linux/drivers/net/wireless/zydas/zd1211rw/zd_chip.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* ZD1211 USB-WLAN driver for Linux
   3 *
   4 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
   5 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
   6 */
   7
   8/* This file implements all the hardware specific functions for the ZD1211
   9 * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
  10 * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
  11 */
  12
  13#include <linux/kernel.h>
  14#include <linux/errno.h>
  15#include <linux/slab.h>
  16
  17#include "zd_def.h"
  18#include "zd_chip.h"
  19#include "zd_mac.h"
  20#include "zd_rf.h"
  21
  22void zd_chip_init(struct zd_chip *chip,
  23                 struct ieee80211_hw *hw,
  24                 struct usb_interface *intf)
  25{
  26        memset(chip, 0, sizeof(*chip));
  27        mutex_init(&chip->mutex);
  28        zd_usb_init(&chip->usb, hw, intf);
  29        zd_rf_init(&chip->rf);
  30}
  31
  32void zd_chip_clear(struct zd_chip *chip)
  33{
  34        ZD_ASSERT(!mutex_is_locked(&chip->mutex));
  35        zd_usb_clear(&chip->usb);
  36        zd_rf_clear(&chip->rf);
  37        mutex_destroy(&chip->mutex);
  38        ZD_MEMCLEAR(chip, sizeof(*chip));
  39}
  40
  41static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size)
  42{
  43        u8 *addr = zd_mac_get_perm_addr(zd_chip_to_mac(chip));
  44        return scnprintf(buffer, size, "%3phD", addr);
  45}
  46
  47/* Prints an identifier line, which will support debugging. */
  48static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
  49{
  50        int i = 0;
  51
  52        i = scnprintf(buffer, size, "zd1211%s chip ",
  53                      zd_chip_is_zd1211b(chip) ? "b" : "");
  54        i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
  55        i += scnprintf(buffer+i, size-i, " ");
  56        i += scnprint_mac_oui(chip, buffer+i, size-i);
  57        i += scnprintf(buffer+i, size-i, " ");
  58        i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
  59        i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type,
  60                chip->patch_cck_gain ? 'g' : '-',
  61                chip->patch_cr157 ? '7' : '-',
  62                chip->patch_6m_band_edge ? '6' : '-',
  63                chip->new_phy_layout ? 'N' : '-',
  64                chip->al2230s_bit ? 'S' : '-');
  65        return i;
  66}
  67
  68static void print_id(struct zd_chip *chip)
  69{
  70        char buffer[80];
  71
  72        scnprint_id(chip, buffer, sizeof(buffer));
  73        buffer[sizeof(buffer)-1] = 0;
  74        dev_info(zd_chip_dev(chip), "%s\n", buffer);
  75}
  76
  77static zd_addr_t inc_addr(zd_addr_t addr)
  78{
  79        u16 a = (u16)addr;
  80        /* Control registers use byte addressing, but everything else uses word
  81         * addressing. */
  82        if ((a & 0xf000) == CR_START)
  83                a += 2;
  84        else
  85                a += 1;
  86        return (zd_addr_t)a;
  87}
  88
  89/* Read a variable number of 32-bit values. Parameter count is not allowed to
  90 * exceed USB_MAX_IOREAD32_COUNT.
  91 */
  92int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
  93                 unsigned int count)
  94{
  95        int r;
  96        int i;
  97        zd_addr_t a16[USB_MAX_IOREAD32_COUNT * 2];
  98        u16 v16[USB_MAX_IOREAD32_COUNT * 2];
  99        unsigned int count16;
 100
 101        if (count > USB_MAX_IOREAD32_COUNT)
 102                return -EINVAL;
 103
 104        /* Use stack for values and addresses. */
 105        count16 = 2 * count;
 106        BUG_ON(count16 * sizeof(zd_addr_t) > sizeof(a16));
 107        BUG_ON(count16 * sizeof(u16) > sizeof(v16));
 108
 109        for (i = 0; i < count; i++) {
 110                int j = 2*i;
 111                /* We read the high word always first. */
 112                a16[j] = inc_addr(addr[i]);
 113                a16[j+1] = addr[i];
 114        }
 115
 116        r = zd_ioread16v_locked(chip, v16, a16, count16);
 117        if (r) {
 118                dev_dbg_f(zd_chip_dev(chip),
 119                          "error: %s. Error number %d\n", __func__, r);
 120                return r;
 121        }
 122
 123        for (i = 0; i < count; i++) {
 124                int j = 2*i;
 125                values[i] = (v16[j] << 16) | v16[j+1];
 126        }
 127
 128        return 0;
 129}
 130
 131static int _zd_iowrite32v_async_locked(struct zd_chip *chip,
 132                                       const struct zd_ioreq32 *ioreqs,
 133                                       unsigned int count)
 134{
 135        int i, j, r;
 136        struct zd_ioreq16 ioreqs16[USB_MAX_IOWRITE32_COUNT * 2];
 137        unsigned int count16;
 138
 139        /* Use stack for values and addresses. */
 140
 141        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 142
 143        if (count == 0)
 144                return 0;
 145        if (count > USB_MAX_IOWRITE32_COUNT)
 146                return -EINVAL;
 147
 148        count16 = 2 * count;
 149        BUG_ON(count16 * sizeof(struct zd_ioreq16) > sizeof(ioreqs16));
 150
 151        for (i = 0; i < count; i++) {
 152                j = 2*i;
 153                /* We write the high word always first. */
 154                ioreqs16[j].value   = ioreqs[i].value >> 16;
 155                ioreqs16[j].addr    = inc_addr(ioreqs[i].addr);
 156                ioreqs16[j+1].value = ioreqs[i].value;
 157                ioreqs16[j+1].addr  = ioreqs[i].addr;
 158        }
 159
 160        r = zd_usb_iowrite16v_async(&chip->usb, ioreqs16, count16);
 161#ifdef DEBUG
 162        if (r) {
 163                dev_dbg_f(zd_chip_dev(chip),
 164                          "error %d in zd_usb_write16v\n", r);
 165        }
 166#endif /* DEBUG */
 167        return r;
 168}
 169
 170int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
 171                          unsigned int count)
 172{
 173        int r;
 174
 175        zd_usb_iowrite16v_async_start(&chip->usb);
 176        r = _zd_iowrite32v_async_locked(chip, ioreqs, count);
 177        if (r) {
 178                zd_usb_iowrite16v_async_end(&chip->usb, 0);
 179                return r;
 180        }
 181        return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
 182}
 183
 184int zd_iowrite16a_locked(struct zd_chip *chip,
 185                  const struct zd_ioreq16 *ioreqs, unsigned int count)
 186{
 187        int r;
 188        unsigned int i, j, t, max;
 189
 190        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 191        zd_usb_iowrite16v_async_start(&chip->usb);
 192
 193        for (i = 0; i < count; i += j + t) {
 194                t = 0;
 195                max = count-i;
 196                if (max > USB_MAX_IOWRITE16_COUNT)
 197                        max = USB_MAX_IOWRITE16_COUNT;
 198                for (j = 0; j < max; j++) {
 199                        if (!ioreqs[i+j].addr) {
 200                                t = 1;
 201                                break;
 202                        }
 203                }
 204
 205                r = zd_usb_iowrite16v_async(&chip->usb, &ioreqs[i], j);
 206                if (r) {
 207                        zd_usb_iowrite16v_async_end(&chip->usb, 0);
 208                        dev_dbg_f(zd_chip_dev(chip),
 209                                  "error zd_usb_iowrite16v. Error number %d\n",
 210                                  r);
 211                        return r;
 212                }
 213        }
 214
 215        return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
 216}
 217
 218/* Writes a variable number of 32 bit registers. The functions will split
 219 * that in several USB requests. A split can be forced by inserting an IO
 220 * request with an zero address field.
 221 */
 222int zd_iowrite32a_locked(struct zd_chip *chip,
 223                  const struct zd_ioreq32 *ioreqs, unsigned int count)
 224{
 225        int r;
 226        unsigned int i, j, t, max;
 227
 228        zd_usb_iowrite16v_async_start(&chip->usb);
 229
 230        for (i = 0; i < count; i += j + t) {
 231                t = 0;
 232                max = count-i;
 233                if (max > USB_MAX_IOWRITE32_COUNT)
 234                        max = USB_MAX_IOWRITE32_COUNT;
 235                for (j = 0; j < max; j++) {
 236                        if (!ioreqs[i+j].addr) {
 237                                t = 1;
 238                                break;
 239                        }
 240                }
 241
 242                r = _zd_iowrite32v_async_locked(chip, &ioreqs[i], j);
 243                if (r) {
 244                        zd_usb_iowrite16v_async_end(&chip->usb, 0);
 245                        dev_dbg_f(zd_chip_dev(chip),
 246                                "error _%s. Error number %d\n", __func__,
 247                                r);
 248                        return r;
 249                }
 250        }
 251
 252        return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
 253}
 254
 255int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
 256{
 257        int r;
 258
 259        mutex_lock(&chip->mutex);
 260        r = zd_ioread16_locked(chip, value, addr);
 261        mutex_unlock(&chip->mutex);
 262        return r;
 263}
 264
 265int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
 266{
 267        int r;
 268
 269        mutex_lock(&chip->mutex);
 270        r = zd_ioread32_locked(chip, value, addr);
 271        mutex_unlock(&chip->mutex);
 272        return r;
 273}
 274
 275int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
 276{
 277        int r;
 278
 279        mutex_lock(&chip->mutex);
 280        r = zd_iowrite16_locked(chip, value, addr);
 281        mutex_unlock(&chip->mutex);
 282        return r;
 283}
 284
 285int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
 286{
 287        int r;
 288
 289        mutex_lock(&chip->mutex);
 290        r = zd_iowrite32_locked(chip, value, addr);
 291        mutex_unlock(&chip->mutex);
 292        return r;
 293}
 294
 295int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
 296                  u32 *values, unsigned int count)
 297{
 298        int r;
 299
 300        mutex_lock(&chip->mutex);
 301        r = zd_ioread32v_locked(chip, values, addresses, count);
 302        mutex_unlock(&chip->mutex);
 303        return r;
 304}
 305
 306int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
 307                  unsigned int count)
 308{
 309        int r;
 310
 311        mutex_lock(&chip->mutex);
 312        r = zd_iowrite32a_locked(chip, ioreqs, count);
 313        mutex_unlock(&chip->mutex);
 314        return r;
 315}
 316
 317static int read_pod(struct zd_chip *chip, u8 *rf_type)
 318{
 319        int r;
 320        u32 value;
 321
 322        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 323        r = zd_ioread32_locked(chip, &value, E2P_POD);
 324        if (r)
 325                goto error;
 326        dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
 327
 328        /* FIXME: AL2230 handling (Bit 7 in POD) */
 329        *rf_type = value & 0x0f;
 330        chip->pa_type = (value >> 16) & 0x0f;
 331        chip->patch_cck_gain = (value >> 8) & 0x1;
 332        chip->patch_cr157 = (value >> 13) & 0x1;
 333        chip->patch_6m_band_edge = (value >> 21) & 0x1;
 334        chip->new_phy_layout = (value >> 31) & 0x1;
 335        chip->al2230s_bit = (value >> 7) & 0x1;
 336        chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
 337        chip->supports_tx_led = 1;
 338        if (value & (1 << 24)) { /* LED scenario */
 339                if (value & (1 << 29))
 340                        chip->supports_tx_led = 0;
 341        }
 342
 343        dev_dbg_f(zd_chip_dev(chip),
 344                "RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
 345                "patch 6M %d new PHY %d link LED%d tx led %d\n",
 346                zd_rf_name(*rf_type), *rf_type,
 347                chip->pa_type, chip->patch_cck_gain,
 348                chip->patch_cr157, chip->patch_6m_band_edge,
 349                chip->new_phy_layout,
 350                chip->link_led == LED1 ? 1 : 2,
 351                chip->supports_tx_led);
 352        return 0;
 353error:
 354        *rf_type = 0;
 355        chip->pa_type = 0;
 356        chip->patch_cck_gain = 0;
 357        chip->patch_cr157 = 0;
 358        chip->patch_6m_band_edge = 0;
 359        chip->new_phy_layout = 0;
 360        return r;
 361}
 362
 363static int zd_write_mac_addr_common(struct zd_chip *chip, const u8 *mac_addr,
 364                                    const struct zd_ioreq32 *in_reqs,
 365                                    const char *type)
 366{
 367        int r;
 368        struct zd_ioreq32 reqs[2] = {in_reqs[0], in_reqs[1]};
 369
 370        if (mac_addr) {
 371                reqs[0].value = (mac_addr[3] << 24)
 372                              | (mac_addr[2] << 16)
 373                              | (mac_addr[1] <<  8)
 374                              |  mac_addr[0];
 375                reqs[1].value = (mac_addr[5] <<  8)
 376                              |  mac_addr[4];
 377                dev_dbg_f(zd_chip_dev(chip), "%s addr %pM\n", type, mac_addr);
 378        } else {
 379                dev_dbg_f(zd_chip_dev(chip), "set NULL %s\n", type);
 380        }
 381
 382        mutex_lock(&chip->mutex);
 383        r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
 384        mutex_unlock(&chip->mutex);
 385        return r;
 386}
 387
 388/* MAC address: if custom mac addresses are to be used CR_MAC_ADDR_P1 and
 389 *              CR_MAC_ADDR_P2 must be overwritten
 390 */
 391int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
 392{
 393        static const struct zd_ioreq32 reqs[2] = {
 394                [0] = { .addr = CR_MAC_ADDR_P1 },
 395                [1] = { .addr = CR_MAC_ADDR_P2 },
 396        };
 397
 398        return zd_write_mac_addr_common(chip, mac_addr, reqs, "mac");
 399}
 400
 401int zd_write_bssid(struct zd_chip *chip, const u8 *bssid)
 402{
 403        static const struct zd_ioreq32 reqs[2] = {
 404                [0] = { .addr = CR_BSSID_P1 },
 405                [1] = { .addr = CR_BSSID_P2 },
 406        };
 407
 408        return zd_write_mac_addr_common(chip, bssid, reqs, "bssid");
 409}
 410
 411int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
 412{
 413        int r;
 414        u32 value;
 415
 416        mutex_lock(&chip->mutex);
 417        r = zd_ioread32_locked(chip, &value, E2P_SUBID);
 418        mutex_unlock(&chip->mutex);
 419        if (r)
 420                return r;
 421
 422        *regdomain = value >> 16;
 423        dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
 424
 425        return 0;
 426}
 427
 428static int read_values(struct zd_chip *chip, u8 *values, size_t count,
 429                       zd_addr_t e2p_addr, u32 guard)
 430{
 431        int r;
 432        int i;
 433        u32 v;
 434
 435        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 436        for (i = 0;;) {
 437                r = zd_ioread32_locked(chip, &v,
 438                                       (zd_addr_t)((u16)e2p_addr+i/2));
 439                if (r)
 440                        return r;
 441                v -= guard;
 442                if (i+4 < count) {
 443                        values[i++] = v;
 444                        values[i++] = v >>  8;
 445                        values[i++] = v >> 16;
 446                        values[i++] = v >> 24;
 447                        continue;
 448                }
 449                for (;i < count; i++)
 450                        values[i] = v >> (8*(i%3));
 451                return 0;
 452        }
 453}
 454
 455static int read_pwr_cal_values(struct zd_chip *chip)
 456{
 457        return read_values(chip, chip->pwr_cal_values,
 458                        E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
 459                        0);
 460}
 461
 462static int read_pwr_int_values(struct zd_chip *chip)
 463{
 464        return read_values(chip, chip->pwr_int_values,
 465                        E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
 466                        E2P_PWR_INT_GUARD);
 467}
 468
 469static int read_ofdm_cal_values(struct zd_chip *chip)
 470{
 471        int r;
 472        int i;
 473        static const zd_addr_t addresses[] = {
 474                E2P_36M_CAL_VALUE1,
 475                E2P_48M_CAL_VALUE1,
 476                E2P_54M_CAL_VALUE1,
 477        };
 478
 479        for (i = 0; i < 3; i++) {
 480                r = read_values(chip, chip->ofdm_cal_values[i],
 481                                E2P_CHANNEL_COUNT, addresses[i], 0);
 482                if (r)
 483                        return r;
 484        }
 485        return 0;
 486}
 487
 488static int read_cal_int_tables(struct zd_chip *chip)
 489{
 490        int r;
 491
 492        r = read_pwr_cal_values(chip);
 493        if (r)
 494                return r;
 495        r = read_pwr_int_values(chip);
 496        if (r)
 497                return r;
 498        r = read_ofdm_cal_values(chip);
 499        if (r)
 500                return r;
 501        return 0;
 502}
 503
 504/* phy means physical registers */
 505int zd_chip_lock_phy_regs(struct zd_chip *chip)
 506{
 507        int r;
 508        u32 tmp;
 509
 510        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 511        r = zd_ioread32_locked(chip, &tmp, CR_REG1);
 512        if (r) {
 513                dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
 514                return r;
 515        }
 516
 517        tmp &= ~UNLOCK_PHY_REGS;
 518
 519        r = zd_iowrite32_locked(chip, tmp, CR_REG1);
 520        if (r)
 521                dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
 522        return r;
 523}
 524
 525int zd_chip_unlock_phy_regs(struct zd_chip *chip)
 526{
 527        int r;
 528        u32 tmp;
 529
 530        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 531        r = zd_ioread32_locked(chip, &tmp, CR_REG1);
 532        if (r) {
 533                dev_err(zd_chip_dev(chip),
 534                        "error ioread32(CR_REG1): %d\n", r);
 535                return r;
 536        }
 537
 538        tmp |= UNLOCK_PHY_REGS;
 539
 540        r = zd_iowrite32_locked(chip, tmp, CR_REG1);
 541        if (r)
 542                dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
 543        return r;
 544}
 545
 546/* ZD_CR157 can be optionally patched by the EEPROM for original ZD1211 */
 547static int patch_cr157(struct zd_chip *chip)
 548{
 549        int r;
 550        u16 value;
 551
 552        if (!chip->patch_cr157)
 553                return 0;
 554
 555        r = zd_ioread16_locked(chip, &value, E2P_PHY_REG);
 556        if (r)
 557                return r;
 558
 559        dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
 560        return zd_iowrite32_locked(chip, value >> 8, ZD_CR157);
 561}
 562
 563/*
 564 * 6M band edge can be optionally overwritten for certain RF's
 565 * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
 566 * bit (for AL2230, AL2230S)
 567 */
 568static int patch_6m_band_edge(struct zd_chip *chip, u8 channel)
 569{
 570        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 571        if (!chip->patch_6m_band_edge)
 572                return 0;
 573
 574        return zd_rf_patch_6m_band_edge(&chip->rf, channel);
 575}
 576
 577/* Generic implementation of 6M band edge patching, used by most RFs via
 578 * zd_rf_generic_patch_6m() */
 579int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel)
 580{
 581        struct zd_ioreq16 ioreqs[] = {
 582                { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
 583                { ZD_CR47,  0x1e },
 584        };
 585
 586        /* FIXME: Channel 11 is not the edge for all regulatory domains. */
 587        if (channel == 1 || channel == 11)
 588                ioreqs[0].value = 0x12;
 589
 590        dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
 591        return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 592}
 593
 594static int zd1211_hw_reset_phy(struct zd_chip *chip)
 595{
 596        static const struct zd_ioreq16 ioreqs[] = {
 597                { ZD_CR0,   0x0a }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
 598                { ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xa0 },
 599                { ZD_CR10,  0x81 }, { ZD_CR11,  0x00 }, { ZD_CR12,  0x7f },
 600                { ZD_CR13,  0x8c }, { ZD_CR14,  0x80 }, { ZD_CR15,  0x3d },
 601                { ZD_CR16,  0x20 }, { ZD_CR17,  0x1e }, { ZD_CR18,  0x0a },
 602                { ZD_CR19,  0x48 }, { ZD_CR20,  0x0c }, { ZD_CR21,  0x0c },
 603                { ZD_CR22,  0x23 }, { ZD_CR23,  0x90 }, { ZD_CR24,  0x14 },
 604                { ZD_CR25,  0x40 }, { ZD_CR26,  0x10 }, { ZD_CR27,  0x19 },
 605                { ZD_CR28,  0x7f }, { ZD_CR29,  0x80 }, { ZD_CR30,  0x4b },
 606                { ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
 607                { ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
 608                { ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
 609                { ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
 610                { ZD_CR43,  0x10 }, { ZD_CR44,  0x12 }, { ZD_CR46,  0xff },
 611                { ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
 612                { ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
 613                { ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
 614                { ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
 615                { ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
 616                { ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
 617                { ZD_CR79,  0x68 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
 618                { ZD_CR82,  0x00 }, { ZD_CR83,  0x00 }, { ZD_CR84,  0x00 },
 619                { ZD_CR85,  0x02 }, { ZD_CR86,  0x00 }, { ZD_CR87,  0x00 },
 620                { ZD_CR88,  0xff }, { ZD_CR89,  0xfc }, { ZD_CR90,  0x00 },
 621                { ZD_CR91,  0x00 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x08 },
 622                { ZD_CR94,  0x00 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0xff },
 623                { ZD_CR97,  0xe7 }, { ZD_CR98,  0x00 }, { ZD_CR99,  0x00 },
 624                { ZD_CR100, 0x00 }, { ZD_CR101, 0xae }, { ZD_CR102, 0x02 },
 625                { ZD_CR103, 0x00 }, { ZD_CR104, 0x03 }, { ZD_CR105, 0x65 },
 626                { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 }, { ZD_CR108, 0x0a },
 627                { ZD_CR109, 0xaa }, { ZD_CR110, 0xaa }, { ZD_CR111, 0x25 },
 628                { ZD_CR112, 0x25 }, { ZD_CR113, 0x00 }, { ZD_CR119, 0x1e },
 629                { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
 630                { },
 631                { ZD_CR5,   0x00 }, { ZD_CR6,   0x00 }, { ZD_CR7,   0x00 },
 632                { ZD_CR8,   0x00 }, { ZD_CR9,   0x20 }, { ZD_CR12,  0xf0 },
 633                { ZD_CR20,  0x0e }, { ZD_CR21,  0x0e }, { ZD_CR27,  0x10 },
 634                { ZD_CR44,  0x33 }, { ZD_CR47,  0x1E }, { ZD_CR83,  0x24 },
 635                { ZD_CR84,  0x04 }, { ZD_CR85,  0x00 }, { ZD_CR86,  0x0C },
 636                { ZD_CR87,  0x12 }, { ZD_CR88,  0x0C }, { ZD_CR89,  0x00 },
 637                { ZD_CR90,  0x10 }, { ZD_CR91,  0x08 }, { ZD_CR93,  0x00 },
 638                { ZD_CR94,  0x01 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0x50 },
 639                { ZD_CR97,  0x37 }, { ZD_CR98,  0x35 }, { ZD_CR101, 0x13 },
 640                { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
 641                { ZD_CR105, 0x12 }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
 642                { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
 643                { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
 644                { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR120, 0x4f },
 645                { ZD_CR125, 0xaa }, { ZD_CR127, 0x03 }, { ZD_CR128, 0x14 },
 646                { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 }, { ZD_CR131, 0x0C },
 647                { ZD_CR136, 0xdf }, { ZD_CR137, 0x40 }, { ZD_CR138, 0xa0 },
 648                { ZD_CR139, 0xb0 }, { ZD_CR140, 0x99 }, { ZD_CR141, 0x82 },
 649                { ZD_CR142, 0x54 }, { ZD_CR143, 0x1c }, { ZD_CR144, 0x6c },
 650                { ZD_CR147, 0x07 }, { ZD_CR148, 0x4c }, { ZD_CR149, 0x50 },
 651                { ZD_CR150, 0x0e }, { ZD_CR151, 0x18 }, { ZD_CR160, 0xfe },
 652                { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
 653                { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
 654                { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
 655                { ZD_CR170, 0xba }, { ZD_CR171, 0xba },
 656                /* Note: ZD_CR204 must lead the ZD_CR203 */
 657                { ZD_CR204, 0x7d },
 658                { },
 659                { ZD_CR203, 0x30 },
 660        };
 661
 662        int r, t;
 663
 664        dev_dbg_f(zd_chip_dev(chip), "\n");
 665
 666        r = zd_chip_lock_phy_regs(chip);
 667        if (r)
 668                goto out;
 669
 670        r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 671        if (r)
 672                goto unlock;
 673
 674        r = patch_cr157(chip);
 675unlock:
 676        t = zd_chip_unlock_phy_regs(chip);
 677        if (t && !r)
 678                r = t;
 679out:
 680        return r;
 681}
 682
 683static int zd1211b_hw_reset_phy(struct zd_chip *chip)
 684{
 685        static const struct zd_ioreq16 ioreqs[] = {
 686                { ZD_CR0,   0x14 }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
 687                { ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xe0 },
 688                { ZD_CR10,  0x81 },
 689                /* power control { { ZD_CR11,  1 << 6 }, */
 690                { ZD_CR11,  0x00 },
 691                { ZD_CR12,  0xf0 }, { ZD_CR13,  0x8c }, { ZD_CR14,  0x80 },
 692                { ZD_CR15,  0x3d }, { ZD_CR16,  0x20 }, { ZD_CR17,  0x1e },
 693                { ZD_CR18,  0x0a }, { ZD_CR19,  0x48 },
 694                { ZD_CR20,  0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
 695                { ZD_CR21,  0x0e }, { ZD_CR22,  0x23 }, { ZD_CR23,  0x90 },
 696                { ZD_CR24,  0x14 }, { ZD_CR25,  0x40 }, { ZD_CR26,  0x10 },
 697                { ZD_CR27,  0x10 }, { ZD_CR28,  0x7f }, { ZD_CR29,  0x80 },
 698                { ZD_CR30,  0x4b }, /* ASIC/FWT, no jointly decoder */
 699                { ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
 700                { ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
 701                { ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
 702                { ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
 703                { ZD_CR43,  0x10 }, { ZD_CR44,  0x33 }, { ZD_CR46,  0xff },
 704                { ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
 705                { ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
 706                { ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
 707                { ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
 708                { ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
 709                { ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
 710                { ZD_CR79,  0xf0 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
 711                { ZD_CR82,  0x00 }, { ZD_CR83,  0x24 }, { ZD_CR84,  0x04 },
 712                { ZD_CR85,  0x00 }, { ZD_CR86,  0x0c }, { ZD_CR87,  0x12 },
 713                { ZD_CR88,  0x0c }, { ZD_CR89,  0x00 }, { ZD_CR90,  0x58 },
 714                { ZD_CR91,  0x04 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x00 },
 715                { ZD_CR94,  0x01 },
 716                { ZD_CR95,  0x20 }, /* ZD1211B */
 717                { ZD_CR96,  0x50 }, { ZD_CR97,  0x37 }, { ZD_CR98,  0x35 },
 718                { ZD_CR99,  0x00 }, { ZD_CR100, 0x01 }, { ZD_CR101, 0x13 },
 719                { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
 720                { ZD_CR105, 0x12 }, { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 },
 721                { ZD_CR108, 0x0a }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
 722                { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
 723                { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
 724                { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR119, 0x1e },
 725                { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
 726                { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
 727                { ZD_CR131, 0x0c }, { ZD_CR136, 0xdf }, { ZD_CR137, 0xa0 },
 728                { ZD_CR138, 0xa8 }, { ZD_CR139, 0xb4 }, { ZD_CR140, 0x98 },
 729                { ZD_CR141, 0x82 }, { ZD_CR142, 0x53 }, { ZD_CR143, 0x1c },
 730                { ZD_CR144, 0x6c }, { ZD_CR147, 0x07 }, { ZD_CR148, 0x40 },
 731                { ZD_CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
 732                { ZD_CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
 733                { ZD_CR151, 0x18 }, { ZD_CR159, 0x70 }, { ZD_CR160, 0xfe },
 734                { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
 735                { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
 736                { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
 737                { ZD_CR170, 0xba }, { ZD_CR171, 0xba },
 738                /* Note: ZD_CR204 must lead the ZD_CR203 */
 739                { ZD_CR204, 0x7d },
 740                {},
 741                { ZD_CR203, 0x30 },
 742        };
 743
 744        int r, t;
 745
 746        dev_dbg_f(zd_chip_dev(chip), "\n");
 747
 748        r = zd_chip_lock_phy_regs(chip);
 749        if (r)
 750                goto out;
 751
 752        r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 753        t = zd_chip_unlock_phy_regs(chip);
 754        if (t && !r)
 755                r = t;
 756out:
 757        return r;
 758}
 759
 760static int hw_reset_phy(struct zd_chip *chip)
 761{
 762        return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) :
 763                                  zd1211_hw_reset_phy(chip);
 764}
 765
 766static int zd1211_hw_init_hmac(struct zd_chip *chip)
 767{
 768        static const struct zd_ioreq32 ioreqs[] = {
 769                { CR_ZD1211_RETRY_MAX,          ZD1211_RETRY_COUNT },
 770                { CR_RX_THRESHOLD,              0x000c0640 },
 771        };
 772
 773        dev_dbg_f(zd_chip_dev(chip), "\n");
 774        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 775        return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 776}
 777
 778static int zd1211b_hw_init_hmac(struct zd_chip *chip)
 779{
 780        static const struct zd_ioreq32 ioreqs[] = {
 781                { CR_ZD1211B_RETRY_MAX,         ZD1211B_RETRY_COUNT },
 782                { CR_ZD1211B_CWIN_MAX_MIN_AC0,  0x007f003f },
 783                { CR_ZD1211B_CWIN_MAX_MIN_AC1,  0x007f003f },
 784                { CR_ZD1211B_CWIN_MAX_MIN_AC2,  0x003f001f },
 785                { CR_ZD1211B_CWIN_MAX_MIN_AC3,  0x001f000f },
 786                { CR_ZD1211B_AIFS_CTL1,         0x00280028 },
 787                { CR_ZD1211B_AIFS_CTL2,         0x008C003C },
 788                { CR_ZD1211B_TXOP,              0x01800824 },
 789                { CR_RX_THRESHOLD,              0x000c0eff, },
 790        };
 791
 792        dev_dbg_f(zd_chip_dev(chip), "\n");
 793        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 794        return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 795}
 796
 797static int hw_init_hmac(struct zd_chip *chip)
 798{
 799        int r;
 800        static const struct zd_ioreq32 ioreqs[] = {
 801                { CR_ACK_TIMEOUT_EXT,           0x20 },
 802                { CR_ADDA_MBIAS_WARMTIME,       0x30000808 },
 803                { CR_SNIFFER_ON,                0 },
 804                { CR_RX_FILTER,                 STA_RX_FILTER },
 805                { CR_GROUP_HASH_P1,             0x00 },
 806                { CR_GROUP_HASH_P2,             0x80000000 },
 807                { CR_REG1,                      0xa4 },
 808                { CR_ADDA_PWR_DWN,              0x7f },
 809                { CR_BCN_PLCP_CFG,              0x00f00401 },
 810                { CR_PHY_DELAY,                 0x00 },
 811                { CR_ACK_TIMEOUT_EXT,           0x80 },
 812                { CR_ADDA_PWR_DWN,              0x00 },
 813                { CR_ACK_TIME_80211,            0x100 },
 814                { CR_RX_PE_DELAY,               0x70 },
 815                { CR_PS_CTRL,                   0x10000000 },
 816                { CR_RTS_CTS_RATE,              0x02030203 },
 817                { CR_AFTER_PNP,                 0x1 },
 818                { CR_WEP_PROTECT,               0x114 },
 819                { CR_IFS_VALUE,                 IFS_VALUE_DEFAULT },
 820                { CR_CAM_MODE,                  MODE_AP_WDS},
 821        };
 822
 823        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 824        r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
 825        if (r)
 826                return r;
 827
 828        return zd_chip_is_zd1211b(chip) ?
 829                zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
 830}
 831
 832struct aw_pt_bi {
 833        u32 atim_wnd_period;
 834        u32 pre_tbtt;
 835        u32 beacon_interval;
 836};
 837
 838static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
 839{
 840        int r;
 841        static const zd_addr_t aw_pt_bi_addr[] =
 842                { CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
 843        u32 values[3];
 844
 845        r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
 846                         ARRAY_SIZE(aw_pt_bi_addr));
 847        if (r) {
 848                memset(s, 0, sizeof(*s));
 849                return r;
 850        }
 851
 852        s->atim_wnd_period = values[0];
 853        s->pre_tbtt = values[1];
 854        s->beacon_interval = values[2];
 855        return 0;
 856}
 857
 858static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
 859{
 860        struct zd_ioreq32 reqs[3];
 861        u16 b_interval = s->beacon_interval & 0xffff;
 862
 863        if (b_interval <= 5)
 864                b_interval = 5;
 865        if (s->pre_tbtt < 4 || s->pre_tbtt >= b_interval)
 866                s->pre_tbtt = b_interval - 1;
 867        if (s->atim_wnd_period >= s->pre_tbtt)
 868                s->atim_wnd_period = s->pre_tbtt - 1;
 869
 870        reqs[0].addr = CR_ATIM_WND_PERIOD;
 871        reqs[0].value = s->atim_wnd_period;
 872        reqs[1].addr = CR_PRE_TBTT;
 873        reqs[1].value = s->pre_tbtt;
 874        reqs[2].addr = CR_BCN_INTERVAL;
 875        reqs[2].value = (s->beacon_interval & ~0xffff) | b_interval;
 876
 877        return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
 878}
 879
 880
 881static int set_beacon_interval(struct zd_chip *chip, u16 interval,
 882                               u8 dtim_period, int type)
 883{
 884        int r;
 885        struct aw_pt_bi s;
 886        u32 b_interval, mode_flag;
 887
 888        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 889
 890        if (interval > 0) {
 891                switch (type) {
 892                case NL80211_IFTYPE_ADHOC:
 893                case NL80211_IFTYPE_MESH_POINT:
 894                        mode_flag = BCN_MODE_IBSS;
 895                        break;
 896                case NL80211_IFTYPE_AP:
 897                        mode_flag = BCN_MODE_AP;
 898                        break;
 899                default:
 900                        mode_flag = 0;
 901                        break;
 902                }
 903        } else {
 904                dtim_period = 0;
 905                mode_flag = 0;
 906        }
 907
 908        b_interval = mode_flag | (dtim_period << 16) | interval;
 909
 910        r = zd_iowrite32_locked(chip, b_interval, CR_BCN_INTERVAL);
 911        if (r)
 912                return r;
 913        r = get_aw_pt_bi(chip, &s);
 914        if (r)
 915                return r;
 916        return set_aw_pt_bi(chip, &s);
 917}
 918
 919int zd_set_beacon_interval(struct zd_chip *chip, u16 interval, u8 dtim_period,
 920                           int type)
 921{
 922        int r;
 923
 924        mutex_lock(&chip->mutex);
 925        r = set_beacon_interval(chip, interval, dtim_period, type);
 926        mutex_unlock(&chip->mutex);
 927        return r;
 928}
 929
 930static int hw_init(struct zd_chip *chip)
 931{
 932        int r;
 933
 934        dev_dbg_f(zd_chip_dev(chip), "\n");
 935        ZD_ASSERT(mutex_is_locked(&chip->mutex));
 936        r = hw_reset_phy(chip);
 937        if (r)
 938                return r;
 939
 940        r = hw_init_hmac(chip);
 941        if (r)
 942                return r;
 943
 944        return set_beacon_interval(chip, 100, 0, NL80211_IFTYPE_UNSPECIFIED);
 945}
 946
 947static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
 948{
 949        return (zd_addr_t)((u16)chip->fw_regs_base + offset);
 950}
 951
 952#ifdef DEBUG
 953static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
 954                   const char *addr_string)
 955{
 956        int r;
 957        u32 value;
 958
 959        r = zd_ioread32_locked(chip, &value, addr);
 960        if (r) {
 961                dev_dbg_f(zd_chip_dev(chip),
 962                        "error reading %s. Error number %d\n", addr_string, r);
 963                return r;
 964        }
 965
 966        dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
 967                addr_string, (unsigned int)value);
 968        return 0;
 969}
 970
 971static int test_init(struct zd_chip *chip)
 972{
 973        int r;
 974
 975        r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
 976        if (r)
 977                return r;
 978        r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
 979        if (r)
 980                return r;
 981        return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
 982}
 983
 984static void dump_fw_registers(struct zd_chip *chip)
 985{
 986        const zd_addr_t addr[4] = {
 987                fw_reg_addr(chip, FW_REG_FIRMWARE_VER),
 988                fw_reg_addr(chip, FW_REG_USB_SPEED),
 989                fw_reg_addr(chip, FW_REG_FIX_TX_RATE),
 990                fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
 991        };
 992
 993        int r;
 994        u16 values[4];
 995
 996        r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
 997                         ARRAY_SIZE(addr));
 998        if (r) {
 999                dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
1000                         r);
1001                return;
1002        }
1003
1004        dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
1005        dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
1006        dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
1007        dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
1008}
1009#endif /* DEBUG */
1010
1011static int print_fw_version(struct zd_chip *chip)
1012{
1013        struct wiphy *wiphy = zd_chip_to_mac(chip)->hw->wiphy;
1014        int r;
1015        u16 version;
1016
1017        r = zd_ioread16_locked(chip, &version,
1018                fw_reg_addr(chip, FW_REG_FIRMWARE_VER));
1019        if (r)
1020                return r;
1021
1022        dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
1023
1024        snprintf(wiphy->fw_version, sizeof(wiphy->fw_version),
1025                        "%04hx", version);
1026
1027        return 0;
1028}
1029
1030static int set_mandatory_rates(struct zd_chip *chip, int gmode)
1031{
1032        u32 rates;
1033        ZD_ASSERT(mutex_is_locked(&chip->mutex));
1034        /* This sets the mandatory rates, which only depend from the standard
1035         * that the device is supporting. Until further notice we should try
1036         * to support 802.11g also for full speed USB.
1037         */
1038        if (!gmode)
1039                rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
1040        else
1041                rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
1042                        CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
1043
1044        return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
1045}
1046
1047int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip,
1048                                    int preamble)
1049{
1050        u32 value = 0;
1051
1052        dev_dbg_f(zd_chip_dev(chip), "preamble=%x\n", preamble);
1053        value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
1054        value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;
1055
1056        /* We always send 11M RTS/self-CTS messages, like the vendor driver. */
1057        value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_RTS_RATE;
1058        value |= ZD_RX_CCK << RTSCTS_SH_RTS_MOD_TYPE;
1059        value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_CTS_RATE;
1060        value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;
1061
1062        return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
1063}
1064
1065int zd_chip_enable_hwint(struct zd_chip *chip)
1066{
1067        int r;
1068
1069        mutex_lock(&chip->mutex);
1070        r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
1071        mutex_unlock(&chip->mutex);
1072        return r;
1073}
1074
1075static int disable_hwint(struct zd_chip *chip)
1076{
1077        return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
1078}
1079
1080int zd_chip_disable_hwint(struct zd_chip *chip)
1081{
1082        int r;
1083
1084        mutex_lock(&chip->mutex);
1085        r = disable_hwint(chip);
1086        mutex_unlock(&chip->mutex);
1087        return r;
1088}
1089
1090static int read_fw_regs_offset(struct zd_chip *chip)
1091{
1092        int r;
1093
1094        ZD_ASSERT(mutex_is_locked(&chip->mutex));
1095        r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base,
1096                               FWRAW_REGS_ADDR);
1097        if (r)
1098                return r;
1099        dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
1100                  (u16)chip->fw_regs_base);
1101
1102        return 0;
1103}
1104
1105/* Read mac address using pre-firmware interface */
1106int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr)
1107{
1108        dev_dbg_f(zd_chip_dev(chip), "\n");
1109        return zd_usb_read_fw(&chip->usb, E2P_MAC_ADDR_P1, addr,
1110                ETH_ALEN);
1111}
1112
1113int zd_chip_init_hw(struct zd_chip *chip)
1114{
1115        int r;
1116        u8 rf_type;
1117
1118        dev_dbg_f(zd_chip_dev(chip), "\n");
1119
1120        mutex_lock(&chip->mutex);
1121
1122#ifdef DEBUG
1123        r = test_init(chip);
1124        if (r)
1125                goto out;
1126#endif
1127        r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
1128        if (r)
1129                goto out;
1130
1131        r = read_fw_regs_offset(chip);
1132        if (r)
1133                goto out;
1134
1135        /* GPI is always disabled, also in the other driver.
1136         */
1137        r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
1138        if (r)
1139                goto out;
1140        r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
1141        if (r)
1142                goto out;
1143        /* Currently we support IEEE 802.11g for full and high speed USB.
1144         * It might be discussed, whether we should support pure b mode for
1145         * full speed USB.
1146         */
1147        r = set_mandatory_rates(chip, 1);
1148        if (r)
1149                goto out;
1150        /* Disabling interrupts is certainly a smart thing here.
1151         */
1152        r = disable_hwint(chip);
1153        if (r)
1154                goto out;
1155        r = read_pod(chip, &rf_type);
1156        if (r)
1157                goto out;
1158        r = hw_init(chip);
1159        if (r)
1160                goto out;
1161        r = zd_rf_init_hw(&chip->rf, rf_type);
1162        if (r)
1163                goto out;
1164
1165        r = print_fw_version(chip);
1166        if (r)
1167                goto out;
1168
1169#ifdef DEBUG
1170        dump_fw_registers(chip);
1171        r = test_init(chip);
1172        if (r)
1173                goto out;
1174#endif /* DEBUG */
1175
1176        r = read_cal_int_tables(chip);
1177        if (r)
1178                goto out;
1179
1180        print_id(chip);
1181out:
1182        mutex_unlock(&chip->mutex);
1183        return r;
1184}
1185
1186static int update_pwr_int(struct zd_chip *chip, u8 channel)
1187{
1188        u8 value = chip->pwr_int_values[channel - 1];
1189        return zd_iowrite16_locked(chip, value, ZD_CR31);
1190}
1191
1192static int update_pwr_cal(struct zd_chip *chip, u8 channel)
1193{
1194        u8 value = chip->pwr_cal_values[channel-1];
1195        return zd_iowrite16_locked(chip, value, ZD_CR68);
1196}
1197
1198static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
1199{
1200        struct zd_ioreq16 ioreqs[3];
1201
1202        ioreqs[0].addr = ZD_CR67;
1203        ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
1204        ioreqs[1].addr = ZD_CR66;
1205        ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
1206        ioreqs[2].addr = ZD_CR65;
1207        ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
1208
1209        return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1210}
1211
1212static int update_channel_integration_and_calibration(struct zd_chip *chip,
1213                                                      u8 channel)
1214{
1215        int r;
1216
1217        if (!zd_rf_should_update_pwr_int(&chip->rf))
1218                return 0;
1219
1220        r = update_pwr_int(chip, channel);
1221        if (r)
1222                return r;
1223        if (zd_chip_is_zd1211b(chip)) {
1224                static const struct zd_ioreq16 ioreqs[] = {
1225                        { ZD_CR69, 0x28 },
1226                        {},
1227                        { ZD_CR69, 0x2a },
1228                };
1229
1230                r = update_ofdm_cal(chip, channel);
1231                if (r)
1232                        return r;
1233                r = update_pwr_cal(chip, channel);
1234                if (r)
1235                        return r;
1236                r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1237                if (r)
1238                        return r;
1239        }
1240
1241        return 0;
1242}
1243
1244/* The CCK baseband gain can be optionally patched by the EEPROM */
1245static int patch_cck_gain(struct zd_chip *chip)
1246{
1247        int r;
1248        u32 value;
1249
1250        if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf))
1251                return 0;
1252
1253        ZD_ASSERT(mutex_is_locked(&chip->mutex));
1254        r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
1255        if (r)
1256                return r;
1257        dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
1258        return zd_iowrite16_locked(chip, value & 0xff, ZD_CR47);
1259}
1260
1261int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
1262{
1263        int r, t;
1264
1265        mutex_lock(&chip->mutex);
1266        r = zd_chip_lock_phy_regs(chip);
1267        if (r)
1268                goto out;
1269        r = zd_rf_set_channel(&chip->rf, channel);
1270        if (r)
1271                goto unlock;
1272        r = update_channel_integration_and_calibration(chip, channel);
1273        if (r)
1274                goto unlock;
1275        r = patch_cck_gain(chip);
1276        if (r)
1277                goto unlock;
1278        r = patch_6m_band_edge(chip, channel);
1279        if (r)
1280                goto unlock;
1281        r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
1282unlock:
1283        t = zd_chip_unlock_phy_regs(chip);
1284        if (t && !r)
1285                r = t;
1286out:
1287        mutex_unlock(&chip->mutex);
1288        return r;
1289}
1290
1291u8 zd_chip_get_channel(struct zd_chip *chip)
1292{
1293        u8 channel;
1294
1295        mutex_lock(&chip->mutex);
1296        channel = chip->rf.channel;
1297        mutex_unlock(&chip->mutex);
1298        return channel;
1299}
1300
1301int zd_chip_control_leds(struct zd_chip *chip, enum led_status status)
1302{
1303        const zd_addr_t a[] = {
1304                fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1305                CR_LED,
1306        };
1307
1308        int r;
1309        u16 v[ARRAY_SIZE(a)];
1310        struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
1311                [0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) },
1312                [1] = { CR_LED },
1313        };
1314        u16 other_led;
1315
1316        mutex_lock(&chip->mutex);
1317        r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a));
1318        if (r)
1319                goto out;
1320
1321        other_led = chip->link_led == LED1 ? LED2 : LED1;
1322
1323        switch (status) {
1324        case ZD_LED_OFF:
1325                ioreqs[0].value = FW_LINK_OFF;
1326                ioreqs[1].value = v[1] & ~(LED1|LED2);
1327                break;
1328        case ZD_LED_SCANNING:
1329                ioreqs[0].value = FW_LINK_OFF;
1330                ioreqs[1].value = v[1] & ~other_led;
1331                if ((u32)ktime_get_seconds() % 3 == 0) {
1332                        ioreqs[1].value &= ~chip->link_led;
1333                } else {
1334                        ioreqs[1].value |= chip->link_led;
1335                }
1336                break;
1337        case ZD_LED_ASSOCIATED:
1338                ioreqs[0].value = FW_LINK_TX;
1339                ioreqs[1].value = v[1] & ~other_led;
1340                ioreqs[1].value |= chip->link_led;
1341                break;
1342        default:
1343                r = -EINVAL;
1344                goto out;
1345        }
1346
1347        if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
1348                r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1349                if (r)
1350                        goto out;
1351        }
1352        r = 0;
1353out:
1354        mutex_unlock(&chip->mutex);
1355        return r;
1356}
1357
1358int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates)
1359{
1360        int r;
1361
1362        if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G))
1363                return -EINVAL;
1364
1365        mutex_lock(&chip->mutex);
1366        r = zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
1367        mutex_unlock(&chip->mutex);
1368        return r;
1369}
1370
1371static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame)
1372{
1373        return ZD_OFDM | zd_ofdm_plcp_header_rate(rx_frame);
1374}
1375
1376/**
1377 * zd_rx_rate - report zd-rate
1378 * @rx_frame: received frame
1379 * @status: rx_status as given by the device
1380 *
1381 * This function converts the rate as encoded in the received packet to the
1382 * zd-rate, we are using on other places in the driver.
1383 */
1384u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
1385{
1386        u8 zd_rate;
1387        if (status->frame_status & ZD_RX_OFDM) {
1388                zd_rate = zd_rate_from_ofdm_plcp_header(rx_frame);
1389        } else {
1390                switch (zd_cck_plcp_header_signal(rx_frame)) {
1391                case ZD_CCK_PLCP_SIGNAL_1M:
1392                        zd_rate = ZD_CCK_RATE_1M;
1393                        break;
1394                case ZD_CCK_PLCP_SIGNAL_2M:
1395                        zd_rate = ZD_CCK_RATE_2M;
1396                        break;
1397                case ZD_CCK_PLCP_SIGNAL_5M5:
1398                        zd_rate = ZD_CCK_RATE_5_5M;
1399                        break;
1400                case ZD_CCK_PLCP_SIGNAL_11M:
1401                        zd_rate = ZD_CCK_RATE_11M;
1402                        break;
1403                default:
1404                        zd_rate = 0;
1405                }
1406        }
1407
1408        return zd_rate;
1409}
1410
1411int zd_chip_switch_radio_on(struct zd_chip *chip)
1412{
1413        int r;
1414
1415        mutex_lock(&chip->mutex);
1416        r = zd_switch_radio_on(&chip->rf);
1417        mutex_unlock(&chip->mutex);
1418        return r;
1419}
1420
1421int zd_chip_switch_radio_off(struct zd_chip *chip)
1422{
1423        int r;
1424
1425        mutex_lock(&chip->mutex);
1426        r = zd_switch_radio_off(&chip->rf);
1427        mutex_unlock(&chip->mutex);
1428        return r;
1429}
1430
1431int zd_chip_enable_int(struct zd_chip *chip)
1432{
1433        int r;
1434
1435        mutex_lock(&chip->mutex);
1436        r = zd_usb_enable_int(&chip->usb);
1437        mutex_unlock(&chip->mutex);
1438        return r;
1439}
1440
1441void zd_chip_disable_int(struct zd_chip *chip)
1442{
1443        mutex_lock(&chip->mutex);
1444        zd_usb_disable_int(&chip->usb);
1445        mutex_unlock(&chip->mutex);
1446
1447        /* cancel pending interrupt work */
1448        cancel_work_sync(&zd_chip_to_mac(chip)->process_intr);
1449}
1450
1451int zd_chip_enable_rxtx(struct zd_chip *chip)
1452{
1453        int r;
1454
1455        mutex_lock(&chip->mutex);
1456        zd_usb_enable_tx(&chip->usb);
1457        r = zd_usb_enable_rx(&chip->usb);
1458        zd_tx_watchdog_enable(&chip->usb);
1459        mutex_unlock(&chip->mutex);
1460        return r;
1461}
1462
1463void zd_chip_disable_rxtx(struct zd_chip *chip)
1464{
1465        mutex_lock(&chip->mutex);
1466        zd_tx_watchdog_disable(&chip->usb);
1467        zd_usb_disable_rx(&chip->usb);
1468        zd_usb_disable_tx(&chip->usb);
1469        mutex_unlock(&chip->mutex);
1470}
1471
1472int zd_rfwritev_locked(struct zd_chip *chip,
1473                       const u32* values, unsigned int count, u8 bits)
1474{
1475        int r;
1476        unsigned int i;
1477
1478        for (i = 0; i < count; i++) {
1479                r = zd_rfwrite_locked(chip, values[i], bits);
1480                if (r)
1481                        return r;
1482        }
1483
1484        return 0;
1485}
1486
1487/*
1488 * We can optionally program the RF directly through CR regs, if supported by
1489 * the hardware. This is much faster than the older method.
1490 */
1491int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
1492{
1493        const struct zd_ioreq16 ioreqs[] = {
1494                { ZD_CR244, (value >> 16) & 0xff },
1495                { ZD_CR243, (value >>  8) & 0xff },
1496                { ZD_CR242,  value        & 0xff },
1497        };
1498        ZD_ASSERT(mutex_is_locked(&chip->mutex));
1499        return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1500}
1501
1502int zd_rfwritev_cr_locked(struct zd_chip *chip,
1503                          const u32 *values, unsigned int count)
1504{
1505        int r;
1506        unsigned int i;
1507
1508        for (i = 0; i < count; i++) {
1509                r = zd_rfwrite_cr_locked(chip, values[i]);
1510                if (r)
1511                        return r;
1512        }
1513
1514        return 0;
1515}
1516
1517int zd_chip_set_multicast_hash(struct zd_chip *chip,
1518                               struct zd_mc_hash *hash)
1519{
1520        const struct zd_ioreq32 ioreqs[] = {
1521                { CR_GROUP_HASH_P1, hash->low },
1522                { CR_GROUP_HASH_P2, hash->high },
1523        };
1524
1525        return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
1526}
1527
1528u64 zd_chip_get_tsf(struct zd_chip *chip)
1529{
1530        int r;
1531        static const zd_addr_t aw_pt_bi_addr[] =
1532                { CR_TSF_LOW_PART, CR_TSF_HIGH_PART };
1533        u32 values[2];
1534        u64 tsf;
1535
1536        mutex_lock(&chip->mutex);
1537        r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
1538                                ARRAY_SIZE(aw_pt_bi_addr));
1539        mutex_unlock(&chip->mutex);
1540        if (r)
1541                return 0;
1542
1543        tsf = values[1];
1544        tsf = (tsf << 32) | values[0];
1545
1546        return tsf;
1547}
1548