        igb_enable_sriov(pdev, max_vfs);
3856
3857#endif /* CONFIG_PCI_IOV */
3858}
3859
3860unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3861{
3862        struct e1000_hw *hw = &adapter->hw;
3863        unsigned int max_rss_queues;
3864
3865        /* Determine the maximum number of RSS queues supported. */
3866        switch (hw->mac.type) {
3867        case e1000_i211:
3868                max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3869                break;
3870        case e1000_82575:
3871        case e1000_i210:
3872                max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3873                break;
3874        case e1000_i350:
3875                /* I350 cannot do RSS and SR-IOV at the same time */
3876                if (!!adapter->vfs_allocated_count) {
3877                        max_rss_queues = 1;
3878                        break;
3879                }
3880                fallthrough;
3881        case e1000_82576:
3882                if (!!adapter->vfs_allocated_count) {
3883                        max_rss_queues = 2;
3884                        break;
3885                }
3886                fallthrough;
3887        case e1000_82580:
3888        case e1000_i354:
3889        default:
3890                max_rss_queues = IGB_MAX_RX_QUEUES;
3891                break;
3892        }
3893
3894        return max_rss_queues;
3895}
3896
3897static void igb_init_queue_configuration(struct igb_adapter *adapter)
3898{
3899        u32 max_rss_queues;
3900
3901        max_rss_queues = igb_get_max_rss_queues(adapter);
3902        adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3903
3904        igb_set_flag_queue_pairs(adapter, max_rss_queues);
3905}
3906
3907void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3908                              const u32 max_rss_queues)
3909{
3910        struct e1000_hw *hw = &adapter->hw;
3911
3912        /* Determine if we need to pair queues. */
3913        switch (hw->mac.type) {
3914        case e1000_82575:
3915        case e1000_i211:
3916                /* Device supports enough interrupts without queue pairing. */
3917                break;
3918        case e1000_82576:
3919        case e1000_82580:
3920        case e1000_i350:
3921        case e1000_i354:
3922        case e1000_i210:
3923        default:
3924                /* If rss_queues > half of max_rss_queues, pair the queues in
3925                 * order to conserve interrupts due to limited supply.
3926                 */
3927                if (adapter->rss_queues > (max_rss_queues / 2))
3928                        adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3929                else
3930                        adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3931                break;
3932        }
3933}
3934
3935/**
3936 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
3937 *  @adapter: board private structure to initialize
3938 *
3939 *  igb_sw_init initializes the Adapter private data structure.
3940 *  Fields are initialized based on PCI device information and
3941 *  OS network device settings (MTU size).
3942 **/
3943static int igb_sw_init(struct igb_adapter *adapter)
3944{
3945        struct e1000_hw *hw = &adapter->hw;
3946        struct net_device *netdev = adapter->netdev;
3947        struct pci_dev *pdev = adapter->pdev;
3948
3949        pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3950
3951        /* set default ring sizes */
3952        adapter->tx_ring_count = IGB_DEFAULT_TXD;
3953        adapter->rx_ring_count = IGB_DEFAULT_RXD;
3954
3955        /* set default ITR values */
3956        adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3957        adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3958
3959        /* set default work limits */
3960        adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3961
3962        adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
3963        adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3964
3965        spin_lock_init(&adapter->nfc_lock);
3966        spin_lock_init(&adapter->stats64_lock);
3967#ifdef CONFIG_PCI_IOV
3968        switch (hw->mac.type) {
3969        case e1000_82576:
3970        case e1000_i350:
3971                if (max_vfs > 7) {
3972                        dev_warn(&pdev->dev,
3973                                 "Maximum of 7 VFs per PF, using max\n");
3974                        max_vfs = adapter->vfs_allocated_count = 7;
3975                } else
3976                        adapter->vfs_allocated_count = max_vfs;
3977                if (adapter->vfs_allocated_count)
3978                        dev_warn(&pdev->dev,
3979                                 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3980                break;
3981        default:
3982                break;
3983        }
3984#endif /* CONFIG_PCI_IOV */
3985
3986        /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3987        adapter->flags |= IGB_FLAG_HAS_MSIX;
3988
3989        adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3990                                     sizeof(struct igb_mac_addr),
3991                                     GFP_KERNEL);
3992        if (!adapter->mac_table)
3993                return -ENOMEM;
3994
3995        igb_probe_vfs(adapter);
3996
3997        igb_init_queue_configuration(adapter);
3998
3999        /* Setup and initialize a copy of the hw vlan table array */
4000        adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
4001                                       GFP_KERNEL);
4002        if (!adapter->shadow_vfta)
4003                return -ENOMEM;
4004
4005        /* This call may decrease the number of queues */
4006        if (igb_init_interrupt_scheme(adapter, true)) {
4007                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4008                return -ENOMEM;
4009        }
4010
4011        /* Explicitly disable IRQ since the NIC can be in any state. */
4012        igb_irq_disable(adapter);
4013
4014        if (hw->mac.type >= e1000_i350)
4015                adapter->flags &= ~IGB_FLAG_DMAC;
4016
4017        set_bit(__IGB_DOWN, &adapter->state);
4018        return 0;
4019}
4020
4021/**
4022 *  __igb_open - Called when a network interface is made active
4023 *  @netdev: network interface device structure
4024 *  @resuming: indicates whether we are in a resume call
4025 *
4026 *  Returns 0 on success, negative value on failure
4027 *
4028 *  The open entry point is called when a network interface is made
4029 *  active by the system (IFF_UP).  At this point all resources needed
4030 *  for transmit and receive operations are allocated, the interrupt
4031 *  handler is registered with the OS, the watchdog timer is started,
4032 *  and the stack is notified that the interface is ready.
4033 **/
4034static int __igb_open(struct net_device *netdev, bool resuming)
4035{
4036        struct igb_adapter *adapter = netdev_priv(netdev);
4037        struct e1000_hw *hw = &adapter->hw;
4038        struct pci_dev *pdev = adapter->pdev;
4039        int err;
4040        int i;
4041
4042        /* disallow open during test */
4043        if (test_bit(__IGB_TESTING, &adapter->state)) {
4044                WARN_ON(resuming);
4045                return -EBUSY;
4046        }
4047
4048        if (!resuming)
4049                pm_runtime_get_sync(&pdev->dev);
4050
4051        netif_carrier_off(netdev);
4052
4053        /* allocate transmit descriptors */
4054        err = igb_setup_all_tx_resources(adapter);
4055        if (err)
4056                goto err_setup_tx;
4057
4058        /* allocate receive descriptors */
4059        err = igb_setup_all_rx_resources(adapter);
4060        if (err)
4061                goto err_setup_rx;
4062
4063        igb_power_up_link(adapter);
4064
4065        /* before we allocate an interrupt, we must be ready to handle it.
4066         * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4067         * as soon as we call pci_request_irq, so we have to setup our
4068         * clean_rx handler before we do so.
4069         */
4070        igb_configure(adapter);
4071
4072        err = igb_request_irq(adapter);
4073        if (err)
4074                goto err_req_irq;
4075
4076        /* Notify the stack of the actual queue counts. */
4077        err = netif_set_real_num_tx_queues(adapter->netdev,
4078                                           adapter->num_tx_queues);
4079        if (err)
4080                goto err_set_queues;
4081
4082        err = netif_set_real_num_rx_queues(adapter->netdev,
4083                                           adapter->num_rx_queues);
4084        if (err)
4085                goto err_set_queues;
4086
4087        /* From here on the code is the same as igb_up() */
4088        clear_bit(__IGB_DOWN, &adapter->state);
4089
4090        for (i = 0; i < adapter->num_q_vectors; i++)
4091                napi_enable(&(adapter->q_vector[i]->napi));
4092
4093        /* Clear any pending interrupts. */
4094        rd32(E1000_TSICR);
4095        rd32(E1000_ICR);
4096
4097        igb_irq_enable(adapter);
4098
4099        /* notify VFs that reset has been completed */
4100        if (adapter->vfs_allocated_count) {
4101                u32 reg_data = rd32(E1000_CTRL_EXT);
4102
4103                reg_data |= E1000_CTRL_EXT_PFRSTD;
4104                wr32(E1000_CTRL_EXT, reg_data);
4105        }
4106
4107        netif_tx_start_all_queues(netdev);
4108
4109        if (!resuming)
4110                pm_runtime_put(&pdev->dev);
4111
4112        /* start the watchdog. */
4113        hw->mac.get_link_status = 1;
4114        schedule_work(&adapter->watchdog_task);
4115
4116        return 0;
4117
4118err_set_queues:
4119        igb_free_irq(adapter);
4120err_req_irq:
4121        igb_release_hw_control(adapter);
4122        igb_power_down_link(adapter);
4123        igb_free_all_rx_resources(adapter);
4124err_setup_rx:
4125        igb_free_all_tx_resources(adapter);
4126err_setup_tx:
4127        igb_reset(adapter);
4128        if (!resuming)
4129                pm_runtime_put(&pdev->dev);
4130
4131        return err;
4132}
4133
4134int igb_open(struct net_device *netdev)
4135{
4136        return __igb_open(netdev, false);
4137}
4138
4139/**
4140 *  __igb_close - Disables a network interface
4141 *  @netdev: network interface device structure
4142 *  @suspending: indicates we are in a suspend call
4143 *
4144 *  Returns 0, this is not allowed to fail
4145 *
4146 *  The close entry point is called when an interface is de-activated
4147 *  by the OS.  The hardware is still under the driver's control, but
4148 *  needs to be disabled.  A global MAC reset is issued to stop the
4149 *  hardware, and all transmit and receive resources are freed.
4150 **/
4151static int __igb_close(struct net_device *netdev, bool suspending)
4152{
4153        struct igb_adapter *adapter = netdev_priv(netdev);
4154        struct pci_dev *pdev = adapter->pdev;
4155
4156        WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4157
4158        if (!suspending)
4159                pm_runtime_get_sync(&pdev->dev);
4160
4161        igb_down(adapter);
4162        igb_free_irq(adapter);
4163
4164        igb_free_all_tx_resources(adapter);
4165        igb_free_all_rx_resources(adapter);
4166
4167        if (!suspending)
4168                pm_runtime_put_sync(&pdev->dev);
4169        return 0;
4170}
4171
4172int igb_close(struct net_device *netdev)
4173{
4174        if (netif_device_present(netdev) || netdev->dismantle)
4175                return __igb_close(netdev, false);
4176        return 0;
4177}
4178
4179/**
4180 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
4181 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
4182 *
4183 *  Return 0 on success, negative on failure
4184 **/
4185int igb_setup_tx_resources(struct igb_ring *tx_ring)
4186{
4187        struct device *dev = tx_ring->dev;
4188        int size;
4189
4190        size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4191
4192        tx_ring->tx_buffer_info = vmalloc(size);
4193        if (!tx_ring->tx_buffer_info)
4194                goto err;
4195
4196        /* round up to nearest 4K */
4197        tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4198        tx_ring->size = ALIGN(tx_ring->size, 4096);
4199
4200        tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4201                                           &tx_ring->dma, GFP_KERNEL);
4202        if (!tx_ring->desc)
4203                goto err;
4204
4205        tx_ring->next_to_use = 0;
4206        tx_ring->next_to_clean = 0;
4207
4208        return 0;
4209
4210err:
4211        vfree(tx_ring->tx_buffer_info);
4212        tx_ring->tx_buffer_info = NULL;
4213        dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4214        return -ENOMEM;
4215}
4216
4217/**
4218 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
4219 *                               (Descriptors) for all queues
4220 *  @adapter: board private structure
4221 *
4222 *  Return 0 on success, negative on failure
4223 **/
4224static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4225{
4226        struct pci_dev *pdev = adapter->pdev;
4227        int i, err = 0;
4228
4229        for (i = 0; i < adapter->num_tx_queues; i++) {
4230                err = igb_setup_tx_resources(adapter->tx_ring[i]);
4231                if (err) {
4232                        dev_err(&pdev->dev,
4233                                "Allocation for Tx Queue %u failed\n", i);
4234                        for (i--; i >= 0; i--)
4235                                igb_free_tx_resources(adapter->tx_ring[i]);
4236                        break;
4237                }
4238        }
4239
4240        return err;
4241}
4242
4243/**
4244 *  igb_setup_tctl - configure the transmit control registers
4245 *  @adapter: Board private structure
4246 **/
4247void igb_setup_tctl(struct igb_adapter *adapter)
4248{
4249        struct e1000_hw *hw = &adapter->hw;
4250        u32 tctl;
4251
4252        /* disable queue 0 which is enabled by default on 82575 and 82576 */
4253        wr32(E1000_TXDCTL(0), 0);
4254
4255        /* Program the Transmit Control Register */
4256        tctl = rd32(E1000_TCTL);
4257        tctl &= ~E1000_TCTL_CT;
4258        tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4259                (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4260
4261        igb_config_collision_dist(hw);
4262
4263        /* Enable transmits */
4264        tctl |= E1000_TCTL_EN;
4265
4266        wr32(E1000_TCTL, tctl);
4267}
4268
4269/**
4270 *  igb_configure_tx_ring - Configure transmit ring after Reset
4271 *  @adapter: board private structure
4272 *  @ring: tx ring to configure
4273 *
4274 *  Configure a transmit ring after a reset.
4275 **/
4276void igb_configure_tx_ring(struct igb_adapter *adapter,
4277                           struct igb_ring *ring)
4278{
4279        struct e1000_hw *hw = &adapter->hw;
4280        u32 txdctl = 0;
4281        u64 tdba = ring->dma;
4282        int reg_idx = ring->reg_idx;
4283
4284        wr32(E1000_TDLEN(reg_idx),
4285             ring->count * sizeof(union e1000_adv_tx_desc));
4286        wr32(E1000_TDBAL(reg_idx),
4287             tdba & 0x00000000ffffffffULL);
4288        wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4289
4290        ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4291        wr32(E1000_TDH(reg_idx), 0);
4292        writel(0, ring->tail);
4293
4294        txdctl |= IGB_TX_PTHRESH;
4295        txdctl |= IGB_TX_HTHRESH << 8;
4296        txdctl |= IGB_TX_WTHRESH << 16;
4297
4298        /* reinitialize tx_buffer_info */
4299        memset(ring->tx_buffer_info, 0,
4300               sizeof(struct igb_tx_buffer) * ring->count);
4301
4302        txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4303        wr32(E1000_TXDCTL(reg_idx), txdctl);
4304}
4305
4306/**
4307 *  igb_configure_tx - Configure transmit Unit after Reset
4308 *  @adapter: board private structure
4309 *
4310 *  Configure the Tx unit of the MAC after a reset.
4311 **/
4312static void igb_configure_tx(struct igb_adapter *adapter)
4313{
4314        struct e1000_hw *hw = &adapter->hw;
4315        int i;
4316
4317        /* disable the queues */
4318        for (i = 0; i < adapter->num_tx_queues; i++)
4319                wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4320
4321        wrfl();
4322        usleep_range(10000, 20000);
4323
4324        for (i = 0; i < adapter->num_tx_queues; i++)
4325                igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4326}
4327
4328/**
4329 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
4330 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
4331 *
4332 *  Returns 0 on success, negative on failure
4333 **/
4334int igb_setup_rx_resources(struct igb_ring *rx_ring)
4335{
4336        struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
4337        struct device *dev = rx_ring->dev;
4338        int size;
4339
4340        size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4341
4342        rx_ring->rx_buffer_info = vmalloc(size);
4343        if (!rx_ring->rx_buffer_info)
4344                goto err;
4345
4346        /* Round up to nearest 4K */
4347        rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4348        rx_ring->size = ALIGN(rx_ring->size, 4096);
4349
4350        rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4351                                           &rx_ring->dma, GFP_KERNEL);
4352        if (!rx_ring->desc)
4353                goto err;
4354
4355        rx_ring->next_to_alloc = 0;
4356        rx_ring->next_to_clean = 0;
4357        rx_ring->next_to_use = 0;
4358
4359        rx_ring->xdp_prog = adapter->xdp_prog;
4360
4361        /* XDP RX-queue info */
4362        if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
4363                             rx_ring->queue_index, 0) < 0)
4364                goto err;
4365
4366        return 0;
4367
4368err:
4369        vfree(rx_ring->rx_buffer_info);
4370        rx_ring->rx_buffer_info = NULL;
4371        dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4372        return -ENOMEM;
4373}
4374
4375/**
4376 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
4377 *                               (Descriptors) for all queues
4378 *  @adapter: board private structure
4379 *
4380 *  Return 0 on success, negative on failure
4381 **/
4382static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4383{
4384        struct pci_dev *pdev = adapter->pdev;
4385        int i, err = 0;
4386
4387        for (i = 0; i < adapter->num_rx_queues; i++) {
4388                err = igb_setup_rx_resources(adapter->rx_ring[i]);
4389                if (err) {
4390                        dev_err(&pdev->dev,
4391                                "Allocation for Rx Queue %u failed\n", i);
4392                        for (i--; i >= 0; i--)
4393                                igb_free_rx_resources(adapter->rx_ring[i]);
4394                        break;
4395                }
4396        }
4397
4398        return err;
4399}
4400
4401/**
4402 *  igb_setup_mrqc - configure the multiple receive queue control registers
4403 *  @adapter: Board private structure
4404 **/
4405static void igb_setup_mrqc(struct igb_adapter *adapter)
4406{
4407        struct e1000_hw *hw = &adapter->hw;
4408        u32 mrqc, rxcsum;
4409        u32 j, num_rx_queues;
4410        u32 rss_key[10];
4411
4412        netdev_rss_key_fill(rss_key, sizeof(rss_key));
4413        for (j = 0; j < 10; j++)
4414                wr32(E1000_RSSRK(j), rss_key[j]);
4415
4416        num_rx_queues = adapter->rss_queues;
4417
4418        switch (hw->mac.type) {
4419        case e1000_82576:
4420                /* 82576 supports 2 RSS queues for SR-IOV */
4421                if (adapter->vfs_allocated_count)
4422                        num_rx_queues = 2;
4423                break;
4424        default:
4425                break;
4426        }
4427
4428        if (adapter->rss_indir_tbl_init != num_rx_queues) {
4429                for (j = 0; j < IGB_RETA_SIZE; j++)
4430                        adapter->rss_indir_tbl[j] =
4431                        (j * num_rx_queues) / IGB_RETA_SIZE;
4432                adapter->rss_indir_tbl_init = num_rx_queues;
4433        }
4434        igb_write_rss_indir_tbl(adapter);
4435
4436        /* Disable raw packet checksumming so that RSS hash is placed in
4437         * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
4438         * offloads as they are enabled by default
4439         */
4440        rxcsum = rd32(E1000_RXCSUM);
4441        rxcsum |= E1000_RXCSUM_PCSD;
4442
4443        if (adapter->hw.mac.type >= e1000_82576)
4444                /* Enable Receive Checksum Offload for SCTP */
4445                rxcsum |= E1000_RXCSUM_CRCOFL;
4446
4447        /* Don't need to set TUOFL or IPOFL, they default to 1 */
4448        wr32(E1000_RXCSUM, rxcsum);
4449
4450        /* Generate RSS hash based on packet types, TCP/UDP
4451         * port numbers and/or IPv4/v6 src and dst addresses
4452         */
4453        mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4454               E1000_MRQC_RSS_FIELD_IPV4_TCP |
4455               E1000_MRQC_RSS_FIELD_IPV6 |
4456               E1000_MRQC_RSS_FIELD_IPV6_TCP |
4457               E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4458
4459        if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4460                mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4461        if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4462                mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4463
4464        /* If VMDq is enabled then we set the appropriate mode for that, else
4465         * we default to RSS so that an RSS hash is calculated per packet even
4466         * if we are only using one queue
4467         */
4468        if (adapter->vfs_allocated_count) {
4469                if (hw->mac.type > e1000_82575) {
4470                        /* Set the default pool for the PF's first queue */
4471                        u32 vtctl = rd32(E1000_VT_CTL);
4472
4473                        vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4474                                   E1000_VT_CTL_DISABLE_DEF_POOL);
4475                        vtctl |= adapter->vfs_allocated_count <<
4476                                E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4477                        wr32(E1000_VT_CTL, vtctl);
4478                }
4479                if (adapter->rss_queues > 1)
4480                        mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4481                else
4482                        mrqc |= E1000_MRQC_ENABLE_VMDQ;
4483        } else {
4484                mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4485        }
4486        igb_vmm_control(adapter);
4487
4488        wr32(E1000_MRQC, mrqc);
4489}
4490
4491/**
4492 *  igb_setup_rctl - configure the receive control registers
4493 *  @adapter: Board private structure
4494 **/
4495void igb_setup_rctl(struct igb_adapter *adapter)
4496{
4497        struct e1000_hw *hw = &adapter->hw;
4498        u32 rctl;
4499
4500        rctl = rd32(E1000_RCTL);
4501
4502        rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4503        rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4504
4505        rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4506                (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4507
4508        /* enable stripping of CRC. It's unlikely this will break BMC
4509         * redirection as it did with e1000. Newer features require
4510         * that the HW strips the CRC.
4511         */
4512        rctl |= E1000_RCTL_SECRC;
4513
4514        /* disable store bad packets and clear size bits. */
4515        rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4516
4517        /* enable LPE to allow for reception of jumbo frames */
4518        rctl |= E1000_RCTL_LPE;
4519
4520        /* disable queue 0 to prevent tail write w/o re-config */
4521        wr32(E1000_RXDCTL(0), 0);
4522
4523        /* Attention!!!  For SR-IOV PF driver operations you must enable
4524         * queue drop for all VF and PF queues to prevent head of line blocking
4525         * if an un-trusted VF does not provide descriptors to hardware.
4526         */
4527        if (adapter->vfs_allocated_count) {
4528                /* set all queue drop enable bits */
4529                wr32(E1000_QDE, ALL_QUEUES);
4530        }
4531
4532        /* This is useful for sniffing bad packets. */
4533        if (adapter->netdev->features & NETIF_F_RXALL) {
4534                /* UPE and MPE will be handled by normal PROMISC logic
4535                 * in e1000e_set_rx_mode
4536                 */
4537                rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4538                         E1000_RCTL_BAM | /* RX All Bcast Pkts */
4539                         E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4540
4541                rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4542                          E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4543                /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4544                 * and that breaks VLANs.
4545                 */
4546        }
4547
4548        wr32(E1000_RCTL, rctl);
4549}
4550
4551static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4552                                   int vfn)
4553{
4554        struct e1000_hw *hw = &adapter->hw;
4555        u32 vmolr;
4556
4557        if (size > MAX_JUMBO_FRAME_SIZE)
4558                size = MAX_JUMBO_FRAME_SIZE;
4559
4560        vmolr = rd32(E1000_VMOLR(vfn));
4561        vmolr &= ~E1000_VMOLR_RLPML_MASK;
4562        vmolr |= size | E1000_VMOLR_LPE;
4563        wr32(E1000_VMOLR(vfn), vmolr);
4564
4565        return 0;
4566}
4567
4568static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4569                                         int vfn, bool enable)
4570{
4571        struct e1000_hw *hw = &adapter->hw;
4572        u32 val, reg;
4573
4574        if (hw->mac.type < e1000_82576)
4575                return;
4576
4577        if (hw->mac.type == e1000_i350)
4578                reg = E1000_DVMOLR(vfn);
4579        else
4580                reg = E1000_VMOLR(vfn);
4581
4582        val = rd32(reg);
4583        if (enable)
4584                val |= E1000_VMOLR_STRVLAN;
4585        else
4586                val &= ~(E1000_VMOLR_STRVLAN);
4587        wr32(reg, val);
4588}
4589
4590static inline void igb_set_vmolr(struct igb_adapter *adapter,
4591                                 int vfn, bool aupe)
4592{
4593        struct e1000_hw *hw = &adapter->hw;
4594        u32 vmolr;
4595
4596        /* This register exists only on 82576 and newer so if we are older then
4597         * we should exit and do nothing
4598         */
4599        if (hw->mac.type < e1000_82576)
4600                return;
4601
4602        vmolr = rd32(E1000_VMOLR(vfn));
4603        if (aupe)
4604                vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4605        else
4606                vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4607
4608        /* clear all bits that might not be set */
4609        vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4610
4611        if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4612                vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4613        /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4614         * multicast packets
4615         */
4616        if (vfn <= adapter->vfs_allocated_count)
4617                vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4618
4619        wr32(E1000_VMOLR(vfn), vmolr);
4620}
4621
4622/**
4623 *  igb_setup_srrctl - configure the split and replication receive control
4624 *                     registers
4625 *  @adapter: Board private structure
4626 *  @ring: receive ring to be configured
4627 **/
4628void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4629{
4630        struct e1000_hw *hw = &adapter->hw;
4631        int reg_idx = ring->reg_idx;
4632        u32 srrctl = 0;
4633
4634        srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4635        if (ring_uses_large_buffer(ring))
4636                srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4637        else
4638                srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4639        srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4640        if (hw->mac.type >= e1000_82580)
4641                srrctl |= E1000_SRRCTL_TIMESTAMP;
4642        /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4643         * queues and rx flow control is disabled
4644         */
4645        if (adapter->vfs_allocated_count ||
4646            (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4647             adapter->num_rx_queues > 1))
4648                srrctl |= E1000_SRRCTL_DROP_EN;
4649
4650        wr32(E1000_SRRCTL(reg_idx), srrctl);
4651}
4652
4653/**
4654 *  igb_configure_rx_ring - Configure a receive ring after Reset
4655 *  @adapter: board private structure
4656 *  @ring: receive ring to be configured
4657 *
4658 *  Configure the Rx unit of the MAC after a reset.
4659 **/
4660void igb_configure_rx_ring(struct igb_adapter *adapter,
4661                           struct igb_ring *ring)
4662{
4663        struct e1000_hw *hw = &adapter->hw;
4664        union e1000_adv_rx_desc *rx_desc;
4665        u64 rdba = ring->dma;
4666        int reg_idx = ring->reg_idx;
4667        u32 rxdctl = 0;
4668
4669        xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
4670        WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4671                                           MEM_TYPE_PAGE_SHARED, NULL));
4672
4673        /* disable the queue */
4674        wr32(E1000_RXDCTL(reg_idx), 0);
4675
4676        /* Set DMA base address registers */
4677        wr32(E1000_RDBAL(reg_idx),
4678             rdba & 0x00000000ffffffffULL);
4679        wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4680        wr32(E1000_RDLEN(reg_idx),
4681             ring->count * sizeof(union e1000_adv_rx_desc));
4682
4683        /* initialize head and tail */
4684        ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4685        wr32(E1000_RDH(reg_idx), 0);
4686        writel(0, ring->tail);
4687
4688        /* set descriptor configuration */
4689        igb_setup_srrctl(adapter, ring);
4690
4691        /* set filtering for VMDQ pools */
4692        igb_set_vmolr(adapter, reg_idx & 0x7, true);
4693
4694        rxdctl |= IGB_RX_PTHRESH;
4695        rxdctl |= IGB_RX_HTHRESH << 8;
4696        rxdctl |= IGB_RX_WTHRESH << 16;
4697
4698        /* initialize rx_buffer_info */
4699        memset(ring->rx_buffer_info, 0,
4700               sizeof(struct igb_rx_buffer) * ring->count);
4701
4702        /* initialize Rx descriptor 0 */
4703        rx_desc = IGB_RX_DESC(ring, 0);
4704        rx_desc->wb.upper.length = 0;
4705
4706        /* enable receive descriptor fetching */
4707        rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4708        wr32(E1000_RXDCTL(reg_idx), rxdctl);
4709}
4710
4711static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4712                                  struct igb_ring *rx_ring)
4713{
4714        /* set build_skb and buffer size flags */
4715        clear_ring_build_skb_enabled(rx_ring);
4716        clear_ring_uses_large_buffer(rx_ring);
4717
4718        if (adapter->flags & IGB_FLAG_RX_LEGACY)
4719                return;
4720
4721        set_ring_build_skb_enabled(rx_ring);
4722
4723#if (PAGE_SIZE < 8192)
4724        if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4725                return;
4726
4727        set_ring_uses_large_buffer(rx_ring);
4728#endif
4729}
4730
4731/**
4732 *  igb_configure_rx - Configure receive Unit after Reset
4733 *  @adapter: board private structure
4734 *
4735 *  Configure the Rx unit of the MAC after a reset.
4736 **/
4737static void igb_configure_rx(struct igb_adapter *adapter)
4738{
4739        int i;
4740
4741        /* set the correct pool for the PF default MAC address in entry 0 */
4742        igb_set_default_mac_filter(adapter);
4743
4744        /* Setup the HW Rx Head and Tail Descriptor Pointers and
4745         * the Base and Length of the Rx Descriptor Ring
4746         */
4747        for (i = 0; i < adapter->num_rx_queues; i++) {
4748                struct igb_ring *rx_ring = adapter->rx_ring[i];
4749
4750                igb_set_rx_buffer_len(adapter, rx_ring);
4751                igb_configure_rx_ring(adapter, rx_ring);
4752        }
4753}
4754
4755/**
4756 *  igb_free_tx_resources - Free Tx Resources per Queue
4757 *  @tx_ring: Tx descriptor ring for a specific queue
4758 *
4759 *  Free all transmit software resources
4760 **/
4761void igb_free_tx_resources(struct igb_ring *tx_ring)
4762{
4763        igb_clean_tx_ring(tx_ring);
4764
4765        vfree(tx_ring->tx_buffer_info);
4766        tx_ring->tx_buffer_info = NULL;
4767
4768        /* if not set, then don't free */
4769        if (!tx_ring->desc)
4770                return;
4771
4772        dma_free_coherent(tx_ring->dev, tx_ring->size,
4773                          tx_ring->desc, tx_ring->dma);
4774
4775        tx_ring->desc = NULL;
4776}
4777
4778/**
4779 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
4780 *  @adapter: board private structure
4781 *
4782 *  Free all transmit software resources
4783 **/
4784static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4785{
4786        int i;
4787
4788        for (i = 0; i < adapter->num_tx_queues; i++)
4789                if (adapter->tx_ring[i])
4790                        igb_free_tx_resources(adapter->tx_ring[i]);
4791}
4792
4793/**
4794 *  igb_clean_tx_ring - Free Tx Buffers
4795 *  @tx_ring: ring to be cleaned
4796 **/
4797static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4798{
4799        u16 i = tx_ring->next_to_clean;
4800        struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4801
4802        while (i != tx_ring->next_to_use) {
4803                union e1000_adv_tx_desc *eop_desc, *tx_desc;
4804
4805                /* Free all the Tx ring sk_buffs */
4806                dev_kfree_skb_any(tx_buffer->skb);
4807
4808                /* unmap skb header data */
4809                dma_unmap_single(tx_ring->dev,
4810                                 dma_unmap_addr(tx_buffer, dma),
4811                                 dma_unmap_len(tx_buffer, len),
4812                                 DMA_TO_DEVICE);
4813
4814                /* check for eop_desc to determine the end of the packet */
4815                eop_desc = tx_buffer->next_to_watch;
4816                tx_desc = IGB_TX_DESC(tx_ring, i);
4817
4818                /* unmap remaining buffers */
4819                while (tx_desc != eop_desc) {
4820                        tx_buffer++;
4821                        tx_desc++;
4822                        i++;
4823                        if (unlikely(i == tx_ring->count)) {
4824                                i = 0;
4825                                tx_buffer = tx_ring->tx_buffer_info;
4826                                tx_desc = IGB_TX_DESC(tx_ring, 0);
4827                        }
4828
4829                        /* unmap any remaining paged data */
4830                        if (dma_unmap_len(tx_buffer, len))
4831                                dma_unmap_page(tx_ring->dev,
4832                                               dma_unmap_addr(tx_buffer, dma),
4833                                               dma_unmap_len(tx_buffer, len),
4834                                               DMA_TO_DEVICE);
4835                }
4836
4837                /* move us one more past the eop_desc for start of next pkt */
4838                tx_buffer++;
4839                i++;
4840                if (unlikely(i == tx_ring->count)) {
4841                        i = 0;
4842                        tx_buffer = tx_ring->tx_buffer_info;
4843                }
4844        }
4845
4846        /* reset BQL for queue */
4847        netdev_tx_reset_queue(txring_txq(tx_ring));
4848
4849        /* reset next_to_use and next_to_clean */
4850        tx_ring->next_to_use = 0;
4851        tx_ring->next_to_clean = 0;
4852}
4853
4854/**
4855 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
4856 *  @adapter: board private structure
4857 **/
4858static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4859{
4860        int i;
4861
4862        for (i = 0; i < adapter->num_tx_queues; i++)
4863                if (adapter->tx_ring[i])
4864                        igb_clean_tx_ring(adapter->tx_ring[i]);
4865}
4866
4867/**
4868 *  igb_free_rx_resources - Free Rx Resources
4869 *  @rx_ring: ring to clean the resources from
4870 *
4871 *  Free all receive software resources
4872 **/
4873void igb_free_rx_resources(struct igb_ring *rx_ring)
4874{
4875        igb_clean_rx_ring(rx_ring);
4876
4877        rx_ring->xdp_prog = NULL;
4878        xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
4879        vfree(rx_ring->rx_buffer_info);
4880        rx_ring->rx_buffer_info = NULL;
4881
4882        /* if not set, then don't free */
4883        if (!rx_ring->desc)
4884                return;
4885
4886        dma_free_coherent(rx_ring->dev, rx_ring->size,
4887                          rx_ring->desc, rx_ring->dma);
4888
4889        rx_ring->desc = NULL;
4890}
4891
4892/**
4893 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
4894 *  @adapter: board private structure
4895 *
4896 *  Free all receive software resources
4897 **/
4898static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4899{
4900        int i;
4901
4902        for (i = 0; i < adapter->num_rx_queues; i++)
4903                if (adapter->rx_ring[i])
4904                        igb_free_rx_resources(adapter->rx_ring[i]);
4905}
4906
4907/**
4908 *  igb_clean_rx_ring - Free Rx Buffers per Queue
4909 *  @rx_ring: ring to free buffers from
4910 **/
4911static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4912{
4913        u16 i = rx_ring->next_to_clean;
4914
4915        dev_kfree_skb(rx_ring->skb);
4916        rx_ring->skb = NULL;
4917
4918        /* Free all the Rx ring sk_buffs */
4919        while (i != rx_ring->next_to_alloc) {
4920                struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4921
4922                /* Invalidate cache lines that may have been written to by
4923                 * device so that we avoid corrupting memory.
4924                 */
4925                dma_sync_single_range_for_cpu(rx_ring->dev,
4926                                              buffer_info->dma,
4927                                              buffer_info->page_offset,
4928                                              igb_rx_bufsz(rx_ring),
4929                                              DMA_FROM_DEVICE);
4930
4931                /* free resources associated with mapping */
4932                dma_unmap_page_attrs(rx_ring->dev,
4933                                     buffer_info->dma,
4934                                     igb_rx_pg_size(rx_ring),
4935                                     DMA_FROM_DEVICE,
4936                                     IGB_RX_DMA_ATTR);
4937                __page_frag_cache_drain(buffer_info->page,
4938                                        buffer_info->pagecnt_bias);
4939
4940                i++;
4941                if (i == rx_ring->count)
4942                        i = 0;
4943        }
4944
4945        rx_ring->next_to_alloc = 0;
4946        rx_ring->next_to_clean = 0;
4947        rx_ring->next_to_use = 0;
4948}
4949
4950/**
4951 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
4952 *  @adapter: board private structure
4953 **/
4954static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4955{
4956        int i;
4957
4958        for (i = 0; i < adapter->num_rx_queues; i++)
4959                if (adapter->rx_ring[i])
4960                        igb_clean_rx_ring(adapter->rx_ring[i]);
4961}
4962
4963/**
4964 *  igb_set_mac - Change the Ethernet Address of the NIC
4965 *  @netdev: network interface device structure
4966 *  @p: pointer to an address structure
4967 *
4968 *  Returns 0 on success, negative on failure
4969 **/
4970static int igb_set_mac(struct net_device *netdev, void *p)
4971{
4972        struct igb_adapter *adapter = netdev_priv(netdev);
4973        struct e1000_hw *hw = &adapter->hw;
4974        struct sockaddr *addr = p;
4975
4976        if (!is_valid_ether_addr(addr->sa_data))
4977                return -EADDRNOTAVAIL;
4978
4979        memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4980        memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4981
4982        /* set the correct pool for the new PF MAC address in entry 0 */
4983        igb_set_default_mac_filter(adapter);
4984
4985        return 0;
4986}
4987
4988/**
4989 *  igb_write_mc_addr_list - write multicast addresses to MTA
4990 *  @netdev: network interface device structure
4991 *
4992 *  Writes multicast address list to the MTA hash table.
4993 *  Returns: -ENOMEM on failure
4994 *           0 on no addresses written
4995 *           X on writing X addresses to MTA
4996 **/
4997static int igb_write_mc_addr_list(struct net_device *netdev)
4998{
4999        struct igb_adapter *adapter = netdev_priv(netdev);
5000        struct e1000_hw *hw = &adapter->hw;
5001        struct netdev_hw_addr *ha;
5002        u8  *mta_list;
5003        int i;
5004
5005        if (netdev_mc_empty(netdev)) {
5006                /* nothing to program, so clear mc list */
5007                igb_update_mc_addr_list(hw, NULL, 0);
5008                igb_restore_vf_multicasts(adapter);
5009                return 0;
5010        }
5011
5012        mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
5013        if (!mta_list)
5014                return -ENOMEM;
5015
5016        /* The shared function expects a packed array of only addresses. */
5017        i = 0;
5018        netdev_for_each_mc_addr(ha, netdev)
5019                memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5020
5021        igb_update_mc_addr_list(hw, mta_list, i);
5022        kfree(mta_list);
5023
5024        return netdev_mc_count(netdev);
5025}
5026
5027static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5028{
5029        struct e1000_hw *hw = &adapter->hw;
5030        u32 i, pf_id;
5031
5032        switch (hw->mac.type) {
5033        case e1000_i210:
5034        case e1000_i211:
5035        case e1000_i350:
5036                /* VLAN filtering needed for VLAN prio filter */
5037                if (adapter->netdev->features & NETIF_F_NTUPLE)
5038                        break;
5039                fallthrough;
5040        case e1000_82576:
5041        case e1000_82580:
5042        case e1000_i354:
5043                /* VLAN filtering needed for pool filtering */
5044                if (adapter->vfs_allocated_count)
5045                        break;
5046                fallthrough;
5047        default:
5048                return 1;
5049        }
5050
5051        /* We are already in VLAN promisc, nothing to do */
5052        if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5053                return 0;
5054
5055        if (!adapter->vfs_allocated_count)
5056                goto set_vfta;
5057
5058        /* Add PF to all active pools */
5059        pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5060
5061        for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5062                u32 vlvf = rd32(E1000_VLVF(i));
5063
5064                vlvf |= BIT(pf_id);
5065                wr32(E1000_VLVF(i), vlvf);
5066        }
5067
5068set_vfta:
5069        /* Set all bits in the VLAN filter table array */
5070        for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5071                hw->mac.ops.write_vfta(hw, i, ~0U);
5072
5073        /* Set flag so we don't redo unnecessary work */
5074        adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5075
5076        return 0;
5077}
5078
5079#define VFTA_BLOCK_SIZE 8
5080static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5081{
5082        struct e1000_hw *hw = &adapter->hw;
5083        u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5084        u32 vid_start = vfta_offset * 32;
5085        u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5086        u32 i, vid, word, bits, pf_id;
5087
5088        /* guarantee that we don't scrub out management VLAN */
5089        vid = adapter->mng_vlan_id;
5090        if (vid >= vid_start && vid < vid_end)
5091                vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5092
5093        if (!adapter->vfs_allocated_count)
5094                goto set_vfta;
5095
5096        pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5097
5098        for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5099                u32 vlvf = rd32(E1000_VLVF(i));
5100
5101                /* pull VLAN ID from VLVF */
5102                vid = vlvf & VLAN_VID_MASK;
5103
5104                /* only concern ourselves with a certain range */
5105                if (vid < vid_start || vid >= vid_end)
5106                        continue;
5107
5108                if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5109                        /* record VLAN ID in VFTA */
5110                        vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5111
5112                        /* if PF is part of this then continue */
5113                        if (test_bit(vid, adapter->active_vlans))
5114                                continue;
5115                }
5116
5117                /* remove PF from the pool */
5118                bits = ~BIT(pf_id);
5119                bits &= rd32(E1000_VLVF(i));
5120                wr32(E1000_VLVF(i), bits);
5121        }
5122
5123set_vfta:
5124        /* extract values from active_vlans and write back to VFTA */
5125        for (i = VFTA_BLOCK_SIZE; i--;) {
5126                vid = (vfta_offset + i) * 32;
5127                word = vid / BITS_PER_LONG;
5128                bits = vid % BITS_PER_LONG;
5129
5130                vfta[i] |= adapter->active_vlans[word] >> bits;
5131
5132                hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5133        }
5134}
5135
5136static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5137{
5138        u32 i;
5139
5140        /* We are not in VLAN promisc, nothing to do */
5141        if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5142                return;
5143
5144        /* Set flag so we don't redo unnecessary work */
5145        adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5146
5147        for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5148                igb_scrub_vfta(adapter, i);
5149}
5150
5151/**
5152 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5153 *  @netdev: network interface device structure
5154 *
5155 *  The set_rx_mode entry point is called whenever the unicast or multicast
5156 *  address lists or the network interface flags are updated.  This routine is
5157 *  responsible for configuring the hardware for proper unicast, multicast,
5158 *  promiscuous mode, and all-multi behavior.
5159 **/
5160static void igb_set_rx_mode(struct net_device *netdev)
5161{
5162        struct igb_adapter *adapter = netdev_priv(netdev);
5163        struct e1000_hw *hw = &adapter->hw;
5164        unsigned int vfn = adapter->vfs_allocated_count;
5165        u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5166        int count;
5167
5168        /* Check for Promiscuous and All Multicast modes */
5169        if (netdev->flags & IFF_PROMISC) {
5170                rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5171                vmolr |= E1000_VMOLR_MPME;
5172
5173                /* enable use of UTA filter to force packets to default pool */
5174                if (hw->mac.type == e1000_82576)
5175                        vmolr |= E1000_VMOLR_ROPE;
5176        } else {
5177                if (netdev->flags & IFF_ALLMULTI) {
5178                        rctl |= E1000_RCTL_MPE;
5179                        vmolr |= E1000_VMOLR_MPME;
5180                } else {
5181                        /* Write addresses to the MTA, if the attempt fails
5182                         * then we should just turn on promiscuous mode so
5183                         * that we can at least receive multicast traffic
5184                         */
5185                        count = igb_write_mc_addr_list(netdev);
5186                        if (count < 0) {
5187                                rctl |= E1000_RCTL_MPE;
5188                                vmolr |= E1000_VMOLR_MPME;
5189                        } else if (count) {
5190                                vmolr |= E1000_VMOLR_ROMPE;
5191                        }
5192                }
5193        }
5194
5195        /* Write addresses to available RAR registers, if there is not
5196         * sufficient space to store all the addresses then enable
5197         * unicast promiscuous mode
5198         */
5199        if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5200                rctl |= E1000_RCTL_UPE;
5201                vmolr |= E1000_VMOLR_ROPE;
5202        }
5203
5204        /* enable VLAN filtering by default */
5205        rctl |= E1000_RCTL_VFE;
5206
5207        /* disable VLAN filtering for modes that require it */
5208        if ((netdev->flags & IFF_PROMISC) ||
5209            (netdev->features & NETIF_F_RXALL)) {
5210                /* if we fail to set all rules then just clear VFE */
5211                if (igb_vlan_promisc_enable(adapter))
5212                        rctl &= ~E1000_RCTL_VFE;
5213        } else {
5214                igb_vlan_promisc_disable(adapter);
5215        }
5216
5217        /* update state of unicast, multicast, and VLAN filtering modes */
5218        rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5219                                     E1000_RCTL_VFE);
5220        wr32(E1000_RCTL, rctl);
5221
5222#if (PAGE_SIZE < 8192)
5223        if (!adapter->vfs_allocated_count) {
5224                if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5225                        rlpml = IGB_MAX_FRAME_BUILD_SKB;
5226        }
5227#endif
5228        wr32(E1000_RLPML, rlpml);
5229
5230        /* In order to support SR-IOV and eventually VMDq it is necessary to set
5231         * the VMOLR to enable the appropriate modes.  Without this workaround
5232         * we will have issues with VLAN tag stripping not being done for frames
5233         * that are only arriving because we are the default pool
5234         */
5235        if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5236                return;
5237
5238        /* set UTA to appropriate mode */
5239        igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5240
5241        vmolr |= rd32(E1000_VMOLR(vfn)) &
5242                 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5243
5244        /* enable Rx jumbo frames, restrict as needed to support build_skb */
5245        vmolr &= ~E1000_VMOLR_RLPML_MASK;
5246#if (PAGE_SIZE < 8192)
5247        if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5248                vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5249        else
5250#endif
5251                vmolr |= MAX_JUMBO_FRAME_SIZE;
5252        vmolr |= E1000_VMOLR_LPE;
5253
5254        wr32(E1000_VMOLR(vfn), vmolr);
5255
5256        igb_restore_vf_multicasts(adapter);
5257}
5258
5259static void igb_check_wvbr(struct igb_adapter *adapter)
5260{
5261        struct e1000_hw *hw = &adapter->hw;
5262        u32 wvbr = 0;
5263
5264        switch (hw->mac.type) {
5265        case e1000_82576:
5266        case e1000_i350:
5267                wvbr = rd32(E1000_WVBR);
5268                if (!wvbr)
5269                        return;
5270                break;
5271        default:
5272                break;
5273        }
5274
5275        adapter->wvbr |= wvbr;
5276}
5277
5278#define IGB_STAGGERED_QUEUE_OFFSET 8
5279
5280static void igb_spoof_check(struct igb_adapter *adapter)
5281{
5282        int j;
5283
5284        if (!adapter->wvbr)
5285                return;
5286
5287        for (j = 0; j < adapter->vfs_allocated_count; j++) {
5288                if (adapter->wvbr & BIT(j) ||
5289                    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5290                        dev_warn(&adapter->pdev->dev,
5291                                "Spoof event(s) detected on VF %d\n", j);
5292                        adapter->wvbr &=
5293                                ~(BIT(j) |
5294                                  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5295                }
5296        }
5297}
5298
5299/* Need to wait a few seconds after link up to get diagnostic information from
5300 * the phy
5301 */
5302static void igb_update_phy_info(struct timer_list *t)
5303{
5304        struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5305        igb_get_phy_info(&adapter->hw);
5306}
5307
5308/**
5309 *  igb_has_link - check shared code for link and determine up/down
5310 *  @adapter: pointer to driver private info
5311 **/
5312bool igb_has_link(struct igb_adapter *adapter)
5313{
5314        struct e1000_hw *hw = &adapter->hw;
5315        bool link_active = false;
5316
5317        /* get_link_status is set on LSC (link status) interrupt or
5318         * rx sequence error interrupt.  get_link_status will stay
5319         * false until the e1000_check_for_link establishes link
5320         * for copper adapters ONLY
5321         */
5322        switch (hw->phy.media_type) {
5323        case e1000_media_type_copper:
5324                if (!hw->mac.get_link_status)
5325                        return true;
5326                fallthrough;
5327        case e1000_media_type_internal_serdes:
5328                hw->mac.ops.check_for_link(hw);
5329                link_active = !hw->mac.get_link_status;
5330                break;
5331        default:
5332        case e1000_media_type_unknown:
5333                break;
5334        }
5335
5336        if (((hw->mac.type == e1000_i210) ||
5337             (hw->mac.type == e1000_i211)) &&
5338             (hw->phy.id == I210_I_PHY_ID)) {
5339                if (!netif_carrier_ok(adapter->netdev)) {
5340                        adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5341                } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5342                        adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5343                        adapter->link_check_timeout = jiffies;
5344                }
5345        }
5346
5347        return link_active;
5348}
5349
5350static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5351{
5352        bool ret = false;
5353        u32 ctrl_ext, thstat;
5354
5355        /* check for thermal sensor event on i350 copper only */
5356        if (hw->mac.type == e1000_i350) {
5357                thstat = rd32(E1000_THSTAT);
5358                ctrl_ext = rd32(E1000_CTRL_EXT);
5359
5360                if ((hw->phy.media_type == e1000_media_type_copper) &&
5361                    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5362                        ret = !!(thstat & event);
5363        }
5364
5365        return ret;
5366}
5367
5368/**
5369 *  igb_check_lvmmc - check for malformed packets received
5370 *  and indicated in LVMMC register
5371 *  @adapter: pointer to adapter
5372 **/
5373static void igb_check_lvmmc(struct igb_adapter *adapter)
5374{
5375        struct e1000_hw *hw = &adapter->hw;
5376        u32 lvmmc;
5377
5378        lvmmc = rd32(E1000_LVMMC);
5379        if (lvmmc) {
5380                if (unlikely(net_ratelimit())) {
5381                        netdev_warn(adapter->netdev,
5382                                    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5383                                    lvmmc);
5384                }
5385        }
5386}
5387
5388/**
5389 *  igb_watchdog - Timer Call-back
5390 *  @t: pointer to timer_list containing our private info pointer
5391 **/
5392static void igb_watchdog(struct timer_list *t)
5393{
5394        struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5395        /* Do the rest outside of interrupt context */
5396        schedule_work(&adapter->watchdog_task);
5397}
5398
5399static void igb_watchdog_task(struct work_struct *work)
5400{
5401        struct igb_adapter *adapter = container_of(work,
5402                                                   struct igb_adapter,
5403                                                   watchdog_task);
5404        struct e1000_hw *hw = &adapter->hw;
5405        struct e1000_phy_info *phy = &hw->phy;
5406        struct net_device *netdev = adapter->netdev;
5407        u32 link;
5408        int i;
5409        u32 connsw;
5410        u16 phy_data, retry_count = 20;
5411
5412        link = igb_has_link(adapter);
5413
5414        if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5415                if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5416                        adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5417                else
5418                        link = false;
5419        }
5420
5421        /* Force link down if we have fiber to swap to */
5422        if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5423                if (hw->phy.media_type == e1000_media_type_copper) {
5424                        connsw = rd32(E1000_CONNSW);
5425                        if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5426                                link = 0;
5427                }
5428        }
5429        if (link) {
5430                /* Perform a reset if the media type changed. */
5431                if (hw->dev_spec._82575.media_changed) {
5432                        hw->dev_spec._82575.media_changed = false;
5433                        adapter->flags |= IGB_FLAG_MEDIA_RESET;
5434                        igb_reset(adapter);
5435                }
5436                /* Cancel scheduled suspend requests. */
5437                pm_runtime_resume(netdev->dev.parent);
5438
5439                if (!netif_carrier_ok(netdev)) {
5440                        u32 ctrl;
5441
5442                        hw->mac.ops.get_speed_and_duplex(hw,
5443                                                         &adapter->link_speed,
5444                                                         &adapter->link_duplex);
5445
5446                        ctrl = rd32(E1000_CTRL);
5447                        /* Links status message must follow this format */
5448                        netdev_info(netdev,
5449                               "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5450                               netdev->name,
5451                               adapter->link_speed,
5452                               adapter->link_duplex == FULL_DUPLEX ?
5453                               "Full" : "Half",
5454                               (ctrl & E1000_CTRL_TFCE) &&
5455                               (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5456                               (ctrl & E1000_CTRL_RFCE) ?  "RX" :
5457                               (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
5458
5459                        /* disable EEE if enabled */
5460                        if ((adapter->flags & IGB_FLAG_EEE) &&
5461                                (adapter->link_duplex == HALF_DUPLEX)) {
5462                                dev_info(&adapter->pdev->dev,
5463                                "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5464                                adapter->hw.dev_spec._82575.eee_disable = true;
5465                                adapter->flags &= ~IGB_FLAG_EEE;
5466                        }
5467
5468                        /* check if SmartSpeed worked */
5469                        igb_check_downshift(hw);
5470                        if (phy->speed_downgraded)
5471                                netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5472
5473                        /* check for thermal sensor event */
5474                        if (igb_thermal_sensor_event(hw,
5475                            E1000_THSTAT_LINK_THROTTLE))
5476                                netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5477
5478                        /* adjust timeout factor according to speed/duplex */
5479                        adapter->tx_timeout_factor = 1;
5480                        switch (adapter->link_speed) {
5481                        case SPEED_10:
5482                                adapter->tx_timeout_factor = 14;
5483                                break;
5484                        case SPEED_100:
5485                                /* maybe add some timeout factor ? */
5486                                break;
5487                        }
5488
5489                        if (adapter->link_speed != SPEED_1000)
5490                                goto no_wait;
5491
5492                        /* wait for Remote receiver status OK */
5493retry_read_status:
5494                        if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5495                                              &phy_data)) {
5496                                if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5497                                    retry_count) {
5498                                        msleep(100);
5499                                        retry_count--;
5500                                        goto retry_read_status;
5501                                } else if (!retry_count) {
5502                                        dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5503                                }
5504                        } else {
5505                                dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5506                        }
5507no_wait:
5508                        netif_carrier_on(netdev);
5509
5510                        igb_ping_all_vfs(adapter);
5511                        igb_check_vf_rate_limit(adapter);
5512
5513                        /* link state has changed, schedule phy info update */
5514                        if (!test_bit(__IGB_DOWN, &adapter->state))
5515                                mod_timer(&adapter->phy_info_timer,
5516                                          round_jiffies(jiffies + 2 * HZ));
5517                }
5518        } else {
5519                if (netif_carrier_ok(netdev)) {
5520                        adapter->link_speed = 0;
5521                        adapter->link_duplex = 0;
5522
5523                        /* check for thermal sensor event */
5524                        if (igb_thermal_sensor_event(hw,
5525                            E1000_THSTAT_PWR_DOWN)) {
5526                                netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5527                        }
5528
5529                        /* Links status message must follow this format */
5530                        netdev_info(netdev, "igb: %s NIC Link is Down\n",
5531                               netdev->name);
5532                        netif_carrier_off(netdev);
5533
5534                        igb_ping_all_vfs(adapter);
5535
5536                        /* link state has changed, schedule phy info update */
5537                        if (!test_bit(__IGB_DOWN, &adapter->state))
5538                                mod_timer(&adapter->phy_info_timer,
5539                                          round_jiffies(jiffies + 2 * HZ));
5540
5541                        /* link is down, time to check for alternate media */
5542                        if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5543                                igb_check_swap_media(adapter);
5544                                if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5545                                        schedule_work(&adapter->reset_task);
5546                                        /* return immediately */
5547                                        return;
5548                                }
5549                        }
5550                        pm_schedule_suspend(netdev->dev.parent,
5551                                            MSEC_PER_SEC * 5);
5552
5553                /* also check for alternate media here */
5554                } else if (!netif_carrier_ok(netdev) &&
5555                           (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5556                        igb_check_swap_media(adapter);
5557                        if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5558                                schedule_work(&adapter->reset_task);
5559                                /* return immediately */
5560                                return;
5561                        }
5562                }
5563        }
5564
5565        spin_lock(&adapter->stats64_lock);
5566        igb_update_stats(adapter);
5567        spin_unlock(&adapter->stats64_lock);
5568
5569        for (i = 0; i < adapter->num_tx_queues; i++) {
5570                struct igb_ring *tx_ring = adapter->tx_ring[i];
5571                if (!netif_carrier_ok(netdev)) {
5572                        /* We've lost link, so the controller stops DMA,
5573                         * but we've got queued Tx work that's never going
5574                         * to get done, so reset controller to flush Tx.
5575                         * (Do the reset outside of interrupt context).
5576                         */
5577                        if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5578                                adapter->tx_timeout_count++;
5579                                schedule_work(&adapter->reset_task);
5580                                /* return immediately since reset is imminent */
5581                                return;
5582                        }
5583                }
5584
5585                /* Force detection of hung controller every watchdog period */
5586                set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5587        }
5588
5589        /* Cause software interrupt to ensure Rx ring is cleaned */
5590        if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5591                u32 eics = 0;
5592
5593                for (i = 0; i < adapter->num_q_vectors; i++)
5594                        eics |= adapter->q_vector[i]->eims_value;
5595                wr32(E1000_EICS, eics);
5596        } else {
5597                wr32(E1000_ICS, E1000_ICS_RXDMT0);
5598        }
5599
5600        igb_spoof_check(adapter);
5601        igb_ptp_rx_hang(adapter);
5602        igb_ptp_tx_hang(adapter);
5603
5604        /* Check LVMMC register on i350/i354 only */
5605        if ((adapter->hw.mac.type == e1000_i350) ||
5606            (adapter->hw.mac.type == e1000_i354))
5607                igb_check_lvmmc(adapter);
5608
5609        /* Reset the timer */
5610        if (!test_bit(__IGB_DOWN, &adapter->state)) {
5611                if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5612                        mod_timer(&adapter->watchdog_timer,
5613                                  round_jiffies(jiffies +  HZ));
5614                else
5615                        mod_timer(&adapter->watchdog_timer,
5616                                  round_jiffies(jiffies + 2 * HZ));
5617        }
5618}
5619
5620enum latency_range {
5621        lowest_latency = 0,
5622        low_latency = 1,
5623        bulk_latency = 2,
5624        latency_invalid = 255
5625};
5626
5627/**
5628 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
5629 *  @q_vector: pointer to q_vector
5630 *
5631 *  Stores a new ITR value based on strictly on packet size.  This
5632 *  algorithm is less sophisticated than that used in igb_update_itr,
5633 *  due to the difficulty of synchronizing statistics across multiple
5634 *  receive rings.  The divisors and thresholds used by this function
5635 *  were determined based on theoretical maximum wire speed and testing
5636 *  data, in order to minimize response time while increasing bulk
5637 *  throughput.
5638 *  This functionality is controlled by ethtool's coalescing settings.
5639 *  NOTE:  This function is called only when operating in a multiqueue
5640 *         receive environment.
5641 **/
5642static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5643{
5644        int new_val = q_vector->itr_val;
5645        int avg_wire_size = 0;
5646        struct igb_adapter *adapter = q_vector->adapter;
5647        unsigned int packets;
5648
5649        /* For non-gigabit speeds, just fix the interrupt rate at 4000
5650         * ints/sec - ITR timer value of 120 ticks.
5651         */
5652        if (adapter->link_speed != SPEED_1000) {
5653                new_val = IGB_4K_ITR;
5654                goto set_itr_val;
5655        }
5656
5657        packets = q_vector->rx.total_packets;
5658        if (packets)
5659                avg_wire_size = q_vector->rx.total_bytes / packets;
5660
5661        packets = q_vector->tx.total_packets;
5662        if (packets)
5663                avg_wire_size = max_t(u32, avg_wire_size,
5664                                      q_vector->tx.total_bytes / packets);
5665
5666        /* if avg_wire_size isn't set no work was done */
5667        if (!avg_wire_size)
5668                goto clear_counts;
5669
5670        /* Add 24 bytes to size to account for CRC, preamble, and gap */
5671        avg_wire_size += 24;
5672
5673        /* Don't starve jumbo frames */
5674        avg_wire_size = min(avg_wire_size, 3000);
5675
5676        /* Give a little boost to mid-size frames */
5677        if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5678                new_val = avg_wire_size / 3;
5679        else
5680                new_val = avg_wire_size / 2;
5681
5682        /* conservative mode (itr 3) eliminates the lowest_latency setting */
5683        if (new_val < IGB_20K_ITR &&
5684            ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5685             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5686                new_val = IGB_20K_ITR;
5687
5688set_itr_val:
5689        if (new_val != q_vector->itr_val) {
5690                q_vector->itr_val = new_val;
5691                q_vector->set_itr = 1;
5692        }
5693clear_counts:
5694        q_vector->rx.total_bytes = 0;
5695        q_vector->rx.total_packets = 0;
5696        q_vector->tx.total_bytes = 0;
5697        q_vector->tx.total_packets = 0;
5698}
5699
5700/**
5701 *  igb_update_itr - update the dynamic ITR value based on statistics
5702 *  @q_vector: pointer to q_vector
5703 *  @ring_container: ring info to update the itr for
5704 *
5705 *  Stores a new ITR value based on packets and byte
5706 *  counts during the last interrupt.  The advantage of per interrupt
5707 *  computation is faster updates and more accurate ITR for the current
5708 *  traffic pattern.  Constants in this function were computed
5709 *  based on theoretical maximum wire speed and thresholds were set based
5710 *  on testing data as well as attempting to minimize response time
5711 *  while increasing bulk throughput.
5712 *  This functionality is controlled by ethtool's coalescing settings.
5713 *  NOTE:  These calculations are only valid when operating in a single-
5714 *         queue environment.
5715 **/
5716static void igb_update_itr(struct igb_q_vector *q_vector,
5717                           struct igb_ring_container *ring_container)
5718{
5719        unsigned int packets = ring_container->total_packets;
5720        unsigned int bytes = ring_container->total_bytes;
5721        u8 itrval = ring_container->itr;
5722
5723        /* no packets, exit with status unchanged */
5724        if (packets == 0)
5725                return;
5726
5727        switch (itrval) {
5728        case lowest_latency:
5729                /* handle TSO and jumbo frames */
5730                if (bytes/packets > 8000)
5731                        itrval = bulk_latency;
5732                else if ((packets < 5) && (bytes > 512))
5733                        itrval = low_latency;
5734                break;
5735        case low_latency:  /* 50 usec aka 20000 ints/s */
5736                if (bytes > 10000) {
5737                        /* this if handles the TSO accounting */
5738                        if (bytes/packets > 8000)
5739                                itrval = bulk_latency;
5740                        else if ((packets < 10) || ((bytes/packets) > 1200))
5741                                itrval = bulk_latency;
5742                        else if ((packets > 35))
5743                                itrval = lowest_latency;
5744                } else if (bytes/packets > 2000) {
5745                        itrval = bulk_latency;
5746                } else if (packets <= 2 && bytes < 512) {
5747                        itrval = lowest_latency;
5748                }
5749                break;
5750        case bulk_latency: /* 250 usec aka 4000 ints/s */
5751                if (bytes > 25000) {
5752                        if (packets > 35)
5753                                itrval = low_latency;
5754                } else if (bytes < 1500) {
5755                        itrval = low_latency;
5756                }
5757                break;
5758        }
5759
5760        /* clear work counters since we have the values we need */
5761        ring_container->total_bytes = 0;
5762        ring_container->total_packets = 0;
5763
5764        /* write updated itr to ring container */
5765        ring_container->itr = itrval;
5766}
5767
5768static void igb_set_itr(struct igb_q_vector *q_vector)
5769{
5770        struct igb_adapter *adapter = q_vector->adapter;
5771        u32 new_itr = q_vector->itr_val;
5772        u8 current_itr = 0;
5773
5774        /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5775        if (adapter->link_speed != SPEED_1000) {
5776                current_itr = 0;
5777                new_itr = IGB_4K_ITR;
5778                goto set_itr_now;
5779        }
5780
5781        igb_update_itr(q_vector, &q_vector->tx);
5782        igb_update_itr(q_vector, &q_vector->rx);
5783
5784        current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5785
5786        /* conservative mode (itr 3) eliminates the lowest_latency setting */
5787        if (current_itr == lowest_latency &&
5788            ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5789             (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5790                current_itr = low_latency;
5791
5792        switch (current_itr) {
5793        /* counts and packets in update_itr are dependent on these numbers */
5794        case lowest_latency:
5795                new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5796                break;
5797        case low_latency:
5798                new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5799                break;
5800        case bulk_latency:
5801                new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
5802                break;
5803        default:
5804                break;
5805        }
5806
5807set_itr_now:
5808        if (new_itr != q_vector->itr_val) {
5809                /* this attempts to bias the interrupt rate towards Bulk
5810                 * by adding intermediate steps when interrupt rate is
5811                 * increasing
5812                 */
5813                new_itr = new_itr > q_vector->itr_val ?
5814                          max((new_itr * q_vector->itr_val) /
5815                          (new_itr + (q_vector->itr_val >> 2)),
5816                          new_itr) : new_itr;
5817                /* Don't write the value here; it resets the adapter's
5818                 * internal timer, and causes us to delay far longer than
5819                 * we should between interrupts.  Instead, we write the ITR
5820                 * value at the beginning of the next interrupt so the timing
5821                 * ends up being correct.
5822                 */
5823                q_vector->itr_val = new_itr;
5824                q_vector->set_itr = 1;
5825        }
5826}
5827
5828static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5829                            struct igb_tx_buffer *first,
5830                            u32 vlan_macip_lens, u32 type_tucmd,
5831                            u32 mss_l4len_idx)
5832{
5833        struct e1000_adv_tx_context_desc *context_desc;
5834        u16 i = tx_ring->next_to_use;
5835        struct timespec64 ts;
5836
5837        context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5838
5839        i++;
5840        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5841
5842        /* set bits to identify this as an advanced context descriptor */
5843        type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5844
5845        /* For 82575, context index must be unique per ring. */
5846        if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5847                mss_l4len_idx |= tx_ring->reg_idx << 4;
5848
5849        context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
5850        context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
5851        context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
5852
5853        /* We assume there is always a valid tx time available. Invalid times
5854         * should have been handled by the upper layers.
5855         */
5856        if (tx_ring->launchtime_enable) {
5857                ts = ktime_to_timespec64(first->skb->tstamp);
5858                skb_txtime_consumed(first->skb);
5859                context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5860        } else {
5861                context_desc->seqnum_seed = 0;
5862        }
5863}
5864
5865static int igb_tso(struct igb_ring *tx_ring,
5866                   struct igb_tx_buffer *first,
5867                   u8 *hdr_len)
5868{
5869        u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5870        struct sk_buff *skb = first->skb;
5871        union {
5872                struct iphdr *v4;
5873                struct ipv6hdr *v6;
5874                unsigned char *hdr;
5875        } ip;
5876        union {
5877                struct tcphdr *tcp;
5878                struct udphdr *udp;
5879                unsigned char *hdr;
5880        } l4;
5881        u32 paylen, l4_offset;
5882        int err;
5883
5884        if (skb->ip_summed != CHECKSUM_PARTIAL)
5885                return 0;
5886
5887        if (!skb_is_gso(skb))
5888                return 0;
5889
5890        err = skb_cow_head(skb, 0);
5891        if (err < 0)
5892                return err;
5893
5894        ip.hdr = skb_network_header(skb);
5895        l4.hdr = skb_checksum_start(skb);
5896
5897        /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5898        type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
5899                      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
5900
5901        /* initialize outer IP header fields */
5902        if (ip.v4->version == 4) {
5903                unsigned char *csum_start = skb_checksum_start(skb);
5904                unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5905
5906                /* IP header will have to cancel out any data that
5907                 * is not a part of the outer IP header
5908                 */
5909                ip.v4->check = csum_fold(csum_partial(trans_start,
5910                                                      csum_start - trans_start,
5911                                                      0));
5912                type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5913
5914                ip.v4->tot_len = 0;
5915                first->tx_flags |= IGB_TX_FLAGS_TSO |
5916                                   IGB_TX_FLAGS_CSUM |
5917                                   IGB_TX_FLAGS_IPV4;
5918        } else {
5919                ip.v6->payload_len = 0;
5920                first->tx_flags |= IGB_TX_FLAGS_TSO |
5921                                   IGB_TX_FLAGS_CSUM;
5922        }
5923
5924        /* determine offset of inner transport header */
5925        l4_offset = l4.hdr - skb->data;
5926
5927        /* remove payload length from inner checksum */
5928        paylen = skb->len - l4_offset;
5929        if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
5930                /* compute length of segmentation header */
5931                *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5932                csum_replace_by_diff(&l4.tcp->check,
5933                        (__force __wsum)htonl(paylen));
5934        } else {
5935                /* compute length of segmentation header */
5936                *hdr_len = sizeof(*l4.udp) + l4_offset;
5937                csum_replace_by_diff(&l4.udp->check,
5938                                     (__force __wsum)htonl(paylen));
5939        }
5940
5941        /* update gso size and bytecount with header size */
5942        first->gso_segs = skb_shinfo(skb)->gso_segs;
5943        first->bytecount += (first->gso_segs - 1) * *hdr_len;
5944
5945        /* MSS L4LEN IDX */
5946        mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5947        mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5948
5949        /* VLAN MACLEN IPLEN */
5950        vlan_macip_lens = l4.hdr - ip.hdr;
5951        vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5952        vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5953
5954        igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5955                        type_tucmd, mss_l4len_idx);
5956
5957        return 1;
5958}
5959
5960static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5961{
5962        struct sk_buff *skb = first->skb;
5963        u32 vlan_macip_lens = 0;
5964        u32 type_tucmd = 0;
5965
5966        if (skb->ip_summed != CHECKSUM_PARTIAL) {
5967csum_failed:
5968                if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5969                    !tx_ring->launchtime_enable)
5970                        return;
5971                goto no_csum;
5972        }
5973
5974        switch (skb->csum_offset) {
5975        case offsetof(struct tcphdr, check):
5976                type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5977                fallthrough;
5978        case offsetof(struct udphdr, check):
5979                break;
5980        case offsetof(struct sctphdr, checksum):
5981                /* validate that this is actually an SCTP request */
5982                if (skb_csum_is_sctp(skb)) {
5983                        type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5984                        break;
5985                }
5986                fallthrough;
5987        default:
5988                skb_checksum_help(skb);
5989                goto csum_failed;
5990        }
5991
5992        /* update TX checksum flag */
5993        first->tx_flags |= IGB_TX_FLAGS_CSUM;
5994        vlan_macip_lens = skb_checksum_start_offset(skb) -
5995                          skb_network_offset(skb);
5996no_csum:
5997        vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5998        vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5999
6000        igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
6001}
6002
6003#define IGB_SET_FLAG(_input, _flag, _result) \
6004        ((_flag <= _result) ? \
6005         ((u32)(_input & _flag) * (_result / _flag)) : \
6006         ((u32)(_input & _flag) / (_flag / _result)))
6007
6008static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6009{
6010        /* set type for advanced descriptor with frame checksum insertion */
6011        u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6012                       E1000_ADVTXD_DCMD_DEXT |
6013                       E1000_ADVTXD_DCMD_IFCS;
6014
6015        /* set HW vlan bit if vlan is present */
6016        cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6017                                 (E1000_ADVTXD_DCMD_VLE));
6018
6019        /* set segmentation bits for TSO */
6020        cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6021                                 (E1000_ADVTXD_DCMD_TSE));
6022
6023        /* set timestamp bit if present */
6024        cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6025                                 (E1000_ADVTXD_MAC_TSTAMP));
6026
6027        /* insert frame checksum */
6028        cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6029
6030        return cmd_type;
6031}
6032
6033static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6034                                 union e1000_adv_tx_desc *tx_desc,
6035                                 u32 tx_flags, unsigned int paylen)
6036{
6037        u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6038
6039        /* 82575 requires a unique index per ring */
6040        if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6041                olinfo_status |= tx_ring->reg_idx << 4;
6042
6043        /* insert L4 checksum */
6044        olinfo_status |= IGB_SET_FLAG(tx_flags,
6045                                      IGB_TX_FLAGS_CSUM,
6046                                      (E1000_TXD_POPTS_TXSM << 8));
6047
6048        /* insert IPv4 checksum */
6049        olinfo_status |= IGB_SET_FLAG(tx_flags,
6050                                      IGB_TX_FLAGS_IPV4,
6051                                      (E1000_TXD_POPTS_IXSM << 8));
6052
6053        tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6054}
6055
6056static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6057{
6058        struct net_device *netdev = tx_ring->netdev;
6059
6060        netif_stop_subqueue(netdev, tx_ring->queue_index);
6061
6062        /* Herbert's original patch had:
6063         *  smp_mb__after_netif_stop_queue();
6064         * but since that doesn't exist yet, just open code it.
6065         */
6066        smp_mb();
6067
6068        /* We need to check again in a case another CPU has just
6069         * made room available.
6070         */
6071        if (igb_desc_unused(tx_ring) < size)
6072                return -EBUSY;
6073
6074        /* A reprieve! */
6075        netif_wake_subqueue(netdev, tx_ring->queue_index);
6076
6077        u64_stats_update_begin(&tx_ring->tx_syncp2);
6078        tx_ring->tx_stats.restart_queue2++;
6079        u64_stats_update_end(&tx_ring->tx_syncp2);
6080
6081        return 0;
6082}
6083
6084static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6085{
6086        if (igb_desc_unused(tx_ring) >= size)
6087                return 0;
6088        return __igb_maybe_stop_tx(tx_ring, size);
6089}
6090
6091static int igb_tx_map(struct igb_ring *tx_ring,
6092                      struct igb_tx_buffer *first,
6093                      const u8 hdr_len)
6094{
6095        struct sk_buff *skb = first->skb;
6096        struct igb_tx_buffer *tx_buffer;
6097        union e1000_adv_tx_desc *tx_desc;
6098        skb_frag_t *frag;
6099        dma_addr_t dma;
6100        unsigned int data_len, size;
6101        u32 tx_flags = first->tx_flags;
6102        u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6103        u16 i = tx_ring->next_to_use;
6104
6105        tx_desc = IGB_TX_DESC(tx_ring, i);
6106
6107        igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
6108
6109        size = skb_headlen(skb);
6110        data_len = skb->data_len;
6111
6112        dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6113
6114        tx_buffer = first;
6115
6116        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6117                if (dma_mapping_error(tx_ring->dev, dma))
6118                        goto dma_error;
6119
6120                /* record length, and DMA address */
6121                dma_unmap_len_set(tx_buffer, len, size);
6122                dma_unmap_addr_set(tx_buffer, dma, dma);
6123
6124                tx_desc->read.buffer_addr = cpu_to_le64(dma);
6125
6126                while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6127                        tx_desc->read.cmd_type_len =
6128                                cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6129
6130                        i++;
6131                        tx_desc++;
6132                        if (i == tx_ring->count) {
6133                                tx_desc = IGB_TX_DESC(tx_ring, 0);
6134                                i = 0;
6135                        }
6136                        tx_desc->read.olinfo_status = 0;
6137
6138                        dma += IGB_MAX_DATA_PER_TXD;
6139                        size -= IGB_MAX_DATA_PER_TXD;
6140
6141                        tx_desc->read.buffer_addr = cpu_to_le64(dma);
6142                }
6143
6144                if (likely(!data_len))
6145                        break;
6146
6147                tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6148
6149                i++;
6150                tx_desc++;
6151                if (i == tx_ring->count) {
6152                        tx_desc = IGB_TX_DESC(tx_ring, 0);
6153                        i = 0;
6154                }
6155                tx_desc->read.olinfo_status = 0;
6156
6157                size = skb_frag_size(frag);
6158                data_len -= size;
6159
6160                dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6161                                       size, DMA_TO_DEVICE);
6162
6163                tx_buffer = &tx_ring->tx_buffer_info[i];
6164        }
6165
6166        /* write last descriptor with RS and EOP bits */
6167        cmd_type |= size | IGB_TXD_DCMD;
6168        tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6169
6170        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6171
6172        /* set the timestamp */
6173        first->time_stamp = jiffies;
6174
6175        skb_tx_timestamp(skb);
6176
6177        /* Force memory writes to complete before letting h/w know there
6178         * are new descriptors to fetch.  (Only applicable for weak-ordered
6179         * memory model archs, such as IA-64).
6180         *
6181         * We also need this memory barrier to make certain all of the
6182         * status bits have been updated before next_to_watch is written.
6183         */
6184        dma_wmb();
6185
6186        /* set next_to_watch value indicating a packet is present */
6187        first->next_to_watch = tx_desc;
6188
6189        i++;
6190        if (i == tx_ring->count)
6191                i = 0;
6192
6193        tx_ring->next_to_use = i;
6194
6195        /* Make sure there is space in the ring for the next send. */
6196        igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6197
6198        if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
6199                writel(i, tx_ring->tail);
6200        }
6201        return 0;
6202
6203dma_error:
6204        dev_err(tx_ring->dev, "TX DMA map failed\n");
6205        tx_buffer = &tx_ring->tx_buffer_info[i];
6206
6207        /* clear dma mappings for failed tx_buffer_info map */
6208        while (tx_buffer != first) {
6209                if (dma_unmap_len(tx_buffer, len))
6210                        dma_unmap_page(tx_ring->dev,
6211                                       dma_unmap_addr(tx_buffer, dma),
6212                                       dma_unmap_len(tx_buffer, len),
6213                                       DMA_TO_DEVICE);
6214                dma_unmap_len_set(tx_buffer, len, 0);
6215
6216                if (i-- == 0)
6217                        i += tx_ring->count;
6218                tx_buffer = &tx_ring->tx_buffer_info[i];
6219        }
6220
6221        if (dma_unmap_len(tx_buffer, len))
6222                dma_unmap_single(tx_ring->dev,
6223                                 dma_unmap_addr(tx_buffer, dma),
6224                                 dma_unmap_len(tx_buffer, len),
6225                                 DMA_TO_DEVICE);
6226        dma_unmap_len_set(tx_buffer, len, 0);
6227
6228        dev_kfree_skb_any(tx_buffer->skb);
6229        tx_buffer->skb = NULL;
6230
6231        tx_ring->next_to_use = i;
6232
6233        return -1;
6234}
6235
6236int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6237                      struct igb_ring *tx_ring,
6238                      struct xdp_frame *xdpf)
6239{
6240        union e1000_adv_tx_desc *tx_desc;
6241        u32 len, cmd_type, olinfo_status;
6242        struct igb_tx_buffer *tx_buffer;
6243        dma_addr_t dma;
6244        u16 i;
6245
6246        len = xdpf->len;
6247
6248        if (unlikely(!igb_desc_unused(tx_ring)))
6249                return IGB_XDP_CONSUMED;
6250
6251        dma = dma_map_single(tx_ring->dev, xdpf->data, len, DMA_TO_DEVICE);
6252        if (dma_mapping_error(tx_ring->dev, dma))
6253                return IGB_XDP_CONSUMED;
6254
6255        /* record the location of the first descriptor for this packet */
6256        tx_buffer = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6257        tx_buffer->bytecount = len;
6258        tx_buffer->gso_segs = 1;
6259        tx_buffer->protocol = 0;
6260
6261        i = tx_ring->next_to_use;
6262        tx_desc = IGB_TX_DESC(tx_ring, i);
6263
6264        dma_unmap_len_set(tx_buffer, len, len);
6265        dma_unmap_addr_set(tx_buffer, dma, dma);
6266        tx_buffer->type = IGB_TYPE_XDP;
6267        tx_buffer->xdpf = xdpf;
6268
6269        tx_desc->read.buffer_addr = cpu_to_le64(dma);
6270
6271        /* put descriptor type bits */
6272        cmd_type = E1000_ADVTXD_DTYP_DATA |
6273                   E1000_ADVTXD_DCMD_DEXT |
6274                   E1000_ADVTXD_DCMD_IFCS;
6275        cmd_type |= len | IGB_TXD_DCMD;
6276        tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6277
6278        olinfo_status = cpu_to_le32(len << E1000_ADVTXD_PAYLEN_SHIFT);
6279        /* 82575 requires a unique index per ring */
6280        if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6281                olinfo_status |= tx_ring->reg_idx << 4;
6282
6283        tx_desc->read.olinfo_status = olinfo_status;
6284
6285        netdev_tx_sent_queue(txring_txq(tx_ring), tx_buffer->bytecount);
6286
6287        /* set the timestamp */
6288        tx_buffer->time_stamp = jiffies;
6289
6290        /* Avoid any potential race with xdp_xmit and cleanup */
6291        smp_wmb();
6292
6293        /* set next_to_watch value indicating a packet is present */
6294        i++;
6295        if (i == tx_ring->count)
6296                i = 0;
6297
6298        tx_buffer->next_to_watch = tx_desc;
6299        tx_ring->next_to_use = i;
6300
6301        /* Make sure there is space in the ring for the next send. */
6302        igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6303
6304        if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
6305                writel(i, tx_ring->tail);
6306
6307        return IGB_XDP_TX;
6308}
6309
6310netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6311                                struct igb_ring *tx_ring)
6312{
6313        struct igb_tx_buffer *first;
6314        int tso;
6315        u32 tx_flags = 0;
6316        unsigned short f;
6317        u16 count = TXD_USE_COUNT(skb_headlen(skb));
6318        __be16 protocol = vlan_get_protocol(skb);
6319        u8 hdr_len = 0;
6320
6321        /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6322         *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6323         *       + 2 desc gap to keep tail from touching head,
6324         *       + 1 desc for context descriptor,
6325         * otherwise try next time
6326         */
6327        for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6328                count += TXD_USE_COUNT(skb_frag_size(
6329                                                &skb_shinfo(skb)->frags[f]));
6330
6331        if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6332                /* this is a hard error */
6333                return NETDEV_TX_BUSY;
6334        }
6335
6336        /* record the location of the first descriptor for this packet */
6337        first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6338        first->type = IGB_TYPE_SKB;
6339        first->skb = skb;
6340        first->bytecount = skb->len;
6341        first->gso_segs = 1;
6342
6343        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6344                struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6345
6346                if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6347                    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6348                                           &adapter->state)) {
6349                        skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6350                        tx_flags |= IGB_TX_FLAGS_TSTAMP;
6351
6352                        adapter->ptp_tx_skb = skb_get(skb);
6353                        adapter->ptp_tx_start = jiffies;
6354                        if (adapter->hw.mac.type == e1000_82576)
6355                                schedule_work(&adapter->ptp_tx_work);
6356                } else {
6357                        adapter->tx_hwtstamp_skipped++;
6358                }
6359        }
6360
6361        if (skb_vlan_tag_present(skb)) {
6362                tx_flags |= IGB_TX_FLAGS_VLAN;
6363                tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6364        }
6365
6366        /* record initial flags and protocol */
6367        first->tx_flags = tx_flags;
6368        first->protocol = protocol;
6369
6370        tso = igb_tso(tx_ring, first, &hdr_len);
6371        if (tso < 0)
6372                goto out_drop;
6373        else if (!tso)
6374                igb_tx_csum(tx_ring, first);
6375
6376        if (igb_tx_map(tx_ring, first, hdr_len))
6377                goto cleanup_tx_tstamp;
6378
6379        return NETDEV_TX_OK;
6380
6381out_drop:
6382        dev_kfree_skb_any(first->skb);
6383        first->skb = NULL;
6384cleanup_tx_tstamp:
6385        if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6386                struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6387
6388                dev_kfree_skb_any(adapter->ptp_tx_skb);
6389                adapter->ptp_tx_skb = NULL;
6390                if (adapter->hw.mac.type == e1000_82576)
6391                        cancel_work_sync(&adapter->ptp_tx_work);
6392                clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6393        }
6394
6395        return NETDEV_TX_OK;
6396}
6397
6398static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6399                                                    struct sk_buff *skb)
6400{
6401        unsigned int r_idx = skb->queue_mapping;
6402
6403        if (r_idx >= adapter->num_tx_queues)
6404                r_idx = r_idx % adapter->num_tx_queues;
6405
6406        return adapter->tx_ring[r_idx];
6407}
6408
6409static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6410                                  struct net_device *netdev)
6411{
6412        struct igb_adapter *adapter = netdev_priv(netdev);
6413
6414        /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6415         * in order to meet this minimum size requirement.
6416         */
6417        if (skb_put_padto(skb, 17))
6418                return NETDEV_TX_OK;
6419
6420        return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6421}
6422
6423/**
6424 *  igb_tx_timeout - Respond to a Tx Hang
6425 *  @netdev: network interface device structure
6426 *  @txqueue: number of the Tx queue that hung (unused)
6427 **/
6428static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6429{
6430        struct igb_adapter *adapter = netdev_priv(netdev);
6431        struct e1000_hw *hw = &adapter->hw;
6432
6433        /* Do the reset outside of interrupt context */
6434        adapter->tx_timeout_count++;
6435
6436        if (hw->mac.type >= e1000_82580)
6437                hw->dev_spec._82575.global_device_reset = true;
6438
6439        schedule_work(&adapter->reset_task);
6440        wr32(E1000_EICS,
6441             (adapter->eims_enable_mask & ~adapter->eims_other));
6442}
6443
6444static void igb_reset_task(struct work_struct *work)
6445{
6446        struct igb_adapter *adapter;
6447        adapter = container_of(work, struct igb_adapter, reset_task);
6448
6449        rtnl_lock();
6450        /* If we're already down or resetting, just bail */
6451        if (test_bit(__IGB_DOWN, &adapter->state) ||
6452            test_bit(__IGB_RESETTING, &adapter->state)) {
6453                rtnl_unlock();
6454                return;
6455        }
6456
6457        igb_dump(adapter);
6458        netdev_err(adapter->netdev, "Reset adapter\n");
6459        igb_reinit_locked(adapter);
6460        rtnl_unlock();
6461}
6462
6463/**
6464 *  igb_get_stats64 - Get System Network Statistics
6465 *  @netdev: network interface device structure
6466 *  @stats: rtnl_link_stats64 pointer
6467 **/
6468static void igb_get_stats64(struct net_device *netdev,
6469                            struct rtnl_link_stats64 *stats)
6470{
6471        struct igb_adapter *adapter = netdev_priv(netdev);
6472
6473        spin_lock(&adapter->stats64_lock);
6474        igb_update_stats(adapter);
6475        memcpy(stats, &adapter->stats64, sizeof(*stats));
6476        spin_unlock(&adapter->stats64_lock);
6477}
6478
6479/**
6480 *  igb_change_mtu - Change the Maximum Transfer Unit
6481 *  @netdev: network interface device structure
6482 *  @new_mtu: new value for maximum frame size
6483 *
6484 *  Returns 0 on success, negative on failure
6485 **/
6486static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6487{
6488        struct igb_adapter *adapter = netdev_priv(netdev);
6489        int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6490
6491        if (adapter->xdp_prog) {
6492                int i;
6493
6494                for (i = 0; i < adapter->num_rx_queues; i++) {
6495                        struct igb_ring *ring = adapter->rx_ring[i];
6496
6497                        if (max_frame > igb_rx_bufsz(ring)) {
6498                                netdev_warn(adapter->netdev,
6499                                            "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6500                                            max_frame);
6501                                return -EINVAL;
6502                        }
6503                }
6504        }
6505
6506        /* adjust max frame to be at least the size of a standard frame */
6507        if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6508                max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6509
6510        while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6511                usleep_range(1000, 2000);
6512
6513        /* igb_down has a dependency on max_frame_size */
6514        adapter->max_frame_size = max_frame;
6515
6516        if (netif_running(netdev))
6517                igb_down(adapter);
6518
6519        netdev_dbg(netdev, "changing MTU from %d to %d\n",
6520                   netdev->mtu, new_mtu);
6521        netdev->mtu = new_mtu;
6522
6523        if (netif_running(netdev))
6524                igb_up(adapter);
6525        else
6526                igb_reset(adapter);
6527
6528        clear_bit(__IGB_RESETTING, &adapter->state);
6529
6530        return 0;
6531}
6532
6533/**
6534 *  igb_update_stats - Update the board statistics counters
6535 *  @adapter: board private structure
6536 **/
6537void igb_update_stats(struct igb_adapter *adapter)
6538{
6539        struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6540        struct e1000_hw *hw = &adapter->hw;
6541        struct pci_dev *pdev = adapter->pdev;
6542        u32 reg, mpc;
6543        int i;
6544        u64 bytes, packets;
6545        unsigned int start;
6546        u64 _bytes, _packets;
6547
6548        /* Prevent stats update while adapter is being reset, or if the pci
6549         * connection is down.
6550         */
6551        if (adapter->link_speed == 0)
6552                return;
6553        if (pci_channel_offline(pdev))
6554                return;
6555
6556        bytes = 0;
6557        packets = 0;
6558
6559        rcu_read_lock();
6560        for (i = 0; i < adapter->num_rx_queues; i++) {
6561                struct igb_ring *ring = adapter->rx_ring[i];
6562                u32 rqdpc = rd32(E1000_RQDPC(i));
6563                if (hw->mac.type >= e1000_i210)
6564                        wr32(E1000_RQDPC(i), 0);
6565
6566                if (rqdpc) {
6567                        ring->rx_stats.drops += rqdpc;
6568                        net_stats->rx_fifo_errors += rqdpc;
6569                }
6570
6571                do {
6572                        start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6573                        _bytes = ring->rx_stats.bytes;
6574                        _packets = ring->rx_stats.packets;
6575                } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6576                bytes += _bytes;
6577                packets += _packets;
6578        }
6579
6580        net_stats->rx_bytes = bytes;
6581        net_stats->rx_packets = packets;
6582
6583        bytes = 0;
6584        packets = 0;
6585        for (i = 0; i < adapter->num_tx_queues; i++) {
6586                struct igb_ring *ring = adapter->tx_ring[i];
6587                do {
6588                        start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6589                        _bytes = ring->tx_stats.bytes;
6590                        _packets = ring->tx_stats.packets;
6591                } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6592                bytes += _bytes;
6593                packets += _packets;
6594        }
6595        net_stats->tx_bytes = bytes;
6596        net_stats->tx_packets = packets;
6597        rcu_read_unlock();
6598
6599        /* read stats registers */
6600        adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6601        adapter->stats.gprc += rd32(E1000_GPRC);
6602        adapter->stats.gorc += rd32(E1000_GORCL);
6603        rd32(E1000_GORCH); /* clear GORCL */
6604        adapter->stats.bprc += rd32(E1000_BPRC);
6605        adapter->stats.mprc += rd32(E1000_MPRC);
6606        adapter->stats.roc += rd32(E1000_ROC);
6607
6608        adapter->stats.prc64 += rd32(E1000_PRC64);
6609        adapter->stats.prc127 += rd32(E1000_PRC127);
6610        adapter->stats.prc255 += rd32(E1000_PRC255);
6611        adapter->stats.prc511 += rd32(E1000_PRC511);
6612        adapter->stats.prc1023 += rd32(E1000_PRC1023);
6613        adapter->stats.prc1522 += rd32(E1000_PRC1522);
6614        adapter->stats.symerrs += rd32(E1000_SYMERRS);
6615        adapter->stats.sec += rd32(E1000_SEC);
6616
6617        mpc = rd32(E1000_MPC);
6618        adapter->stats.mpc += mpc;
6619        net_stats->rx_fifo_errors += mpc;
6620        adapter->stats.scc += rd32(E1000_SCC);
6621        adapter->stats.ecol += rd32(E1000_ECOL);
6622        adapter->stats.mcc += rd32(E1000_MCC);
6623        adapter->stats.latecol += rd32(E1000_LATECOL);
6624        adapter->stats.dc += rd32(E1000_DC);
6625        adapter->stats.rlec += rd32(E1000_RLEC);
6626        adapter->stats.xonrxc += rd32(E1000_XONRXC);
6627        adapter->stats.xontxc += rd32(E1000_XONTXC);
6628        adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6629        adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6630        adapter->stats.fcruc += rd32(E1000_FCRUC);
6631        adapter->stats.gptc += rd32(E1000_GPTC);
6632        adapter->stats.gotc += rd32(E1000_GOTCL);
6633        rd32(E1000_GOTCH); /* clear GOTCL */
6634        adapter->stats.rnbc += rd32(E1000_RNBC);
6635        adapter->stats.ruc += rd32(E1000_RUC);
6636        adapter->stats.rfc += rd32(E1000_RFC);
6637        adapter->stats.rjc += rd32(E1000_RJC);
6638        adapter->stats.tor += rd32(E1000_TORH);
6639        adapter->stats.tot += rd32(E1000_TOTH);
6640        adapter->stats.tpr += rd32(E1000_TPR);
6641
6642        adapter->stats.ptc64 += rd32(E1000_PTC64);
6643        adapter->stats.ptc127 += rd32(E1000_PTC127);
6644        adapter->stats.ptc255 += rd32(E1000_PTC255);
6645        adapter->stats.ptc511 += rd32(E1000_PTC511);
6646        adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6647        adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6648
6649        adapter->stats.mptc += rd32(E1000_MPTC);
6650        adapter->stats.bptc += rd32(E1000_BPTC);
6651
6652        adapter->stats.tpt += rd32(E1000_TPT);
6653        adapter->stats.colc += rd32(E1000_COLC);
6654
6655        adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6656        /* read internal phy specific stats */
6657        reg = rd32(E1000_CTRL_EXT);
6658        if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6659                adapter->stats.rxerrc += rd32(E1000_RXERRC);
6660
6661                /* this stat has invalid values on i210/i211 */
6662                if ((hw->mac.type != e1000_i210) &&
6663                    (hw->mac.type != e1000_i211))
6664                        adapter->stats.tncrs += rd32(E1000_TNCRS);
6665        }
6666
6667        adapter->stats.tsctc += rd32(E1000_TSCTC);
6668        adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6669
6670        adapter->stats.iac += rd32(E1000_IAC);
6671        adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6672        adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6673        adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6674        adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6675        adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6676        adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6677        adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6678        adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6679
6680        /* Fill out the OS statistics structure */
6681        net_stats->multicast = adapter->stats.mprc;
6682        net_stats->collisions = adapter->stats.colc;
6683
6684        /* Rx Errors */
6685
6686        /* RLEC on some newer hardware can be incorrect so build
6687         * our own version based on RUC and ROC
6688         */
6689        net_stats->rx_errors = adapter->stats.rxerrc +
6690                adapter->stats.crcerrs + adapter->stats.algnerrc +
6691                adapter->stats.ruc + adapter->stats.roc +
6692                adapter->stats.cexterr;
6693        net_stats->rx_length_errors = adapter->stats.ruc +
6694                                      adapter->stats.roc;
6695        net_stats->rx_crc_errors = adapter->stats.crcerrs;
6696        net_stats->rx_frame_errors = adapter->stats.algnerrc;
6697        net_stats->rx_missed_errors = adapter->stats.mpc;
6698
6699        /* Tx Errors */
6700        net_stats->tx_errors = adapter->stats.ecol +
6701                               adapter->stats.latecol;
6702        net_stats->tx_aborted_errors = adapter->stats.ecol;
6703        net_stats->tx_window_errors = adapter->stats.latecol;
6704        net_stats->tx_carrier_errors = adapter->stats.tncrs;
6705
6706        /* Tx Dropped needs to be maintained elsewhere */
6707
6708        /* Management Stats */
6709        adapter->stats.mgptc += rd32(E1000_MGTPTC);
6710        adapter->stats.mgprc += rd32(E1000_MGTPRC);
6711        adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6712
6713        /* OS2BMC Stats */
6714        reg = rd32(E1000_MANC);
6715        if (reg & E1000_MANC_EN_BMC2OS) {
6716                adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6717                adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6718                adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6719                adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6720        }
6721}
6722
6723static void igb_tsync_interrupt(struct igb_adapter *adapter)
6724{
6725        struct e1000_hw *hw = &adapter->hw;
6726        struct ptp_clock_event event;
6727        struct timespec64 ts;
6728        u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6729
6730        if (tsicr & TSINTR_SYS_WRAP) {
6731                event.type = PTP_CLOCK_PPS;
6732                if (adapter->ptp_caps.pps)
6733                        ptp_clock_event(adapter->ptp_clock, &event);
6734                ack |= TSINTR_SYS_WRAP;
6735        }
6736
6737        if (tsicr & E1000_TSICR_TXTS) {
6738                /* retrieve hardware timestamp */
6739                schedule_work(&adapter->ptp_tx_work);
6740                ack |= E1000_TSICR_TXTS;
6741        }
6742
6743        if (tsicr & TSINTR_TT0) {
6744                spin_lock(&adapter->tmreg_lock);
6745                ts = timespec64_add(adapter->perout[0].start,
6746                                    adapter->perout[0].period);
6747                /* u32 conversion of tv_sec is safe until y2106 */
6748                wr32(E1000_TRGTTIML0, ts.tv_nsec);
6749                wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6750                tsauxc = rd32(E1000_TSAUXC);
6751                tsauxc |= TSAUXC_EN_TT0;
6752                wr32(E1000_TSAUXC, tsauxc);
6753                adapter->perout[0].start = ts;
6754                spin_unlock(&adapter->tmreg_lock);
6755                ack |= TSINTR_TT0;
6756        }
6757
6758        if (tsicr & TSINTR_TT1) {
6759                spin_lock(&adapter->tmreg_lock);
6760                ts = timespec64_add(adapter->perout[1].start,
6761                                    adapter->perout[1].period);
6762                wr32(E1000_TRGTTIML1, ts.tv_nsec);
6763                wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6764                tsauxc = rd32(E1000_TSAUXC);
6765                tsauxc |= TSAUXC_EN_TT1;
6766                wr32(E1000_TSAUXC, tsauxc);
6767                adapter->perout[1].start = ts;
6768                spin_unlock(&adapter->tmreg_lock);
6769                ack |= TSINTR_TT1;
6770        }
6771
6772        if (tsicr & TSINTR_AUTT0) {
6773                nsec = rd32(E1000_AUXSTMPL0);
6774                sec  = rd32(E1000_AUXSTMPH0);
6775                event.type = PTP_CLOCK_EXTTS;
6776                event.index = 0;
6777                event.timestamp = sec * 1000000000ULL + nsec;
6778                ptp_clock_event(adapter->ptp_clock, &event);
6779                ack |= TSINTR_AUTT0;
6780        }
6781
6782        if (tsicr & TSINTR_AUTT1) {
6783                nsec = rd32(E1000_AUXSTMPL1);
6784                sec  = rd32(E1000_AUXSTMPH1);
6785                event.type = PTP_CLOCK_EXTTS;
6786                event.index = 1;
6787                event.timestamp = sec * 1000000000ULL + nsec;
6788                ptp_clock_event(adapter->ptp_clock, &event);
6789                ack |= TSINTR_AUTT1;
6790        }
6791
6792        /* acknowledge the interrupts */
6793        wr32(E1000_TSICR, ack);
6794}
6795
6796static irqreturn_t igb_msix_other(int irq, void *data)
6797{
6798        struct igb_adapter *adapter = data;
6799        struct e1000_hw *hw = &adapter->hw;
6800        u32 icr = rd32(E1000_ICR);
6801        /* reading ICR causes bit 31 of EICR to be cleared */
6802
6803        if (icr & E1000_ICR_DRSTA)
6804                schedule_work(&adapter->reset_task);
6805
6806        if (icr & E1000_ICR_DOUTSYNC) {
6807                /* HW is reporting DMA is out of sync */
6808                adapter->stats.doosync++;
6809                /* The DMA Out of Sync is also indication of a spoof event
6810                 * in IOV mode. Check the Wrong VM Behavior register to
6811                 * see if it is really a spoof event.
6812                 */
6813                igb_check_wvbr(adapter);
6814        }
6815
6816        /* Check for a mailbox event */
6817        if (icr & E1000_ICR_VMMB)
6818                igb_msg_task(adapter);
6819
6820        if (icr & E1000_ICR_LSC) {
6821                hw->mac.get_link_status = 1;
6822                /* guard against interrupt when we're going down */
6823                if (!test_bit(__IGB_DOWN, &adapter->state))
6824                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
6825        }
6826
6827        if (icr & E1000_ICR_TS)
6828                igb_tsync_interrupt(adapter);
6829
6830        wr32(E1000_EIMS, adapter->eims_other);
6831
6832        return IRQ_HANDLED;
6833}
6834
6835static void igb_write_itr(struct igb_q_vector *q_vector)
6836{
6837        struct igb_adapter *adapter = q_vector->adapter;
6838        u32 itr_val = q_vector->itr_val & 0x7FFC;
6839
6840        if (!q_vector->set_itr)
6841                return;
6842
6843        if (!itr_val)
6844                itr_val = 0x4;
6845
6846        if (adapter->hw.mac.type == e1000_82575)
6847                itr_val |= itr_val << 16;
6848        else
6849                itr_val |= E1000_EITR_CNT_IGNR;
6850
6851        writel(itr_val, q_vector->itr_register);
6852        q_vector->set_itr = 0;
6853}
6854
6855static irqreturn_t igb_msix_ring(int irq, void *data)
6856{
6857        struct igb_q_vector *q_vector = data;
6858
6859        /* Write the ITR value calculated from the previous interrupt. */
6860        igb_write_itr(q_vector);
6861
6862        napi_schedule(&q_vector->napi);
6863
6864        return IRQ_HANDLED;
6865}
6866
6867#ifdef CONFIG_IGB_DCA
6868static void igb_update_tx_dca(struct igb_adapter *adapter,
6869                              struct igb_ring *tx_ring,
6870                              int cpu)
6871{
6872        struct e1000_hw *hw = &adapter->hw;
6873        u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6874
6875        if (hw->mac.type != e1000_82575)
6876                txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6877
6878        /* We can enable relaxed ordering for reads, but not writes when
6879         * DCA is enabled.  This is due to a known issue in some chipsets
6880         * which will cause the DCA tag to be cleared.
6881         */
6882        txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6883                  E1000_DCA_TXCTRL_DATA_RRO_EN |
6884                  E1000_DCA_TXCTRL_DESC_DCA_EN;
6885
6886        wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6887}
6888
6889static void igb_update_rx_dca(struct igb_adapter *adapter,
6890                              struct igb_ring *rx_ring,
6891                              int cpu)
6892{
6893        struct e1000_hw *hw = &adapter->hw;
6894        u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6895
6896        if (hw->mac.type != e1000_82575)
6897                rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6898
6899        /* We can enable relaxed ordering for reads, but not writes when
6900         * DCA is enabled.  This is due to a known issue in some chipsets
6901         * which will cause the DCA tag to be cleared.
6902         */
6903        rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6904                  E1000_DCA_RXCTRL_DESC_DCA_EN;
6905
6906        wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6907}
6908
6909static void igb_update_dca(struct igb_q_vector *q_vector)
6910{
6911        struct igb_adapter *adapter = q_vector->adapter;
6912        int cpu = get_cpu();
6913
6914        if (q_vector->cpu == cpu)
6915                goto out_no_update;
6916
6917        if (q_vector->tx.ring)
6918                igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6919
6920        if (q_vector->rx.ring)
6921                igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6922
6923        q_vector->cpu = cpu;
6924out_no_update:
6925        put_cpu();
6926}
6927
6928static void igb_setup_dca(struct igb_adapter *adapter)
6929{
6930        struct e1000_hw *hw = &adapter->hw;
6931        int i;
6932
6933        if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6934                return;
6935
6936        /* Always use CB2 mode, difference is masked in the CB driver. */
6937        wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6938
6939        for (i = 0; i < adapter->num_q_vectors; i++) {
6940                adapter->q_vector[i]->cpu = -1;
6941                igb_update_dca(adapter->q_vector[i]);
6942        }
6943}
6944
6945static int __igb_notify_dca(struct device *dev, void *data)
6946{
6947        struct net_device *netdev = dev_get_drvdata(dev);
6948        struct igb_adapter *adapter = netdev_priv(netdev);
6949        struct pci_dev *pdev = adapter->pdev;
6950        struct e1000_hw *hw = &adapter->hw;
6951        unsigned long event = *(unsigned long *)data;
6952
6953        switch (event) {
6954        case DCA_PROVIDER_ADD:
6955                /* if already enabled, don't do it again */
6956                if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6957                        break;
6958                if (dca_add_requester(dev) == 0) {
6959                        adapter->flags |= IGB_FLAG_DCA_ENABLED;
6960                        dev_info(&pdev->dev, "DCA enabled\n");
6961                        igb_setup_dca(adapter);
6962                        break;
6963                }
6964                fallthrough; /* since DCA is disabled. */
6965        case DCA_PROVIDER_REMOVE:
6966                if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6967                        /* without this a class_device is left
6968                         * hanging around in the sysfs model
6969                         */
6970                        dca_remove_requester(dev);
6971                        dev_info(&pdev->dev, "DCA disabled\n");
6972                        adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6973                        wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6974                }
6975                break;
6976        }
6977
6978        return 0;
6979}
6980
6981static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6982                          void *p)
6983{
6984        int ret_val;
6985
6986        ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6987                                         __igb_notify_dca);
6988
6989        return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6990}
6991#endif /* CONFIG_IGB_DCA */
6992
6993#ifdef CONFIG_PCI_IOV
6994static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6995{
6996        unsigned char mac_addr[ETH_ALEN];
6997
6998        eth_zero_addr(mac_addr);
6999        igb_set_vf_mac(adapter, vf, mac_addr);
7000
7001        /* By default spoof check is enabled for all VFs */
7002        adapter->vf_data[vf].spoofchk_enabled = true;
7003
7004        /* By default VFs are not trusted */
7005        adapter->vf_data[vf].trusted = false;
7006
7007        return 0;
7008}
7009
7010#endif
7011static void igb_ping_all_vfs(struct igb_adapter *adapter)
7012{
7013        struct e1000_hw *hw = &adapter->hw;
7014        u32 ping;
7015        int i;
7016
7017        for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7018                ping = E1000_PF_CONTROL_MSG;
7019                if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7020                        ping |= E1000_VT_MSGTYPE_CTS;
7021                igb_write_mbx(hw, &ping, 1, i);
7022        }
7023}
7024
7025static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7026{
7027        struct e1000_hw *hw = &adapter->hw;
7028        u32 vmolr = rd32(E1000_VMOLR(vf));
7029        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7030
7031        vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7032                            IGB_VF_FLAG_MULTI_PROMISC);
7033        vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7034
7035        if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7036                vmolr |= E1000_VMOLR_MPME;
7037                vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7038                *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7039        } else {
7040                /* if we have hashes and we are clearing a multicast promisc
7041                 * flag we need to write the hashes to the MTA as this step
7042                 * was previously skipped
7043                 */
7044                if (vf_data->num_vf_mc_hashes > 30) {
7045                        vmolr |= E1000_VMOLR_MPME;
7046                } else if (vf_data->num_vf_mc_hashes) {
7047                        int j;
7048
7049                        vmolr |= E1000_VMOLR_ROMPE;
7050                        for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7051                                igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7052                }
7053        }
7054
7055        wr32(E1000_VMOLR(vf), vmolr);
7056
7057        /* there are flags left unprocessed, likely not supported */
7058        if (*msgbuf & E1000_VT_MSGINFO_MASK)
7059                return -EINVAL;
7060
7061        return 0;
7062}
7063
7064static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7065                                  u32 *msgbuf, u32 vf)
7066{
7067        int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7068        u16 *hash_list = (u16 *)&msgbuf[1];
7069        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7070        int i;
7071
7072        /* salt away the number of multicast addresses assigned
7073         * to this VF for later use to restore when the PF multi cast
7074         * list changes
7075         */
7076        vf_data->num_vf_mc_hashes = n;
7077
7078        /* only up to 30 hash values supported */
7079        if (n > 30)
7080                n = 30;
7081
7082        /* store the hashes for later use */
7083        for (i = 0; i < n; i++)
7084                vf_data->vf_mc_hashes[i] = hash_list[i];
7085
7086        /* Flush and reset the mta with the new values */
7087        igb_set_rx_mode(adapter->netdev);
7088
7089        return 0;
7090}
7091
7092static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7093{
7094        struct e1000_hw *hw = &adapter->hw;
7095        struct vf_data_storage *vf_data;
7096        int i, j;
7097
7098        for (i = 0; i < adapter->vfs_allocated_count; i++) {
7099                u32 vmolr = rd32(E1000_VMOLR(i));
7100
7101                vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7102
7103                vf_data = &adapter->vf_data[i];
7104
7105                if ((vf_data->num_vf_mc_hashes > 30) ||
7106                    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7107                        vmolr |= E1000_VMOLR_MPME;
7108                } else if (vf_data->num_vf_mc_hashes) {
7109                        vmolr |= E1000_VMOLR_ROMPE;
7110                        for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7111                                igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
7112                }
7113                wr32(E1000_VMOLR(i), vmolr);
7114        }
7115}
7116
7117static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7118{
7119        struct e1000_hw *hw = &adapter->hw;
7120        u32 pool_mask, vlvf_mask, i;
7121
7122        /* create mask for VF and other pools */
7123        pool_mask = E1000_VLVF_POOLSEL_MASK;
7124        vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7125
7126        /* drop PF from pool bits */
7127        pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7128                             adapter->vfs_allocated_count);
7129
7130        /* Find the vlan filter for this id */
7131        for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7132                u32 vlvf = rd32(E1000_VLVF(i));
7133                u32 vfta_mask, vid, vfta;
7134
7135                /* remove the vf from the pool */
7136                if (!(vlvf & vlvf_mask))
7137                        continue;
7138
7139                /* clear out bit from VLVF */
7140                vlvf ^= vlvf_mask;
7141
7142                /* if other pools are present, just remove ourselves */
7143                if (vlvf & pool_mask)
7144                        goto update_vlvfb;
7145
7146                /* if PF is present, leave VFTA */
7147                if (vlvf & E1000_VLVF_POOLSEL_MASK)
7148                        goto update_vlvf;
7149
7150                vid = vlvf & E1000_VLVF_VLANID_MASK;
7151                vfta_mask = BIT(vid % 32);
7152
7153                /* clear bit from VFTA */
7154                vfta = adapter->shadow_vfta[vid / 32];
7155                if (vfta & vfta_mask)
7156                        hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7157update_vlvf:
7158                /* clear pool selection enable */
7159                if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7160                        vlvf &= E1000_VLVF_POOLSEL_MASK;
7161                else
7162                        vlvf = 0;
7163update_vlvfb:
7164                /* clear pool bits */
7165                wr32(E1000_VLVF(i), vlvf);
7166        }
7167}
7168
7169static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7170{
7171        u32 vlvf;
7172        int idx;
7173
7174        /* short cut the special case */
7175        if (vlan == 0)
7176                return 0;
7177
7178        /* Search for the VLAN id in the VLVF entries */
7179        for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7180                vlvf = rd32(E1000_VLVF(idx));
7181                if ((vlvf & VLAN_VID_MASK) == vlan)
7182                        break;
7183        }
7184
7185        return idx;
7186}
7187
7188static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7189{
7190        struct e1000_hw *hw = &adapter->hw;
7191        u32 bits, pf_id;
7192        int idx;
7193
7194        idx = igb_find_vlvf_entry(hw, vid);
7195        if (!idx)
7196                return;
7197
7198        /* See if any other pools are set for this VLAN filter
7199         * entry other than the PF.
7200         */
7201        pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7202        bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7203        bits &= rd32(E1000_VLVF(idx));
7204
7205        /* Disable the filter so this falls into the default pool. */
7206        if (!bits) {
7207                if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7208                        wr32(E1000_VLVF(idx), BIT(pf_id));
7209                else
7210                        wr32(E1000_VLVF(idx), 0);
7211        }
7212}
7213
7214static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7215                           bool add, u32 vf)
7216{
7217        int pf_id = adapter->vfs_allocated_count;
7218        struct e1000_hw *hw = &adapter->hw;
7219        int err;
7220
7221        /* If VLAN overlaps with one the PF is currently monitoring make
7222         * sure that we are able to allocate a VLVF entry.  This may be
7223         * redundant but it guarantees PF will maintain visibility to
7224         * the VLAN.
7225         */
7226        if (add && test_bit(vid, adapter->active_vlans)) {
7227                err = igb_vfta_set(hw, vid, pf_id, true, false);
7228                if (err)
7229                        return err;
7230        }
7231
7232        err = igb_vfta_set(hw, vid, vf, add, false);
7233
7234        if (add && !err)
7235                return err;
7236
7237        /* If we failed to add the VF VLAN or we are removing the VF VLAN
7238         * we may need to drop the PF pool bit in order to allow us to free
7239         * up the VLVF resources.
7240         */
7241        if (test_bit(vid, adapter->active_vlans) ||
7242            (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7243                igb_update_pf_vlvf(adapter, vid);
7244
7245        return err;
7246}
7247
7248static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7249{
7250        struct e1000_hw *hw = &adapter->hw;
7251
7252        if (vid)
7253                wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7254        else
7255                wr32(E1000_VMVIR(vf), 0);
7256}
7257
7258static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7259                                u16 vlan, u8 qos)
7260{
7261        int err;
7262
7263        err = igb_set_vf_vlan(adapter, vlan, true, vf);
7264        if (err)
7265                return err;
7266
7267        igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7268        igb_set_vmolr(adapter, vf, !vlan);
7269
7270        /* revoke access to previous VLAN */
7271        if (vlan != adapter->vf_data[vf].pf_vlan)
7272                igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7273                                false, vf);
7274
7275        adapter->vf_data[vf].pf_vlan = vlan;
7276        adapter->vf_data[vf].pf_qos = qos;
7277        igb_set_vf_vlan_strip(adapter, vf, true);
7278        dev_info(&adapter->pdev->dev,
7279                 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7280        if (test_bit(__IGB_DOWN, &adapter->state)) {
7281                dev_warn(&adapter->pdev->dev,
7282                         "The VF VLAN has been set, but the PF device is not up.\n");
7283                dev_warn(&adapter->pdev->dev,
7284                         "Bring the PF device up before attempting to use the VF device.\n");
7285        }
7286
7287        return err;
7288}
7289
7290static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7291{
7292        /* Restore tagless access via VLAN 0 */
7293        igb_set_vf_vlan(adapter, 0, true, vf);
7294
7295        igb_set_vmvir(adapter, 0, vf);
7296        igb_set_vmolr(adapter, vf, true);
7297
7298        /* Remove any PF assigned VLAN */
7299        if (adapter->vf_data[vf].pf_vlan)
7300                igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7301                                false, vf);
7302
7303        adapter->vf_data[vf].pf_vlan = 0;
7304        adapter->vf_data[vf].pf_qos = 0;
7305        igb_set_vf_vlan_strip(adapter, vf, false);
7306
7307        return 0;
7308}
7309
7310static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7311                               u16 vlan, u8 qos, __be16 vlan_proto)
7312{
7313        struct igb_adapter *adapter = netdev_priv(netdev);
7314
7315        if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7316                return -EINVAL;
7317
7318        if (vlan_proto != htons(ETH_P_8021Q))
7319                return -EPROTONOSUPPORT;
7320
7321        return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7322                               igb_disable_port_vlan(adapter, vf);
7323}
7324
7325static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7326{
7327        int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7328        int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7329        int ret;
7330
7331        if (adapter->vf_data[vf].pf_vlan)
7332                return -1;
7333
7334        /* VLAN 0 is a special case, don't allow it to be removed */
7335        if (!vid && !add)
7336                return 0;
7337
7338        ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7339        if (!ret)
7340                igb_set_vf_vlan_strip(adapter, vf, !!vid);
7341        return ret;
7342}
7343
7344static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7345{
7346        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7347
7348        /* clear flags - except flag that indicates PF has set the MAC */
7349        vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7350        vf_data->last_nack = jiffies;
7351
7352        /* reset vlans for device */
7353        igb_clear_vf_vfta(adapter, vf);
7354        igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7355        igb_set_vmvir(adapter, vf_data->pf_vlan |
7356                               (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7357        igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7358        igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7359
7360        /* reset multicast table array for vf */
7361        adapter->vf_data[vf].num_vf_mc_hashes = 0;
7362
7363        /* Flush and reset the mta with the new values */
7364        igb_set_rx_mode(adapter->netdev);
7365}
7366
7367static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7368{
7369        unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7370
7371        /* clear mac address as we were hotplug removed/added */
7372        if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7373                eth_zero_addr(vf_mac);
7374
7375        /* process remaining reset events */
7376        igb_vf_reset(adapter, vf);
7377}
7378
7379static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7380{
7381        struct e1000_hw *hw = &adapter->hw;
7382        unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7383        u32 reg, msgbuf[3];
7384        u8 *addr = (u8 *)(&msgbuf[1]);
7385
7386        /* process all the same items cleared in a function level reset */
7387        igb_vf_reset(adapter, vf);
7388
7389        /* set vf mac address */
7390        igb_set_vf_mac(adapter, vf, vf_mac);
7391
7392        /* enable transmit and receive for vf */
7393        reg = rd32(E1000_VFTE);
7394        wr32(E1000_VFTE, reg | BIT(vf));
7395        reg = rd32(E1000_VFRE);
7396        wr32(E1000_VFRE, reg | BIT(vf));
7397
7398        adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7399
7400        /* reply to reset with ack and vf mac address */
7401        if (!is_zero_ether_addr(vf_mac)) {
7402                msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7403                memcpy(addr, vf_mac, ETH_ALEN);
7404        } else {
7405                msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7406        }
7407        igb_write_mbx(hw, msgbuf, 3, vf);
7408}
7409
7410static void igb_flush_mac_table(struct igb_adapter *adapter)
7411{
7412        struct e1000_hw *hw = &adapter->hw;
7413        int i;
7414
7415        for (i = 0; i < hw->mac.rar_entry_count; i++) {
7416                adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7417                eth_zero_addr(adapter->mac_table[i].addr);
7418                adapter->mac_table[i].queue = 0;
7419                igb_rar_set_index(adapter, i);
7420        }
7421}
7422
7423static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7424{
7425        struct e1000_hw *hw = &adapter->hw;
7426        /* do not count rar entries reserved for VFs MAC addresses */
7427        int rar_entries = hw->mac.rar_entry_count -
7428                          adapter->vfs_allocated_count;
7429        int i, count = 0;
7430
7431        for (i = 0; i < rar_entries; i++) {
7432                /* do not count default entries */
7433                if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7434                        continue;
7435
7436                /* do not count "in use" entries for different queues */
7437                if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7438                    (adapter->mac_table[i].queue != queue))
7439                        continue;
7440
7441                count++;
7442        }
7443
7444        return count;
7445}
7446
7447/* Set default MAC address for the PF in the first RAR entry */
7448static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7449{
7450        struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7451
7452        ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7453        mac_table->queue = adapter->vfs_allocated_count;
7454        mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7455
7456        igb_rar_set_index(adapter, 0);
7457}
7458
7459/* If the filter to be added and an already existing filter express
7460 * the same address and address type, it should be possible to only
7461 * override the other configurations, for example the queue to steer
7462 * traffic.
7463 */
7464static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7465                                      const u8 *addr, const u8 flags)
7466{
7467        if (!(entry->state & IGB_MAC_STATE_IN_USE))
7468                return true;
7469
7470        if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7471            (flags & IGB_MAC_STATE_SRC_ADDR))
7472                return false;
7473
7474        if (!ether_addr_equal(addr, entry->addr))
7475                return false;
7476
7477        return true;
7478}
7479
7480/* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7481 * 'flags' is used to indicate what kind of match is made, match is by
7482 * default for the destination address, if matching by source address
7483 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7484 */
7485static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7486                                    const u8 *addr, const u8 queue,
7487                                    const u8 flags)
7488{
7489        struct e1000_hw *hw = &adapter->hw;
7490        int rar_entries = hw->mac.rar_entry_count -
7491                          adapter->vfs_allocated_count;
7492        int i;
7493
7494        if (is_zero_ether_addr(addr))
7495                return -EINVAL;
7496
7497        /* Search for the first empty entry in the MAC table.
7498         * Do not touch entries at the end of the table reserved for the VF MAC
7499         * addresses.
7500         */
7501        for (i = 0; i < rar_entries; i++) {
7502                if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7503                                               addr, flags))
7504                        continue;
7505
7506                ether_addr_copy(adapter->mac_table[i].addr, addr);
7507                adapter->mac_table[i].queue = queue;
7508                adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7509
7510                igb_rar_set_index(adapter, i);
7511                return i;
7512        }
7513
7514        return -ENOSPC;
7515}
7516
7517static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7518                              const u8 queue)
7519{
7520        return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7521}
7522
7523/* Remove a MAC filter for 'addr' directing matching traffic to
7524 * 'queue', 'flags' is used to indicate what kind of match need to be
7525 * removed, match is by default for the destination address, if
7526 * matching by source address is to be removed the flag
7527 * IGB_MAC_STATE_SRC_ADDR can be used.
7528 */
7529static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7530                                    const u8 *addr, const u8 queue,
7531                                    const u8 flags)
7532{
7533        struct e1000_hw *hw = &adapter->hw;
7534        int rar_entries = hw->mac.rar_entry_count -
7535                          adapter->vfs_allocated_count;
7536        int i;
7537
7538        if (is_zero_ether_addr(addr))
7539                return -EINVAL;
7540
7541        /* Search for matching entry in the MAC table based on given address
7542         * and queue. Do not touch entries at the end of the table reserved
7543         * for the VF MAC addresses.
7544         */
7545        for (i = 0; i < rar_entries; i++) {
7546                if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7547                        continue;
7548                if ((adapter->mac_table[i].state & flags) != flags)
7549                        continue;
7550                if (adapter->mac_table[i].queue != queue)
7551                        continue;
7552                if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7553                        continue;
7554
7555                /* When a filter for the default address is "deleted",
7556                 * we return it to its initial configuration
7557                 */
7558                if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7559                        adapter->mac_table[i].state =
7560                                IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7561                        adapter->mac_table[i].queue =
7562                                adapter->vfs_allocated_count;
7563                } else {
7564                        adapter->mac_table[i].state = 0;
7565                        adapter->mac_table[i].queue = 0;
7566                        eth_zero_addr(adapter->mac_table[i].addr);
7567                }
7568
7569                igb_rar_set_index(adapter, i);
7570                return 0;
7571        }
7572
7573        return -ENOENT;
7574}
7575
7576static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7577                              const u8 queue)
7578{
7579        return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7580}
7581
7582int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7583                                const u8 *addr, u8 queue, u8 flags)
7584{
7585        struct e1000_hw *hw = &adapter->hw;
7586
7587        /* In theory, this should be supported on 82575 as well, but
7588         * that part wasn't easily accessible during development.
7589         */
7590        if (hw->mac.type != e1000_i210)
7591                return -EOPNOTSUPP;
7592
7593        return igb_add_mac_filter_flags(adapter, addr, queue,
7594                                        IGB_MAC_STATE_QUEUE_STEERING | flags);
7595}
7596
7597int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7598                                const u8 *addr, u8 queue, u8 flags)
7599{
7600        return igb_del_mac_filter_flags(adapter, addr, queue,
7601                                        IGB_MAC_STATE_QUEUE_STEERING | flags);
7602}
7603
7604static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7605{
7606        struct igb_adapter *adapter = netdev_priv(netdev);
7607        int ret;
7608
7609        ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7610
7611        return min_t(int, ret, 0);
7612}
7613
7614static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7615{
7616        struct igb_adapter *adapter = netdev_priv(netdev);
7617
7618        igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7619
7620        return 0;
7621}
7622
7623static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7624                                 const u32 info, const u8 *addr)
7625{
7626        struct pci_dev *pdev = adapter->pdev;
7627        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7628        struct list_head *pos;
7629        struct vf_mac_filter *entry = NULL;
7630        int ret = 0;
7631
7632        switch (info) {
7633        case E1000_VF_MAC_FILTER_CLR:
7634                /* remove all unicast MAC filters related to the current VF */
7635                list_for_each(pos, &adapter->vf_macs.l) {
7636                        entry = list_entry(pos, struct vf_mac_filter, l);
7637                        if (entry->vf == vf) {
7638                                entry->vf = -1;
7639                                entry->free = true;
7640                                igb_del_mac_filter(adapter, entry->vf_mac, vf);
7641                        }
7642                }
7643                break;
7644        case E1000_VF_MAC_FILTER_ADD:
7645                if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7646                    !vf_data->trusted) {
7647                        dev_warn(&pdev->dev,
7648                                 "VF %d requested MAC filter but is administratively denied\n",
7649                                 vf);
7650                        return -EINVAL;
7651                }
7652                if (!is_valid_ether_addr(addr)) {
7653                        dev_warn(&pdev->dev,
7654                                 "VF %d attempted to set invalid MAC filter\n",
7655                                 vf);
7656                        return -EINVAL;
7657                }
7658
7659                /* try to find empty slot in the list */
7660                list_for_each(pos, &adapter->vf_macs.l) {
7661                        entry = list_entry(pos, struct vf_mac_filter, l);
7662                        if (entry->free)
7663                                break;
7664                }
7665
7666                if (entry && entry->free) {
7667                        entry->free = false;
7668                        entry->vf = vf;
7669                        ether_addr_copy(entry->vf_mac, addr);
7670
7671                        ret = igb_add_mac_filter(adapter, addr, vf);
7672                        ret = min_t(int, ret, 0);
7673                } else {
7674                        ret = -ENOSPC;
7675                }
7676
7677                if (ret == -ENOSPC)
7678                        dev_warn(&pdev->dev,
7679                                 "VF %d has requested MAC filter but there is no space for it\n",
7680                                 vf);
7681                break;
7682        default:
7683                ret = -EINVAL;
7684                break;
7685        }
7686
7687        return ret;
7688}
7689
7690static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7691{
7692        struct pci_dev *pdev = adapter->pdev;
7693        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7694        u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7695
7696        /* The VF MAC Address is stored in a packed array of bytes
7697         * starting at the second 32 bit word of the msg array
7698         */
7699        unsigned char *addr = (unsigned char *)&msg[1];
7700        int ret = 0;
7701
7702        if (!info) {
7703                if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7704                    !vf_data->trusted) {
7705                        dev_warn(&pdev->dev,
7706                                 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7707                                 vf);
7708                        return -EINVAL;
7709                }
7710
7711                if (!is_valid_ether_addr(addr)) {
7712                        dev_warn(&pdev->dev,
7713                                 "VF %d attempted to set invalid MAC\n",
7714                                 vf);
7715                        return -EINVAL;
7716                }
7717
7718                ret = igb_set_vf_mac(adapter, vf, addr);
7719        } else {
7720                ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7721        }
7722
7723        return ret;
7724}
7725
7726static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7727{
7728        struct e1000_hw *hw = &adapter->hw;
7729        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7730        u32 msg = E1000_VT_MSGTYPE_NACK;
7731
7732        /* if device isn't clear to send it shouldn't be reading either */
7733        if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7734            time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7735                igb_write_mbx(hw, &msg, 1, vf);
7736                vf_data->last_nack = jiffies;
7737        }
7738}
7739
7740static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7741{
7742        struct pci_dev *pdev = adapter->pdev;
7743        u32 msgbuf[E1000_VFMAILBOX_SIZE];
7744        struct e1000_hw *hw = &adapter->hw;
7745        struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7746        s32 retval;
7747
7748        retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7749
7750        if (retval) {
7751                /* if receive failed revoke VF CTS stats and restart init */
7752                dev_err(&pdev->dev, "Error receiving message from VF\n");
7753                vf_data->flags &= ~IGB_VF_FLAG_CTS;
7754                if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7755                        goto unlock;
7756                goto out;
7757        }
7758
7759        /* this is a message we already processed, do nothing */
7760        if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7761                goto unlock;
7762
7763        /* until the vf completes a reset it should not be
7764         * allowed to start any configuration.
7765         */
7766        if (msgbuf[0] == E1000_VF_RESET) {
7767                /* unlocks mailbox */
7768                igb_vf_reset_msg(adapter, vf);
7769                return;
7770        }
7771
7772        if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7773                if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7774                        goto unlock;
7775                retval = -1;
7776                goto out;
7777        }
7778
7779        switch ((msgbuf[0] & 0xFFFF)) {
7780        case E1000_VF_SET_MAC_ADDR:
7781                retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7782                break;
7783        case E1000_VF_SET_PROMISC:
7784                retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7785                break;
7786        case E1000_VF_SET_MULTICAST:
7787                retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7788                break;
7789        case E1000_VF_SET_LPE:
7790                retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7791                break;
7792        case E1000_VF_SET_VLAN:
7793                retval = -1;
7794                if (vf_data->pf_vlan)
7795                        dev_warn(&pdev->dev,
7796                                 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7797                                 vf);
7798                else
7799                        retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7800                break;
7801        default:
7802                dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7803                retval = -1;
7804                break;
7805        }
7806
7807        msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7808out:
7809        /* notify the VF of the results of what it sent us */
7810        if (retval)
7811                msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7812        else
7813                msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7814
7815        /* unlocks mailbox */
7816        igb_write_mbx(hw, msgbuf, 1, vf);
7817        return;
7818
7819unlock:
7820        igb_unlock_mbx(hw, vf);
7821}
7822
7823static void igb_msg_task(struct igb_adapter *adapter)
7824{
7825        struct e1000_hw *hw = &adapter->hw;
7826        u32 vf;
7827
7828        for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7829                /* process any reset requests */
7830                if (!igb_check_for_rst(hw, vf))
7831                        igb_vf_reset_event(adapter, vf);
7832
7833                /* process any messages pending */
7834                if (!igb_check_for_msg(hw, vf))
7835                        igb_rcv_msg_from_vf(adapter, vf);
7836
7837                /* process any acks */
7838                if (!igb_check_for_ack(hw, vf))
7839                        igb_rcv_ack_from_vf(adapter, vf);
7840        }
7841}
7842
7843/**
7844 *  igb_set_uta - Set unicast filter table address
7845 *  @adapter: board private structure
7846 *  @set: boolean indicating if we are setting or clearing bits
7847 *
7848 *  The unicast table address is a register array of 32-bit registers.
7849 *  The table is meant to be used in a way similar to how the MTA is used
7850 *  however due to certain limitations in the hardware it is necessary to
7851 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7852 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
7853 **/
7854static void igb_set_uta(struct igb_adapter *adapter, bool set)
7855{
7856        struct e1000_hw *hw = &adapter->hw;
7857        u32 uta = set ? ~0 : 0;
7858        int i;
7859
7860        /* we only need to do this if VMDq is enabled */
7861        if (!adapter->vfs_allocated_count)
7862                return;
7863
7864        for (i = hw->mac.uta_reg_count; i--;)
7865                array_wr32(E1000_UTA, i, uta);
7866}
7867
7868/**
7869 *  igb_intr_msi - Interrupt Handler
7870 *  @irq: interrupt number
7871 *  @data: pointer to a network interface device structure
7872 **/
7873static irqreturn_t igb_intr_msi(int irq, void *data)
7874{
7875        struct igb_adapter *adapter = data;
7876        struct igb_q_vector *q_vector = adapter->q_vector[0];
7877        struct e1000_hw *hw = &adapter->hw;
7878        /* read ICR disables interrupts using IAM */
7879        u32 icr = rd32(E1000_ICR);
7880
7881        igb_write_itr(q_vector);
7882
7883        if (icr & E1000_ICR_DRSTA)
7884                schedule_work(&adapter->reset_task);
7885
7886        if (icr & E1000_ICR_DOUTSYNC) {
7887                /* HW is reporting DMA is out of sync */
7888                adapter->stats.doosync++;
7889        }
7890
7891        if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7892                hw->mac.get_link_status = 1;
7893                if (!test_bit(__IGB_DOWN, &adapter->state))
7894                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
7895        }
7896
7897        if (icr & E1000_ICR_TS)
7898                igb_tsync_interrupt(adapter);
7899
7900        napi_schedule(&q_vector->napi);
7901
7902        return IRQ_HANDLED;
7903}
7904
7905/**
7906 *  igb_intr - Legacy Interrupt Handler
7907 *  @irq: interrupt number
7908 *  @data: pointer to a network interface device structure
7909 **/
7910static irqreturn_t igb_intr(int irq, void *data)
7911{
7912        struct igb_adapter *adapter = data;
7913        struct igb_q_vector *q_vector = adapter->q_vector[0];
7914        struct e1000_hw *hw = &adapter->hw;
7915        /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
7916         * need for the IMC write
7917         */
7918        u32 icr = rd32(E1000_ICR);
7919
7920        /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7921         * not set, then the adapter didn't send an interrupt
7922         */
7923        if (!(icr & E1000_ICR_INT_ASSERTED))
7924                return IRQ_NONE;
7925
7926        igb_write_itr(q_vector);
7927
7928        if (icr & E1000_ICR_DRSTA)
7929                schedule_work(&adapter->reset_task);
7930
7931        if (icr & E1000_ICR_DOUTSYNC) {
7932                /* HW is reporting DMA is out of sync */
7933                adapter->stats.doosync++;
7934        }
7935
7936        if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7937                hw->mac.get_link_status = 1;
7938                /* guard against interrupt when we're going down */
7939                if (!test_bit(__IGB_DOWN, &adapter->state))
7940                        mod_timer(&adapter->watchdog_timer, jiffies + 1);
7941        }
7942
7943        if (icr & E1000_ICR_TS)
7944                igb_tsync_interrupt(adapter);
7945
7946        napi_schedule(&q_vector->napi);
7947
7948        return IRQ_HANDLED;
7949}
7950
7951static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7952{
7953        struct igb_adapter *adapter = q_vector->adapter;
7954        struct e1000_hw *hw = &adapter->hw;
7955
7956        if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7957            (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7958                if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7959                        igb_set_itr(q_vector);
7960                else
7961                        igb_update_ring_itr(q_vector);
7962        }
7963
7964        if (!test_bit(__IGB_DOWN, &adapter->state)) {
7965                if (adapter->flags & IGB_FLAG_HAS_MSIX)
7966                        wr32(E1000_EIMS, q_vector->eims_value);
7967                else
7968                        igb_irq_enable(adapter);
7969        }
7970}
7971
7972/**
7973 *  igb_poll - NAPI Rx polling callback
7974 *  @napi: napi polling structure
7975 *  @budget: count of how many packets we should handle
7976 **/
7977static int igb_poll(struct napi_struct *napi, int budget)
7978{
7979        struct igb_q_vector *q_vector = container_of(napi,
7980                                                     struct igb_q_vector,
7981                                                     napi);
7982        bool clean_complete = true;
7983        int work_done = 0;
7984
7985#ifdef CONFIG_IGB_DCA
7986        if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7987                igb_update_dca(q_vector);
7988#endif
7989        if (q_vector->tx.ring)
7990                clean_complete = igb_clean_tx_irq(q_vector, budget);
7991
7992        if (q_vector->rx.ring) {
7993                int cleaned = igb_clean_rx_irq(q_vector, budget);
7994
7995                work_done += cleaned;
7996                if (cleaned >= budget)
7997                        clean_complete = false;
7998        }
7999
8000        /* If all work not completed, return budget and keep polling */
8001        if (!clean_complete)
8002                return budget;
8003
8004        /* Exit the polling mode, but don't re-enable interrupts if stack might
8005         * poll us due to busy-polling
8006         */
8007        if (likely(napi_complete_done(napi, work_done)))
8008                igb_ring_irq_enable(q_vector);
8009
8010        return min(work_done, budget - 1);
8011}
8012
8013/**
8014 *  igb_clean_tx_irq - Reclaim resources after transmit completes
8015 *  @q_vector: pointer to q_vector containing needed info
8016 *  @napi_budget: Used to determine if we are in netpoll
8017 *
8018 *  returns true if ring is completely cleaned
8019 **/
8020static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8021{
8022        struct igb_adapter *adapter = q_vector->adapter;
8023        struct igb_ring *tx_ring = q_vector->tx.ring;
8024        struct igb_tx_buffer *tx_buffer;
8025        union e1000_adv_tx_desc *tx_desc;
8026        unsigned int total_bytes = 0, total_packets = 0;
8027        unsigned int budget = q_vector->tx.work_limit;
8028        unsigned int i = tx_ring->next_to_clean;
8029
8030        if (test_bit(__IGB_DOWN, &adapter->state))
8031                return true;
8032
8033        tx_buffer = &tx_ring->tx_buffer_info[i];
8034        tx_desc = IGB_TX_DESC(tx_ring, i);
8035        i -= tx_ring->count;
8036
8037        do {
8038                union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8039
8040                /* if next_to_watch is not set then there is no work pending */
8041                if (!eop_desc)
8042                        break;
8043
8044                /* prevent any other reads prior to eop_desc */
8045                smp_rmb();
8046
8047                /* if DD is not set pending work has not been completed */
8048                if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8049                        break;
8050
8051                /* clear next_to_watch to prevent false hangs */
8052                tx_buffer->next_to_watch = NULL;
8053
8054                /* update the statistics for this packet */
8055                total_bytes += tx_buffer->bytecount;
8056                total_packets += tx_buffer->gso_segs;
8057
8058                /* free the skb */
8059                if (tx_buffer->type == IGB_TYPE_SKB)
8060                        napi_consume_skb(tx_buffer->skb, napi_budget);
8061                else
8062                        xdp_return_frame(tx_buffer->xdpf);
8063
8064                /* unmap skb header data */
8065                dma_unmap_single(tx_ring->dev,
8066                                 dma_unmap_addr(tx_buffer, dma),
8067                                 dma_unmap_len(tx_buffer, len),
8068                                 DMA_TO_DEVICE);
8069
8070                /* clear tx_buffer data */
8071                dma_unmap_len_set(tx_buffer, len, 0);
8072
8073                /* clear last DMA location and unmap remaining buffers */
8074                while (tx_desc != eop_desc) {
8075                        tx_buffer++;
8076                        tx_desc++;
8077                        i++;
8078                        if (unlikely(!i)) {
8079                                i -= tx_ring->count;
8080                                tx_buffer = tx_ring->tx_buffer_info;
8081                                tx_desc = IGB_TX_DESC(tx_ring, 0);
8082                        }
8083
8084                        /* unmap any remaining paged data */
8085                        if (dma_unmap_len(tx_buffer, len)) {
8086                                dma_unmap_page(tx_ring->dev,
8087                                               dma_unmap_addr(tx_buffer, dma),
8088                                               dma_unmap_len(tx_buffer, len),
8089                                               DMA_TO_DEVICE);
8090                                dma_unmap_len_set(tx_buffer, len, 0);
8091                        }
8092                }
8093
8094                /* move us one more past the eop_desc for start of next pkt */
8095                tx_buffer++;
8096                tx_desc++;
8097                i++;
8098                if (unlikely(!i)) {
8099                        i -= tx_ring->count;
8100                        tx_buffer = tx_ring->tx_buffer_info;
8101                        tx_desc = IGB_TX_DESC(tx_ring, 0);
8102                }
8103
8104                /* issue prefetch for next Tx descriptor */
8105                prefetch(tx_desc);
8106
8107                /* update budget accounting */
8108                budget--;
8109        } while (likely(budget));
8110
8111        netdev_tx_completed_queue(txring_txq(tx_ring),
8112                                  total_packets, total_bytes);
8113        i += tx_ring->count;
8114        tx_ring->next_to_clean = i;
8115        u64_stats_update_begin(&tx_ring->tx_syncp);
8116        tx_ring->tx_stats.bytes += total_bytes;
8117        tx_ring->tx_stats.packets += total_packets;
8118        u64_stats_update_end(&tx_ring->tx_syncp);
8119        q_vector->tx.total_bytes += total_bytes;
8120        q_vector->tx.total_packets += total_packets;
8121
8122        if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8123                struct e1000_hw *hw = &adapter->hw;
8124
8125                /* Detect a transmit hang in hardware, this serializes the
8126                 * check with the clearing of time_stamp and movement of i
8127                 */
8128                clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
8129                if (tx_buffer->next_to_watch &&
8130                    time_after(jiffies, tx_buffer->time_stamp +
8131                               (adapter->tx_timeout_factor * HZ)) &&
8132                    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8133
8134                        /* detected Tx unit hang */
8135                        dev_err(tx_ring->dev,
8136                                "Detected Tx Unit Hang\n"
8137                                "  Tx Queue             <%d>\n"
8138                                "  TDH                  <%x>\n"
8139                                "  TDT                  <%x>\n"
8140                                "  next_to_use          <%x>\n"
8141                                "  next_to_clean        <%x>\n"
8142                                "buffer_info[next_to_clean]\n"
8143                                "  time_stamp           <%lx>\n"
8144                                "  next_to_watch        <%p>\n"
8145                                "  jiffies              <%lx>\n"
8146                                "  desc.status          <%x>\n",
8147                                tx_ring->queue_index,
8148                                rd32(E1000_TDH(tx_ring->reg_idx)),
8149                                readl(tx_ring->tail),
8150                                tx_ring->next_to_use,
8151                                tx_ring->next_to_clean,
8152                                tx_buffer->time_stamp,
8153                                tx_buffer->next_to_watch,
8154                                jiffies,
8155                                tx_buffer->next_to_watch->wb.status);
8156                        netif_stop_subqueue(tx_ring->netdev,
8157                                            tx_ring->queue_index);
8158
8159                        /* we are about to reset, no point in enabling stuff */
8160                        return true;
8161                }
8162        }
8163
8164#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8165        if (unlikely(total_packets &&
8166            netif_carrier_ok(tx_ring->netdev) &&
8167            igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8168                /* Make sure that anybody stopping the queue after this
8169                 * sees the new next_to_clean.
8170                 */
8171                smp_mb();
8172                if (__netif_subqueue_stopped(tx_ring->netdev,
8173                                             tx_ring->queue_index) &&
8174                    !(test_bit(__IGB_DOWN, &adapter->state))) {
8175                        netif_wake_subqueue(tx_ring->netdev,
8176                                            tx_ring->queue_index);
8177
8178                        u64_stats_update_begin(&tx_ring->tx_syncp);
8179                        tx_ring->tx_stats.restart_queue++;
8180                        u64_stats_update_end(&tx_ring->tx_syncp);
8181                }
8182        }
8183
8184        return !!budget;
8185}
8186
8187/**
8188 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
8189 *  @rx_ring: rx descriptor ring to store buffers on
8190 *  @old_buff: donor buffer to have page reused
8191 *
8192 *  Synchronizes page for reuse by the adapter
8193 **/
8194static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8195                              struct igb_rx_buffer *old_buff)
8196{
8197        struct igb_rx_buffer *new_buff;
8198        u16 nta = rx_ring->next_to_alloc;
8199
8200        new_buff = &rx_ring->rx_buffer_info[nta];
8201
8202        /* update, and store next to alloc */
8203        nta++;
8204        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8205
8206        /* Transfer page from old buffer to new buffer.
8207         * Move each member individually to avoid possible store
8208         * forwarding stalls.
8209         */
8210        new_buff->dma           = old_buff->dma;
8211        new_buff->page          = old_buff->page;
8212        new_buff->page_offset   = old_buff->page_offset;
8213        new_buff->pagecnt_bias  = old_buff->pagecnt_bias;
8214}
8215
8216static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8217                                  int rx_buf_pgcnt)
8218{
8219        unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8220        struct page *page = rx_buffer->page;
8221
8222        /* avoid re-using remote and pfmemalloc pages */
8223        if (!dev_page_is_reusable(page))
8224                return false;
8225
8226#if (PAGE_SIZE < 8192)
8227        /* if we are only owner of page we can reuse it */
8228        if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8229                return false;
8230#else
8231#define IGB_LAST_OFFSET \
8232        (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8233
8234        if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8235                return false;
8236#endif
8237
8238        /* If we have drained the page fragment pool we need to update
8239         * the pagecnt_bias and page count so that we fully restock the
8240         * number of references the driver holds.
8241         */
8242        if (unlikely(pagecnt_bias == 1)) {
8243                page_ref_add(page, USHRT_MAX - 1);
8244                rx_buffer->pagecnt_bias = USHRT_MAX;
8245        }
8246
8247        return true;
8248}
8249
8250/**
8251 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8252 *  @rx_ring: rx descriptor ring to transact packets on
8253 *  @rx_buffer: buffer containing page to add
8254 *  @skb: sk_buff to place the data into
8255 *  @size: size of buffer to be added
8256 *
8257 *  This function will add the data contained in rx_buffer->page to the skb.
8258 **/
8259static void igb_add_rx_frag(struct igb_ring *rx_ring,
8260                            struct igb_rx_buffer *rx_buffer,
8261                            struct sk_buff *skb,
8262                            unsigned int size)
8263{
8264#if (PAGE_SIZE < 8192)
8265        unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8266#else
8267        unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8268                                SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8269                                SKB_DATA_ALIGN(size);
8270#endif
8271        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8272                        rx_buffer->page_offset, size, truesize);
8273#if (PAGE_SIZE < 8192)
8274        rx_buffer->page_offset ^= truesize;
8275#else
8276        rx_buffer->page_offset += truesize;
8277#endif
8278}
8279
8280static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8281                                         struct igb_rx_buffer *rx_buffer,
8282                                         struct xdp_buff *xdp,
8283                                         ktime_t timestamp)
8284{
8285#if (PAGE_SIZE < 8192)
8286        unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8287#else
8288        unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8289                                               xdp->data_hard_start);
8290#endif
8291        unsigned int size = xdp->data_end - xdp->data;
8292        unsigned int headlen;
8293        struct sk_buff *skb;
8294
8295        /* prefetch first cache line of first page */
8296        net_prefetch(xdp->data);
8297
8298        /* allocate a skb to store the frags */
8299        skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8300        if (unlikely(!skb))
8301                return NULL;
8302
8303        if (timestamp)
8304                skb_hwtstamps(skb)->hwtstamp = timestamp;
8305
8306        /* Determine available headroom for copy */
8307        headlen = size;
8308        if (headlen > IGB_RX_HDR_LEN)
8309                headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
8310
8311        /* align pull length to size of long to optimize memcpy performance */
8312        memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8313
8314        /* update all of the pointers */
8315        size -= headlen;
8316        if (size) {
8317                skb_add_rx_frag(skb, 0, rx_buffer->page,
8318                                (xdp->data + headlen) - page_address(rx_buffer->page),
8319                                size, truesize);
8320#if (PAGE_SIZE < 8192)
8321                rx_buffer->page_offset ^= truesize;
8322#else
8323                rx_buffer->page_offset += truesize;
8324#endif
8325        } else {
8326                rx_buffer->pagecnt_bias++;
8327        }
8328
8329        return skb;
8330}
8331
8332static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8333                                     struct igb_rx_buffer *rx_buffer,
8334                                     struct xdp_buff *xdp,
8335                                     ktime_t timestamp)
8336{
8337#if (PAGE_SIZE < 8192)
8338        unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8339#else
8340        unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8341                                SKB_DATA_ALIGN(xdp->data_end -
8342                                               xdp->data_hard_start);
8343#endif
8344        unsigned int metasize = xdp->data - xdp->data_meta;
8345        struct sk_buff *skb;
8346
8347        /* prefetch first cache line of first page */
8348        net_prefetch(xdp->data_meta);
8349
8350        /* build an skb around the page buffer */
8351        skb = build_skb(xdp->data_hard_start, truesize);
8352        if (unlikely(!skb))
8353                return NULL;
8354
8355        /* update pointers within the skb to store the data */
8356        skb_reserve(skb, xdp->data - xdp->data_hard_start);
8357        __skb_put(skb, xdp->data_end - xdp->data);
8358
8359        if (metasize)
8360                skb_metadata_set(skb, metasize);
8361
8362        if (timestamp)
8363                skb_hwtstamps(skb)->hwtstamp = timestamp;
8364
8365        /* update buffer offset */
8366#if (PAGE_SIZE < 8192)
8367        rx_buffer->page_offset ^= truesize;
8368#else
8369        rx_buffer->page_offset += truesize;
8370#endif
8371
8372        return skb;
8373}
8374
8375static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8376                                   struct igb_ring *rx_ring,
8377                                   struct xdp_buff *xdp)
8378{
8379        int err, result = IGB_XDP_PASS;
8380        struct bpf_prog *xdp_prog;
8381        u32 act;
8382
8383        rcu_read_lock();
8384        xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8385
8386        if (!xdp_prog)
8387                goto xdp_out;
8388
8389        prefetchw(xdp->data_hard_start); /* xdp_frame write */
8390
8391        act = bpf_prog_run_xdp(xdp_prog, xdp);
8392        switch (act) {
8393        case XDP_PASS:
8394                break;
8395        case XDP_TX:
8396                result = igb_xdp_xmit_back(adapter, xdp);
8397                if (result == IGB_XDP_CONSUMED)
8398                        goto out_failure;
8399                break;
8400        case XDP_REDIRECT:
8401                err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
8402                if (err)
8403                        goto out_failure;
8404                result = IGB_XDP_REDIR;
8405                break;
8406        default:
8407                bpf_warn_invalid_xdp_action(act);
8408                fallthrough;
8409        case XDP_ABORTED:
8410out_failure:
8411                trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
8412                fallthrough;
8413        case XDP_DROP:
8414                result = IGB_XDP_CONSUMED;
8415                break;
8416        }
8417xdp_out:
8418        rcu_read_unlock();
8419        return ERR_PTR(-result);
8420}
8421
8422static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8423                                          unsigned int size)
8424{
8425        unsigned int truesize;
8426
8427#if (PAGE_SIZE < 8192)
8428        truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8429#else
8430        truesize = ring_uses_build_skb(rx_ring) ?
8431                SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8432                SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8433                SKB_DATA_ALIGN(size);
8434#endif
8435        return truesize;
8436}
8437
8438static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8439                               struct igb_rx_buffer *rx_buffer,
8440                               unsigned int size)
8441{
8442        unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8443#if (PAGE_SIZE < 8192)
8444        rx_buffer->page_offset ^= truesize;
8445#else
8446        rx_buffer->page_offset += truesize;
8447#endif
8448}
8449
8450static inline void igb_rx_checksum(struct igb_ring *ring,
8451                                   union e1000_adv_rx_desc *rx_desc,
8452                                   struct sk_buff *skb)
8453{
8454        skb_checksum_none_assert(skb);
8455
8456        /* Ignore Checksum bit is set */
8457        if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8458                return;
8459
8460        /* Rx checksum disabled via ethtool */
8461        if (!(ring->netdev->features & NETIF_F_RXCSUM))
8462                return;
8463
8464        /* TCP/UDP checksum error bit is set */
8465        if (igb_test_staterr(rx_desc,
8466                             E1000_RXDEXT_STATERR_TCPE |
8467                             E1000_RXDEXT_STATERR_IPE)) {
8468                /* work around errata with sctp packets where the TCPE aka
8469                 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8470                 * packets, (aka let the stack check the crc32c)
8471                 */
8472                if (!((skb->len == 60) &&
8473                      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8474                        u64_stats_update_begin(&ring->rx_syncp);
8475                        ring->rx_stats.csum_err++;
8476                        u64_stats_update_end(&ring->rx_syncp);
8477                }
8478                /* let the stack verify checksum errors */
8479                return;
8480        }
8481        /* It must be a TCP or UDP packet with a valid checksum */
8482        if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8483                                      E1000_RXD_STAT_UDPCS))
8484                skb->ip_summed = CHECKSUM_UNNECESSARY;
8485
8486        dev_dbg(ring->dev, "cksum success: bits %08X\n",
8487                le32_to_cpu(rx_desc->wb.upper.status_error));
8488}
8489
8490static inline void igb_rx_hash(struct igb_ring *ring,
8491                               union e1000_adv_rx_desc *rx_desc,
8492                               struct sk_buff *skb)
8493{
8494        if (ring->netdev->features & NETIF_F_RXHASH)
8495                skb_set_hash(skb,
8496                             le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8497                             PKT_HASH_TYPE_L3);
8498}
8499
8500/**
8501 *  igb_is_non_eop - process handling of non-EOP buffers
8502 *  @rx_ring: Rx ring being processed
8503 *  @rx_desc: Rx descriptor for current buffer
8504 *
8505 *  This function updates next to clean.  If the buffer is an EOP buffer
8506 *  this function exits returning false, otherwise it will place the
8507 *  sk_buff in the next buffer to be chained and return true indicating
8508 *  that this is in fact a non-EOP buffer.
8509 **/
8510static bool igb_is_non_eop(struct igb_ring *rx_ring,
8511                           union e1000_adv_rx_desc *rx_desc)
8512{
8513        u32 ntc = rx_ring->next_to_clean + 1;
8514
8515        /* fetch, update, and store next to clean */
8516        ntc = (ntc < rx_ring->count) ? ntc : 0;
8517        rx_ring->next_to_clean = ntc;
8518
8519        prefetch(IGB_RX_DESC(rx_ring, ntc));
8520
8521        if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8522                return false;
8523
8524        return true;
8525}
8526
8527/**
8528 *  igb_cleanup_headers - Correct corrupted or empty headers
8529 *  @rx_ring: rx descriptor ring packet is being transacted on
8530 *  @rx_desc: pointer to the EOP Rx descriptor
8531 *  @skb: pointer to current skb being fixed
8532 *
8533 *  Address the case where we are pulling data in on pages only
8534 *  and as such no data is present in the skb header.
8535 *
8536 *  In addition if skb is not at least 60 bytes we need to pad it so that
8537 *  it is large enough to qualify as a valid Ethernet frame.
8538 *
8539 *  Returns true if an error was encountered and skb was freed.
8540 **/
8541static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8542                                union e1000_adv_rx_desc *rx_desc,
8543                                struct sk_buff *skb)
8544{
8545        /* XDP packets use error pointer so abort at this point */
8546        if (IS_ERR(skb))
8547                return true;
8548
8549        if (unlikely((igb_test_staterr(rx_desc,
8550                                       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8551                struct net_device *netdev = rx_ring->netdev;
8552                if (!(netdev->features & NETIF_F_RXALL)) {
8553                        dev_kfree_skb_any(skb);
8554                        return true;
8555                }
8556        }
8557
8558        /* if eth_skb_pad returns an error the skb was freed */
8559        if (eth_skb_pad(skb))
8560                return true;
8561
8562        return false;
8563}
8564
8565/**
8566 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
8567 *  @rx_ring: rx descriptor ring packet is being transacted on
8568 *  @rx_desc: pointer to the EOP Rx descriptor
8569 *  @skb: pointer to current skb being populated
8570 *
8571 *  This function checks the ring, descriptor, and packet information in
8572 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
8573 *  other fields within the skb.
8574 **/
8575static void igb_process_skb_fields(struct igb_ring *rx_ring,
8576                                   union e1000_adv_rx_desc *rx_desc,
8577                                   struct sk_buff *skb)
8578{
8579        struct net_device *dev = rx_ring->netdev;
8580
8581        igb_rx_hash(rx_ring, rx_desc, skb);
8582
8583        igb_rx_checksum(rx_ring, rx_desc, skb);
8584
8585        if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8586            !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8587                igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8588
8589        if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8590            igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8591                u16 vid;
8592
8593                if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8594                    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8595                        vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8596                else
8597                        vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8598
8599                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8600        }
8601
8602        skb_record_rx_queue(skb, rx_ring->queue_index);
8603
8604        skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8605}
8606
8607static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8608{
8609        return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8610}
8611
8612static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8613                                               const unsigned int size, int *rx_buf_pgcnt)
8614{
8615        struct igb_rx_buffer *rx_buffer;
8616
8617        rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8618        *rx_buf_pgcnt =
8619#if (PAGE_SIZE < 8192)
8620                page_count(rx_buffer->page);
8621#else
8622                0;
8623#endif
8624        prefetchw(rx_buffer->page);
8625
8626        /* we are reusing so sync this buffer for CPU use */
8627        dma_sync_single_range_for_cpu(rx_ring->dev,
8628                                      rx_buffer->dma,
8629                                      rx_buffer->page_offset,
8630                                      size,
8631                                      DMA_FROM_DEVICE);
8632
8633        rx_buffer->pagecnt_bias--;
8634
8635        return rx_buffer;
8636}
8637
8638static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8639                              struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8640{
8641        if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8642                /* hand second half of page back to the ring */
8643                igb_reuse_rx_page(rx_ring, rx_buffer);
8644        } else {
8645                /* We are not reusing the buffer so unmap it and free
8646                 * any references we are holding to it
8647                 */
8648                dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8649                                     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8650                                     IGB_RX_DMA_ATTR);
8651                __page_frag_cache_drain(rx_buffer->page,
8652                                        rx_buffer->pagecnt_bias);
8653        }
8654
8655        /* clear contents of rx_buffer */
8656        rx_buffer->page = NULL;
8657}
8658
8659static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8660{
8661        struct igb_adapter *adapter = q_vector->adapter;
8662        struct igb_ring *rx_ring = q_vector->rx.ring;
8663        struct sk_buff *skb = rx_ring->skb;
8664        unsigned int total_bytes = 0, total_packets = 0;
8665        u16 cleaned_count = igb_desc_unused(rx_ring);
8666        unsigned int xdp_xmit = 0;
8667        struct xdp_buff xdp;
8668        u32 frame_sz = 0;
8669        int rx_buf_pgcnt;
8670
8671        /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8672#if (PAGE_SIZE < 8192)
8673        frame_sz = igb_rx_frame_truesize(rx_ring, 0);
8674#endif
8675        xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
8676
8677        while (likely(total_packets < budget)) {
8678                union e1000_adv_rx_desc *rx_desc;
8679                struct igb_rx_buffer *rx_buffer;
8680                ktime_t timestamp = 0;
8681                int pkt_offset = 0;
8682                unsigned int size;
8683                void *pktbuf;
8684
8685                /* return some buffers to hardware, one at a time is too slow */
8686                if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8687                        igb_alloc_rx_buffers(rx_ring, cleaned_count);
8688                        cleaned_count = 0;
8689                }
8690
8691                rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8692                size = le16_to_cpu(rx_desc->wb.upper.length);
8693                if (!size)
8694                        break;
8695
8696                /* This memory barrier is needed to keep us from reading
8697                 * any other fields out of the rx_desc until we know the
8698                 * descriptor has been written back
8699                 */
8700                dma_rmb();
8701
8702                rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
8703                pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8704
8705                /* pull rx packet timestamp if available and valid */
8706                if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8707                        int ts_hdr_len;
8708
8709                        ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
8710                                                         pktbuf, &timestamp);
8711
8712                        pkt_offset += ts_hdr_len;
8713                        size -= ts_hdr_len;
8714                }
8715
8716                /* retrieve a buffer from the ring */
8717                if (!skb) {
8718                        unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8719                        unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8720
8721                        xdp_prepare_buff(&xdp, hard_start, offset, size, true);
8722#if (PAGE_SIZE > 4096)
8723                        /* At larger PAGE_SIZE, frame_sz depend on len size */
8724                        xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8725#endif
8726                        skb = igb_run_xdp(adapter, rx_ring, &xdp);
8727                }
8728
8729                if (IS_ERR(skb)) {
8730                        unsigned int xdp_res = -PTR_ERR(skb);
8731
8732                        if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8733                                xdp_xmit |= xdp_res;
8734                                igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8735                        } else {
8736                                rx_buffer->pagecnt_bias++;
8737                        }
8738                        total_packets++;
8739                        total_bytes += size;
8740                } else if (skb)
8741                        igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8742                else if (ring_uses_build_skb(rx_ring))
8743                        skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
8744                                            timestamp);
8745                else
8746                        skb = igb_construct_skb(rx_ring, rx_buffer,
8747                                                &xdp, timestamp);
8748
8749                /* exit if we failed to retrieve a buffer */
8750                if (!skb) {
8751                        rx_ring->rx_stats.alloc_failed++;
8752                        rx_buffer->pagecnt_bias++;
8753                        break;
8754                }
8755
8756                igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8757                cleaned_count++;
8758
8759                /* fetch next buffer in frame if non-eop */
8760                if (igb_is_non_eop(rx_ring, rx_desc))
8761                        continue;
8762
8763                /* verify the packet layout is correct */
8764                if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8765                        skb = NULL;
8766                        continue;
8767                }
8768
8769                /* probably a little skewed due to removing CRC */
8770                total_bytes += skb->len;
8771
8772                /* populate checksum, timestamp, VLAN, and protocol */
8773                igb_process_skb_fields(rx_ring, rx_desc, skb);
8774
8775                napi_gro_receive(&q_vector->napi, skb);
8776
8777                /* reset skb pointer */
8778                skb = NULL;
8779
8780                /* update budget accounting */
8781                total_packets++;
8782        }
8783
8784        /* place incomplete frames back on ring for completion */
8785        rx_ring->skb = skb;
8786
8787        if (xdp_xmit & IGB_XDP_REDIR)
8788                xdp_do_flush();
8789
8790        if (xdp_xmit & IGB_XDP_TX) {
8791                struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
8792
8793                igb_xdp_ring_update_tail(tx_ring);
8794        }
8795
8796        u64_stats_update_begin(&rx_ring->rx_syncp);
8797        rx_ring->rx_stats.packets += total_packets;
8798        rx_ring->rx_stats.bytes += total_bytes;
8799        u64_stats_update_end(&rx_ring->rx_syncp);
8800        q_vector->rx.total_packets += total_packets;
8801        q_vector->rx.total_bytes += total_bytes;
8802
8803        if (cleaned_count)
8804                igb_alloc_rx_buffers(rx_ring, cleaned_count);
8805
8806        return total_packets;
8807}
8808
8809static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8810                                  struct igb_rx_buffer *bi)
8811{
8812        struct page *page = bi->page;
8813        dma_addr_t dma;
8814
8815        /* since we are recycling buffers we should seldom need to alloc */
8816        if (likely(page))
8817                return true;
8818
8819        /* alloc new page for storage */
8820        page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8821        if (unlikely(!page)) {
8822                rx_ring->rx_stats.alloc_failed++;
8823                return false;
8824        }
8825
8826        /* map page for use */
8827        dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8828                                 igb_rx_pg_size(rx_ring),
8829                                 DMA_FROM_DEVICE,
8830                                 IGB_RX_DMA_ATTR);
8831
8832        /* if mapping failed free memory back to system since
8833         * there isn't much point in holding memory we can't use
8834         */
8835        if (dma_mapping_error(rx_ring->dev, dma)) {
8836                __free_pages(page, igb_rx_pg_order(rx_ring));
8837
8838                rx_ring->rx_stats.alloc_failed++;
8839                return false;
8840        }
8841
8842        bi->dma = dma;
8843        bi->page = page;
8844        bi->page_offset = igb_rx_offset(rx_ring);
8845        page_ref_add(page, USHRT_MAX - 1);
8846        bi->pagecnt_bias = USHRT_MAX;
8847
8848        return true;
8849}
8850
8851/**
8852 *  igb_alloc_rx_buffers - Replace used receive buffers
8853 *  @rx_ring: rx descriptor ring to allocate new receive buffers
8854 *  @cleaned_count: count of buffers to allocate
8855 **/
8856void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8857{
8858        union e1000_adv_rx_desc *rx_desc;
8859        struct igb_rx_buffer *bi;
8860        u16 i = rx_ring->next_to_use;
8861        u16 bufsz;
8862
8863        /* nothing to do */
8864        if (!cleaned_count)
8865                return;
8866
8867        rx_desc = IGB_RX_DESC(rx_ring, i);
8868        bi = &rx_ring->rx_buffer_info[i];
8869        i -= rx_ring->count;
8870
8871        bufsz = igb_rx_bufsz(rx_ring);
8872
8873        do {
8874                if (!igb_alloc_mapped_page(rx_ring, bi))
8875                        break;
8876
8877                /* sync the buffer for use by the device */
8878                dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8879                                                 bi->page_offset, bufsz,
8880                                                 DMA_FROM_DEVICE);
8881
8882                /* Refresh the desc even if buffer_addrs didn't change
8883                 * because each write-back erases this info.
8884                 */
8885                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8886
8887                rx_desc++;
8888                bi++;
8889                i++;
8890                if (unlikely(!i)) {
8891                        rx_desc = IGB_RX_DESC(rx_ring, 0);
8892                        bi = rx_ring->rx_buffer_info;
8893                        i -= rx_ring->count;
8894                }
8895
8896                /* clear the length for the next_to_use descriptor */
8897                rx_desc->wb.upper.length = 0;
8898
8899                cleaned_count--;
8900        } while (cleaned_count);
8901
8902        i += rx_ring->count;
8903
8904        if (rx_ring->next_to_use != i) {
8905                /* record the next descriptor to use */
8906                rx_ring->next_to_use = i;
8907
8908                /* update next to alloc since we have filled the ring */
8909                rx_ring->next_to_alloc = i;
8910
8911                /* Force memory writes to complete before letting h/w
8912                 * know there are new descriptors to fetch.  (Only
8913                 * applicable for weak-ordered memory model archs,
8914                 * such as IA-64).
8915                 */
8916                dma_wmb();
8917                writel(i, rx_ring->tail);
8918        }
8919}
8920
8921/**
8922 * igb_mii_ioctl -
8923 * @netdev: pointer to netdev struct
8924 * @ifr: interface structure
8925 * @cmd: ioctl command to execute
8926 **/
8927static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8928{
8929        struct igb_adapter *adapter = netdev_priv(netdev);
8930        struct mii_ioctl_data *data = if_mii(ifr);
8931
8932        if (adapter->hw.phy.media_type != e1000_media_type_copper)
8933                return -EOPNOTSUPP;
8934
8935        switch (cmd) {
8936        case SIOCGMIIPHY:
8937                data->phy_id = adapter->hw.phy.addr;
8938                break;
8939        case SIOCGMIIREG:
8940                if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8941                                     &data->val_out))
8942                        return -EIO;
8943                break;
8944        case SIOCSMIIREG:
8945        default:
8946                return -EOPNOTSUPP;
8947        }
8948        return 0;
8949}
8950
8951/**
8952 * igb_ioctl -
8953 * @netdev: pointer to netdev struct
8954 * @ifr: interface structure
8955 * @cmd: ioctl command to execute
8956 **/
8957static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8958{
8959        switch (cmd) {
8960        case SIOCGMIIPHY:
8961        case SIOCGMIIREG:
8962        case SIOCSMIIREG:
8963                return igb_mii_ioctl(netdev, ifr, cmd);
8964        case SIOCGHWTSTAMP:
8965                return igb_ptp_get_ts_config(netdev, ifr);
8966        case SIOCSHWTSTAMP:
8967                return igb_ptp_set_ts_config(netdev, ifr);
8968        default:
8969                return -EOPNOTSUPP;
8970        }
8971}
8972
8973void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8974{
8975        struct igb_adapter *adapter = hw->back;
8976
8977        pci_read_config_word(adapter->pdev, reg, value);
8978}
8979
8980void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8981{
8982        struct igb_adapter *adapter = hw->back;
8983
8984        pci_write_config_word(adapter->pdev, reg, *value);
8985}
8986
8987s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8988{
8989        struct igb_adapter *adapter = hw->back;
8990
8991        if (pcie_capability_read_word(adapter->pdev, reg, value))
8992                return -E1000_ERR_CONFIG;
8993
8994        return 0;
8995}
8996
8997s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8998{
8999        struct igb_adapter *adapter = hw->back;
9000
9001        if (pcie_capability_write_word(adapter->pdev, reg, *value))
9002                return -E1000_ERR_CONFIG;
9003
9004        return 0;
9005}
9006
9007static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9008{
9009        struct igb_adapter *adapter = netdev_priv(netdev);
9010        struct e1000_hw *hw = &adapter->hw;
9011        u32 ctrl, rctl;
9012        bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9013
9014        if (enable) {
9015                /* enable VLAN tag insert/strip */
9016                ctrl = rd32(E1000_CTRL);
9017                ctrl |= E1000_CTRL_VME;
9018                wr32(E1000_CTRL, ctrl);
9019
9020                /* Disable CFI check */
9021                rctl = rd32(E1000_RCTL);
9022                rctl &= ~E1000_RCTL_CFIEN;
9023                wr32(E1000_RCTL, rctl);
9024        } else {
9025                /* disable VLAN tag insert/strip */
9026                ctrl = rd32(E1000_CTRL);
9027                ctrl &= ~E1000_CTRL_VME;
9028                wr32(E1000_CTRL, ctrl);
9029        }
9030
9031        igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
9032}
9033
9034static int igb_vlan_rx_add_vid(struct net_device *netdev,
9035                               __be16 proto, u16 vid)
9036{
9037        struct igb_adapter *adapter = netdev_priv(netdev);
9038        struct e1000_hw *hw = &adapter->hw;
9039        int pf_id = adapter->vfs_allocated_count;
9040
9041        /* add the filter since PF can receive vlans w/o entry in vlvf */
9042        if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9043                igb_vfta_set(hw, vid, pf_id, true, !!vid);
9044
9045        set_bit(vid, adapter->active_vlans);
9046
9047        return 0;
9048}
9049
9050static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9051                                __be16 proto, u16 vid)
9052{
9053        struct igb_adapter *adapter = netdev_priv(netdev);
9054        int pf_id = adapter->vfs_allocated_count;
9055        struct e1000_hw *hw = &adapter->hw;
9056
9057        /* remove VID from filter table */
9058        if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9059                igb_vfta_set(hw, vid, pf_id, false, true);
9060
9061        clear_bit(vid, adapter->active_vlans);
9062
9063        return 0;
9064}
9065
9066static void igb_restore_vlan(struct igb_adapter *adapter)
9067{
9068        u16 vid = 1;
9069
9070        igb_vlan_mode(adapter->netdev, adapter->netdev->features);
9071        igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
9072
9073        for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9074                igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9075}
9076
9077int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9078{
9079        struct pci_dev *pdev = adapter->pdev;
9080        struct e1000_mac_info *mac = &adapter->hw.mac;
9081
9082        mac->autoneg = 0;
9083
9084        /* Make sure dplx is at most 1 bit and lsb of speed is not set
9085         * for the switch() below to work
9086         */
9087        if ((spd & 1) || (dplx & ~1))
9088                goto err_inval;
9089
9090        /* Fiber NIC's only allow 1000 gbps Full duplex
9091         * and 100Mbps Full duplex for 100baseFx sfp
9092         */
9093        if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9094                switch (spd + dplx) {
9095                case SPEED_10 + DUPLEX_HALF:
9096                case SPEED_10 + DUPLEX_FULL:
9097                case SPEED_100 + DUPLEX_HALF:
9098                        goto err_inval;
9099                default:
9100                        break;
9101                }
9102        }
9103
9104        switch (spd + dplx) {
9105        case SPEED_10 + DUPLEX_HALF:
9106                mac->forced_speed_duplex = ADVERTISE_10_HALF;
9107                break;
9108        case SPEED_10 + DUPLEX_FULL:
9109                mac->forced_speed_duplex = ADVERTISE_10_FULL;
9110                break;
9111        case SPEED_100 + DUPLEX_HALF:
9112                mac->forced_speed_duplex = ADVERTISE_100_HALF;
9113                break;
9114        case SPEED_100 + DUPLEX_FULL:
9115                mac->forced_speed_duplex = ADVERTISE_100_FULL;
9116                break;
9117        case SPEED_1000 + DUPLEX_FULL:
9118                mac->autoneg = 1;
9119                adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9120                break;
9121        case SPEED_1000 + DUPLEX_HALF: /* not supported */
9122        default:
9123                goto err_inval;
9124        }
9125
9126        /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9127        adapter->hw.phy.mdix = AUTO_ALL_MODES;
9128
9129        return 0;
9130
9131err_inval:
9132        dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9133        return -EINVAL;
9134}
9135
9136static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9137                          bool runtime)
9138{
9139        struct net_device *netdev = pci_get_drvdata(pdev);
9140        struct igb_adapter *adapter = netdev_priv(netdev);
9141        struct e1000_hw *hw = &adapter->hw;
9142        u32 ctrl, rctl, status;
9143        u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9144        bool wake;
9145
9146        rtnl_lock();
9147        netif_device_detach(netdev);
9148
9149        if (netif_running(netdev))
9150                __igb_close(netdev, true);
9151
9152        igb_ptp_suspend(adapter);
9153
9154        igb_clear_interrupt_scheme(adapter);
9155        rtnl_unlock();
9156
9157        status = rd32(E1000_STATUS);
9158        if (status & E1000_STATUS_LU)
9159                wufc &= ~E1000_WUFC_LNKC;
9160
9161        if (wufc) {
9162                igb_setup_rctl(adapter);
9163                igb_set_rx_mode(netdev);
9164
9165                /* turn on all-multi mode if wake on multicast is enabled */
9166                if (wufc & E1000_WUFC_MC) {
9167                        rctl = rd32(E1000_RCTL);
9168                        rctl |= E1000_RCTL_MPE;
9169                        wr32(E1000_RCTL, rctl);
9170                }
9171
9172                ctrl = rd32(E1000_CTRL);
9173                ctrl |= E1000_CTRL_ADVD3WUC;
9174                wr32(E1000_CTRL, ctrl);
9175
9176                /* Allow time for pending master requests to run */
9177                igb_disable_pcie_master(hw);
9178
9179                wr32(E1000_WUC, E1000_WUC_PME_EN);
9180                wr32(E1000_WUFC, wufc);
9181        } else {
9182                wr32(E1000_WUC, 0);
9183                wr32(E1000_WUFC, 0);
9184        }
9185
9186        wake = wufc || adapter->en_mng_pt;
9187        if (!wake)
9188                igb_power_down_link(adapter);
9189        else
9190                igb_power_up_link(adapter);
9191
9192        if (enable_wake)
9193                *enable_wake = wake;
9194
9195        /* Release control of h/w to f/w.  If f/w is AMT enabled, this
9196         * would have already happened in close and is redundant.
9197         */
9198        igb_release_hw_control(adapter);
9199
9200        pci_disable_device(pdev);
9201
9202        return 0;
9203}
9204
9205static void igb_deliver_wake_packet(struct net_device *netdev)
9206{
9207        struct igb_adapter *adapter = netdev_priv(netdev);
9208        struct e1000_hw *hw = &adapter->hw;
9209        struct sk_buff *skb;
9210        u32 wupl;
9211
9212        wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9213
9214        /* WUPM stores only the first 128 bytes of the wake packet.
9215         * Read the packet only if we have the whole thing.
9216         */
9217        if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9218                return;
9219
9220        skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
9221        if (!skb)
9222                return;
9223
9224        skb_put(skb, wupl);
9225
9226        /* Ensure reads are 32-bit aligned */
9227        wupl = roundup(wupl, 4);
9228
9229        memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9230
9231        skb->protocol = eth_type_trans(skb, netdev);
9232        netif_rx(skb);
9233}
9234
9235static int __maybe_unused igb_suspend(struct device *dev)
9236{
9237        return __igb_shutdown(to_pci_dev(dev), NULL, 0);
9238}
9239
9240static int __maybe_unused igb_resume(struct device *dev)
9241{
9242        struct pci_dev *pdev = to_pci_dev(dev);
9243        struct net_device *netdev = pci_get_drvdata(pdev);
9244        struct igb_adapter *adapter = netdev_priv(netdev);
9245        struct e1000_hw *hw = &adapter->hw;
9246        u32 err, val;
9247
9248        pci_set_power_state(pdev, PCI_D0);
9249        pci_restore_state(pdev);
9250        pci_save_state(pdev);
9251
9252        if (!pci_device_is_present(pdev))
9253                return -ENODEV;
9254        err = pci_enable_device_mem(pdev);
9255        if (err) {
9256                dev_err(&pdev->dev,
9257                        "igb: Cannot enable PCI device from suspend\n");
9258                return err;
9259        }
9260        pci_set_master(pdev);
9261
9262        pci_enable_wake(pdev, PCI_D3hot, 0);
9263        pci_enable_wake(pdev, PCI_D3cold, 0);
9264
9265        if (igb_init_interrupt_scheme(adapter, true)) {
9266                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9267                return -ENOMEM;
9268        }
9269
9270        igb_reset(adapter);
9271
9272        /* let the f/w know that the h/w is now under the control of the
9273         * driver.
9274         */
9275        igb_get_hw_control(adapter);
9276
9277        val = rd32(E1000_WUS);
9278        if (val & WAKE_PKT_WUS)
9279                igb_deliver_wake_packet(netdev);
9280
9281        wr32(E1000_WUS, ~0);
9282
9283        rtnl_lock();
9284        if (!err && netif_running(netdev))
9285                err = __igb_open(netdev, true);
9286
9287        if (!err)
9288                netif_device_attach(netdev);
9289        rtnl_unlock();
9290
9291        return err;
9292}
9293
9294static int __maybe_unused igb_runtime_idle(struct device *dev)
9295{
9296        struct net_device *netdev = dev_get_drvdata(dev);
9297        struct igb_adapter *adapter = netdev_priv(netdev);
9298
9299        if (!igb_has_link(adapter))
9300                pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9301
9302        return -EBUSY;
9303}
9304
9305static int __maybe_unused igb_runtime_suspend(struct device *dev)
9306{
9307        return __igb_shutdown(to_pci_dev(dev), NULL, 1);
9308}
9309
9310static int __maybe_unused igb_runtime_resume(struct device *dev)
9311{
9312        return igb_resume(dev);
9313}
9314
9315static void igb_shutdown(struct pci_dev *pdev)
9316{
9317        bool wake;
9318
9319        __igb_shutdown(pdev, &wake, 0);
9320
9321        if (system_state == SYSTEM_POWER_OFF) {
9322                pci_wake_from_d3(pdev, wake);
9323                pci_set_power_state(pdev, PCI_D3hot);
9324        }
9325}
9326
9327#ifdef CONFIG_PCI_IOV
9328static int igb_sriov_reinit(struct pci_dev *dev)
9329{
9330        struct net_device *netdev = pci_get_drvdata(dev);
9331        struct igb_adapter *adapter = netdev_priv(netdev);
9332        struct pci_dev *pdev = adapter->pdev;
9333
9334        rtnl_lock();
9335
9336        if (netif_running(netdev))
9337                igb_close(netdev);
9338        else
9339                igb_reset(adapter);
9340
9341        igb_clear_interrupt_scheme(adapter);
9342
9343        igb_init_queue_configuration(adapter);
9344
9345        if (igb_init_interrupt_scheme(adapter, true)) {
9346                rtnl_unlock();
9347                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9348                return -ENOMEM;
9349        }
9350
9351        if (netif_running(netdev))
9352                igb_open(netdev);
9353
9354        rtnl_unlock();
9355
9356        return 0;
9357}
9358
9359static int igb_pci_disable_sriov(struct pci_dev *dev)
9360{
9361        int err = igb_disable_sriov(dev);
9362
9363        if (!err)
9364                err = igb_sriov_reinit(dev);
9365
9366        return err;
9367}
9368
9369static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9370{
9371        int err = igb_enable_sriov(dev, num_vfs);
9372
9373        if (err)
9374                goto out;
9375
9376        err = igb_sriov_reinit(dev);
9377        if (!err)
9378                return num_vfs;
9379
9380out:
9381        return err;
9382}
9383
9384#endif
9385static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9386{
9387#ifdef CONFIG_PCI_IOV
9388        if (num_vfs == 0)
9389                return igb_pci_disable_sriov(dev);
9390        else
9391                return igb_pci_enable_sriov(dev, num_vfs);
9392#endif
9393        return 0;
9394}
9395
9396/**
9397 *  igb_io_error_detected - called when PCI error is detected
9398 *  @pdev: Pointer to PCI device
9399 *  @state: The current pci connection state
9400 *
9401 *  This function is called after a PCI bus error affecting
9402 *  this device has been detected.
9403 **/
9404static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9405                                              pci_channel_state_t state)
9406{
9407        struct net_device *netdev = pci_get_drvdata(pdev);
9408        struct igb_adapter *adapter = netdev_priv(netdev);
9409
9410        netif_device_detach(netdev);
9411
9412        if (state == pci_channel_io_perm_failure)
9413                return PCI_ERS_RESULT_DISCONNECT;
9414
9415        if (netif_running(netdev))
9416                igb_down(adapter);
9417        pci_disable_device(pdev);
9418
9419        /* Request a slot slot reset. */
9420        return PCI_ERS_RESULT_NEED_RESET;
9421}
9422
9423/**
9424 *  igb_io_slot_reset - called after the pci bus has been reset.
9425 *  @pdev: Pointer to PCI device
9426 *
9427 *  Restart the card from scratch, as if from a cold-boot. Implementation
9428 *  resembles the first-half of the igb_resume routine.
9429 **/
9430static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9431{
9432        struct net_device *netdev = pci_get_drvdata(pdev);
9433        struct igb_adapter *adapter = netdev_priv(netdev);
9434        struct e1000_hw *hw = &adapter->hw;
9435        pci_ers_result_t result;
9436
9437        if (pci_enable_device_mem(pdev)) {
9438                dev_err(&pdev->dev,
9439                        "Cannot re-enable PCI device after reset.\n");
9440                result = PCI_ERS_RESULT_DISCONNECT;
9441        } else {
9442                pci_set_master(pdev);
9443                pci_restore_state(pdev);
9444                pci_save_state(pdev);
9445
9446                pci_enable_wake(pdev, PCI_D3hot, 0);
9447                pci_enable_wake(pdev, PCI_D3cold, 0);
9448
9449                /* In case of PCI error, adapter lose its HW address
9450                 * so we should re-assign it here.
9451                 */
9452                hw->hw_addr = adapter->io_addr;
9453
9454                igb_reset(adapter);
9455                wr32(E1000_WUS, ~0);
9456                result = PCI_ERS_RESULT_RECOVERED;
9457        }
9458
9459        return result;
9460}
9461
9462/**
9463 *  igb_io_resume - called when traffic can start flowing again.
9464 *  @pdev: Pointer to PCI device
9465 *
9466 *  This callback is called when the error recovery driver tells us that
9467 *  its OK to resume normal operation. Implementation resembles the
9468 *  second-half of the igb_resume routine.
9469 */
9470static void igb_io_resume(struct pci_dev *pdev)
9471{
9472        struct net_device *netdev = pci_get_drvdata(pdev);
9473        struct igb_adapter *adapter = netdev_priv(netdev);
9474
9475        if (netif_running(netdev)) {
9476                if (igb_up(adapter)) {
9477                        dev_err(&pdev->dev, "igb_up failed after reset\n");
9478                        return;
9479                }
9480        }
9481
9482        netif_device_attach(netdev);
9483
9484        /* let the f/w know that the h/w is now under the control of the
9485         * driver.
9486         */
9487        igb_get_hw_control(adapter);
9488}
9489
9490/**
9491 *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9492 *  @adapter: Pointer to adapter structure
9493 *  @index: Index of the RAR entry which need to be synced with MAC table
9494 **/
9495static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9496{
9497        struct e1000_hw *hw = &adapter->hw;
9498        u32 rar_low, rar_high;
9499        u8 *addr = adapter->mac_table[index].addr;
9500
9501        /* HW expects these to be in network order when they are plugged
9502         * into the registers which are little endian.  In order to guarantee
9503         * that ordering we need to do an leXX_to_cpup here in order to be
9504         * ready for the byteswap that occurs with writel
9505         */
9506        rar_low = le32_to_cpup((__le32 *)(addr));
9507        rar_high = le16_to_cpup((__le16 *)(addr + 4));
9508
9509        /* Indicate to hardware the Address is Valid. */
9510        if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9511                if (is_valid_ether_addr(addr))
9512                        rar_high |= E1000_RAH_AV;
9513
9514                if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9515                        rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9516
9517                switch (hw->mac.type) {
9518                case e1000_82575:
9519                case e1000_i210:
9520                        if (adapter->mac_table[index].state &
9521                            IGB_MAC_STATE_QUEUE_STEERING)
9522                                rar_high |= E1000_RAH_QSEL_ENABLE;
9523
9524                        rar_high |= E1000_RAH_POOL_1 *
9525                                    adapter->mac_table[index].queue;
9526                        break;
9527                default:
9528                        rar_high |= E1000_RAH_POOL_1 <<
9529                                    adapter->mac_table[index].queue;
9530                        break;
9531                }
9532        }
9533
9534        wr32(E1000_RAL(index), rar_low);
9535        wrfl();
9536        wr32(E1000_RAH(index), rar_high);
9537        wrfl();
9538}
9539
9540static int igb_set_vf_mac(struct igb_adapter *adapter,
9541                          int vf, unsigned char *mac_addr)
9542{
9543        struct e1000_hw *hw = &adapter->hw;
9544        /* VF MAC addresses start at end of receive addresses and moves
9545         * towards the first, as a result a collision should not be possible
9546         */
9547        int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9548        unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9549
9550        ether_addr_copy(vf_mac_addr, mac_addr);
9551        ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9552        adapter->mac_table[rar_entry].queue = vf;
9553        adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9554        igb_rar_set_index(adapter, rar_entry);
9555
9556        return 0;
9557}
9558
9559static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9560{
9561        struct igb_adapter *adapter = netdev_priv(netdev);
9562
9563        if (vf >= adapter->vfs_allocated_count)
9564                return -EINVAL;
9565
9566        /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9567         * flag and allows to overwrite the MAC via VF netdev.  This
9568         * is necessary to allow libvirt a way to restore the original
9569         * MAC after unbinding vfio-pci and reloading igbvf after shutting
9570         * down a VM.
9571         */
9572        if (is_zero_ether_addr(mac)) {
9573                adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9574                dev_info(&adapter->pdev->dev,
9575                         "remove administratively set MAC on VF %d\n",
9576                         vf);
9577        } else if (is_valid_ether_addr(mac)) {
9578                adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9579                dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9580                         mac, vf);
9581                dev_info(&adapter->pdev->dev,
9582                         "Reload the VF driver to make this change effective.");
9583                /* Generate additional warning if PF is down */
9584                if (test_bit(__IGB_DOWN, &adapter->state)) {
9585                        dev_warn(&adapter->pdev->dev,
9586                                 "The VF MAC address has been set, but the PF device is not up.\n");
9587                        dev_warn(&adapter->pdev->dev,
9588                                 "Bring the PF device up before attempting to use the VF device.\n");
9589                }
9590        } else {
9591                return -EINVAL;
9592        }
9593        return igb_set_vf_mac(adapter, vf, mac);
9594}
9595
9596static int igb_link_mbps(int internal_link_speed)
9597{
9598        switch (internal_link_speed) {
9599        case SPEED_100:
9600                return 100;
9601        case SPEED_1000:
9602                return 1000;
9603        default:
9604                return 0;
9605        }
9606}
9607
9608static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9609                                  int link_speed)
9610{
9611        int rf_dec, rf_int;
9612        u32 bcnrc_val;
9613
9614        if (tx_rate != 0) {
9615                /* Calculate the rate factor values to set */
9616                rf_int = link_speed / tx_rate;
9617                rf_dec = (link_speed - (rf_int * tx_rate));
9618                rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9619                         tx_rate;
9620
9621                bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9622                bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9623                              E1000_RTTBCNRC_RF_INT_MASK);
9624                bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9625        } else {
9626                bcnrc_val = 0;
9627        }
9628
9629        wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9630        /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9631         * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9632         */
9633        wr32(E1000_RTTBCNRM, 0x14);
9634        wr32(E1000_RTTBCNRC, bcnrc_val);
9635}
9636
9637static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9638{
9639        int actual_link_speed, i;
9640        bool reset_rate = false;
9641
9642        /* VF TX rate limit was not set or not supported */
9643        if ((adapter->vf_rate_link_speed == 0) ||
9644            (adapter->hw.mac.type != e1000_82576))
9645                return;
9646
9647        actual_link_speed = igb_link_mbps(adapter->link_speed);
9648        if (actual_link_speed != adapter->vf_rate_link_speed) {
9649                reset_rate = true;
9650                adapter->vf_rate_link_speed = 0;
9651                dev_info(&adapter->pdev->dev,
9652                         "Link speed has been changed. VF Transmit rate is disabled\n");
9653        }
9654
9655        for (i = 0; i < adapter->vfs_allocated_count; i++) {
9656                if (reset_rate)
9657                        adapter->vf_data[i].tx_rate = 0;
9658
9659                igb_set_vf_rate_limit(&adapter->hw, i,
9660                                      adapter->vf_data[i].tx_rate,
9661                                      actual_link_speed);
9662        }
9663}
9664
9665static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9666                             int min_tx_rate, int max_tx_rate)
9667{
9668        struct igb_adapter *adapter = netdev_priv(netdev);
9669        struct e1000_hw *hw = &adapter->hw;
9670        int actual_link_speed;
9671
9672        if (hw->mac.type != e1000_82576)
9673                return -EOPNOTSUPP;
9674
9675        if (min_tx_rate)
9676                return -EINVAL;
9677
9678        actual_link_speed = igb_link_mbps(adapter->link_speed);
9679        if ((vf >= adapter->vfs_allocated_count) ||
9680            (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9681            (max_tx_rate < 0) ||
9682            (max_tx_rate > actual_link_speed))
9683                return -EINVAL;
9684
9685        adapter->vf_rate_link_speed = actual_link_speed;
9686        adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9687        igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9688
9689        return 0;
9690}
9691
9692static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9693                                   bool setting)
9694{
9695        struct igb_adapter *adapter = netdev_priv(netdev);
9696        struct e1000_hw *hw = &adapter->hw;
9697        u32 reg_val, reg_offset;
9698
9699        if (!adapter->vfs_allocated_count)
9700                return -EOPNOTSUPP;
9701
9702        if (vf >= adapter->vfs_allocated_count)
9703                return -EINVAL;
9704
9705        reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9706        reg_val = rd32(reg_offset);
9707        if (setting)
9708                reg_val |= (BIT(vf) |
9709                            BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9710        else
9711                reg_val &= ~(BIT(vf) |
9712                             BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9713        wr32(reg_offset, reg_val);
9714
9715        adapter->vf_data[vf].spoofchk_enabled = setting;
9716        return 0;
9717}
9718
9719static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9720{
9721        struct igb_adapter *adapter = netdev_priv(netdev);
9722
9723        if (vf >= adapter->vfs_allocated_count)
9724                return -EINVAL;
9725        if (adapter->vf_data[vf].trusted == setting)
9726                return 0;
9727
9728        adapter->vf_data[vf].trusted = setting;
9729
9730        dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9731                 vf, setting ? "" : "not ");
9732        return 0;
9733}
9734
9735static int igb_ndo_get_vf_config(struct net_device *netdev,
9736                                 int vf, struct ifla_vf_info *ivi)
9737{
9738        struct igb_adapter *adapter = netdev_priv(netdev);
9739        if (vf >= adapter->vfs_allocated_count)
9740                return -EINVAL;
9741        ivi->vf = vf;
9742        memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9743        ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9744        ivi->min_tx_rate = 0;
9745        ivi->vlan = adapter->vf_data[vf].pf_vlan;
9746        ivi->qos = adapter->vf_data[vf].pf_qos;
9747        ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9748        ivi->trusted = adapter->vf_data[vf].trusted;
9749        return 0;
9750}
9751
9752static void igb_vmm_control(struct igb_adapter *adapter)
9753{
9754        struct e1000_hw *hw = &adapter->hw;
9755        u32 reg;
9756
9757        switch (hw->mac.type) {
9758        case e1000_82575:
9759        case e1000_i210:
9760        case e1000_i211:
9761        case e1000_i354:
9762        default:
9763                /* replication is not supported for 82575 */
9764                return;
9765        case e1000_82576:
9766                /* notify HW that the MAC is adding vlan tags */
9767                reg = rd32(E1000_DTXCTL);
9768                reg |= E1000_DTXCTL_VLAN_ADDED;
9769                wr32(E1000_DTXCTL, reg);
9770                fallthrough;
9771        case e1000_82580:
9772                /* enable replication vlan tag stripping */
9773                reg = rd32(E1000_RPLOLR);
9774                reg |= E1000_RPLOLR_STRVLAN;
9775                wr32(E1000_RPLOLR, reg);
9776                fallthrough;
9777        case e1000_i350:
9778                /* none of the above registers are supported by i350 */
9779                break;
9780        }
9781
9782        if (adapter->vfs_allocated_count) {
9783                igb_vmdq_set_loopback_pf(hw, true);
9784                igb_vmdq_set_replication_pf(hw, true);
9785                igb_vmdq_set_anti_spoofing_pf(hw, true,
9786                                              adapter->vfs_allocated_count);
9787        } else {
9788                igb_vmdq_set_loopback_pf(hw, false);
9789                igb_vmdq_set_replication_pf(hw, false);
9790        }
9791}
9792
9793static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9794{
9795        struct e1000_hw *hw = &adapter->hw;
9796        u32 dmac_thr;
9797        u16 hwm;
9798
9799        if (hw->mac.type > e1000_82580) {
9800                if (adapter->flags & IGB_FLAG_DMAC) {
9801                        u32 reg;
9802
9803                        /* force threshold to 0. */
9804                        wr32(E1000_DMCTXTH, 0);
9805
9806                        /* DMA Coalescing high water mark needs to be greater
9807                         * than the Rx threshold. Set hwm to PBA - max frame
9808                         * size in 16B units, capping it at PBA - 6KB.
9809                         */
9810                        hwm = 64 * (pba - 6);
9811                        reg = rd32(E1000_FCRTC);
9812                        reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9813                        reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9814                                & E1000_FCRTC_RTH_COAL_MASK);
9815                        wr32(E1000_FCRTC, reg);
9816
9817                        /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9818                         * frame size, capping it at PBA - 10KB.
9819                         */
9820                        dmac_thr = pba - 10;
9821                        reg = rd32(E1000_DMACR);
9822                        reg &= ~E1000_DMACR_DMACTHR_MASK;
9823                        reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9824                                & E1000_DMACR_DMACTHR_MASK);
9825
9826                        /* transition to L0x or L1 if available..*/
9827                        reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9828
9829                        /* watchdog timer= +-1000 usec in 32usec intervals */
9830                        reg |= (1000 >> 5);
9831
9832                        /* Disable BMC-to-OS Watchdog Enable */
9833                        if (hw->mac.type != e1000_i354)
9834                                reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9835
9836                        wr32(E1000_DMACR, reg);
9837
9838                        /* no lower threshold to disable
9839                         * coalescing(smart fifb)-UTRESH=0
9840                         */
9841                        wr32(E1000_DMCRTRH, 0);
9842
9843                        reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9844
9845                        wr32(E1000_DMCTLX, reg);
9846
9847                        /* free space in tx packet buffer to wake from
9848                         * DMA coal
9849                         */
9850                        wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9851                             (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9852
9853                        /* make low power state decision controlled
9854                         * by DMA coal
9855                         */
9856                        reg = rd32(E1000_PCIEMISC);
9857                        reg &= ~E1000_PCIEMISC_LX_DECISION;
9858                        wr32(E1000_PCIEMISC, reg);
9859                } /* endif adapter->dmac is not disabled */
9860        } else if (hw->mac.type == e1000_82580) {
9861                u32 reg = rd32(E1000_PCIEMISC);
9862
9863                wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9864                wr32(E1000_DMACR, 0);
9865        }
9866}
9867
9868/**
9869 *  igb_read_i2c_byte - Reads 8 bit word over I2C
9870 *  @hw: pointer to hardware structure
9871 *  @byte_offset: byte offset to read
9872 *  @dev_addr: device address
9873 *  @data: value read
9874 *
9875 *  Performs byte read operation over I2C interface at
9876 *  a specified device address.
9877 **/
9878s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9879                      u8 dev_addr, u8 *data)
9880{
9881        struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9882        struct i2c_client *this_client = adapter->i2c_client;
9883        s32 status;
9884        u16 swfw_mask = 0;
9885
9886        if (!this_client)
9887                return E1000_ERR_I2C;
9888
9889        swfw_mask = E1000_SWFW_PHY0_SM;
9890
9891        if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9892                return E1000_ERR_SWFW_SYNC;
9893
9894        status = i2c_smbus_read_byte_data(this_client, byte_offset);
9895        hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9896
9897        if (status < 0)
9898                return E1000_ERR_I2C;
9899        else {
9900                *data = status;
9901                return 0;
9902        }
9903}
9904
9905/**
9906 *  igb_write_i2c_byte - Writes 8 bit word over I2C
9907 *  @hw: pointer to hardware structure
9908 *  @byte_offset: byte offset to write
9909 *  @dev_addr: device address
9910 *  @data: value to write
9911 *
9912 *  Performs byte write operation over I2C interface at
9913 *  a specified device address.
9914 **/
9915s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9916                       u8 dev_addr, u8 data)
9917{
9918        struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9919        struct i2c_client *this_client = adapter->i2c_client;
9920        s32 status;
9921        u16 swfw_mask = E1000_SWFW_PHY0_SM;
9922
9923        if (!this_client)
9924                return E1000_ERR_I2C;
9925
9926        if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9927                return E1000_ERR_SWFW_SYNC;
9928        status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9929        hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9930
9931        if (status)
9932                return E1000_ERR_I2C;
9933        else
9934                return 0;
9935
9936}
9937
9938int igb_reinit_queues(struct igb_adapter *adapter)
9939{
9940        struct net_device *netdev = adapter->netdev;
9941        struct pci_dev *pdev = adapter->pdev;
9942        int err = 0;
9943
9944        if (netif_running(netdev))
9945                igb_close(netdev);
9946
9947        igb_reset_interrupt_capability(adapter);
9948
9949        if (igb_init_interrupt_scheme(adapter, true)) {
9950                dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9951                return -ENOMEM;
9952        }
9953
9954        if (netif_running(netdev))
9955                err = igb_open(netdev);
9956
9957        return err;
9958}
9959
9960static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9961{
9962        struct igb_nfc_filter *rule;
9963
9964        spin_lock(&adapter->nfc_lock);
9965
9966        hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9967                igb_erase_filter(adapter, rule);
9968
9969        hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9970                igb_erase_filter(adapter, rule);
9971
9972        spin_unlock(&adapter->nfc_lock);
9973}
9974
9975static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9976{
9977        struct igb_nfc_filter *rule;
9978
9979        spin_lock(&adapter->nfc_lock);
9980
9981        hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9982                igb_add_filter(adapter, rule);
9983
9984        spin_unlock(&adapter->nfc_lock);
9985}
9986/* igb_main.c */
9987