linux/drivers/net/ethernet/sfc/rx_common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2018 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include "net_driver.h"
  12#include <linux/module.h>
  13#include <linux/iommu.h>
  14#include "efx.h"
  15#include "nic.h"
  16#include "rx_common.h"
  17
  18/* This is the percentage fill level below which new RX descriptors
  19 * will be added to the RX descriptor ring.
  20 */
  21static unsigned int rx_refill_threshold;
  22module_param(rx_refill_threshold, uint, 0444);
  23MODULE_PARM_DESC(rx_refill_threshold,
  24                 "RX descriptor ring refill threshold (%)");
  25
  26/* Number of RX buffers to recycle pages for.  When creating the RX page recycle
  27 * ring, this number is divided by the number of buffers per page to calculate
  28 * the number of pages to store in the RX page recycle ring.
  29 */
  30#define EFX_RECYCLE_RING_SIZE_IOMMU 4096
  31#define EFX_RECYCLE_RING_SIZE_NOIOMMU (2 * EFX_RX_PREFERRED_BATCH)
  32
  33/* RX maximum head room required.
  34 *
  35 * This must be at least 1 to prevent overflow, plus one packet-worth
  36 * to allow pipelined receives.
  37 */
  38#define EFX_RXD_HEAD_ROOM (1 + EFX_RX_MAX_FRAGS)
  39
  40/* Check the RX page recycle ring for a page that can be reused. */
  41static struct page *efx_reuse_page(struct efx_rx_queue *rx_queue)
  42{
  43        struct efx_nic *efx = rx_queue->efx;
  44        struct efx_rx_page_state *state;
  45        unsigned int index;
  46        struct page *page;
  47
  48        index = rx_queue->page_remove & rx_queue->page_ptr_mask;
  49        page = rx_queue->page_ring[index];
  50        if (page == NULL)
  51                return NULL;
  52
  53        rx_queue->page_ring[index] = NULL;
  54        /* page_remove cannot exceed page_add. */
  55        if (rx_queue->page_remove != rx_queue->page_add)
  56                ++rx_queue->page_remove;
  57
  58        /* If page_count is 1 then we hold the only reference to this page. */
  59        if (page_count(page) == 1) {
  60                ++rx_queue->page_recycle_count;
  61                return page;
  62        } else {
  63                state = page_address(page);
  64                dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
  65                               PAGE_SIZE << efx->rx_buffer_order,
  66                               DMA_FROM_DEVICE);
  67                put_page(page);
  68                ++rx_queue->page_recycle_failed;
  69        }
  70
  71        return NULL;
  72}
  73
  74/* Attempt to recycle the page if there is an RX recycle ring; the page can
  75 * only be added if this is the final RX buffer, to prevent pages being used in
  76 * the descriptor ring and appearing in the recycle ring simultaneously.
  77 */
  78static void efx_recycle_rx_page(struct efx_channel *channel,
  79                                struct efx_rx_buffer *rx_buf)
  80{
  81        struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
  82        struct efx_nic *efx = rx_queue->efx;
  83        struct page *page = rx_buf->page;
  84        unsigned int index;
  85
  86        /* Only recycle the page after processing the final buffer. */
  87        if (!(rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE))
  88                return;
  89
  90        index = rx_queue->page_add & rx_queue->page_ptr_mask;
  91        if (rx_queue->page_ring[index] == NULL) {
  92                unsigned int read_index = rx_queue->page_remove &
  93                        rx_queue->page_ptr_mask;
  94
  95                /* The next slot in the recycle ring is available, but
  96                 * increment page_remove if the read pointer currently
  97                 * points here.
  98                 */
  99                if (read_index == index)
 100                        ++rx_queue->page_remove;
 101                rx_queue->page_ring[index] = page;
 102                ++rx_queue->page_add;
 103                return;
 104        }
 105        ++rx_queue->page_recycle_full;
 106        efx_unmap_rx_buffer(efx, rx_buf);
 107        put_page(rx_buf->page);
 108}
 109
 110/* Recycle the pages that are used by buffers that have just been received. */
 111void efx_recycle_rx_pages(struct efx_channel *channel,
 112                          struct efx_rx_buffer *rx_buf,
 113                          unsigned int n_frags)
 114{
 115        struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
 116
 117        do {
 118                efx_recycle_rx_page(channel, rx_buf);
 119                rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
 120        } while (--n_frags);
 121}
 122
 123void efx_discard_rx_packet(struct efx_channel *channel,
 124                           struct efx_rx_buffer *rx_buf,
 125                           unsigned int n_frags)
 126{
 127        struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel);
 128
 129        efx_recycle_rx_pages(channel, rx_buf, n_frags);
 130
 131        efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
 132}
 133
 134static void efx_init_rx_recycle_ring(struct efx_rx_queue *rx_queue)
 135{
 136        unsigned int bufs_in_recycle_ring, page_ring_size;
 137        struct efx_nic *efx = rx_queue->efx;
 138
 139        /* Set the RX recycle ring size */
 140#ifdef CONFIG_PPC64
 141        bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
 142#else
 143        if (iommu_present(&pci_bus_type))
 144                bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_IOMMU;
 145        else
 146                bufs_in_recycle_ring = EFX_RECYCLE_RING_SIZE_NOIOMMU;
 147#endif /* CONFIG_PPC64 */
 148
 149        page_ring_size = roundup_pow_of_two(bufs_in_recycle_ring /
 150                                            efx->rx_bufs_per_page);
 151        rx_queue->page_ring = kcalloc(page_ring_size,
 152                                      sizeof(*rx_queue->page_ring), GFP_KERNEL);
 153        rx_queue->page_ptr_mask = page_ring_size - 1;
 154}
 155
 156static void efx_fini_rx_recycle_ring(struct efx_rx_queue *rx_queue)
 157{
 158        struct efx_nic *efx = rx_queue->efx;
 159        int i;
 160
 161        /* Unmap and release the pages in the recycle ring. Remove the ring. */
 162        for (i = 0; i <= rx_queue->page_ptr_mask; i++) {
 163                struct page *page = rx_queue->page_ring[i];
 164                struct efx_rx_page_state *state;
 165
 166                if (page == NULL)
 167                        continue;
 168
 169                state = page_address(page);
 170                dma_unmap_page(&efx->pci_dev->dev, state->dma_addr,
 171                               PAGE_SIZE << efx->rx_buffer_order,
 172                               DMA_FROM_DEVICE);
 173                put_page(page);
 174        }
 175        kfree(rx_queue->page_ring);
 176        rx_queue->page_ring = NULL;
 177}
 178
 179static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
 180                               struct efx_rx_buffer *rx_buf)
 181{
 182        /* Release the page reference we hold for the buffer. */
 183        if (rx_buf->page)
 184                put_page(rx_buf->page);
 185
 186        /* If this is the last buffer in a page, unmap and free it. */
 187        if (rx_buf->flags & EFX_RX_BUF_LAST_IN_PAGE) {
 188                efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
 189                efx_free_rx_buffers(rx_queue, rx_buf, 1);
 190        }
 191        rx_buf->page = NULL;
 192}
 193
 194int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
 195{
 196        struct efx_nic *efx = rx_queue->efx;
 197        unsigned int entries;
 198        int rc;
 199
 200        /* Create the smallest power-of-two aligned ring */
 201        entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE);
 202        EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
 203        rx_queue->ptr_mask = entries - 1;
 204
 205        netif_dbg(efx, probe, efx->net_dev,
 206                  "creating RX queue %d size %#x mask %#x\n",
 207                  efx_rx_queue_index(rx_queue), efx->rxq_entries,
 208                  rx_queue->ptr_mask);
 209
 210        /* Allocate RX buffers */
 211        rx_queue->buffer = kcalloc(entries, sizeof(*rx_queue->buffer),
 212                                   GFP_KERNEL);
 213        if (!rx_queue->buffer)
 214                return -ENOMEM;
 215
 216        rc = efx_nic_probe_rx(rx_queue);
 217        if (rc) {
 218                kfree(rx_queue->buffer);
 219                rx_queue->buffer = NULL;
 220        }
 221
 222        return rc;
 223}
 224
 225void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
 226{
 227        unsigned int max_fill, trigger, max_trigger;
 228        struct efx_nic *efx = rx_queue->efx;
 229        int rc = 0;
 230
 231        netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
 232                  "initialising RX queue %d\n", efx_rx_queue_index(rx_queue));
 233
 234        /* Initialise ptr fields */
 235        rx_queue->added_count = 0;
 236        rx_queue->notified_count = 0;
 237        rx_queue->removed_count = 0;
 238        rx_queue->min_fill = -1U;
 239        efx_init_rx_recycle_ring(rx_queue);
 240
 241        rx_queue->page_remove = 0;
 242        rx_queue->page_add = rx_queue->page_ptr_mask + 1;
 243        rx_queue->page_recycle_count = 0;
 244        rx_queue->page_recycle_failed = 0;
 245        rx_queue->page_recycle_full = 0;
 246
 247        /* Initialise limit fields */
 248        max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM;
 249        max_trigger =
 250                max_fill - efx->rx_pages_per_batch * efx->rx_bufs_per_page;
 251        if (rx_refill_threshold != 0) {
 252                trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
 253                if (trigger > max_trigger)
 254                        trigger = max_trigger;
 255        } else {
 256                trigger = max_trigger;
 257        }
 258
 259        rx_queue->max_fill = max_fill;
 260        rx_queue->fast_fill_trigger = trigger;
 261        rx_queue->refill_enabled = true;
 262
 263        /* Initialise XDP queue information */
 264        rc = xdp_rxq_info_reg(&rx_queue->xdp_rxq_info, efx->net_dev,
 265                              rx_queue->core_index, 0);
 266
 267        if (rc) {
 268                netif_err(efx, rx_err, efx->net_dev,
 269                          "Failure to initialise XDP queue information rc=%d\n",
 270                          rc);
 271                efx->xdp_rxq_info_failed = true;
 272        } else {
 273                rx_queue->xdp_rxq_info_valid = true;
 274        }
 275
 276        /* Set up RX descriptor ring */
 277        efx_nic_init_rx(rx_queue);
 278}
 279
 280void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
 281{
 282        struct efx_rx_buffer *rx_buf;
 283        int i;
 284
 285        netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
 286                  "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue));
 287
 288        del_timer_sync(&rx_queue->slow_fill);
 289
 290        /* Release RX buffers from the current read ptr to the write ptr */
 291        if (rx_queue->buffer) {
 292                for (i = rx_queue->removed_count; i < rx_queue->added_count;
 293                     i++) {
 294                        unsigned int index = i & rx_queue->ptr_mask;
 295
 296                        rx_buf = efx_rx_buffer(rx_queue, index);
 297                        efx_fini_rx_buffer(rx_queue, rx_buf);
 298                }
 299        }
 300
 301        efx_fini_rx_recycle_ring(rx_queue);
 302
 303        if (rx_queue->xdp_rxq_info_valid)
 304                xdp_rxq_info_unreg(&rx_queue->xdp_rxq_info);
 305
 306        rx_queue->xdp_rxq_info_valid = false;
 307}
 308
 309void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
 310{
 311        netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
 312                  "destroying RX queue %d\n", efx_rx_queue_index(rx_queue));
 313
 314        efx_nic_remove_rx(rx_queue);
 315
 316        kfree(rx_queue->buffer);
 317        rx_queue->buffer = NULL;
 318}
 319
 320/* Unmap a DMA-mapped page.  This function is only called for the final RX
 321 * buffer in a page.
 322 */
 323void efx_unmap_rx_buffer(struct efx_nic *efx,
 324                         struct efx_rx_buffer *rx_buf)
 325{
 326        struct page *page = rx_buf->page;
 327
 328        if (page) {
 329                struct efx_rx_page_state *state = page_address(page);
 330
 331                dma_unmap_page(&efx->pci_dev->dev,
 332                               state->dma_addr,
 333                               PAGE_SIZE << efx->rx_buffer_order,
 334                               DMA_FROM_DEVICE);
 335        }
 336}
 337
 338void efx_free_rx_buffers(struct efx_rx_queue *rx_queue,
 339                         struct efx_rx_buffer *rx_buf,
 340                         unsigned int num_bufs)
 341{
 342        do {
 343                if (rx_buf->page) {
 344                        put_page(rx_buf->page);
 345                        rx_buf->page = NULL;
 346                }
 347                rx_buf = efx_rx_buf_next(rx_queue, rx_buf);
 348        } while (--num_bufs);
 349}
 350
 351void efx_rx_slow_fill(struct timer_list *t)
 352{
 353        struct efx_rx_queue *rx_queue = from_timer(rx_queue, t, slow_fill);
 354
 355        /* Post an event to cause NAPI to run and refill the queue */
 356        efx_nic_generate_fill_event(rx_queue);
 357        ++rx_queue->slow_fill_count;
 358}
 359
 360void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
 361{
 362        mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10));
 363}
 364
 365/* efx_init_rx_buffers - create EFX_RX_BATCH page-based RX buffers
 366 *
 367 * @rx_queue:           Efx RX queue
 368 *
 369 * This allocates a batch of pages, maps them for DMA, and populates
 370 * struct efx_rx_buffers for each one. Return a negative error code or
 371 * 0 on success. If a single page can be used for multiple buffers,
 372 * then the page will either be inserted fully, or not at all.
 373 */
 374static int efx_init_rx_buffers(struct efx_rx_queue *rx_queue, bool atomic)
 375{
 376        unsigned int page_offset, index, count;
 377        struct efx_nic *efx = rx_queue->efx;
 378        struct efx_rx_page_state *state;
 379        struct efx_rx_buffer *rx_buf;
 380        dma_addr_t dma_addr;
 381        struct page *page;
 382
 383        count = 0;
 384        do {
 385                page = efx_reuse_page(rx_queue);
 386                if (page == NULL) {
 387                        page = alloc_pages(__GFP_COMP |
 388                                           (atomic ? GFP_ATOMIC : GFP_KERNEL),
 389                                           efx->rx_buffer_order);
 390                        if (unlikely(page == NULL))
 391                                return -ENOMEM;
 392                        dma_addr =
 393                                dma_map_page(&efx->pci_dev->dev, page, 0,
 394                                             PAGE_SIZE << efx->rx_buffer_order,
 395                                             DMA_FROM_DEVICE);
 396                        if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
 397                                                       dma_addr))) {
 398                                __free_pages(page, efx->rx_buffer_order);
 399                                return -EIO;
 400                        }
 401                        state = page_address(page);
 402                        state->dma_addr = dma_addr;
 403                } else {
 404                        state = page_address(page);
 405                        dma_addr = state->dma_addr;
 406                }
 407
 408                dma_addr += sizeof(struct efx_rx_page_state);
 409                page_offset = sizeof(struct efx_rx_page_state);
 410
 411                do {
 412                        index = rx_queue->added_count & rx_queue->ptr_mask;
 413                        rx_buf = efx_rx_buffer(rx_queue, index);
 414                        rx_buf->dma_addr = dma_addr + efx->rx_ip_align +
 415                                           EFX_XDP_HEADROOM;
 416                        rx_buf->page = page;
 417                        rx_buf->page_offset = page_offset + efx->rx_ip_align +
 418                                              EFX_XDP_HEADROOM;
 419                        rx_buf->len = efx->rx_dma_len;
 420                        rx_buf->flags = 0;
 421                        ++rx_queue->added_count;
 422                        get_page(page);
 423                        dma_addr += efx->rx_page_buf_step;
 424                        page_offset += efx->rx_page_buf_step;
 425                } while (page_offset + efx->rx_page_buf_step <= PAGE_SIZE);
 426
 427                rx_buf->flags = EFX_RX_BUF_LAST_IN_PAGE;
 428        } while (++count < efx->rx_pages_per_batch);
 429
 430        return 0;
 431}
 432
 433void efx_rx_config_page_split(struct efx_nic *efx)
 434{
 435        efx->rx_page_buf_step = ALIGN(efx->rx_dma_len + efx->rx_ip_align +
 436                                      EFX_XDP_HEADROOM + EFX_XDP_TAILROOM,
 437                                      EFX_RX_BUF_ALIGNMENT);
 438        efx->rx_bufs_per_page = efx->rx_buffer_order ? 1 :
 439                ((PAGE_SIZE - sizeof(struct efx_rx_page_state)) /
 440                efx->rx_page_buf_step);
 441        efx->rx_buffer_truesize = (PAGE_SIZE << efx->rx_buffer_order) /
 442                efx->rx_bufs_per_page;
 443        efx->rx_pages_per_batch = DIV_ROUND_UP(EFX_RX_PREFERRED_BATCH,
 444                                               efx->rx_bufs_per_page);
 445}
 446
 447/* efx_fast_push_rx_descriptors - push new RX descriptors quickly
 448 * @rx_queue:           RX descriptor queue
 449 *
 450 * This will aim to fill the RX descriptor queue up to
 451 * @rx_queue->@max_fill. If there is insufficient atomic
 452 * memory to do so, a slow fill will be scheduled.
 453 *
 454 * The caller must provide serialisation (none is used here). In practise,
 455 * this means this function must run from the NAPI handler, or be called
 456 * when NAPI is disabled.
 457 */
 458void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue, bool atomic)
 459{
 460        struct efx_nic *efx = rx_queue->efx;
 461        unsigned int fill_level, batch_size;
 462        int space, rc = 0;
 463
 464        if (!rx_queue->refill_enabled)
 465                return;
 466
 467        /* Calculate current fill level, and exit if we don't need to fill */
 468        fill_level = (rx_queue->added_count - rx_queue->removed_count);
 469        EFX_WARN_ON_ONCE_PARANOID(fill_level > rx_queue->efx->rxq_entries);
 470        if (fill_level >= rx_queue->fast_fill_trigger)
 471                goto out;
 472
 473        /* Record minimum fill level */
 474        if (unlikely(fill_level < rx_queue->min_fill)) {
 475                if (fill_level)
 476                        rx_queue->min_fill = fill_level;
 477        }
 478
 479        batch_size = efx->rx_pages_per_batch * efx->rx_bufs_per_page;
 480        space = rx_queue->max_fill - fill_level;
 481        EFX_WARN_ON_ONCE_PARANOID(space < batch_size);
 482
 483        netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
 484                   "RX queue %d fast-filling descriptor ring from"
 485                   " level %d to level %d\n",
 486                   efx_rx_queue_index(rx_queue), fill_level,
 487                   rx_queue->max_fill);
 488
 489        do {
 490                rc = efx_init_rx_buffers(rx_queue, atomic);
 491                if (unlikely(rc)) {
 492                        /* Ensure that we don't leave the rx queue empty */
 493                        efx_schedule_slow_fill(rx_queue);
 494                        goto out;
 495                }
 496        } while ((space -= batch_size) >= batch_size);
 497
 498        netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
 499                   "RX queue %d fast-filled descriptor ring "
 500                   "to level %d\n", efx_rx_queue_index(rx_queue),
 501                   rx_queue->added_count - rx_queue->removed_count);
 502
 503 out:
 504        if (rx_queue->notified_count != rx_queue->added_count)
 505                efx_nic_notify_rx_desc(rx_queue);
 506}
 507
 508/* Pass a received packet up through GRO.  GRO can handle pages
 509 * regardless of checksum state and skbs with a good checksum.
 510 */
 511void
 512efx_rx_packet_gro(struct efx_channel *channel, struct efx_rx_buffer *rx_buf,
 513                  unsigned int n_frags, u8 *eh, __wsum csum)
 514{
 515        struct napi_struct *napi = &channel->napi_str;
 516        struct efx_nic *efx = channel->efx;
 517        struct sk_buff *skb;
 518
 519        skb = napi_get_frags(napi);
 520        if (unlikely(!skb)) {
 521                struct efx_rx_queue *rx_queue;
 522
 523                rx_queue = efx_channel_get_rx_queue(channel);
 524                efx_free_rx_buffers(rx_queue, rx_buf, n_frags);
 525                return;
 526        }
 527
 528        if (efx->net_dev->features & NETIF_F_RXHASH &&
 529            efx_rx_buf_hash_valid(efx, eh))
 530                skb_set_hash(skb, efx_rx_buf_hash(efx, eh),
 531                             PKT_HASH_TYPE_L3);
 532        if (csum) {
 533                skb->csum = csum;
 534                skb->ip_summed = CHECKSUM_COMPLETE;
 535        } else {
 536                skb->ip_summed = ((rx_buf->flags & EFX_RX_PKT_CSUMMED) ?
 537                                  CHECKSUM_UNNECESSARY : CHECKSUM_NONE);
 538        }
 539        skb->csum_level = !!(rx_buf->flags & EFX_RX_PKT_CSUM_LEVEL);
 540
 541        for (;;) {
 542                skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 543                                   rx_buf->page, rx_buf->page_offset,
 544                                   rx_buf->len);
 545                rx_buf->page = NULL;
 546                skb->len += rx_buf->len;
 547                if (skb_shinfo(skb)->nr_frags == n_frags)
 548                        break;
 549
 550                rx_buf = efx_rx_buf_next(&channel->rx_queue, rx_buf);
 551        }
 552
 553        skb->data_len = skb->len;
 554        skb->truesize += n_frags * efx->rx_buffer_truesize;
 555
 556        skb_record_rx_queue(skb, channel->rx_queue.core_index);
 557
 558        napi_gro_frags(napi);
 559}
 560
 561/* RSS contexts.  We're using linked lists and crappy O(n) algorithms, because
 562 * (a) this is an infrequent control-plane operation and (b) n is small (max 64)
 563 */
 564struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx)
 565{
 566        struct list_head *head = &efx->rss_context.list;
 567        struct efx_rss_context *ctx, *new;
 568        u32 id = 1; /* Don't use zero, that refers to the master RSS context */
 569
 570        WARN_ON(!mutex_is_locked(&efx->rss_lock));
 571
 572        /* Search for first gap in the numbering */
 573        list_for_each_entry(ctx, head, list) {
 574                if (ctx->user_id != id)
 575                        break;
 576                id++;
 577                /* Check for wrap.  If this happens, we have nearly 2^32
 578                 * allocated RSS contexts, which seems unlikely.
 579                 */
 580                if (WARN_ON_ONCE(!id))
 581                        return NULL;
 582        }
 583
 584        /* Create the new entry */
 585        new = kmalloc(sizeof(*new), GFP_KERNEL);
 586        if (!new)
 587                return NULL;
 588        new->context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
 589        new->rx_hash_udp_4tuple = false;
 590
 591        /* Insert the new entry into the gap */
 592        new->user_id = id;
 593        list_add_tail(&new->list, &ctx->list);
 594        return new;
 595}
 596
 597struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id)
 598{
 599        struct list_head *head = &efx->rss_context.list;
 600        struct efx_rss_context *ctx;
 601
 602        WARN_ON(!mutex_is_locked(&efx->rss_lock));
 603
 604        list_for_each_entry(ctx, head, list)
 605                if (ctx->user_id == id)
 606                        return ctx;
 607        return NULL;
 608}
 609
 610void efx_free_rss_context_entry(struct efx_rss_context *ctx)
 611{
 612        list_del(&ctx->list);
 613        kfree(ctx);
 614}
 615
 616void efx_set_default_rx_indir_table(struct efx_nic *efx,
 617                                    struct efx_rss_context *ctx)
 618{
 619        size_t i;
 620
 621        for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++)
 622                ctx->rx_indir_table[i] =
 623                        ethtool_rxfh_indir_default(i, efx->rss_spread);
 624}
 625
 626/**
 627 * efx_filter_is_mc_recipient - test whether spec is a multicast recipient
 628 * @spec: Specification to test
 629 *
 630 * Return: %true if the specification is a non-drop RX filter that
 631 * matches a local MAC address I/G bit value of 1 or matches a local
 632 * IPv4 or IPv6 address value in the respective multicast address
 633 * range.  Otherwise %false.
 634 */
 635bool efx_filter_is_mc_recipient(const struct efx_filter_spec *spec)
 636{
 637        if (!(spec->flags & EFX_FILTER_FLAG_RX) ||
 638            spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP)
 639                return false;
 640
 641        if (spec->match_flags &
 642            (EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_LOC_MAC_IG) &&
 643            is_multicast_ether_addr(spec->loc_mac))
 644                return true;
 645
 646        if ((spec->match_flags &
 647             (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
 648            (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
 649                if (spec->ether_type == htons(ETH_P_IP) &&
 650                    ipv4_is_multicast(spec->loc_host[0]))
 651                        return true;
 652                if (spec->ether_type == htons(ETH_P_IPV6) &&
 653                    ((const u8 *)spec->loc_host)[0] == 0xff)
 654                        return true;
 655        }
 656
 657        return false;
 658}
 659
 660bool efx_filter_spec_equal(const struct efx_filter_spec *left,
 661                           const struct efx_filter_spec *right)
 662{
 663        if ((left->match_flags ^ right->match_flags) |
 664            ((left->flags ^ right->flags) &
 665             (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
 666                return false;
 667
 668        return memcmp(&left->outer_vid, &right->outer_vid,
 669                      sizeof(struct efx_filter_spec) -
 670                      offsetof(struct efx_filter_spec, outer_vid)) == 0;
 671}
 672
 673u32 efx_filter_spec_hash(const struct efx_filter_spec *spec)
 674{
 675        BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
 676        return jhash2((const u32 *)&spec->outer_vid,
 677                      (sizeof(struct efx_filter_spec) -
 678                       offsetof(struct efx_filter_spec, outer_vid)) / 4,
 679                      0);
 680}
 681
 682#ifdef CONFIG_RFS_ACCEL
 683bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx,
 684                        bool *force)
 685{
 686        if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) {
 687                /* ARFS is currently updating this entry, leave it */
 688                return false;
 689        }
 690        if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) {
 691                /* ARFS tried and failed to update this, so it's probably out
 692                 * of date.  Remove the filter and the ARFS rule entry.
 693                 */
 694                rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING;
 695                *force = true;
 696                return true;
 697        } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */
 698                /* ARFS has moved on, so old filter is not needed.  Since we did
 699                 * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will
 700                 * not be removed by efx_rps_hash_del() subsequently.
 701                 */
 702                *force = true;
 703                return true;
 704        }
 705        /* Remove it iff ARFS wants to. */
 706        return true;
 707}
 708
 709static
 710struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx,
 711                                       const struct efx_filter_spec *spec)
 712{
 713        u32 hash = efx_filter_spec_hash(spec);
 714
 715        lockdep_assert_held(&efx->rps_hash_lock);
 716        if (!efx->rps_hash_table)
 717                return NULL;
 718        return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE];
 719}
 720
 721struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx,
 722                                        const struct efx_filter_spec *spec)
 723{
 724        struct efx_arfs_rule *rule;
 725        struct hlist_head *head;
 726        struct hlist_node *node;
 727
 728        head = efx_rps_hash_bucket(efx, spec);
 729        if (!head)
 730                return NULL;
 731        hlist_for_each(node, head) {
 732                rule = container_of(node, struct efx_arfs_rule, node);
 733                if (efx_filter_spec_equal(spec, &rule->spec))
 734                        return rule;
 735        }
 736        return NULL;
 737}
 738
 739struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx,
 740                                       const struct efx_filter_spec *spec,
 741                                       bool *new)
 742{
 743        struct efx_arfs_rule *rule;
 744        struct hlist_head *head;
 745        struct hlist_node *node;
 746
 747        head = efx_rps_hash_bucket(efx, spec);
 748        if (!head)
 749                return NULL;
 750        hlist_for_each(node, head) {
 751                rule = container_of(node, struct efx_arfs_rule, node);
 752                if (efx_filter_spec_equal(spec, &rule->spec)) {
 753                        *new = false;
 754                        return rule;
 755                }
 756        }
 757        rule = kmalloc(sizeof(*rule), GFP_ATOMIC);
 758        *new = true;
 759        if (rule) {
 760                memcpy(&rule->spec, spec, sizeof(rule->spec));
 761                hlist_add_head(&rule->node, head);
 762        }
 763        return rule;
 764}
 765
 766void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec)
 767{
 768        struct efx_arfs_rule *rule;
 769        struct hlist_head *head;
 770        struct hlist_node *node;
 771
 772        head = efx_rps_hash_bucket(efx, spec);
 773        if (WARN_ON(!head))
 774                return;
 775        hlist_for_each(node, head) {
 776                rule = container_of(node, struct efx_arfs_rule, node);
 777                if (efx_filter_spec_equal(spec, &rule->spec)) {
 778                        /* Someone already reused the entry.  We know that if
 779                         * this check doesn't fire (i.e. filter_id == REMOVING)
 780                         * then the REMOVING mark was put there by our caller,
 781                         * because caller is holding a lock on filter table and
 782                         * only holders of that lock set REMOVING.
 783                         */
 784                        if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING)
 785                                return;
 786                        hlist_del(node);
 787                        kfree(rule);
 788                        return;
 789                }
 790        }
 791        /* We didn't find it. */
 792        WARN_ON(1);
 793}
 794#endif
 795
 796int efx_probe_filters(struct efx_nic *efx)
 797{
 798        int rc;
 799
 800        mutex_lock(&efx->mac_lock);
 801        down_write(&efx->filter_sem);
 802        rc = efx->type->filter_table_probe(efx);
 803        if (rc)
 804                goto out_unlock;
 805
 806#ifdef CONFIG_RFS_ACCEL
 807        if (efx->type->offload_features & NETIF_F_NTUPLE) {
 808                struct efx_channel *channel;
 809                int i, success = 1;
 810
 811                efx_for_each_channel(channel, efx) {
 812                        channel->rps_flow_id =
 813                                kcalloc(efx->type->max_rx_ip_filters,
 814                                        sizeof(*channel->rps_flow_id),
 815                                        GFP_KERNEL);
 816                        if (!channel->rps_flow_id)
 817                                success = 0;
 818                        else
 819                                for (i = 0;
 820                                     i < efx->type->max_rx_ip_filters;
 821                                     ++i)
 822                                        channel->rps_flow_id[i] =
 823                                                RPS_FLOW_ID_INVALID;
 824                        channel->rfs_expire_index = 0;
 825                        channel->rfs_filter_count = 0;
 826                }
 827
 828                if (!success) {
 829                        efx_for_each_channel(channel, efx)
 830                                kfree(channel->rps_flow_id);
 831                        efx->type->filter_table_remove(efx);
 832                        rc = -ENOMEM;
 833                        goto out_unlock;
 834                }
 835        }
 836#endif
 837out_unlock:
 838        up_write(&efx->filter_sem);
 839        mutex_unlock(&efx->mac_lock);
 840        return rc;
 841}
 842
 843void efx_remove_filters(struct efx_nic *efx)
 844{
 845#ifdef CONFIG_RFS_ACCEL
 846        struct efx_channel *channel;
 847
 848        efx_for_each_channel(channel, efx) {
 849                cancel_delayed_work_sync(&channel->filter_work);
 850                kfree(channel->rps_flow_id);
 851                channel->rps_flow_id = NULL;
 852        }
 853#endif
 854        down_write(&efx->filter_sem);
 855        efx->type->filter_table_remove(efx);
 856        up_write(&efx->filter_sem);
 857}
 858
 859#ifdef CONFIG_RFS_ACCEL
 860
 861static void efx_filter_rfs_work(struct work_struct *data)
 862{
 863        struct efx_async_filter_insertion *req = container_of(data, struct efx_async_filter_insertion,
 864                                                              work);
 865        struct efx_nic *efx = netdev_priv(req->net_dev);
 866        struct efx_channel *channel = efx_get_channel(efx, req->rxq_index);
 867        int slot_idx = req - efx->rps_slot;
 868        struct efx_arfs_rule *rule;
 869        u16 arfs_id = 0;
 870        int rc;
 871
 872        rc = efx->type->filter_insert(efx, &req->spec, true);
 873        if (rc >= 0)
 874                /* Discard 'priority' part of EF10+ filter ID (mcdi_filters) */
 875                rc %= efx->type->max_rx_ip_filters;
 876        if (efx->rps_hash_table) {
 877                spin_lock_bh(&efx->rps_hash_lock);
 878                rule = efx_rps_hash_find(efx, &req->spec);
 879                /* The rule might have already gone, if someone else's request
 880                 * for the same spec was already worked and then expired before
 881                 * we got around to our work.  In that case we have nothing
 882                 * tying us to an arfs_id, meaning that as soon as the filter
 883                 * is considered for expiry it will be removed.
 884                 */
 885                if (rule) {
 886                        if (rc < 0)
 887                                rule->filter_id = EFX_ARFS_FILTER_ID_ERROR;
 888                        else
 889                                rule->filter_id = rc;
 890                        arfs_id = rule->arfs_id;
 891                }
 892                spin_unlock_bh(&efx->rps_hash_lock);
 893        }
 894        if (rc >= 0) {
 895                /* Remember this so we can check whether to expire the filter
 896                 * later.
 897                 */
 898                mutex_lock(&efx->rps_mutex);
 899                if (channel->rps_flow_id[rc] == RPS_FLOW_ID_INVALID)
 900                        channel->rfs_filter_count++;
 901                channel->rps_flow_id[rc] = req->flow_id;
 902                mutex_unlock(&efx->rps_mutex);
 903
 904                if (req->spec.ether_type == htons(ETH_P_IP))
 905                        netif_info(efx, rx_status, efx->net_dev,
 906                                   "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d id %u]\n",
 907                                   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
 908                                   req->spec.rem_host, ntohs(req->spec.rem_port),
 909                                   req->spec.loc_host, ntohs(req->spec.loc_port),
 910                                   req->rxq_index, req->flow_id, rc, arfs_id);
 911                else
 912                        netif_info(efx, rx_status, efx->net_dev,
 913                                   "steering %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u filter %d id %u]\n",
 914                                   (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
 915                                   req->spec.rem_host, ntohs(req->spec.rem_port),
 916                                   req->spec.loc_host, ntohs(req->spec.loc_port),
 917                                   req->rxq_index, req->flow_id, rc, arfs_id);
 918                channel->n_rfs_succeeded++;
 919        } else {
 920                if (req->spec.ether_type == htons(ETH_P_IP))
 921                        netif_dbg(efx, rx_status, efx->net_dev,
 922                                  "failed to steer %s %pI4:%u:%pI4:%u to queue %u [flow %u rc %d id %u]\n",
 923                                  (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
 924                                  req->spec.rem_host, ntohs(req->spec.rem_port),
 925                                  req->spec.loc_host, ntohs(req->spec.loc_port),
 926                                  req->rxq_index, req->flow_id, rc, arfs_id);
 927                else
 928                        netif_dbg(efx, rx_status, efx->net_dev,
 929                                  "failed to steer %s [%pI6]:%u:[%pI6]:%u to queue %u [flow %u rc %d id %u]\n",
 930                                  (req->spec.ip_proto == IPPROTO_TCP) ? "TCP" : "UDP",
 931                                  req->spec.rem_host, ntohs(req->spec.rem_port),
 932                                  req->spec.loc_host, ntohs(req->spec.loc_port),
 933                                  req->rxq_index, req->flow_id, rc, arfs_id);
 934                channel->n_rfs_failed++;
 935                /* We're overloading the NIC's filter tables, so let's do a
 936                 * chunk of extra expiry work.
 937                 */
 938                __efx_filter_rfs_expire(channel, min(channel->rfs_filter_count,
 939                                                     100u));
 940        }
 941
 942        /* Release references */
 943        clear_bit(slot_idx, &efx->rps_slot_map);
 944        dev_put(req->net_dev);
 945}
 946
 947int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb,
 948                   u16 rxq_index, u32 flow_id)
 949{
 950        struct efx_nic *efx = netdev_priv(net_dev);
 951        struct efx_async_filter_insertion *req;
 952        struct efx_arfs_rule *rule;
 953        struct flow_keys fk;
 954        int slot_idx;
 955        bool new;
 956        int rc;
 957
 958        /* find a free slot */
 959        for (slot_idx = 0; slot_idx < EFX_RPS_MAX_IN_FLIGHT; slot_idx++)
 960                if (!test_and_set_bit(slot_idx, &efx->rps_slot_map))
 961                        break;
 962        if (slot_idx >= EFX_RPS_MAX_IN_FLIGHT)
 963                return -EBUSY;
 964
 965        if (flow_id == RPS_FLOW_ID_INVALID) {
 966                rc = -EINVAL;
 967                goto out_clear;
 968        }
 969
 970        if (!skb_flow_dissect_flow_keys(skb, &fk, 0)) {
 971                rc = -EPROTONOSUPPORT;
 972                goto out_clear;
 973        }
 974
 975        if (fk.basic.n_proto != htons(ETH_P_IP) && fk.basic.n_proto != htons(ETH_P_IPV6)) {
 976                rc = -EPROTONOSUPPORT;
 977                goto out_clear;
 978        }
 979        if (fk.control.flags & FLOW_DIS_IS_FRAGMENT) {
 980                rc = -EPROTONOSUPPORT;
 981                goto out_clear;
 982        }
 983
 984        req = efx->rps_slot + slot_idx;
 985        efx_filter_init_rx(&req->spec, EFX_FILTER_PRI_HINT,
 986                           efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0,
 987                           rxq_index);
 988        req->spec.match_flags =
 989                EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
 990                EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
 991                EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT;
 992        req->spec.ether_type = fk.basic.n_proto;
 993        req->spec.ip_proto = fk.basic.ip_proto;
 994
 995        if (fk.basic.n_proto == htons(ETH_P_IP)) {
 996                req->spec.rem_host[0] = fk.addrs.v4addrs.src;
 997                req->spec.loc_host[0] = fk.addrs.v4addrs.dst;
 998        } else {
 999                memcpy(req->spec.rem_host, &fk.addrs.v6addrs.src,
1000                       sizeof(struct in6_addr));
1001                memcpy(req->spec.loc_host, &fk.addrs.v6addrs.dst,
1002                       sizeof(struct in6_addr));
1003        }
1004
1005        req->spec.rem_port = fk.ports.src;
1006        req->spec.loc_port = fk.ports.dst;
1007
1008        if (efx->rps_hash_table) {
1009                /* Add it to ARFS hash table */
1010                spin_lock(&efx->rps_hash_lock);
1011                rule = efx_rps_hash_add(efx, &req->spec, &new);
1012                if (!rule) {
1013                        rc = -ENOMEM;
1014                        goto out_unlock;
1015                }
1016                if (new)
1017                        rule->arfs_id = efx->rps_next_id++ % RPS_NO_FILTER;
1018                rc = rule->arfs_id;
1019                /* Skip if existing or pending filter already does the right thing */
1020                if (!new && rule->rxq_index == rxq_index &&
1021                    rule->filter_id >= EFX_ARFS_FILTER_ID_PENDING)
1022                        goto out_unlock;
1023                rule->rxq_index = rxq_index;
1024                rule->filter_id = EFX_ARFS_FILTER_ID_PENDING;
1025                spin_unlock(&efx->rps_hash_lock);
1026        } else {
1027                /* Without an ARFS hash table, we just use arfs_id 0 for all
1028                 * filters.  This means if multiple flows hash to the same
1029                 * flow_id, all but the most recently touched will be eligible
1030                 * for expiry.
1031                 */
1032                rc = 0;
1033        }
1034
1035        /* Queue the request */
1036        dev_hold(req->net_dev = net_dev);
1037        INIT_WORK(&req->work, efx_filter_rfs_work);
1038        req->rxq_index = rxq_index;
1039        req->flow_id = flow_id;
1040        schedule_work(&req->work);
1041        return rc;
1042out_unlock:
1043        spin_unlock(&efx->rps_hash_lock);
1044out_clear:
1045        clear_bit(slot_idx, &efx->rps_slot_map);
1046        return rc;
1047}
1048
1049bool __efx_filter_rfs_expire(struct efx_channel *channel, unsigned int quota)
1050{
1051        bool (*expire_one)(struct efx_nic *efx, u32 flow_id, unsigned int index);
1052        struct efx_nic *efx = channel->efx;
1053        unsigned int index, size, start;
1054        u32 flow_id;
1055
1056        if (!mutex_trylock(&efx->rps_mutex))
1057                return false;
1058        expire_one = efx->type->filter_rfs_expire_one;
1059        index = channel->rfs_expire_index;
1060        start = index;
1061        size = efx->type->max_rx_ip_filters;
1062        while (quota) {
1063                flow_id = channel->rps_flow_id[index];
1064
1065                if (flow_id != RPS_FLOW_ID_INVALID) {
1066                        quota--;
1067                        if (expire_one(efx, flow_id, index)) {
1068                                netif_info(efx, rx_status, efx->net_dev,
1069                                           "expired filter %d [channel %u flow %u]\n",
1070                                           index, channel->channel, flow_id);
1071                                channel->rps_flow_id[index] = RPS_FLOW_ID_INVALID;
1072                                channel->rfs_filter_count--;
1073                        }
1074                }
1075                if (++index == size)
1076                        index = 0;
1077                /* If we were called with a quota that exceeds the total number
1078                 * of filters in the table (which shouldn't happen, but could
1079                 * if two callers race), ensure that we don't loop forever -
1080                 * stop when we've examined every row of the table.
1081                 */
1082                if (index == start)
1083                        break;
1084        }
1085
1086        channel->rfs_expire_index = index;
1087        mutex_unlock(&efx->rps_mutex);
1088        return true;
1089}
1090
1091#endif /* CONFIG_RFS_ACCEL */
1092