linux/drivers/net/wireless/ralink/rt2x00/rt2500usb.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3        Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   4        <http://rt2x00.serialmonkey.com>
   5
   6 */
   7
   8/*
   9        Module: rt2500usb
  10        Abstract: rt2500usb device specific routines.
  11        Supported chipsets: RT2570.
  12 */
  13
  14#include <linux/delay.h>
  15#include <linux/etherdevice.h>
  16#include <linux/kernel.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/usb.h>
  20
  21#include "rt2x00.h"
  22#include "rt2x00usb.h"
  23#include "rt2500usb.h"
  24
  25/*
  26 * Allow hardware encryption to be disabled.
  27 */
  28static bool modparam_nohwcrypt;
  29module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
  30MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  31
  32/*
  33 * Register access.
  34 * All access to the CSR registers will go through the methods
  35 * rt2500usb_register_read and rt2500usb_register_write.
  36 * BBP and RF register require indirect register access,
  37 * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38 * These indirect registers work with busy bits,
  39 * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
  40 * the register while taking a REGISTER_BUSY_DELAY us delay
  41 * between each attampt. When the busy bit is still set at that time,
  42 * the access attempt is considered to have failed,
  43 * and we will print an error.
  44 * If the csr_mutex is already held then the _lock variants must
  45 * be used instead.
  46 */
  47static u16 rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  48                                   const unsigned int offset)
  49{
  50        __le16 reg;
  51        rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  52                                      USB_VENDOR_REQUEST_IN, offset,
  53                                      &reg, sizeof(reg));
  54        return le16_to_cpu(reg);
  55}
  56
  57static u16 rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
  58                                        const unsigned int offset)
  59{
  60        __le16 reg;
  61        rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
  62                                       USB_VENDOR_REQUEST_IN, offset,
  63                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
  64        return le16_to_cpu(reg);
  65}
  66
  67static void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  68                                            const unsigned int offset,
  69                                            u16 value)
  70{
  71        __le16 reg = cpu_to_le16(value);
  72        rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  73                                      USB_VENDOR_REQUEST_OUT, offset,
  74                                      &reg, sizeof(reg));
  75}
  76
  77static void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
  78                                                 const unsigned int offset,
  79                                                 u16 value)
  80{
  81        __le16 reg = cpu_to_le16(value);
  82        rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
  83                                       USB_VENDOR_REQUEST_OUT, offset,
  84                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
  85}
  86
  87static void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
  88                                                 const unsigned int offset,
  89                                                 void *value, const u16 length)
  90{
  91        rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  92                                      USB_VENDOR_REQUEST_OUT, offset,
  93                                      value, length);
  94}
  95
  96static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
  97                                  const unsigned int offset,
  98                                  struct rt2x00_field16 field,
  99                                  u16 *reg)
 100{
 101        unsigned int i;
 102
 103        for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
 104                *reg = rt2500usb_register_read_lock(rt2x00dev, offset);
 105                if (!rt2x00_get_field16(*reg, field))
 106                        return 1;
 107                udelay(REGISTER_BUSY_DELAY);
 108        }
 109
 110        rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
 111                   offset, *reg);
 112        *reg = ~0;
 113
 114        return 0;
 115}
 116
 117#define WAIT_FOR_BBP(__dev, __reg) \
 118        rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
 119#define WAIT_FOR_RF(__dev, __reg) \
 120        rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
 121
 122static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
 123                                const unsigned int word, const u8 value)
 124{
 125        u16 reg;
 126
 127        mutex_lock(&rt2x00dev->csr_mutex);
 128
 129        /*
 130         * Wait until the BBP becomes available, afterwards we
 131         * can safely write the new data into the register.
 132         */
 133        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 134                reg = 0;
 135                rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
 136                rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
 137                rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
 138
 139                rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
 140        }
 141
 142        mutex_unlock(&rt2x00dev->csr_mutex);
 143}
 144
 145static u8 rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
 146                             const unsigned int word)
 147{
 148        u16 reg;
 149        u8 value;
 150
 151        mutex_lock(&rt2x00dev->csr_mutex);
 152
 153        /*
 154         * Wait until the BBP becomes available, afterwards we
 155         * can safely write the read request into the register.
 156         * After the data has been written, we wait until hardware
 157         * returns the correct value, if at any time the register
 158         * doesn't become available in time, reg will be 0xffffffff
 159         * which means we return 0xff to the caller.
 160         */
 161        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
 162                reg = 0;
 163                rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
 164                rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
 165
 166                rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
 167
 168                if (WAIT_FOR_BBP(rt2x00dev, &reg))
 169                        reg = rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7);
 170        }
 171
 172        value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
 173
 174        mutex_unlock(&rt2x00dev->csr_mutex);
 175
 176        return value;
 177}
 178
 179static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
 180                               const unsigned int word, const u32 value)
 181{
 182        u16 reg;
 183
 184        mutex_lock(&rt2x00dev->csr_mutex);
 185
 186        /*
 187         * Wait until the RF becomes available, afterwards we
 188         * can safely write the new data into the register.
 189         */
 190        if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 191                reg = 0;
 192                rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
 193                rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
 194
 195                reg = 0;
 196                rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
 197                rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
 198                rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
 199                rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
 200
 201                rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
 202                rt2x00_rf_write(rt2x00dev, word, value);
 203        }
 204
 205        mutex_unlock(&rt2x00dev->csr_mutex);
 206}
 207
 208#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 209static u32 _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
 210                                     const unsigned int offset)
 211{
 212        return rt2500usb_register_read(rt2x00dev, offset);
 213}
 214
 215static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
 216                                      const unsigned int offset,
 217                                      u32 value)
 218{
 219        rt2500usb_register_write(rt2x00dev, offset, value);
 220}
 221
 222static const struct rt2x00debug rt2500usb_rt2x00debug = {
 223        .owner  = THIS_MODULE,
 224        .csr    = {
 225                .read           = _rt2500usb_register_read,
 226                .write          = _rt2500usb_register_write,
 227                .flags          = RT2X00DEBUGFS_OFFSET,
 228                .word_base      = CSR_REG_BASE,
 229                .word_size      = sizeof(u16),
 230                .word_count     = CSR_REG_SIZE / sizeof(u16),
 231        },
 232        .eeprom = {
 233                .read           = rt2x00_eeprom_read,
 234                .write          = rt2x00_eeprom_write,
 235                .word_base      = EEPROM_BASE,
 236                .word_size      = sizeof(u16),
 237                .word_count     = EEPROM_SIZE / sizeof(u16),
 238        },
 239        .bbp    = {
 240                .read           = rt2500usb_bbp_read,
 241                .write          = rt2500usb_bbp_write,
 242                .word_base      = BBP_BASE,
 243                .word_size      = sizeof(u8),
 244                .word_count     = BBP_SIZE / sizeof(u8),
 245        },
 246        .rf     = {
 247                .read           = rt2x00_rf_read,
 248                .write          = rt2500usb_rf_write,
 249                .word_base      = RF_BASE,
 250                .word_size      = sizeof(u32),
 251                .word_count     = RF_SIZE / sizeof(u32),
 252        },
 253};
 254#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 255
 256static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 257{
 258        u16 reg;
 259
 260        reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
 261        return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
 262}
 263
 264#ifdef CONFIG_RT2X00_LIB_LEDS
 265static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
 266                                     enum led_brightness brightness)
 267{
 268        struct rt2x00_led *led =
 269            container_of(led_cdev, struct rt2x00_led, led_dev);
 270        unsigned int enabled = brightness != LED_OFF;
 271        u16 reg;
 272
 273        reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR20);
 274
 275        if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
 276                rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
 277        else if (led->type == LED_TYPE_ACTIVITY)
 278                rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
 279
 280        rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
 281}
 282
 283static int rt2500usb_blink_set(struct led_classdev *led_cdev,
 284                               unsigned long *delay_on,
 285                               unsigned long *delay_off)
 286{
 287        struct rt2x00_led *led =
 288            container_of(led_cdev, struct rt2x00_led, led_dev);
 289        u16 reg;
 290
 291        reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR21);
 292        rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
 293        rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
 294        rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
 295
 296        return 0;
 297}
 298
 299static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
 300                               struct rt2x00_led *led,
 301                               enum led_type type)
 302{
 303        led->rt2x00dev = rt2x00dev;
 304        led->type = type;
 305        led->led_dev.brightness_set = rt2500usb_brightness_set;
 306        led->led_dev.blink_set = rt2500usb_blink_set;
 307        led->flags = LED_INITIALIZED;
 308}
 309#endif /* CONFIG_RT2X00_LIB_LEDS */
 310
 311/*
 312 * Configuration handlers.
 313 */
 314
 315/*
 316 * rt2500usb does not differentiate between shared and pairwise
 317 * keys, so we should use the same function for both key types.
 318 */
 319static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
 320                                struct rt2x00lib_crypto *crypto,
 321                                struct ieee80211_key_conf *key)
 322{
 323        u32 mask;
 324        u16 reg;
 325        enum cipher curr_cipher;
 326
 327        if (crypto->cmd == SET_KEY) {
 328                /*
 329                 * Disallow to set WEP key other than with index 0,
 330                 * it is known that not work at least on some hardware.
 331                 * SW crypto will be used in that case.
 332                 */
 333                if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
 334                     key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
 335                    key->keyidx != 0)
 336                        return -EOPNOTSUPP;
 337
 338                /*
 339                 * Pairwise key will always be entry 0, but this
 340                 * could collide with a shared key on the same
 341                 * position...
 342                 */
 343                mask = TXRX_CSR0_KEY_ID.bit_mask;
 344
 345                reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
 346                curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
 347                reg &= mask;
 348
 349                if (reg && reg == mask)
 350                        return -ENOSPC;
 351
 352                reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
 353
 354                key->hw_key_idx += reg ? ffz(reg) : 0;
 355                /*
 356                 * Hardware requires that all keys use the same cipher
 357                 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
 358                 * If this is not the first key, compare the cipher with the
 359                 * first one and fall back to SW crypto if not the same.
 360                 */
 361                if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
 362                        return -EOPNOTSUPP;
 363
 364                rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
 365                                              crypto->key, sizeof(crypto->key));
 366
 367                /*
 368                 * The driver does not support the IV/EIV generation
 369                 * in hardware. However it demands the data to be provided
 370                 * both separately as well as inside the frame.
 371                 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
 372                 * to ensure rt2x00lib will not strip the data from the
 373                 * frame after the copy, now we must tell mac80211
 374                 * to generate the IV/EIV data.
 375                 */
 376                key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
 377                key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
 378        }
 379
 380        /*
 381         * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
 382         * a particular key is valid.
 383         */
 384        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
 385        rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
 386        rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
 387
 388        mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
 389        if (crypto->cmd == SET_KEY)
 390                mask |= 1 << key->hw_key_idx;
 391        else if (crypto->cmd == DISABLE_KEY)
 392                mask &= ~(1 << key->hw_key_idx);
 393        rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
 394        rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
 395
 396        return 0;
 397}
 398
 399static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
 400                                    const unsigned int filter_flags)
 401{
 402        u16 reg;
 403
 404        /*
 405         * Start configuration steps.
 406         * Note that the version error will always be dropped
 407         * and broadcast frames will always be accepted since
 408         * there is no filter for it at this time.
 409         */
 410        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
 411        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
 412                           !(filter_flags & FIF_FCSFAIL));
 413        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
 414                           !(filter_flags & FIF_PLCPFAIL));
 415        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
 416                           !(filter_flags & FIF_CONTROL));
 417        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
 418                           !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
 419        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
 420                           !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
 421                           !rt2x00dev->intf_ap_count);
 422        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
 423        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
 424                           !(filter_flags & FIF_ALLMULTI));
 425        rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
 426        rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 427}
 428
 429static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
 430                                  struct rt2x00_intf *intf,
 431                                  struct rt2x00intf_conf *conf,
 432                                  const unsigned int flags)
 433{
 434        unsigned int bcn_preload;
 435        u16 reg;
 436
 437        if (flags & CONFIG_UPDATE_TYPE) {
 438                /*
 439                 * Enable beacon config
 440                 */
 441                bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
 442                reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR20);
 443                rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
 444                rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
 445                                   2 * (conf->type != NL80211_IFTYPE_STATION));
 446                rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
 447
 448                /*
 449                 * Enable synchronisation.
 450                 */
 451                reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
 452                rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
 453                rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
 454
 455                reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
 456                rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
 457                rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 458        }
 459
 460        if (flags & CONFIG_UPDATE_MAC)
 461                rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
 462                                              (3 * sizeof(__le16)));
 463
 464        if (flags & CONFIG_UPDATE_BSSID)
 465                rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
 466                                              (3 * sizeof(__le16)));
 467}
 468
 469static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
 470                                 struct rt2x00lib_erp *erp,
 471                                 u32 changed)
 472{
 473        u16 reg;
 474
 475        if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 476                reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR10);
 477                rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
 478                                   !!erp->short_preamble);
 479                rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
 480        }
 481
 482        if (changed & BSS_CHANGED_BASIC_RATES)
 483                rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
 484                                         erp->basic_rates);
 485
 486        if (changed & BSS_CHANGED_BEACON_INT) {
 487                reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
 488                rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
 489                                   erp->beacon_int * 4);
 490                rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
 491        }
 492
 493        if (changed & BSS_CHANGED_ERP_SLOT) {
 494                rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
 495                rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
 496                rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
 497        }
 498}
 499
 500static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
 501                                 struct antenna_setup *ant)
 502{
 503        u8 r2;
 504        u8 r14;
 505        u16 csr5;
 506        u16 csr6;
 507
 508        /*
 509         * We should never come here because rt2x00lib is supposed
 510         * to catch this and send us the correct antenna explicitely.
 511         */
 512        BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 513               ant->tx == ANTENNA_SW_DIVERSITY);
 514
 515        r2 = rt2500usb_bbp_read(rt2x00dev, 2);
 516        r14 = rt2500usb_bbp_read(rt2x00dev, 14);
 517        csr5 = rt2500usb_register_read(rt2x00dev, PHY_CSR5);
 518        csr6 = rt2500usb_register_read(rt2x00dev, PHY_CSR6);
 519
 520        /*
 521         * Configure the TX antenna.
 522         */
 523        switch (ant->tx) {
 524        case ANTENNA_HW_DIVERSITY:
 525                rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
 526                rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
 527                rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
 528                break;
 529        case ANTENNA_A:
 530                rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
 531                rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
 532                rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
 533                break;
 534        case ANTENNA_B:
 535        default:
 536                rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
 537                rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
 538                rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
 539                break;
 540        }
 541
 542        /*
 543         * Configure the RX antenna.
 544         */
 545        switch (ant->rx) {
 546        case ANTENNA_HW_DIVERSITY:
 547                rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
 548                break;
 549        case ANTENNA_A:
 550                rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
 551                break;
 552        case ANTENNA_B:
 553        default:
 554                rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
 555                break;
 556        }
 557
 558        /*
 559         * RT2525E and RT5222 need to flip TX I/Q
 560         */
 561        if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
 562                rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
 563                rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
 564                rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
 565
 566                /*
 567                 * RT2525E does not need RX I/Q Flip.
 568                 */
 569                if (rt2x00_rf(rt2x00dev, RF2525E))
 570                        rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
 571        } else {
 572                rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
 573                rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
 574        }
 575
 576        rt2500usb_bbp_write(rt2x00dev, 2, r2);
 577        rt2500usb_bbp_write(rt2x00dev, 14, r14);
 578        rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
 579        rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
 580}
 581
 582static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
 583                                     struct rf_channel *rf, const int txpower)
 584{
 585        /*
 586         * Set TXpower.
 587         */
 588        rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 589
 590        /*
 591         * For RT2525E we should first set the channel to half band higher.
 592         */
 593        if (rt2x00_rf(rt2x00dev, RF2525E)) {
 594                static const u32 vals[] = {
 595                        0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
 596                        0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
 597                        0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
 598                        0x00000902, 0x00000906
 599                };
 600
 601                rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
 602                if (rf->rf4)
 603                        rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
 604        }
 605
 606        rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
 607        rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
 608        rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
 609        if (rf->rf4)
 610                rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
 611}
 612
 613static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
 614                                     const int txpower)
 615{
 616        u32 rf3;
 617
 618        rf3 = rt2x00_rf_read(rt2x00dev, 3);
 619        rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 620        rt2500usb_rf_write(rt2x00dev, 3, rf3);
 621}
 622
 623static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
 624                                struct rt2x00lib_conf *libconf)
 625{
 626        enum dev_state state =
 627            (libconf->conf->flags & IEEE80211_CONF_PS) ?
 628                STATE_SLEEP : STATE_AWAKE;
 629        u16 reg;
 630
 631        if (state == STATE_SLEEP) {
 632                reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
 633                rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
 634                                   rt2x00dev->beacon_int - 20);
 635                rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
 636                                   libconf->conf->listen_interval - 1);
 637
 638                /* We must first disable autowake before it can be enabled */
 639                rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
 640                rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 641
 642                rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
 643                rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 644        } else {
 645                reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
 646                rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
 647                rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 648        }
 649
 650        rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 651}
 652
 653static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
 654                             struct rt2x00lib_conf *libconf,
 655                             const unsigned int flags)
 656{
 657        if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 658                rt2500usb_config_channel(rt2x00dev, &libconf->rf,
 659                                         libconf->conf->power_level);
 660        if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 661            !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 662                rt2500usb_config_txpower(rt2x00dev,
 663                                         libconf->conf->power_level);
 664        if (flags & IEEE80211_CONF_CHANGE_PS)
 665                rt2500usb_config_ps(rt2x00dev, libconf);
 666}
 667
 668/*
 669 * Link tuning
 670 */
 671static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
 672                                 struct link_qual *qual)
 673{
 674        u16 reg;
 675
 676        /*
 677         * Update FCS error count from register.
 678         */
 679        reg = rt2500usb_register_read(rt2x00dev, STA_CSR0);
 680        qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
 681
 682        /*
 683         * Update False CCA count from register.
 684         */
 685        reg = rt2500usb_register_read(rt2x00dev, STA_CSR3);
 686        qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
 687}
 688
 689static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
 690                                  struct link_qual *qual)
 691{
 692        u16 eeprom;
 693        u16 value;
 694
 695        eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
 696        value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
 697        rt2500usb_bbp_write(rt2x00dev, 24, value);
 698
 699        eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
 700        value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
 701        rt2500usb_bbp_write(rt2x00dev, 25, value);
 702
 703        eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
 704        value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
 705        rt2500usb_bbp_write(rt2x00dev, 61, value);
 706
 707        eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
 708        value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
 709        rt2500usb_bbp_write(rt2x00dev, 17, value);
 710
 711        qual->vgc_level = value;
 712}
 713
 714/*
 715 * Queue handlers.
 716 */
 717static void rt2500usb_start_queue(struct data_queue *queue)
 718{
 719        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 720        u16 reg;
 721
 722        switch (queue->qid) {
 723        case QID_RX:
 724                reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
 725                rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
 726                rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 727                break;
 728        case QID_BEACON:
 729                reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
 730                rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
 731                rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
 732                rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
 733                rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 734                break;
 735        default:
 736                break;
 737        }
 738}
 739
 740static void rt2500usb_stop_queue(struct data_queue *queue)
 741{
 742        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 743        u16 reg;
 744
 745        switch (queue->qid) {
 746        case QID_RX:
 747                reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
 748                rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
 749                rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 750                break;
 751        case QID_BEACON:
 752                reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
 753                rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
 754                rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
 755                rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
 756                rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 757                break;
 758        default:
 759                break;
 760        }
 761}
 762
 763/*
 764 * Initialization functions.
 765 */
 766static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
 767{
 768        u16 reg;
 769
 770        rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
 771                                    USB_MODE_TEST, REGISTER_TIMEOUT);
 772        rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
 773                                    0x00f0, REGISTER_TIMEOUT);
 774
 775        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
 776        rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
 777        rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
 778
 779        rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
 780        rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
 781
 782        reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
 783        rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
 784        rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
 785        rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
 786        rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 787
 788        reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
 789        rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
 790        rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
 791        rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
 792        rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 793
 794        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR5);
 795        rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
 796        rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
 797        rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
 798        rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
 799        rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
 800
 801        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR6);
 802        rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
 803        rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
 804        rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
 805        rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
 806        rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
 807
 808        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR7);
 809        rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
 810        rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
 811        rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
 812        rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
 813        rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
 814
 815        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR8);
 816        rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
 817        rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
 818        rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
 819        rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
 820        rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
 821
 822        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
 823        rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
 824        rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
 825        rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
 826        rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
 827        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
 828
 829        rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
 830        rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
 831
 832        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 833                return -EBUSY;
 834
 835        reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
 836        rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
 837        rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
 838        rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
 839        rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
 840
 841        if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
 842                reg = rt2500usb_register_read(rt2x00dev, PHY_CSR2);
 843                rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
 844        } else {
 845                reg = 0;
 846                rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
 847                rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
 848        }
 849        rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
 850
 851        rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
 852        rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
 853        rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
 854        rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
 855
 856        reg = rt2500usb_register_read(rt2x00dev, MAC_CSR8);
 857        rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
 858                           rt2x00dev->rx->data_size);
 859        rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
 860
 861        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
 862        rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
 863        rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
 864        rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
 865        rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
 866
 867        reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
 868        rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
 869        rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
 870
 871        reg = rt2500usb_register_read(rt2x00dev, PHY_CSR4);
 872        rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
 873        rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
 874
 875        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR1);
 876        rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
 877        rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
 878
 879        return 0;
 880}
 881
 882static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
 883{
 884        unsigned int i;
 885        u8 value;
 886
 887        for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
 888                value = rt2500usb_bbp_read(rt2x00dev, 0);
 889                if ((value != 0xff) && (value != 0x00))
 890                        return 0;
 891                udelay(REGISTER_BUSY_DELAY);
 892        }
 893
 894        rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
 895        return -EACCES;
 896}
 897
 898static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
 899{
 900        unsigned int i;
 901        u16 eeprom;
 902        u8 value;
 903        u8 reg_id;
 904
 905        if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
 906                return -EACCES;
 907
 908        rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
 909        rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
 910        rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
 911        rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
 912        rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
 913        rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
 914        rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
 915        rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
 916        rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
 917        rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
 918        rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
 919        rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
 920        rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
 921        rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
 922        rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
 923        rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
 924        rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
 925        rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
 926        rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
 927        rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
 928        rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
 929        rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
 930        rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
 931        rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
 932        rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
 933        rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
 934        rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
 935        rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
 936        rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
 937        rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
 938        rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
 939
 940        for (i = 0; i < EEPROM_BBP_SIZE; i++) {
 941                eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
 942
 943                if (eeprom != 0xffff && eeprom != 0x0000) {
 944                        reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
 945                        value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
 946                        rt2500usb_bbp_write(rt2x00dev, reg_id, value);
 947                }
 948        }
 949
 950        return 0;
 951}
 952
 953/*
 954 * Device state switch handlers.
 955 */
 956static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
 957{
 958        /*
 959         * Initialize all registers.
 960         */
 961        if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
 962                     rt2500usb_init_bbp(rt2x00dev)))
 963                return -EIO;
 964
 965        return 0;
 966}
 967
 968static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
 969{
 970        rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
 971        rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
 972
 973        /*
 974         * Disable synchronisation.
 975         */
 976        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
 977
 978        rt2x00usb_disable_radio(rt2x00dev);
 979}
 980
 981static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
 982                               enum dev_state state)
 983{
 984        u16 reg;
 985        u16 reg2;
 986        unsigned int i;
 987        char put_to_sleep;
 988        char bbp_state;
 989        char rf_state;
 990
 991        put_to_sleep = (state != STATE_AWAKE);
 992
 993        reg = 0;
 994        rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
 995        rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
 996        rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
 997        rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
 998        rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
 999        rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1000
1001        /*
1002         * Device is not guaranteed to be in the requested state yet.
1003         * We must wait until the register indicates that the
1004         * device has entered the correct state.
1005         */
1006        for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1007                reg2 = rt2500usb_register_read(rt2x00dev, MAC_CSR17);
1008                bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1009                rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1010                if (bbp_state == state && rf_state == state)
1011                        return 0;
1012                rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1013                msleep(30);
1014        }
1015
1016        return -EBUSY;
1017}
1018
1019static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1020                                      enum dev_state state)
1021{
1022        int retval = 0;
1023
1024        switch (state) {
1025        case STATE_RADIO_ON:
1026                retval = rt2500usb_enable_radio(rt2x00dev);
1027                break;
1028        case STATE_RADIO_OFF:
1029                rt2500usb_disable_radio(rt2x00dev);
1030                break;
1031        case STATE_RADIO_IRQ_ON:
1032        case STATE_RADIO_IRQ_OFF:
1033                /* No support, but no error either */
1034                break;
1035        case STATE_DEEP_SLEEP:
1036        case STATE_SLEEP:
1037        case STATE_STANDBY:
1038        case STATE_AWAKE:
1039                retval = rt2500usb_set_state(rt2x00dev, state);
1040                break;
1041        default:
1042                retval = -ENOTSUPP;
1043                break;
1044        }
1045
1046        if (unlikely(retval))
1047                rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1048                           state, retval);
1049
1050        return retval;
1051}
1052
1053/*
1054 * TX descriptor initialization
1055 */
1056static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1057                                    struct txentry_desc *txdesc)
1058{
1059        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1060        __le32 *txd = (__le32 *) entry->skb->data;
1061        u32 word;
1062
1063        /*
1064         * Start writing the descriptor words.
1065         */
1066        word = rt2x00_desc_read(txd, 0);
1067        rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1068        rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1069                           test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1070        rt2x00_set_field32(&word, TXD_W0_ACK,
1071                           test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1072        rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1073                           test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1074        rt2x00_set_field32(&word, TXD_W0_OFDM,
1075                           (txdesc->rate_mode == RATE_MODE_OFDM));
1076        rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1077                           test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1078        rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1079        rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1080        rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1081        rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1082        rt2x00_desc_write(txd, 0, word);
1083
1084        word = rt2x00_desc_read(txd, 1);
1085        rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1086        rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
1087        rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1088        rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1089        rt2x00_desc_write(txd, 1, word);
1090
1091        word = rt2x00_desc_read(txd, 2);
1092        rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1093        rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1094        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1095                           txdesc->u.plcp.length_low);
1096        rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1097                           txdesc->u.plcp.length_high);
1098        rt2x00_desc_write(txd, 2, word);
1099
1100        if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1101                _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1102                _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1103        }
1104
1105        /*
1106         * Register descriptor details in skb frame descriptor.
1107         */
1108        skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1109        skbdesc->desc = txd;
1110        skbdesc->desc_len = TXD_DESC_SIZE;
1111}
1112
1113/*
1114 * TX data initialization
1115 */
1116static void rt2500usb_beacondone(struct urb *urb);
1117
1118static void rt2500usb_write_beacon(struct queue_entry *entry,
1119                                   struct txentry_desc *txdesc)
1120{
1121        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1122        struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1123        struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1124        int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1125        int length;
1126        u16 reg, reg0;
1127
1128        /*
1129         * Disable beaconing while we are reloading the beacon data,
1130         * otherwise we might be sending out invalid data.
1131         */
1132        reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
1133        rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1134        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1135
1136        /*
1137         * Add space for the descriptor in front of the skb.
1138         */
1139        skb_push(entry->skb, TXD_DESC_SIZE);
1140        memset(entry->skb->data, 0, TXD_DESC_SIZE);
1141
1142        /*
1143         * Write the TX descriptor for the beacon.
1144         */
1145        rt2500usb_write_tx_desc(entry, txdesc);
1146
1147        /*
1148         * Dump beacon to userspace through debugfs.
1149         */
1150        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1151
1152        /*
1153         * USB devices cannot blindly pass the skb->len as the
1154         * length of the data to usb_fill_bulk_urb. Pass the skb
1155         * to the driver to determine what the length should be.
1156         */
1157        length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1158
1159        usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1160                          entry->skb->data, length, rt2500usb_beacondone,
1161                          entry);
1162
1163        /*
1164         * Second we need to create the guardian byte.
1165         * We only need a single byte, so lets recycle
1166         * the 'flags' field we are not using for beacons.
1167         */
1168        bcn_priv->guardian_data = 0;
1169        usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1170                          &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1171                          entry);
1172
1173        /*
1174         * Send out the guardian byte.
1175         */
1176        usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1177
1178        /*
1179         * Enable beaconing again.
1180         */
1181        rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1182        rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1183        reg0 = reg;
1184        rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1185        /*
1186         * Beacon generation will fail initially.
1187         * To prevent this we need to change the TXRX_CSR19
1188         * register several times (reg0 is the same as reg
1189         * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1190         * and 1 in reg).
1191         */
1192        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1193        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1194        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1195        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1196        rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1197}
1198
1199static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1200{
1201        int length;
1202
1203        /*
1204         * The length _must_ be a multiple of 2,
1205         * but it must _not_ be a multiple of the USB packet size.
1206         */
1207        length = roundup(entry->skb->len, 2);
1208        length += (2 * !(length % entry->queue->usb_maxpacket));
1209
1210        return length;
1211}
1212
1213/*
1214 * RX control handlers
1215 */
1216static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1217                                  struct rxdone_entry_desc *rxdesc)
1218{
1219        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1220        struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1221        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1222        __le32 *rxd =
1223            (__le32 *)(entry->skb->data +
1224                       (entry_priv->urb->actual_length -
1225                        entry->queue->desc_size));
1226        u32 word0;
1227        u32 word1;
1228
1229        /*
1230         * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1231         * frame data in rt2x00usb.
1232         */
1233        memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1234        rxd = (__le32 *)skbdesc->desc;
1235
1236        /*
1237         * It is now safe to read the descriptor on all architectures.
1238         */
1239        word0 = rt2x00_desc_read(rxd, 0);
1240        word1 = rt2x00_desc_read(rxd, 1);
1241
1242        if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1243                rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1244        if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1245                rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1246
1247        rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1248        if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1249                rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1250
1251        if (rxdesc->cipher != CIPHER_NONE) {
1252                rxdesc->iv[0] = _rt2x00_desc_read(rxd, 2);
1253                rxdesc->iv[1] = _rt2x00_desc_read(rxd, 3);
1254                rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1255
1256                /* ICV is located at the end of frame */
1257
1258                rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1259                if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1260                        rxdesc->flags |= RX_FLAG_DECRYPTED;
1261                else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1262                        rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1263        }
1264
1265        /*
1266         * Obtain the status about this packet.
1267         * When frame was received with an OFDM bitrate,
1268         * the signal is the PLCP value. If it was received with
1269         * a CCK bitrate the signal is the rate in 100kbit/s.
1270         */
1271        rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1272        rxdesc->rssi =
1273            rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1274        rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1275
1276        if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1277                rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1278        else
1279                rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1280        if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1281                rxdesc->dev_flags |= RXDONE_MY_BSS;
1282
1283        /*
1284         * Adjust the skb memory window to the frame boundaries.
1285         */
1286        skb_trim(entry->skb, rxdesc->size);
1287}
1288
1289/*
1290 * Interrupt functions.
1291 */
1292static void rt2500usb_beacondone(struct urb *urb)
1293{
1294        struct queue_entry *entry = (struct queue_entry *)urb->context;
1295        struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1296
1297        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1298                return;
1299
1300        /*
1301         * Check if this was the guardian beacon,
1302         * if that was the case we need to send the real beacon now.
1303         * Otherwise we should free the sk_buffer, the device
1304         * should be doing the rest of the work now.
1305         */
1306        if (bcn_priv->guardian_urb == urb) {
1307                usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1308        } else if (bcn_priv->urb == urb) {
1309                dev_kfree_skb(entry->skb);
1310                entry->skb = NULL;
1311        }
1312}
1313
1314/*
1315 * Device probe functions.
1316 */
1317static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1318{
1319        u16 word;
1320        u8 *mac;
1321        u8 bbp;
1322
1323        rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1324
1325        /*
1326         * Start validation of the data that has been read.
1327         */
1328        mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1329        rt2x00lib_set_mac_address(rt2x00dev, mac);
1330
1331        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1332        if (word == 0xffff) {
1333                rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1334                rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1335                                   ANTENNA_SW_DIVERSITY);
1336                rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1337                                   ANTENNA_SW_DIVERSITY);
1338                rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1339                                   LED_MODE_DEFAULT);
1340                rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1341                rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1342                rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1343                rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1344                rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1345        }
1346
1347        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1348        if (word == 0xffff) {
1349                rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1350                rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1351                rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1352                rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1353                rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1354        }
1355
1356        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1357        if (word == 0xffff) {
1358                rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1359                                   DEFAULT_RSSI_OFFSET);
1360                rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1361                rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1362                                  word);
1363        }
1364
1365        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE);
1366        if (word == 0xffff) {
1367                rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1368                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1369                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1370        }
1371
1372        /*
1373         * Switch lower vgc bound to current BBP R17 value,
1374         * lower the value a bit for better quality.
1375         */
1376        bbp = rt2500usb_bbp_read(rt2x00dev, 17);
1377        bbp -= 6;
1378
1379        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC);
1380        if (word == 0xffff) {
1381                rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1382                rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1383                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1384                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1385        } else {
1386                rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1387                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1388        }
1389
1390        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17);
1391        if (word == 0xffff) {
1392                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1393                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1394                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1395                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1396        }
1397
1398        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24);
1399        if (word == 0xffff) {
1400                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1401                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1402                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1403                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1404        }
1405
1406        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25);
1407        if (word == 0xffff) {
1408                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1409                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1410                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1411                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1412        }
1413
1414        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61);
1415        if (word == 0xffff) {
1416                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1417                rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1418                rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1419                rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1420        }
1421
1422        return 0;
1423}
1424
1425static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1426{
1427        u16 reg;
1428        u16 value;
1429        u16 eeprom;
1430
1431        /*
1432         * Read EEPROM word for configuration.
1433         */
1434        eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1435
1436        /*
1437         * Identify RF chipset.
1438         */
1439        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1440        reg = rt2500usb_register_read(rt2x00dev, MAC_CSR0);
1441        rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1442
1443        if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1444                rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1445                return -ENODEV;
1446        }
1447
1448        if (!rt2x00_rf(rt2x00dev, RF2522) &&
1449            !rt2x00_rf(rt2x00dev, RF2523) &&
1450            !rt2x00_rf(rt2x00dev, RF2524) &&
1451            !rt2x00_rf(rt2x00dev, RF2525) &&
1452            !rt2x00_rf(rt2x00dev, RF2525E) &&
1453            !rt2x00_rf(rt2x00dev, RF5222)) {
1454                rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1455                return -ENODEV;
1456        }
1457
1458        /*
1459         * Identify default antenna configuration.
1460         */
1461        rt2x00dev->default_ant.tx =
1462            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1463        rt2x00dev->default_ant.rx =
1464            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1465
1466        /*
1467         * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1468         * I am not 100% sure about this, but the legacy drivers do not
1469         * indicate antenna swapping in software is required when
1470         * diversity is enabled.
1471         */
1472        if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1473                rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1474        if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1475                rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1476
1477        /*
1478         * Store led mode, for correct led behaviour.
1479         */
1480#ifdef CONFIG_RT2X00_LIB_LEDS
1481        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1482
1483        rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1484        if (value == LED_MODE_TXRX_ACTIVITY ||
1485            value == LED_MODE_DEFAULT ||
1486            value == LED_MODE_ASUS)
1487                rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1488                                   LED_TYPE_ACTIVITY);
1489#endif /* CONFIG_RT2X00_LIB_LEDS */
1490
1491        /*
1492         * Detect if this device has an hardware controlled radio.
1493         */
1494        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1495                __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1496
1497        /*
1498         * Read the RSSI <-> dBm offset information.
1499         */
1500        eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1501        rt2x00dev->rssi_offset =
1502            rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1503
1504        return 0;
1505}
1506
1507/*
1508 * RF value list for RF2522
1509 * Supports: 2.4 GHz
1510 */
1511static const struct rf_channel rf_vals_bg_2522[] = {
1512        { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1513        { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1514        { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1515        { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1516        { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1517        { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1518        { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1519        { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1520        { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1521        { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1522        { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1523        { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1524        { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1525        { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1526};
1527
1528/*
1529 * RF value list for RF2523
1530 * Supports: 2.4 GHz
1531 */
1532static const struct rf_channel rf_vals_bg_2523[] = {
1533        { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1534        { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1535        { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1536        { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1537        { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1538        { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1539        { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1540        { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1541        { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1542        { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1543        { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1544        { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1545        { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1546        { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1547};
1548
1549/*
1550 * RF value list for RF2524
1551 * Supports: 2.4 GHz
1552 */
1553static const struct rf_channel rf_vals_bg_2524[] = {
1554        { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1555        { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1556        { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1557        { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1558        { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1559        { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1560        { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1561        { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1562        { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1563        { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1564        { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1565        { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1566        { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1567        { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1568};
1569
1570/*
1571 * RF value list for RF2525
1572 * Supports: 2.4 GHz
1573 */
1574static const struct rf_channel rf_vals_bg_2525[] = {
1575        { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1576        { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1577        { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1578        { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1579        { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1580        { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1581        { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1582        { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1583        { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1584        { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1585        { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1586        { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1587        { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1588        { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1589};
1590
1591/*
1592 * RF value list for RF2525e
1593 * Supports: 2.4 GHz
1594 */
1595static const struct rf_channel rf_vals_bg_2525e[] = {
1596        { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1597        { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1598        { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1599        { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1600        { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1601        { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1602        { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1603        { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1604        { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1605        { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1606        { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1607        { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1608        { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1609        { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1610};
1611
1612/*
1613 * RF value list for RF5222
1614 * Supports: 2.4 GHz & 5.2 GHz
1615 */
1616static const struct rf_channel rf_vals_5222[] = {
1617        { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1618        { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1619        { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1620        { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1621        { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1622        { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1623        { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1624        { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1625        { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1626        { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1627        { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1628        { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1629        { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1630        { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1631
1632        /* 802.11 UNI / HyperLan 2 */
1633        { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1634        { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1635        { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1636        { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1637        { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1638        { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1639        { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1640        { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1641
1642        /* 802.11 HyperLan 2 */
1643        { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1644        { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1645        { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1646        { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1647        { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1648        { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1649        { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1650        { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1651        { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1652        { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1653
1654        /* 802.11 UNII */
1655        { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1656        { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1657        { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1658        { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1659        { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1660};
1661
1662static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1663{
1664        struct hw_mode_spec *spec = &rt2x00dev->spec;
1665        struct channel_info *info;
1666        char *tx_power;
1667        unsigned int i;
1668
1669        /*
1670         * Initialize all hw fields.
1671         *
1672         * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
1673         * capable of sending the buffered frames out after the DTIM
1674         * transmission using rt2x00lib_beacondone. This will send out
1675         * multicast and broadcast traffic immediately instead of buffering it
1676         * infinitly and thus dropping it after some time.
1677         */
1678        ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1679        ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1680        ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
1681        ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1682
1683        /*
1684         * Disable powersaving as default.
1685         */
1686        rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1687
1688        SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1689        SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1690                                rt2x00_eeprom_addr(rt2x00dev,
1691                                                   EEPROM_MAC_ADDR_0));
1692
1693        /*
1694         * Initialize hw_mode information.
1695         */
1696        spec->supported_bands = SUPPORT_BAND_2GHZ;
1697        spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1698
1699        if (rt2x00_rf(rt2x00dev, RF2522)) {
1700                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1701                spec->channels = rf_vals_bg_2522;
1702        } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1703                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1704                spec->channels = rf_vals_bg_2523;
1705        } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1706                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1707                spec->channels = rf_vals_bg_2524;
1708        } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1709                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1710                spec->channels = rf_vals_bg_2525;
1711        } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1712                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1713                spec->channels = rf_vals_bg_2525e;
1714        } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1715                spec->supported_bands |= SUPPORT_BAND_5GHZ;
1716                spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1717                spec->channels = rf_vals_5222;
1718        }
1719
1720        /*
1721         * Create channel information array
1722         */
1723        info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1724        if (!info)
1725                return -ENOMEM;
1726
1727        spec->channels_info = info;
1728
1729        tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1730        for (i = 0; i < 14; i++) {
1731                info[i].max_power = MAX_TXPOWER;
1732                info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1733        }
1734
1735        if (spec->num_channels > 14) {
1736                for (i = 14; i < spec->num_channels; i++) {
1737                        info[i].max_power = MAX_TXPOWER;
1738                        info[i].default_power1 = DEFAULT_TXPOWER;
1739                }
1740        }
1741
1742        return 0;
1743}
1744
1745static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1746{
1747        int retval;
1748        u16 reg;
1749
1750        /*
1751         * Allocate eeprom data.
1752         */
1753        retval = rt2500usb_validate_eeprom(rt2x00dev);
1754        if (retval)
1755                return retval;
1756
1757        retval = rt2500usb_init_eeprom(rt2x00dev);
1758        if (retval)
1759                return retval;
1760
1761        /*
1762         * Enable rfkill polling by setting GPIO direction of the
1763         * rfkill switch GPIO pin correctly.
1764         */
1765        reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
1766        rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1767        rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);
1768
1769        /*
1770         * Initialize hw specifications.
1771         */
1772        retval = rt2500usb_probe_hw_mode(rt2x00dev);
1773        if (retval)
1774                return retval;
1775
1776        /*
1777         * This device requires the atim queue
1778         */
1779        __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1780        __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1781        if (!modparam_nohwcrypt) {
1782                __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
1783                __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1784        }
1785        __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1786        __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1787
1788        /*
1789         * Set the rssi offset.
1790         */
1791        rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1792
1793        return 0;
1794}
1795
1796static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1797        .tx                     = rt2x00mac_tx,
1798        .start                  = rt2x00mac_start,
1799        .stop                   = rt2x00mac_stop,
1800        .add_interface          = rt2x00mac_add_interface,
1801        .remove_interface       = rt2x00mac_remove_interface,
1802        .config                 = rt2x00mac_config,
1803        .configure_filter       = rt2x00mac_configure_filter,
1804        .set_tim                = rt2x00mac_set_tim,
1805        .set_key                = rt2x00mac_set_key,
1806        .sw_scan_start          = rt2x00mac_sw_scan_start,
1807        .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1808        .get_stats              = rt2x00mac_get_stats,
1809        .bss_info_changed       = rt2x00mac_bss_info_changed,
1810        .conf_tx                = rt2x00mac_conf_tx,
1811        .rfkill_poll            = rt2x00mac_rfkill_poll,
1812        .flush                  = rt2x00mac_flush,
1813        .set_antenna            = rt2x00mac_set_antenna,
1814        .get_antenna            = rt2x00mac_get_antenna,
1815        .get_ringparam          = rt2x00mac_get_ringparam,
1816        .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1817};
1818
1819static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1820        .probe_hw               = rt2500usb_probe_hw,
1821        .initialize             = rt2x00usb_initialize,
1822        .uninitialize           = rt2x00usb_uninitialize,
1823        .clear_entry            = rt2x00usb_clear_entry,
1824        .set_device_state       = rt2500usb_set_device_state,
1825        .rfkill_poll            = rt2500usb_rfkill_poll,
1826        .link_stats             = rt2500usb_link_stats,
1827        .reset_tuner            = rt2500usb_reset_tuner,
1828        .watchdog               = rt2x00usb_watchdog,
1829        .start_queue            = rt2500usb_start_queue,
1830        .kick_queue             = rt2x00usb_kick_queue,
1831        .stop_queue             = rt2500usb_stop_queue,
1832        .flush_queue            = rt2x00usb_flush_queue,
1833        .write_tx_desc          = rt2500usb_write_tx_desc,
1834        .write_beacon           = rt2500usb_write_beacon,
1835        .get_tx_data_len        = rt2500usb_get_tx_data_len,
1836        .fill_rxdone            = rt2500usb_fill_rxdone,
1837        .config_shared_key      = rt2500usb_config_key,
1838        .config_pairwise_key    = rt2500usb_config_key,
1839        .config_filter          = rt2500usb_config_filter,
1840        .config_intf            = rt2500usb_config_intf,
1841        .config_erp             = rt2500usb_config_erp,
1842        .config_ant             = rt2500usb_config_ant,
1843        .config                 = rt2500usb_config,
1844};
1845
1846static void rt2500usb_queue_init(struct data_queue *queue)
1847{
1848        switch (queue->qid) {
1849        case QID_RX:
1850                queue->limit = 32;
1851                queue->data_size = DATA_FRAME_SIZE;
1852                queue->desc_size = RXD_DESC_SIZE;
1853                queue->priv_size = sizeof(struct queue_entry_priv_usb);
1854                break;
1855
1856        case QID_AC_VO:
1857        case QID_AC_VI:
1858        case QID_AC_BE:
1859        case QID_AC_BK:
1860                queue->limit = 32;
1861                queue->data_size = DATA_FRAME_SIZE;
1862                queue->desc_size = TXD_DESC_SIZE;
1863                queue->priv_size = sizeof(struct queue_entry_priv_usb);
1864                break;
1865
1866        case QID_BEACON:
1867                queue->limit = 1;
1868                queue->data_size = MGMT_FRAME_SIZE;
1869                queue->desc_size = TXD_DESC_SIZE;
1870                queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
1871                break;
1872
1873        case QID_ATIM:
1874                queue->limit = 8;
1875                queue->data_size = DATA_FRAME_SIZE;
1876                queue->desc_size = TXD_DESC_SIZE;
1877                queue->priv_size = sizeof(struct queue_entry_priv_usb);
1878                break;
1879
1880        default:
1881                BUG();
1882                break;
1883        }
1884}
1885
1886static const struct rt2x00_ops rt2500usb_ops = {
1887        .name                   = KBUILD_MODNAME,
1888        .max_ap_intf            = 1,
1889        .eeprom_size            = EEPROM_SIZE,
1890        .rf_size                = RF_SIZE,
1891        .tx_queues              = NUM_TX_QUEUES,
1892        .queue_init             = rt2500usb_queue_init,
1893        .lib                    = &rt2500usb_rt2x00_ops,
1894        .hw                     = &rt2500usb_mac80211_ops,
1895#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1896        .debugfs                = &rt2500usb_rt2x00debug,
1897#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1898};
1899
1900/*
1901 * rt2500usb module information.
1902 */
1903static const struct usb_device_id rt2500usb_device_table[] = {
1904        /* ASUS */
1905        { USB_DEVICE(0x0b05, 0x1706) },
1906        { USB_DEVICE(0x0b05, 0x1707) },
1907        /* Belkin */
1908        { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */
1909        { USB_DEVICE(0x050d, 0x7051) },
1910        /* Cisco Systems */
1911        { USB_DEVICE(0x13b1, 0x000d) },
1912        { USB_DEVICE(0x13b1, 0x0011) },
1913        { USB_DEVICE(0x13b1, 0x001a) },
1914        /* Conceptronic */
1915        { USB_DEVICE(0x14b2, 0x3c02) },
1916        /* D-LINK */
1917        { USB_DEVICE(0x2001, 0x3c00) },
1918        /* Gigabyte */
1919        { USB_DEVICE(0x1044, 0x8001) },
1920        { USB_DEVICE(0x1044, 0x8007) },
1921        /* Hercules */
1922        { USB_DEVICE(0x06f8, 0xe000) },
1923        /* Melco */
1924        { USB_DEVICE(0x0411, 0x005e) },
1925        { USB_DEVICE(0x0411, 0x0066) },
1926        { USB_DEVICE(0x0411, 0x0067) },
1927        { USB_DEVICE(0x0411, 0x008b) },
1928        { USB_DEVICE(0x0411, 0x0097) },
1929        /* MSI */
1930        { USB_DEVICE(0x0db0, 0x6861) },
1931        { USB_DEVICE(0x0db0, 0x6865) },
1932        { USB_DEVICE(0x0db0, 0x6869) },
1933        /* Ralink */
1934        { USB_DEVICE(0x148f, 0x1706) },
1935        { USB_DEVICE(0x148f, 0x2570) },
1936        { USB_DEVICE(0x148f, 0x9020) },
1937        /* Sagem */
1938        { USB_DEVICE(0x079b, 0x004b) },
1939        /* Siemens */
1940        { USB_DEVICE(0x0681, 0x3c06) },
1941        /* SMC */
1942        { USB_DEVICE(0x0707, 0xee13) },
1943        /* Spairon */
1944        { USB_DEVICE(0x114b, 0x0110) },
1945        /* SURECOM */
1946        { USB_DEVICE(0x0769, 0x11f3) },
1947        /* Trust */
1948        { USB_DEVICE(0x0eb0, 0x9020) },
1949        /* VTech */
1950        { USB_DEVICE(0x0f88, 0x3012) },
1951        /* Zinwell */
1952        { USB_DEVICE(0x5a57, 0x0260) },
1953        { 0, }
1954};
1955
1956MODULE_AUTHOR(DRV_PROJECT);
1957MODULE_VERSION(DRV_VERSION);
1958MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1959MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1960MODULE_LICENSE("GPL");
1961
1962static int rt2500usb_probe(struct usb_interface *usb_intf,
1963                           const struct usb_device_id *id)
1964{
1965        return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
1966}
1967
1968static struct usb_driver rt2500usb_driver = {
1969        .name           = KBUILD_MODNAME,
1970        .id_table       = rt2500usb_device_table,
1971        .probe          = rt2500usb_probe,
1972        .disconnect     = rt2x00usb_disconnect,
1973        .suspend        = rt2x00usb_suspend,
1974        .resume         = rt2x00usb_resume,
1975        .reset_resume   = rt2x00usb_resume,
1976        .disable_hub_initiated_lpm = 1,
1977};
1978
1979module_usb_driver(rt2500usb_driver);
1980