linux/drivers/pci/pci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/msi.h>
  17#include <linux/of.h>
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/pci_hotplug.h>
  31#include <linux/vmalloc.h>
  32#include <asm/dma.h>
  33#include <linux/aer.h>
  34#include "pci.h"
  35
  36DEFINE_MUTEX(pci_slot_mutex);
  37
  38const char *pci_power_names[] = {
  39        "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  40};
  41EXPORT_SYMBOL_GPL(pci_power_names);
  42
  43int isa_dma_bridge_buggy;
  44EXPORT_SYMBOL(isa_dma_bridge_buggy);
  45
  46int pci_pci_problems;
  47EXPORT_SYMBOL(pci_pci_problems);
  48
  49unsigned int pci_pm_d3hot_delay;
  50
  51static void pci_pme_list_scan(struct work_struct *work);
  52
  53static LIST_HEAD(pci_pme_list);
  54static DEFINE_MUTEX(pci_pme_list_mutex);
  55static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  56
  57struct pci_pme_device {
  58        struct list_head list;
  59        struct pci_dev *dev;
  60};
  61
  62#define PME_TIMEOUT 1000 /* How long between PME checks */
  63
  64static void pci_dev_d3_sleep(struct pci_dev *dev)
  65{
  66        unsigned int delay = dev->d3hot_delay;
  67
  68        if (delay < pci_pm_d3hot_delay)
  69                delay = pci_pm_d3hot_delay;
  70
  71        if (delay)
  72                msleep(delay);
  73}
  74
  75#ifdef CONFIG_PCI_DOMAINS
  76int pci_domains_supported = 1;
  77#endif
  78
  79#define DEFAULT_CARDBUS_IO_SIZE         (256)
  80#define DEFAULT_CARDBUS_MEM_SIZE        (64*1024*1024)
  81/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  82unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  83unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  84
  85#define DEFAULT_HOTPLUG_IO_SIZE         (256)
  86#define DEFAULT_HOTPLUG_MMIO_SIZE       (2*1024*1024)
  87#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE  (2*1024*1024)
  88/* hpiosize=nn can override this */
  89unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  90/*
  91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
  92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
  93 * pci=hpmemsize=nnM overrides both
  94 */
  95unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
  96unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
  97
  98#define DEFAULT_HOTPLUG_BUS_SIZE        1
  99unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
 100
 101
 102/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
 103#ifdef CONFIG_PCIE_BUS_TUNE_OFF
 104enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
 105#elif defined CONFIG_PCIE_BUS_SAFE
 106enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
 107#elif defined CONFIG_PCIE_BUS_PERFORMANCE
 108enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
 109#elif defined CONFIG_PCIE_BUS_PEER2PEER
 110enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
 111#else
 112enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 113#endif
 114
 115/*
 116 * The default CLS is used if arch didn't set CLS explicitly and not
 117 * all pci devices agree on the same value.  Arch can override either
 118 * the dfl or actual value as it sees fit.  Don't forget this is
 119 * measured in 32-bit words, not bytes.
 120 */
 121u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 122u8 pci_cache_line_size;
 123
 124/*
 125 * If we set up a device for bus mastering, we need to check the latency
 126 * timer as certain BIOSes forget to set it properly.
 127 */
 128unsigned int pcibios_max_latency = 255;
 129
 130/* If set, the PCIe ARI capability will not be used. */
 131static bool pcie_ari_disabled;
 132
 133/* If set, the PCIe ATS capability will not be used. */
 134static bool pcie_ats_disabled;
 135
 136/* If set, the PCI config space of each device is printed during boot. */
 137bool pci_early_dump;
 138
 139bool pci_ats_disabled(void)
 140{
 141        return pcie_ats_disabled;
 142}
 143EXPORT_SYMBOL_GPL(pci_ats_disabled);
 144
 145/* Disable bridge_d3 for all PCIe ports */
 146static bool pci_bridge_d3_disable;
 147/* Force bridge_d3 for all PCIe ports */
 148static bool pci_bridge_d3_force;
 149
 150static int __init pcie_port_pm_setup(char *str)
 151{
 152        if (!strcmp(str, "off"))
 153                pci_bridge_d3_disable = true;
 154        else if (!strcmp(str, "force"))
 155                pci_bridge_d3_force = true;
 156        return 1;
 157}
 158__setup("pcie_port_pm=", pcie_port_pm_setup);
 159
 160/* Time to wait after a reset for device to become responsive */
 161#define PCIE_RESET_READY_POLL_MS 60000
 162
 163/**
 164 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 165 * @bus: pointer to PCI bus structure to search
 166 *
 167 * Given a PCI bus, returns the highest PCI bus number present in the set
 168 * including the given PCI bus and its list of child PCI buses.
 169 */
 170unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 171{
 172        struct pci_bus *tmp;
 173        unsigned char max, n;
 174
 175        max = bus->busn_res.end;
 176        list_for_each_entry(tmp, &bus->children, node) {
 177                n = pci_bus_max_busnr(tmp);
 178                if (n > max)
 179                        max = n;
 180        }
 181        return max;
 182}
 183EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 184
 185/**
 186 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
 187 * @pdev: the PCI device
 188 *
 189 * Returns error bits set in PCI_STATUS and clears them.
 190 */
 191int pci_status_get_and_clear_errors(struct pci_dev *pdev)
 192{
 193        u16 status;
 194        int ret;
 195
 196        ret = pci_read_config_word(pdev, PCI_STATUS, &status);
 197        if (ret != PCIBIOS_SUCCESSFUL)
 198                return -EIO;
 199
 200        status &= PCI_STATUS_ERROR_BITS;
 201        if (status)
 202                pci_write_config_word(pdev, PCI_STATUS, status);
 203
 204        return status;
 205}
 206EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
 207
 208#ifdef CONFIG_HAS_IOMEM
 209void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 210{
 211        struct resource *res = &pdev->resource[bar];
 212
 213        /*
 214         * Make sure the BAR is actually a memory resource, not an IO resource
 215         */
 216        if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 217                pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 218                return NULL;
 219        }
 220        return ioremap(res->start, resource_size(res));
 221}
 222EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 223
 224void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 225{
 226        /*
 227         * Make sure the BAR is actually a memory resource, not an IO resource
 228         */
 229        if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 230                WARN_ON(1);
 231                return NULL;
 232        }
 233        return ioremap_wc(pci_resource_start(pdev, bar),
 234                          pci_resource_len(pdev, bar));
 235}
 236EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 237#endif
 238
 239/**
 240 * pci_dev_str_match_path - test if a path string matches a device
 241 * @dev: the PCI device to test
 242 * @path: string to match the device against
 243 * @endptr: pointer to the string after the match
 244 *
 245 * Test if a string (typically from a kernel parameter) formatted as a
 246 * path of device/function addresses matches a PCI device. The string must
 247 * be of the form:
 248 *
 249 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 250 *
 251 * A path for a device can be obtained using 'lspci -t'.  Using a path
 252 * is more robust against bus renumbering than using only a single bus,
 253 * device and function address.
 254 *
 255 * Returns 1 if the string matches the device, 0 if it does not and
 256 * a negative error code if it fails to parse the string.
 257 */
 258static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 259                                  const char **endptr)
 260{
 261        int ret;
 262        int seg, bus, slot, func;
 263        char *wpath, *p;
 264        char end;
 265
 266        *endptr = strchrnul(path, ';');
 267
 268        wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
 269        if (!wpath)
 270                return -ENOMEM;
 271
 272        while (1) {
 273                p = strrchr(wpath, '/');
 274                if (!p)
 275                        break;
 276                ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 277                if (ret != 2) {
 278                        ret = -EINVAL;
 279                        goto free_and_exit;
 280                }
 281
 282                if (dev->devfn != PCI_DEVFN(slot, func)) {
 283                        ret = 0;
 284                        goto free_and_exit;
 285                }
 286
 287                /*
 288                 * Note: we don't need to get a reference to the upstream
 289                 * bridge because we hold a reference to the top level
 290                 * device which should hold a reference to the bridge,
 291                 * and so on.
 292                 */
 293                dev = pci_upstream_bridge(dev);
 294                if (!dev) {
 295                        ret = 0;
 296                        goto free_and_exit;
 297                }
 298
 299                *p = 0;
 300        }
 301
 302        ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 303                     &func, &end);
 304        if (ret != 4) {
 305                seg = 0;
 306                ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 307                if (ret != 3) {
 308                        ret = -EINVAL;
 309                        goto free_and_exit;
 310                }
 311        }
 312
 313        ret = (seg == pci_domain_nr(dev->bus) &&
 314               bus == dev->bus->number &&
 315               dev->devfn == PCI_DEVFN(slot, func));
 316
 317free_and_exit:
 318        kfree(wpath);
 319        return ret;
 320}
 321
 322/**
 323 * pci_dev_str_match - test if a string matches a device
 324 * @dev: the PCI device to test
 325 * @p: string to match the device against
 326 * @endptr: pointer to the string after the match
 327 *
 328 * Test if a string (typically from a kernel parameter) matches a specified
 329 * PCI device. The string may be of one of the following formats:
 330 *
 331 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 332 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 333 *
 334 * The first format specifies a PCI bus/device/function address which
 335 * may change if new hardware is inserted, if motherboard firmware changes,
 336 * or due to changes caused in kernel parameters. If the domain is
 337 * left unspecified, it is taken to be 0.  In order to be robust against
 338 * bus renumbering issues, a path of PCI device/function numbers may be used
 339 * to address the specific device.  The path for a device can be determined
 340 * through the use of 'lspci -t'.
 341 *
 342 * The second format matches devices using IDs in the configuration
 343 * space which may match multiple devices in the system. A value of 0
 344 * for any field will match all devices. (Note: this differs from
 345 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 346 * legacy reasons and convenience so users don't have to specify
 347 * FFFFFFFFs on the command line.)
 348 *
 349 * Returns 1 if the string matches the device, 0 if it does not and
 350 * a negative error code if the string cannot be parsed.
 351 */
 352static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 353                             const char **endptr)
 354{
 355        int ret;
 356        int count;
 357        unsigned short vendor, device, subsystem_vendor, subsystem_device;
 358
 359        if (strncmp(p, "pci:", 4) == 0) {
 360                /* PCI vendor/device (subvendor/subdevice) IDs are specified */
 361                p += 4;
 362                ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 363                             &subsystem_vendor, &subsystem_device, &count);
 364                if (ret != 4) {
 365                        ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 366                        if (ret != 2)
 367                                return -EINVAL;
 368
 369                        subsystem_vendor = 0;
 370                        subsystem_device = 0;
 371                }
 372
 373                p += count;
 374
 375                if ((!vendor || vendor == dev->vendor) &&
 376                    (!device || device == dev->device) &&
 377                    (!subsystem_vendor ||
 378                            subsystem_vendor == dev->subsystem_vendor) &&
 379                    (!subsystem_device ||
 380                            subsystem_device == dev->subsystem_device))
 381                        goto found;
 382        } else {
 383                /*
 384                 * PCI Bus, Device, Function IDs are specified
 385                 * (optionally, may include a path of devfns following it)
 386                 */
 387                ret = pci_dev_str_match_path(dev, p, &p);
 388                if (ret < 0)
 389                        return ret;
 390                else if (ret)
 391                        goto found;
 392        }
 393
 394        *endptr = p;
 395        return 0;
 396
 397found:
 398        *endptr = p;
 399        return 1;
 400}
 401
 402static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 403                                  u8 pos, int cap, int *ttl)
 404{
 405        u8 id;
 406        u16 ent;
 407
 408        pci_bus_read_config_byte(bus, devfn, pos, &pos);
 409
 410        while ((*ttl)--) {
 411                if (pos < 0x40)
 412                        break;
 413                pos &= ~3;
 414                pci_bus_read_config_word(bus, devfn, pos, &ent);
 415
 416                id = ent & 0xff;
 417                if (id == 0xff)
 418                        break;
 419                if (id == cap)
 420                        return pos;
 421                pos = (ent >> 8);
 422        }
 423        return 0;
 424}
 425
 426static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 427                              u8 pos, int cap)
 428{
 429        int ttl = PCI_FIND_CAP_TTL;
 430
 431        return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 432}
 433
 434u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 435{
 436        return __pci_find_next_cap(dev->bus, dev->devfn,
 437                                   pos + PCI_CAP_LIST_NEXT, cap);
 438}
 439EXPORT_SYMBOL_GPL(pci_find_next_capability);
 440
 441static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
 442                                    unsigned int devfn, u8 hdr_type)
 443{
 444        u16 status;
 445
 446        pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 447        if (!(status & PCI_STATUS_CAP_LIST))
 448                return 0;
 449
 450        switch (hdr_type) {
 451        case PCI_HEADER_TYPE_NORMAL:
 452        case PCI_HEADER_TYPE_BRIDGE:
 453                return PCI_CAPABILITY_LIST;
 454        case PCI_HEADER_TYPE_CARDBUS:
 455                return PCI_CB_CAPABILITY_LIST;
 456        }
 457
 458        return 0;
 459}
 460
 461/**
 462 * pci_find_capability - query for devices' capabilities
 463 * @dev: PCI device to query
 464 * @cap: capability code
 465 *
 466 * Tell if a device supports a given PCI capability.
 467 * Returns the address of the requested capability structure within the
 468 * device's PCI configuration space or 0 in case the device does not
 469 * support it.  Possible values for @cap include:
 470 *
 471 *  %PCI_CAP_ID_PM           Power Management
 472 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 473 *  %PCI_CAP_ID_VPD          Vital Product Data
 474 *  %PCI_CAP_ID_SLOTID       Slot Identification
 475 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 476 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 477 *  %PCI_CAP_ID_PCIX         PCI-X
 478 *  %PCI_CAP_ID_EXP          PCI Express
 479 */
 480u8 pci_find_capability(struct pci_dev *dev, int cap)
 481{
 482        u8 pos;
 483
 484        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 485        if (pos)
 486                pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 487
 488        return pos;
 489}
 490EXPORT_SYMBOL(pci_find_capability);
 491
 492/**
 493 * pci_bus_find_capability - query for devices' capabilities
 494 * @bus: the PCI bus to query
 495 * @devfn: PCI device to query
 496 * @cap: capability code
 497 *
 498 * Like pci_find_capability() but works for PCI devices that do not have a
 499 * pci_dev structure set up yet.
 500 *
 501 * Returns the address of the requested capability structure within the
 502 * device's PCI configuration space or 0 in case the device does not
 503 * support it.
 504 */
 505u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 506{
 507        u8 hdr_type, pos;
 508
 509        pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 510
 511        pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 512        if (pos)
 513                pos = __pci_find_next_cap(bus, devfn, pos, cap);
 514
 515        return pos;
 516}
 517EXPORT_SYMBOL(pci_bus_find_capability);
 518
 519/**
 520 * pci_find_next_ext_capability - Find an extended capability
 521 * @dev: PCI device to query
 522 * @start: address at which to start looking (0 to start at beginning of list)
 523 * @cap: capability code
 524 *
 525 * Returns the address of the next matching extended capability structure
 526 * within the device's PCI configuration space or 0 if the device does
 527 * not support it.  Some capabilities can occur several times, e.g., the
 528 * vendor-specific capability, and this provides a way to find them all.
 529 */
 530u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
 531{
 532        u32 header;
 533        int ttl;
 534        u16 pos = PCI_CFG_SPACE_SIZE;
 535
 536        /* minimum 8 bytes per capability */
 537        ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 538
 539        if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 540                return 0;
 541
 542        if (start)
 543                pos = start;
 544
 545        if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 546                return 0;
 547
 548        /*
 549         * If we have no capabilities, this is indicated by cap ID,
 550         * cap version and next pointer all being 0.
 551         */
 552        if (header == 0)
 553                return 0;
 554
 555        while (ttl-- > 0) {
 556                if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 557                        return pos;
 558
 559                pos = PCI_EXT_CAP_NEXT(header);
 560                if (pos < PCI_CFG_SPACE_SIZE)
 561                        break;
 562
 563                if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 564                        break;
 565        }
 566
 567        return 0;
 568}
 569EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 570
 571/**
 572 * pci_find_ext_capability - Find an extended capability
 573 * @dev: PCI device to query
 574 * @cap: capability code
 575 *
 576 * Returns the address of the requested extended capability structure
 577 * within the device's PCI configuration space or 0 if the device does
 578 * not support it.  Possible values for @cap include:
 579 *
 580 *  %PCI_EXT_CAP_ID_ERR         Advanced Error Reporting
 581 *  %PCI_EXT_CAP_ID_VC          Virtual Channel
 582 *  %PCI_EXT_CAP_ID_DSN         Device Serial Number
 583 *  %PCI_EXT_CAP_ID_PWR         Power Budgeting
 584 */
 585u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
 586{
 587        return pci_find_next_ext_capability(dev, 0, cap);
 588}
 589EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 590
 591/**
 592 * pci_get_dsn - Read and return the 8-byte Device Serial Number
 593 * @dev: PCI device to query
 594 *
 595 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
 596 * Number.
 597 *
 598 * Returns the DSN, or zero if the capability does not exist.
 599 */
 600u64 pci_get_dsn(struct pci_dev *dev)
 601{
 602        u32 dword;
 603        u64 dsn;
 604        int pos;
 605
 606        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
 607        if (!pos)
 608                return 0;
 609
 610        /*
 611         * The Device Serial Number is two dwords offset 4 bytes from the
 612         * capability position. The specification says that the first dword is
 613         * the lower half, and the second dword is the upper half.
 614         */
 615        pos += 4;
 616        pci_read_config_dword(dev, pos, &dword);
 617        dsn = (u64)dword;
 618        pci_read_config_dword(dev, pos + 4, &dword);
 619        dsn |= ((u64)dword) << 32;
 620
 621        return dsn;
 622}
 623EXPORT_SYMBOL_GPL(pci_get_dsn);
 624
 625static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
 626{
 627        int rc, ttl = PCI_FIND_CAP_TTL;
 628        u8 cap, mask;
 629
 630        if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 631                mask = HT_3BIT_CAP_MASK;
 632        else
 633                mask = HT_5BIT_CAP_MASK;
 634
 635        pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 636                                      PCI_CAP_ID_HT, &ttl);
 637        while (pos) {
 638                rc = pci_read_config_byte(dev, pos + 3, &cap);
 639                if (rc != PCIBIOS_SUCCESSFUL)
 640                        return 0;
 641
 642                if ((cap & mask) == ht_cap)
 643                        return pos;
 644
 645                pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 646                                              pos + PCI_CAP_LIST_NEXT,
 647                                              PCI_CAP_ID_HT, &ttl);
 648        }
 649
 650        return 0;
 651}
 652
 653/**
 654 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
 655 * @dev: PCI device to query
 656 * @pos: Position from which to continue searching
 657 * @ht_cap: HyperTransport capability code
 658 *
 659 * To be used in conjunction with pci_find_ht_capability() to search for
 660 * all capabilities matching @ht_cap. @pos should always be a value returned
 661 * from pci_find_ht_capability().
 662 *
 663 * NB. To be 100% safe against broken PCI devices, the caller should take
 664 * steps to avoid an infinite loop.
 665 */
 666u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
 667{
 668        return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 669}
 670EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 671
 672/**
 673 * pci_find_ht_capability - query a device's HyperTransport capabilities
 674 * @dev: PCI device to query
 675 * @ht_cap: HyperTransport capability code
 676 *
 677 * Tell if a device supports a given HyperTransport capability.
 678 * Returns an address within the device's PCI configuration space
 679 * or 0 in case the device does not support the request capability.
 680 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 681 * which has a HyperTransport capability matching @ht_cap.
 682 */
 683u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 684{
 685        u8 pos;
 686
 687        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 688        if (pos)
 689                pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 690
 691        return pos;
 692}
 693EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 694
 695/**
 696 * pci_find_vsec_capability - Find a vendor-specific extended capability
 697 * @dev: PCI device to query
 698 * @vendor: Vendor ID for which capability is defined
 699 * @cap: Vendor-specific capability ID
 700 *
 701 * If @dev has Vendor ID @vendor, search for a VSEC capability with
 702 * VSEC ID @cap. If found, return the capability offset in
 703 * config space; otherwise return 0.
 704 */
 705u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
 706{
 707        u16 vsec = 0;
 708        u32 header;
 709
 710        if (vendor != dev->vendor)
 711                return 0;
 712
 713        while ((vsec = pci_find_next_ext_capability(dev, vsec,
 714                                                     PCI_EXT_CAP_ID_VNDR))) {
 715                if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
 716                                          &header) == PCIBIOS_SUCCESSFUL &&
 717                    PCI_VNDR_HEADER_ID(header) == cap)
 718                        return vsec;
 719        }
 720
 721        return 0;
 722}
 723EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
 724
 725/**
 726 * pci_find_parent_resource - return resource region of parent bus of given
 727 *                            region
 728 * @dev: PCI device structure contains resources to be searched
 729 * @res: child resource record for which parent is sought
 730 *
 731 * For given resource region of given device, return the resource region of
 732 * parent bus the given region is contained in.
 733 */
 734struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 735                                          struct resource *res)
 736{
 737        const struct pci_bus *bus = dev->bus;
 738        struct resource *r;
 739        int i;
 740
 741        pci_bus_for_each_resource(bus, r, i) {
 742                if (!r)
 743                        continue;
 744                if (resource_contains(r, res)) {
 745
 746                        /*
 747                         * If the window is prefetchable but the BAR is
 748                         * not, the allocator made a mistake.
 749                         */
 750                        if (r->flags & IORESOURCE_PREFETCH &&
 751                            !(res->flags & IORESOURCE_PREFETCH))
 752                                return NULL;
 753
 754                        /*
 755                         * If we're below a transparent bridge, there may
 756                         * be both a positively-decoded aperture and a
 757                         * subtractively-decoded region that contain the BAR.
 758                         * We want the positively-decoded one, so this depends
 759                         * on pci_bus_for_each_resource() giving us those
 760                         * first.
 761                         */
 762                        return r;
 763                }
 764        }
 765        return NULL;
 766}
 767EXPORT_SYMBOL(pci_find_parent_resource);
 768
 769/**
 770 * pci_find_resource - Return matching PCI device resource
 771 * @dev: PCI device to query
 772 * @res: Resource to look for
 773 *
 774 * Goes over standard PCI resources (BARs) and checks if the given resource
 775 * is partially or fully contained in any of them. In that case the
 776 * matching resource is returned, %NULL otherwise.
 777 */
 778struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 779{
 780        int i;
 781
 782        for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 783                struct resource *r = &dev->resource[i];
 784
 785                if (r->start && resource_contains(r, res))
 786                        return r;
 787        }
 788
 789        return NULL;
 790}
 791EXPORT_SYMBOL(pci_find_resource);
 792
 793/**
 794 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 795 * @dev: the PCI device to operate on
 796 * @pos: config space offset of status word
 797 * @mask: mask of bit(s) to care about in status word
 798 *
 799 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 800 */
 801int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 802{
 803        int i;
 804
 805        /* Wait for Transaction Pending bit clean */
 806        for (i = 0; i < 4; i++) {
 807                u16 status;
 808                if (i)
 809                        msleep((1 << (i - 1)) * 100);
 810
 811                pci_read_config_word(dev, pos, &status);
 812                if (!(status & mask))
 813                        return 1;
 814        }
 815
 816        return 0;
 817}
 818
 819static int pci_acs_enable;
 820
 821/**
 822 * pci_request_acs - ask for ACS to be enabled if supported
 823 */
 824void pci_request_acs(void)
 825{
 826        pci_acs_enable = 1;
 827}
 828
 829static const char *disable_acs_redir_param;
 830
 831/**
 832 * pci_disable_acs_redir - disable ACS redirect capabilities
 833 * @dev: the PCI device
 834 *
 835 * For only devices specified in the disable_acs_redir parameter.
 836 */
 837static void pci_disable_acs_redir(struct pci_dev *dev)
 838{
 839        int ret = 0;
 840        const char *p;
 841        int pos;
 842        u16 ctrl;
 843
 844        if (!disable_acs_redir_param)
 845                return;
 846
 847        p = disable_acs_redir_param;
 848        while (*p) {
 849                ret = pci_dev_str_match(dev, p, &p);
 850                if (ret < 0) {
 851                        pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
 852                                     disable_acs_redir_param);
 853
 854                        break;
 855                } else if (ret == 1) {
 856                        /* Found a match */
 857                        break;
 858                }
 859
 860                if (*p != ';' && *p != ',') {
 861                        /* End of param or invalid format */
 862                        break;
 863                }
 864                p++;
 865        }
 866
 867        if (ret != 1)
 868                return;
 869
 870        if (!pci_dev_specific_disable_acs_redir(dev))
 871                return;
 872
 873        pos = dev->acs_cap;
 874        if (!pos) {
 875                pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
 876                return;
 877        }
 878
 879        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 880
 881        /* P2P Request & Completion Redirect */
 882        ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
 883
 884        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 885
 886        pci_info(dev, "disabled ACS redirect\n");
 887}
 888
 889/**
 890 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
 891 * @dev: the PCI device
 892 */
 893static void pci_std_enable_acs(struct pci_dev *dev)
 894{
 895        int pos;
 896        u16 cap;
 897        u16 ctrl;
 898
 899        pos = dev->acs_cap;
 900        if (!pos)
 901                return;
 902
 903        pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
 904        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 905
 906        /* Source Validation */
 907        ctrl |= (cap & PCI_ACS_SV);
 908
 909        /* P2P Request Redirect */
 910        ctrl |= (cap & PCI_ACS_RR);
 911
 912        /* P2P Completion Redirect */
 913        ctrl |= (cap & PCI_ACS_CR);
 914
 915        /* Upstream Forwarding */
 916        ctrl |= (cap & PCI_ACS_UF);
 917
 918        /* Enable Translation Blocking for external devices */
 919        if (dev->external_facing || dev->untrusted)
 920                ctrl |= (cap & PCI_ACS_TB);
 921
 922        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 923}
 924
 925/**
 926 * pci_enable_acs - enable ACS if hardware support it
 927 * @dev: the PCI device
 928 */
 929static void pci_enable_acs(struct pci_dev *dev)
 930{
 931        if (!pci_acs_enable)
 932                goto disable_acs_redir;
 933
 934        if (!pci_dev_specific_enable_acs(dev))
 935                goto disable_acs_redir;
 936
 937        pci_std_enable_acs(dev);
 938
 939disable_acs_redir:
 940        /*
 941         * Note: pci_disable_acs_redir() must be called even if ACS was not
 942         * enabled by the kernel because it may have been enabled by
 943         * platform firmware.  So if we are told to disable it, we should
 944         * always disable it after setting the kernel's default
 945         * preferences.
 946         */
 947        pci_disable_acs_redir(dev);
 948}
 949
 950/**
 951 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 952 * @dev: PCI device to have its BARs restored
 953 *
 954 * Restore the BAR values for a given device, so as to make it
 955 * accessible by its driver.
 956 */
 957static void pci_restore_bars(struct pci_dev *dev)
 958{
 959        int i;
 960
 961        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 962                pci_update_resource(dev, i);
 963}
 964
 965static const struct pci_platform_pm_ops *pci_platform_pm;
 966
 967int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
 968{
 969        if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
 970            !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
 971                return -EINVAL;
 972        pci_platform_pm = ops;
 973        return 0;
 974}
 975
 976static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 977{
 978        return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 979}
 980
 981static inline int platform_pci_set_power_state(struct pci_dev *dev,
 982                                               pci_power_t t)
 983{
 984        return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 985}
 986
 987static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
 988{
 989        return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
 990}
 991
 992static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
 993{
 994        if (pci_platform_pm && pci_platform_pm->refresh_state)
 995                pci_platform_pm->refresh_state(dev);
 996}
 997
 998static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 999{
1000        return pci_platform_pm ?
1001                        pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
1002}
1003
1004static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1005{
1006        return pci_platform_pm ?
1007                        pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
1008}
1009
1010static inline bool platform_pci_need_resume(struct pci_dev *dev)
1011{
1012        return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
1013}
1014
1015static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1016{
1017        if (pci_platform_pm && pci_platform_pm->bridge_d3)
1018                return pci_platform_pm->bridge_d3(dev);
1019        return false;
1020}
1021
1022/**
1023 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1024 *                           given PCI device
1025 * @dev: PCI device to handle.
1026 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1027 *
1028 * RETURN VALUE:
1029 * -EINVAL if the requested state is invalid.
1030 * -EIO if device does not support PCI PM or its PM capabilities register has a
1031 * wrong version, or device doesn't support the requested state.
1032 * 0 if device already is in the requested state.
1033 * 0 if device's power state has been successfully changed.
1034 */
1035static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1036{
1037        u16 pmcsr;
1038        bool need_restore = false;
1039
1040        /* Check if we're already there */
1041        if (dev->current_state == state)
1042                return 0;
1043
1044        if (!dev->pm_cap)
1045                return -EIO;
1046
1047        if (state < PCI_D0 || state > PCI_D3hot)
1048                return -EINVAL;
1049
1050        /*
1051         * Validate transition: We can enter D0 from any state, but if
1052         * we're already in a low-power state, we can only go deeper.  E.g.,
1053         * we can go from D1 to D3, but we can't go directly from D3 to D1;
1054         * we'd have to go from D3 to D0, then to D1.
1055         */
1056        if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1057            && dev->current_state > state) {
1058                pci_err(dev, "invalid power transition (from %s to %s)\n",
1059                        pci_power_name(dev->current_state),
1060                        pci_power_name(state));
1061                return -EINVAL;
1062        }
1063
1064        /* Check if this device supports the desired state */
1065        if ((state == PCI_D1 && !dev->d1_support)
1066           || (state == PCI_D2 && !dev->d2_support))
1067                return -EIO;
1068
1069        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1070        if (pmcsr == (u16) ~0) {
1071                pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1072                        pci_power_name(dev->current_state),
1073                        pci_power_name(state));
1074                return -EIO;
1075        }
1076
1077        /*
1078         * If we're (effectively) in D3, force entire word to 0.
1079         * This doesn't affect PME_Status, disables PME_En, and
1080         * sets PowerState to 0.
1081         */
1082        switch (dev->current_state) {
1083        case PCI_D0:
1084        case PCI_D1:
1085        case PCI_D2:
1086                pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1087                pmcsr |= state;
1088                break;
1089        case PCI_D3hot:
1090        case PCI_D3cold:
1091        case PCI_UNKNOWN: /* Boot-up */
1092                if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1093                 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1094                        need_restore = true;
1095                fallthrough;    /* force to D0 */
1096        default:
1097                pmcsr = 0;
1098                break;
1099        }
1100
1101        /* Enter specified state */
1102        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1103
1104        /*
1105         * Mandatory power management transition delays; see PCI PM 1.1
1106         * 5.6.1 table 18
1107         */
1108        if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1109                pci_dev_d3_sleep(dev);
1110        else if (state == PCI_D2 || dev->current_state == PCI_D2)
1111                udelay(PCI_PM_D2_DELAY);
1112
1113        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1114        dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1115        if (dev->current_state != state)
1116                pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1117                         pci_power_name(dev->current_state),
1118                         pci_power_name(state));
1119
1120        /*
1121         * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1122         * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1123         * from D3hot to D0 _may_ perform an internal reset, thereby
1124         * going to "D0 Uninitialized" rather than "D0 Initialized".
1125         * For example, at least some versions of the 3c905B and the
1126         * 3c556B exhibit this behaviour.
1127         *
1128         * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1129         * devices in a D3hot state at boot.  Consequently, we need to
1130         * restore at least the BARs so that the device will be
1131         * accessible to its driver.
1132         */
1133        if (need_restore)
1134                pci_restore_bars(dev);
1135
1136        if (dev->bus->self)
1137                pcie_aspm_pm_state_change(dev->bus->self);
1138
1139        return 0;
1140}
1141
1142/**
1143 * pci_update_current_state - Read power state of given device and cache it
1144 * @dev: PCI device to handle.
1145 * @state: State to cache in case the device doesn't have the PM capability
1146 *
1147 * The power state is read from the PMCSR register, which however is
1148 * inaccessible in D3cold.  The platform firmware is therefore queried first
1149 * to detect accessibility of the register.  In case the platform firmware
1150 * reports an incorrect state or the device isn't power manageable by the
1151 * platform at all, we try to detect D3cold by testing accessibility of the
1152 * vendor ID in config space.
1153 */
1154void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1155{
1156        if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1157            !pci_device_is_present(dev)) {
1158                dev->current_state = PCI_D3cold;
1159        } else if (dev->pm_cap) {
1160                u16 pmcsr;
1161
1162                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1163                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1164        } else {
1165                dev->current_state = state;
1166        }
1167}
1168
1169/**
1170 * pci_refresh_power_state - Refresh the given device's power state data
1171 * @dev: Target PCI device.
1172 *
1173 * Ask the platform to refresh the devices power state information and invoke
1174 * pci_update_current_state() to update its current PCI power state.
1175 */
1176void pci_refresh_power_state(struct pci_dev *dev)
1177{
1178        if (platform_pci_power_manageable(dev))
1179                platform_pci_refresh_power_state(dev);
1180
1181        pci_update_current_state(dev, dev->current_state);
1182}
1183
1184/**
1185 * pci_platform_power_transition - Use platform to change device power state
1186 * @dev: PCI device to handle.
1187 * @state: State to put the device into.
1188 */
1189int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1190{
1191        int error;
1192
1193        if (platform_pci_power_manageable(dev)) {
1194                error = platform_pci_set_power_state(dev, state);
1195                if (!error)
1196                        pci_update_current_state(dev, state);
1197        } else
1198                error = -ENODEV;
1199
1200        if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1201                dev->current_state = PCI_D0;
1202
1203        return error;
1204}
1205EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1206
1207static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1208{
1209        pm_request_resume(&pci_dev->dev);
1210        return 0;
1211}
1212
1213/**
1214 * pci_resume_bus - Walk given bus and runtime resume devices on it
1215 * @bus: Top bus of the subtree to walk.
1216 */
1217void pci_resume_bus(struct pci_bus *bus)
1218{
1219        if (bus)
1220                pci_walk_bus(bus, pci_resume_one, NULL);
1221}
1222
1223static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1224{
1225        int delay = 1;
1226        u32 id;
1227
1228        /*
1229         * After reset, the device should not silently discard config
1230         * requests, but it may still indicate that it needs more time by
1231         * responding to them with CRS completions.  The Root Port will
1232         * generally synthesize ~0 data to complete the read (except when
1233         * CRS SV is enabled and the read was for the Vendor ID; in that
1234         * case it synthesizes 0x0001 data).
1235         *
1236         * Wait for the device to return a non-CRS completion.  Read the
1237         * Command register instead of Vendor ID so we don't have to
1238         * contend with the CRS SV value.
1239         */
1240        pci_read_config_dword(dev, PCI_COMMAND, &id);
1241        while (id == ~0) {
1242                if (delay > timeout) {
1243                        pci_warn(dev, "not ready %dms after %s; giving up\n",
1244                                 delay - 1, reset_type);
1245                        return -ENOTTY;
1246                }
1247
1248                if (delay > 1000)
1249                        pci_info(dev, "not ready %dms after %s; waiting\n",
1250                                 delay - 1, reset_type);
1251
1252                msleep(delay);
1253                delay *= 2;
1254                pci_read_config_dword(dev, PCI_COMMAND, &id);
1255        }
1256
1257        if (delay > 1000)
1258                pci_info(dev, "ready %dms after %s\n", delay - 1,
1259                         reset_type);
1260
1261        return 0;
1262}
1263
1264/**
1265 * pci_power_up - Put the given device into D0
1266 * @dev: PCI device to power up
1267 */
1268int pci_power_up(struct pci_dev *dev)
1269{
1270        pci_platform_power_transition(dev, PCI_D0);
1271
1272        /*
1273         * Mandatory power management transition delays are handled in
1274         * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1275         * corresponding bridge.
1276         */
1277        if (dev->runtime_d3cold) {
1278                /*
1279                 * When powering on a bridge from D3cold, the whole hierarchy
1280                 * may be powered on into D0uninitialized state, resume them to
1281                 * give them a chance to suspend again
1282                 */
1283                pci_resume_bus(dev->subordinate);
1284        }
1285
1286        return pci_raw_set_power_state(dev, PCI_D0);
1287}
1288
1289/**
1290 * __pci_dev_set_current_state - Set current state of a PCI device
1291 * @dev: Device to handle
1292 * @data: pointer to state to be set
1293 */
1294static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1295{
1296        pci_power_t state = *(pci_power_t *)data;
1297
1298        dev->current_state = state;
1299        return 0;
1300}
1301
1302/**
1303 * pci_bus_set_current_state - Walk given bus and set current state of devices
1304 * @bus: Top bus of the subtree to walk.
1305 * @state: state to be set
1306 */
1307void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1308{
1309        if (bus)
1310                pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1311}
1312
1313/**
1314 * pci_set_power_state - Set the power state of a PCI device
1315 * @dev: PCI device to handle.
1316 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1317 *
1318 * Transition a device to a new power state, using the platform firmware and/or
1319 * the device's PCI PM registers.
1320 *
1321 * RETURN VALUE:
1322 * -EINVAL if the requested state is invalid.
1323 * -EIO if device does not support PCI PM or its PM capabilities register has a
1324 * wrong version, or device doesn't support the requested state.
1325 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1326 * 0 if device already is in the requested state.
1327 * 0 if the transition is to D3 but D3 is not supported.
1328 * 0 if device's power state has been successfully changed.
1329 */
1330int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1331{
1332        int error;
1333
1334        /* Bound the state we're entering */
1335        if (state > PCI_D3cold)
1336                state = PCI_D3cold;
1337        else if (state < PCI_D0)
1338                state = PCI_D0;
1339        else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1340
1341                /*
1342                 * If the device or the parent bridge do not support PCI
1343                 * PM, ignore the request if we're doing anything other
1344                 * than putting it into D0 (which would only happen on
1345                 * boot).
1346                 */
1347                return 0;
1348
1349        /* Check if we're already there */
1350        if (dev->current_state == state)
1351                return 0;
1352
1353        if (state == PCI_D0)
1354                return pci_power_up(dev);
1355
1356        /*
1357         * This device is quirked not to be put into D3, so don't put it in
1358         * D3
1359         */
1360        if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1361                return 0;
1362
1363        /*
1364         * To put device in D3cold, we put device into D3hot in native
1365         * way, then put device into D3cold with platform ops
1366         */
1367        error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1368                                        PCI_D3hot : state);
1369
1370        if (pci_platform_power_transition(dev, state))
1371                return error;
1372
1373        /* Powering off a bridge may power off the whole hierarchy */
1374        if (state == PCI_D3cold)
1375                pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1376
1377        return 0;
1378}
1379EXPORT_SYMBOL(pci_set_power_state);
1380
1381/**
1382 * pci_choose_state - Choose the power state of a PCI device
1383 * @dev: PCI device to be suspended
1384 * @state: target sleep state for the whole system. This is the value
1385 *         that is passed to suspend() function.
1386 *
1387 * Returns PCI power state suitable for given device and given system
1388 * message.
1389 */
1390pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1391{
1392        pci_power_t ret;
1393
1394        if (!dev->pm_cap)
1395                return PCI_D0;
1396
1397        ret = platform_pci_choose_state(dev);
1398        if (ret != PCI_POWER_ERROR)
1399                return ret;
1400
1401        switch (state.event) {
1402        case PM_EVENT_ON:
1403                return PCI_D0;
1404        case PM_EVENT_FREEZE:
1405        case PM_EVENT_PRETHAW:
1406                /* REVISIT both freeze and pre-thaw "should" use D0 */
1407        case PM_EVENT_SUSPEND:
1408        case PM_EVENT_HIBERNATE:
1409                return PCI_D3hot;
1410        default:
1411                pci_info(dev, "unrecognized suspend event %d\n",
1412                         state.event);
1413                BUG();
1414        }
1415        return PCI_D0;
1416}
1417EXPORT_SYMBOL(pci_choose_state);
1418
1419#define PCI_EXP_SAVE_REGS       7
1420
1421static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1422                                                       u16 cap, bool extended)
1423{
1424        struct pci_cap_saved_state *tmp;
1425
1426        hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1427                if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1428                        return tmp;
1429        }
1430        return NULL;
1431}
1432
1433struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1434{
1435        return _pci_find_saved_cap(dev, cap, false);
1436}
1437
1438struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1439{
1440        return _pci_find_saved_cap(dev, cap, true);
1441}
1442
1443static int pci_save_pcie_state(struct pci_dev *dev)
1444{
1445        int i = 0;
1446        struct pci_cap_saved_state *save_state;
1447        u16 *cap;
1448
1449        if (!pci_is_pcie(dev))
1450                return 0;
1451
1452        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1453        if (!save_state) {
1454                pci_err(dev, "buffer not found in %s\n", __func__);
1455                return -ENOMEM;
1456        }
1457
1458        cap = (u16 *)&save_state->cap.data[0];
1459        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1460        pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1461        pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1462        pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1463        pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1464        pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1465        pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1466
1467        return 0;
1468}
1469
1470static void pci_restore_pcie_state(struct pci_dev *dev)
1471{
1472        int i = 0;
1473        struct pci_cap_saved_state *save_state;
1474        u16 *cap;
1475
1476        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1477        if (!save_state)
1478                return;
1479
1480        cap = (u16 *)&save_state->cap.data[0];
1481        pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1482        pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1483        pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1484        pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1485        pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1486        pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1487        pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1488}
1489
1490static int pci_save_pcix_state(struct pci_dev *dev)
1491{
1492        int pos;
1493        struct pci_cap_saved_state *save_state;
1494
1495        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1496        if (!pos)
1497                return 0;
1498
1499        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1500        if (!save_state) {
1501                pci_err(dev, "buffer not found in %s\n", __func__);
1502                return -ENOMEM;
1503        }
1504
1505        pci_read_config_word(dev, pos + PCI_X_CMD,
1506                             (u16 *)save_state->cap.data);
1507
1508        return 0;
1509}
1510
1511static void pci_restore_pcix_state(struct pci_dev *dev)
1512{
1513        int i = 0, pos;
1514        struct pci_cap_saved_state *save_state;
1515        u16 *cap;
1516
1517        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1518        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1519        if (!save_state || !pos)
1520                return;
1521        cap = (u16 *)&save_state->cap.data[0];
1522
1523        pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1524}
1525
1526static void pci_save_ltr_state(struct pci_dev *dev)
1527{
1528        int ltr;
1529        struct pci_cap_saved_state *save_state;
1530        u16 *cap;
1531
1532        if (!pci_is_pcie(dev))
1533                return;
1534
1535        ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1536        if (!ltr)
1537                return;
1538
1539        save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1540        if (!save_state) {
1541                pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1542                return;
1543        }
1544
1545        cap = (u16 *)&save_state->cap.data[0];
1546        pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1547        pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1548}
1549
1550static void pci_restore_ltr_state(struct pci_dev *dev)
1551{
1552        struct pci_cap_saved_state *save_state;
1553        int ltr;
1554        u16 *cap;
1555
1556        save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1557        ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1558        if (!save_state || !ltr)
1559                return;
1560
1561        cap = (u16 *)&save_state->cap.data[0];
1562        pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1563        pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1564}
1565
1566/**
1567 * pci_save_state - save the PCI configuration space of a device before
1568 *                  suspending
1569 * @dev: PCI device that we're dealing with
1570 */
1571int pci_save_state(struct pci_dev *dev)
1572{
1573        int i;
1574        /* XXX: 100% dword access ok here? */
1575        for (i = 0; i < 16; i++) {
1576                pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1577                pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1578                        i * 4, dev->saved_config_space[i]);
1579        }
1580        dev->state_saved = true;
1581
1582        i = pci_save_pcie_state(dev);
1583        if (i != 0)
1584                return i;
1585
1586        i = pci_save_pcix_state(dev);
1587        if (i != 0)
1588                return i;
1589
1590        pci_save_ltr_state(dev);
1591        pci_save_dpc_state(dev);
1592        pci_save_aer_state(dev);
1593        pci_save_ptm_state(dev);
1594        return pci_save_vc_state(dev);
1595}
1596EXPORT_SYMBOL(pci_save_state);
1597
1598static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1599                                     u32 saved_val, int retry, bool force)
1600{
1601        u32 val;
1602
1603        pci_read_config_dword(pdev, offset, &val);
1604        if (!force && val == saved_val)
1605                return;
1606
1607        for (;;) {
1608                pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1609                        offset, val, saved_val);
1610                pci_write_config_dword(pdev, offset, saved_val);
1611                if (retry-- <= 0)
1612                        return;
1613
1614                pci_read_config_dword(pdev, offset, &val);
1615                if (val == saved_val)
1616                        return;
1617
1618                mdelay(1);
1619        }
1620}
1621
1622static void pci_restore_config_space_range(struct pci_dev *pdev,
1623                                           int start, int end, int retry,
1624                                           bool force)
1625{
1626        int index;
1627
1628        for (index = end; index >= start; index--)
1629                pci_restore_config_dword(pdev, 4 * index,
1630                                         pdev->saved_config_space[index],
1631                                         retry, force);
1632}
1633
1634static void pci_restore_config_space(struct pci_dev *pdev)
1635{
1636        if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1637                pci_restore_config_space_range(pdev, 10, 15, 0, false);
1638                /* Restore BARs before the command register. */
1639                pci_restore_config_space_range(pdev, 4, 9, 10, false);
1640                pci_restore_config_space_range(pdev, 0, 3, 0, false);
1641        } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1642                pci_restore_config_space_range(pdev, 12, 15, 0, false);
1643
1644                /*
1645                 * Force rewriting of prefetch registers to avoid S3 resume
1646                 * issues on Intel PCI bridges that occur when these
1647                 * registers are not explicitly written.
1648                 */
1649                pci_restore_config_space_range(pdev, 9, 11, 0, true);
1650                pci_restore_config_space_range(pdev, 0, 8, 0, false);
1651        } else {
1652                pci_restore_config_space_range(pdev, 0, 15, 0, false);
1653        }
1654}
1655
1656static void pci_restore_rebar_state(struct pci_dev *pdev)
1657{
1658        unsigned int pos, nbars, i;
1659        u32 ctrl;
1660
1661        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1662        if (!pos)
1663                return;
1664
1665        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1666        nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1667                    PCI_REBAR_CTRL_NBAR_SHIFT;
1668
1669        for (i = 0; i < nbars; i++, pos += 8) {
1670                struct resource *res;
1671                int bar_idx, size;
1672
1673                pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1674                bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1675                res = pdev->resource + bar_idx;
1676                size = pci_rebar_bytes_to_size(resource_size(res));
1677                ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1678                ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1679                pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1680        }
1681}
1682
1683/**
1684 * pci_restore_state - Restore the saved state of a PCI device
1685 * @dev: PCI device that we're dealing with
1686 */
1687void pci_restore_state(struct pci_dev *dev)
1688{
1689        if (!dev->state_saved)
1690                return;
1691
1692        /*
1693         * Restore max latencies (in the LTR capability) before enabling
1694         * LTR itself (in the PCIe capability).
1695         */
1696        pci_restore_ltr_state(dev);
1697
1698        pci_restore_pcie_state(dev);
1699        pci_restore_pasid_state(dev);
1700        pci_restore_pri_state(dev);
1701        pci_restore_ats_state(dev);
1702        pci_restore_vc_state(dev);
1703        pci_restore_rebar_state(dev);
1704        pci_restore_dpc_state(dev);
1705        pci_restore_ptm_state(dev);
1706
1707        pci_aer_clear_status(dev);
1708        pci_restore_aer_state(dev);
1709
1710        pci_restore_config_space(dev);
1711
1712        pci_restore_pcix_state(dev);
1713        pci_restore_msi_state(dev);
1714
1715        /* Restore ACS and IOV configuration state */
1716        pci_enable_acs(dev);
1717        pci_restore_iov_state(dev);
1718
1719        dev->state_saved = false;
1720}
1721EXPORT_SYMBOL(pci_restore_state);
1722
1723struct pci_saved_state {
1724        u32 config_space[16];
1725        struct pci_cap_saved_data cap[];
1726};
1727
1728/**
1729 * pci_store_saved_state - Allocate and return an opaque struct containing
1730 *                         the device saved state.
1731 * @dev: PCI device that we're dealing with
1732 *
1733 * Return NULL if no state or error.
1734 */
1735struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1736{
1737        struct pci_saved_state *state;
1738        struct pci_cap_saved_state *tmp;
1739        struct pci_cap_saved_data *cap;
1740        size_t size;
1741
1742        if (!dev->state_saved)
1743                return NULL;
1744
1745        size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1746
1747        hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1748                size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1749
1750        state = kzalloc(size, GFP_KERNEL);
1751        if (!state)
1752                return NULL;
1753
1754        memcpy(state->config_space, dev->saved_config_space,
1755               sizeof(state->config_space));
1756
1757        cap = state->cap;
1758        hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1759                size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1760                memcpy(cap, &tmp->cap, len);
1761                cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1762        }
1763        /* Empty cap_save terminates list */
1764
1765        return state;
1766}
1767EXPORT_SYMBOL_GPL(pci_store_saved_state);
1768
1769/**
1770 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1771 * @dev: PCI device that we're dealing with
1772 * @state: Saved state returned from pci_store_saved_state()
1773 */
1774int pci_load_saved_state(struct pci_dev *dev,
1775                         struct pci_saved_state *state)
1776{
1777        struct pci_cap_saved_data *cap;
1778
1779        dev->state_saved = false;
1780
1781        if (!state)
1782                return 0;
1783
1784        memcpy(dev->saved_config_space, state->config_space,
1785               sizeof(state->config_space));
1786
1787        cap = state->cap;
1788        while (cap->size) {
1789                struct pci_cap_saved_state *tmp;
1790
1791                tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1792                if (!tmp || tmp->cap.size != cap->size)
1793                        return -EINVAL;
1794
1795                memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1796                cap = (struct pci_cap_saved_data *)((u8 *)cap +
1797                       sizeof(struct pci_cap_saved_data) + cap->size);
1798        }
1799
1800        dev->state_saved = true;
1801        return 0;
1802}
1803EXPORT_SYMBOL_GPL(pci_load_saved_state);
1804
1805/**
1806 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1807 *                                 and free the memory allocated for it.
1808 * @dev: PCI device that we're dealing with
1809 * @state: Pointer to saved state returned from pci_store_saved_state()
1810 */
1811int pci_load_and_free_saved_state(struct pci_dev *dev,
1812                                  struct pci_saved_state **state)
1813{
1814        int ret = pci_load_saved_state(dev, *state);
1815        kfree(*state);
1816        *state = NULL;
1817        return ret;
1818}
1819EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1820
1821int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1822{
1823        return pci_enable_resources(dev, bars);
1824}
1825
1826static int do_pci_enable_device(struct pci_dev *dev, int bars)
1827{
1828        int err;
1829        struct pci_dev *bridge;
1830        u16 cmd;
1831        u8 pin;
1832
1833        err = pci_set_power_state(dev, PCI_D0);
1834        if (err < 0 && err != -EIO)
1835                return err;
1836
1837        bridge = pci_upstream_bridge(dev);
1838        if (bridge)
1839                pcie_aspm_powersave_config_link(bridge);
1840
1841        err = pcibios_enable_device(dev, bars);
1842        if (err < 0)
1843                return err;
1844        pci_fixup_device(pci_fixup_enable, dev);
1845
1846        if (dev->msi_enabled || dev->msix_enabled)
1847                return 0;
1848
1849        pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1850        if (pin) {
1851                pci_read_config_word(dev, PCI_COMMAND, &cmd);
1852                if (cmd & PCI_COMMAND_INTX_DISABLE)
1853                        pci_write_config_word(dev, PCI_COMMAND,
1854                                              cmd & ~PCI_COMMAND_INTX_DISABLE);
1855        }
1856
1857        return 0;
1858}
1859
1860/**
1861 * pci_reenable_device - Resume abandoned device
1862 * @dev: PCI device to be resumed
1863 *
1864 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1865 * to be called by normal code, write proper resume handler and use it instead.
1866 */
1867int pci_reenable_device(struct pci_dev *dev)
1868{
1869        if (pci_is_enabled(dev))
1870                return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1871        return 0;
1872}
1873EXPORT_SYMBOL(pci_reenable_device);
1874
1875static void pci_enable_bridge(struct pci_dev *dev)
1876{
1877        struct pci_dev *bridge;
1878        int retval;
1879
1880        bridge = pci_upstream_bridge(dev);
1881        if (bridge)
1882                pci_enable_bridge(bridge);
1883
1884        if (pci_is_enabled(dev)) {
1885                if (!dev->is_busmaster)
1886                        pci_set_master(dev);
1887                return;
1888        }
1889
1890        retval = pci_enable_device(dev);
1891        if (retval)
1892                pci_err(dev, "Error enabling bridge (%d), continuing\n",
1893                        retval);
1894        pci_set_master(dev);
1895}
1896
1897static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1898{
1899        struct pci_dev *bridge;
1900        int err;
1901        int i, bars = 0;
1902
1903        /*
1904         * Power state could be unknown at this point, either due to a fresh
1905         * boot or a device removal call.  So get the current power state
1906         * so that things like MSI message writing will behave as expected
1907         * (e.g. if the device really is in D0 at enable time).
1908         */
1909        if (dev->pm_cap) {
1910                u16 pmcsr;
1911                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1912                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1913        }
1914
1915        if (atomic_inc_return(&dev->enable_cnt) > 1)
1916                return 0;               /* already enabled */
1917
1918        bridge = pci_upstream_bridge(dev);
1919        if (bridge)
1920                pci_enable_bridge(bridge);
1921
1922        /* only skip sriov related */
1923        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1924                if (dev->resource[i].flags & flags)
1925                        bars |= (1 << i);
1926        for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1927                if (dev->resource[i].flags & flags)
1928                        bars |= (1 << i);
1929
1930        err = do_pci_enable_device(dev, bars);
1931        if (err < 0)
1932                atomic_dec(&dev->enable_cnt);
1933        return err;
1934}
1935
1936/**
1937 * pci_enable_device_io - Initialize a device for use with IO space
1938 * @dev: PCI device to be initialized
1939 *
1940 * Initialize device before it's used by a driver. Ask low-level code
1941 * to enable I/O resources. Wake up the device if it was suspended.
1942 * Beware, this function can fail.
1943 */
1944int pci_enable_device_io(struct pci_dev *dev)
1945{
1946        return pci_enable_device_flags(dev, IORESOURCE_IO);
1947}
1948EXPORT_SYMBOL(pci_enable_device_io);
1949
1950/**
1951 * pci_enable_device_mem - Initialize a device for use with Memory space
1952 * @dev: PCI device to be initialized
1953 *
1954 * Initialize device before it's used by a driver. Ask low-level code
1955 * to enable Memory resources. Wake up the device if it was suspended.
1956 * Beware, this function can fail.
1957 */
1958int pci_enable_device_mem(struct pci_dev *dev)
1959{
1960        return pci_enable_device_flags(dev, IORESOURCE_MEM);
1961}
1962EXPORT_SYMBOL(pci_enable_device_mem);
1963
1964/**
1965 * pci_enable_device - Initialize device before it's used by a driver.
1966 * @dev: PCI device to be initialized
1967 *
1968 * Initialize device before it's used by a driver. Ask low-level code
1969 * to enable I/O and memory. Wake up the device if it was suspended.
1970 * Beware, this function can fail.
1971 *
1972 * Note we don't actually enable the device many times if we call
1973 * this function repeatedly (we just increment the count).
1974 */
1975int pci_enable_device(struct pci_dev *dev)
1976{
1977        return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1978}
1979EXPORT_SYMBOL(pci_enable_device);
1980
1981/*
1982 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1983 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1984 * there's no need to track it separately.  pci_devres is initialized
1985 * when a device is enabled using managed PCI device enable interface.
1986 */
1987struct pci_devres {
1988        unsigned int enabled:1;
1989        unsigned int pinned:1;
1990        unsigned int orig_intx:1;
1991        unsigned int restore_intx:1;
1992        unsigned int mwi:1;
1993        u32 region_mask;
1994};
1995
1996static void pcim_release(struct device *gendev, void *res)
1997{
1998        struct pci_dev *dev = to_pci_dev(gendev);
1999        struct pci_devres *this = res;
2000        int i;
2001
2002        if (dev->msi_enabled)
2003                pci_disable_msi(dev);
2004        if (dev->msix_enabled)
2005                pci_disable_msix(dev);
2006
2007        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2008                if (this->region_mask & (1 << i))
2009                        pci_release_region(dev, i);
2010
2011        if (this->mwi)
2012                pci_clear_mwi(dev);
2013
2014        if (this->restore_intx)
2015                pci_intx(dev, this->orig_intx);
2016
2017        if (this->enabled && !this->pinned)
2018                pci_disable_device(dev);
2019}
2020
2021static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2022{
2023        struct pci_devres *dr, *new_dr;
2024
2025        dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2026        if (dr)
2027                return dr;
2028
2029        new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2030        if (!new_dr)
2031                return NULL;
2032        return devres_get(&pdev->dev, new_dr, NULL, NULL);
2033}
2034
2035static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2036{
2037        if (pci_is_managed(pdev))
2038                return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2039        return NULL;
2040}
2041
2042/**
2043 * pcim_enable_device - Managed pci_enable_device()
2044 * @pdev: PCI device to be initialized
2045 *
2046 * Managed pci_enable_device().
2047 */
2048int pcim_enable_device(struct pci_dev *pdev)
2049{
2050        struct pci_devres *dr;
2051        int rc;
2052
2053        dr = get_pci_dr(pdev);
2054        if (unlikely(!dr))
2055                return -ENOMEM;
2056        if (dr->enabled)
2057                return 0;
2058
2059        rc = pci_enable_device(pdev);
2060        if (!rc) {
2061                pdev->is_managed = 1;
2062                dr->enabled = 1;
2063        }
2064        return rc;
2065}
2066EXPORT_SYMBOL(pcim_enable_device);
2067
2068/**
2069 * pcim_pin_device - Pin managed PCI device
2070 * @pdev: PCI device to pin
2071 *
2072 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2073 * driver detach.  @pdev must have been enabled with
2074 * pcim_enable_device().
2075 */
2076void pcim_pin_device(struct pci_dev *pdev)
2077{
2078        struct pci_devres *dr;
2079
2080        dr = find_pci_dr(pdev);
2081        WARN_ON(!dr || !dr->enabled);
2082        if (dr)
2083                dr->pinned = 1;
2084}
2085EXPORT_SYMBOL(pcim_pin_device);
2086
2087/*
2088 * pcibios_add_device - provide arch specific hooks when adding device dev
2089 * @dev: the PCI device being added
2090 *
2091 * Permits the platform to provide architecture specific functionality when
2092 * devices are added. This is the default implementation. Architecture
2093 * implementations can override this.
2094 */
2095int __weak pcibios_add_device(struct pci_dev *dev)
2096{
2097        return 0;
2098}
2099
2100/**
2101 * pcibios_release_device - provide arch specific hooks when releasing
2102 *                          device dev
2103 * @dev: the PCI device being released
2104 *
2105 * Permits the platform to provide architecture specific functionality when
2106 * devices are released. This is the default implementation. Architecture
2107 * implementations can override this.
2108 */
2109void __weak pcibios_release_device(struct pci_dev *dev) {}
2110
2111/**
2112 * pcibios_disable_device - disable arch specific PCI resources for device dev
2113 * @dev: the PCI device to disable
2114 *
2115 * Disables architecture specific PCI resources for the device. This
2116 * is the default implementation. Architecture implementations can
2117 * override this.
2118 */
2119void __weak pcibios_disable_device(struct pci_dev *dev) {}
2120
2121/**
2122 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2123 * @irq: ISA IRQ to penalize
2124 * @active: IRQ active or not
2125 *
2126 * Permits the platform to provide architecture-specific functionality when
2127 * penalizing ISA IRQs. This is the default implementation. Architecture
2128 * implementations can override this.
2129 */
2130void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2131
2132static void do_pci_disable_device(struct pci_dev *dev)
2133{
2134        u16 pci_command;
2135
2136        pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2137        if (pci_command & PCI_COMMAND_MASTER) {
2138                pci_command &= ~PCI_COMMAND_MASTER;
2139                pci_write_config_word(dev, PCI_COMMAND, pci_command);
2140        }
2141
2142        pcibios_disable_device(dev);
2143}
2144
2145/**
2146 * pci_disable_enabled_device - Disable device without updating enable_cnt
2147 * @dev: PCI device to disable
2148 *
2149 * NOTE: This function is a backend of PCI power management routines and is
2150 * not supposed to be called drivers.
2151 */
2152void pci_disable_enabled_device(struct pci_dev *dev)
2153{
2154        if (pci_is_enabled(dev))
2155                do_pci_disable_device(dev);
2156}
2157
2158/**
2159 * pci_disable_device - Disable PCI device after use
2160 * @dev: PCI device to be disabled
2161 *
2162 * Signal to the system that the PCI device is not in use by the system
2163 * anymore.  This only involves disabling PCI bus-mastering, if active.
2164 *
2165 * Note we don't actually disable the device until all callers of
2166 * pci_enable_device() have called pci_disable_device().
2167 */
2168void pci_disable_device(struct pci_dev *dev)
2169{
2170        struct pci_devres *dr;
2171
2172        dr = find_pci_dr(dev);
2173        if (dr)
2174                dr->enabled = 0;
2175
2176        dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2177                      "disabling already-disabled device");
2178
2179        if (atomic_dec_return(&dev->enable_cnt) != 0)
2180                return;
2181
2182        do_pci_disable_device(dev);
2183
2184        dev->is_busmaster = 0;
2185}
2186EXPORT_SYMBOL(pci_disable_device);
2187
2188/**
2189 * pcibios_set_pcie_reset_state - set reset state for device dev
2190 * @dev: the PCIe device reset
2191 * @state: Reset state to enter into
2192 *
2193 * Set the PCIe reset state for the device. This is the default
2194 * implementation. Architecture implementations can override this.
2195 */
2196int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2197                                        enum pcie_reset_state state)
2198{
2199        return -EINVAL;
2200}
2201
2202/**
2203 * pci_set_pcie_reset_state - set reset state for device dev
2204 * @dev: the PCIe device reset
2205 * @state: Reset state to enter into
2206 *
2207 * Sets the PCI reset state for the device.
2208 */
2209int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2210{
2211        return pcibios_set_pcie_reset_state(dev, state);
2212}
2213EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2214
2215void pcie_clear_device_status(struct pci_dev *dev)
2216{
2217        u16 sta;
2218
2219        pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2220        pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2221}
2222
2223/**
2224 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2225 * @dev: PCIe root port or event collector.
2226 */
2227void pcie_clear_root_pme_status(struct pci_dev *dev)
2228{
2229        pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2230}
2231
2232/**
2233 * pci_check_pme_status - Check if given device has generated PME.
2234 * @dev: Device to check.
2235 *
2236 * Check the PME status of the device and if set, clear it and clear PME enable
2237 * (if set).  Return 'true' if PME status and PME enable were both set or
2238 * 'false' otherwise.
2239 */
2240bool pci_check_pme_status(struct pci_dev *dev)
2241{
2242        int pmcsr_pos;
2243        u16 pmcsr;
2244        bool ret = false;
2245
2246        if (!dev->pm_cap)
2247                return false;
2248
2249        pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2250        pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2251        if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2252                return false;
2253
2254        /* Clear PME status. */
2255        pmcsr |= PCI_PM_CTRL_PME_STATUS;
2256        if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2257                /* Disable PME to avoid interrupt flood. */
2258                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2259                ret = true;
2260        }
2261
2262        pci_write_config_word(dev, pmcsr_pos, pmcsr);
2263
2264        return ret;
2265}
2266
2267/**
2268 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2269 * @dev: Device to handle.
2270 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2271 *
2272 * Check if @dev has generated PME and queue a resume request for it in that
2273 * case.
2274 */
2275static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2276{
2277        if (pme_poll_reset && dev->pme_poll)
2278                dev->pme_poll = false;
2279
2280        if (pci_check_pme_status(dev)) {
2281                pci_wakeup_event(dev);
2282                pm_request_resume(&dev->dev);
2283        }
2284        return 0;
2285}
2286
2287/**
2288 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2289 * @bus: Top bus of the subtree to walk.
2290 */
2291void pci_pme_wakeup_bus(struct pci_bus *bus)
2292{
2293        if (bus)
2294                pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2295}
2296
2297
2298/**
2299 * pci_pme_capable - check the capability of PCI device to generate PME#
2300 * @dev: PCI device to handle.
2301 * @state: PCI state from which device will issue PME#.
2302 */
2303bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2304{
2305        if (!dev->pm_cap)
2306                return false;
2307
2308        return !!(dev->pme_support & (1 << state));
2309}
2310EXPORT_SYMBOL(pci_pme_capable);
2311
2312static void pci_pme_list_scan(struct work_struct *work)
2313{
2314        struct pci_pme_device *pme_dev, *n;
2315
2316        mutex_lock(&pci_pme_list_mutex);
2317        list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2318                if (pme_dev->dev->pme_poll) {
2319                        struct pci_dev *bridge;
2320
2321                        bridge = pme_dev->dev->bus->self;
2322                        /*
2323                         * If bridge is in low power state, the
2324                         * configuration space of subordinate devices
2325                         * may be not accessible
2326                         */
2327                        if (bridge && bridge->current_state != PCI_D0)
2328                                continue;
2329                        /*
2330                         * If the device is in D3cold it should not be
2331                         * polled either.
2332                         */
2333                        if (pme_dev->dev->current_state == PCI_D3cold)
2334                                continue;
2335
2336                        pci_pme_wakeup(pme_dev->dev, NULL);
2337                } else {
2338                        list_del(&pme_dev->list);
2339                        kfree(pme_dev);
2340                }
2341        }
2342        if (!list_empty(&pci_pme_list))
2343                queue_delayed_work(system_freezable_wq, &pci_pme_work,
2344                                   msecs_to_jiffies(PME_TIMEOUT));
2345        mutex_unlock(&pci_pme_list_mutex);
2346}
2347
2348static void __pci_pme_active(struct pci_dev *dev, bool enable)
2349{
2350        u16 pmcsr;
2351
2352        if (!dev->pme_support)
2353                return;
2354
2355        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2356        /* Clear PME_Status by writing 1 to it and enable PME# */
2357        pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2358        if (!enable)
2359                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2360
2361        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2362}
2363
2364/**
2365 * pci_pme_restore - Restore PME configuration after config space restore.
2366 * @dev: PCI device to update.
2367 */
2368void pci_pme_restore(struct pci_dev *dev)
2369{
2370        u16 pmcsr;
2371
2372        if (!dev->pme_support)
2373                return;
2374
2375        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2376        if (dev->wakeup_prepared) {
2377                pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2378                pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2379        } else {
2380                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2381                pmcsr |= PCI_PM_CTRL_PME_STATUS;
2382        }
2383        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2384}
2385
2386/**
2387 * pci_pme_active - enable or disable PCI device's PME# function
2388 * @dev: PCI device to handle.
2389 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2390 *
2391 * The caller must verify that the device is capable of generating PME# before
2392 * calling this function with @enable equal to 'true'.
2393 */
2394void pci_pme_active(struct pci_dev *dev, bool enable)
2395{
2396        __pci_pme_active(dev, enable);
2397
2398        /*
2399         * PCI (as opposed to PCIe) PME requires that the device have
2400         * its PME# line hooked up correctly. Not all hardware vendors
2401         * do this, so the PME never gets delivered and the device
2402         * remains asleep. The easiest way around this is to
2403         * periodically walk the list of suspended devices and check
2404         * whether any have their PME flag set. The assumption is that
2405         * we'll wake up often enough anyway that this won't be a huge
2406         * hit, and the power savings from the devices will still be a
2407         * win.
2408         *
2409         * Although PCIe uses in-band PME message instead of PME# line
2410         * to report PME, PME does not work for some PCIe devices in
2411         * reality.  For example, there are devices that set their PME
2412         * status bits, but don't really bother to send a PME message;
2413         * there are PCI Express Root Ports that don't bother to
2414         * trigger interrupts when they receive PME messages from the
2415         * devices below.  So PME poll is used for PCIe devices too.
2416         */
2417
2418        if (dev->pme_poll) {
2419                struct pci_pme_device *pme_dev;
2420                if (enable) {
2421                        pme_dev = kmalloc(sizeof(struct pci_pme_device),
2422                                          GFP_KERNEL);
2423                        if (!pme_dev) {
2424                                pci_warn(dev, "can't enable PME#\n");
2425                                return;
2426                        }
2427                        pme_dev->dev = dev;
2428                        mutex_lock(&pci_pme_list_mutex);
2429                        list_add(&pme_dev->list, &pci_pme_list);
2430                        if (list_is_singular(&pci_pme_list))
2431                                queue_delayed_work(system_freezable_wq,
2432                                                   &pci_pme_work,
2433                                                   msecs_to_jiffies(PME_TIMEOUT));
2434                        mutex_unlock(&pci_pme_list_mutex);
2435                } else {
2436                        mutex_lock(&pci_pme_list_mutex);
2437                        list_for_each_entry(pme_dev, &pci_pme_list, list) {
2438                                if (pme_dev->dev == dev) {
2439                                        list_del(&pme_dev->list);
2440                                        kfree(pme_dev);
2441                                        break;
2442                                }
2443                        }
2444                        mutex_unlock(&pci_pme_list_mutex);
2445                }
2446        }
2447
2448        pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2449}
2450EXPORT_SYMBOL(pci_pme_active);
2451
2452/**
2453 * __pci_enable_wake - enable PCI device as wakeup event source
2454 * @dev: PCI device affected
2455 * @state: PCI state from which device will issue wakeup events
2456 * @enable: True to enable event generation; false to disable
2457 *
2458 * This enables the device as a wakeup event source, or disables it.
2459 * When such events involves platform-specific hooks, those hooks are
2460 * called automatically by this routine.
2461 *
2462 * Devices with legacy power management (no standard PCI PM capabilities)
2463 * always require such platform hooks.
2464 *
2465 * RETURN VALUE:
2466 * 0 is returned on success
2467 * -EINVAL is returned if device is not supposed to wake up the system
2468 * Error code depending on the platform is returned if both the platform and
2469 * the native mechanism fail to enable the generation of wake-up events
2470 */
2471static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2472{
2473        int ret = 0;
2474
2475        /*
2476         * Bridges that are not power-manageable directly only signal
2477         * wakeup on behalf of subordinate devices which is set up
2478         * elsewhere, so skip them. However, bridges that are
2479         * power-manageable may signal wakeup for themselves (for example,
2480         * on a hotplug event) and they need to be covered here.
2481         */
2482        if (!pci_power_manageable(dev))
2483                return 0;
2484
2485        /* Don't do the same thing twice in a row for one device. */
2486        if (!!enable == !!dev->wakeup_prepared)
2487                return 0;
2488
2489        /*
2490         * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2491         * Anderson we should be doing PME# wake enable followed by ACPI wake
2492         * enable.  To disable wake-up we call the platform first, for symmetry.
2493         */
2494
2495        if (enable) {
2496                int error;
2497
2498                if (pci_pme_capable(dev, state))
2499                        pci_pme_active(dev, true);
2500                else
2501                        ret = 1;
2502                error = platform_pci_set_wakeup(dev, true);
2503                if (ret)
2504                        ret = error;
2505                if (!ret)
2506                        dev->wakeup_prepared = true;
2507        } else {
2508                platform_pci_set_wakeup(dev, false);
2509                pci_pme_active(dev, false);
2510                dev->wakeup_prepared = false;
2511        }
2512
2513        return ret;
2514}
2515
2516/**
2517 * pci_enable_wake - change wakeup settings for a PCI device
2518 * @pci_dev: Target device
2519 * @state: PCI state from which device will issue wakeup events
2520 * @enable: Whether or not to enable event generation
2521 *
2522 * If @enable is set, check device_may_wakeup() for the device before calling
2523 * __pci_enable_wake() for it.
2524 */
2525int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2526{
2527        if (enable && !device_may_wakeup(&pci_dev->dev))
2528                return -EINVAL;
2529
2530        return __pci_enable_wake(pci_dev, state, enable);
2531}
2532EXPORT_SYMBOL(pci_enable_wake);
2533
2534/**
2535 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2536 * @dev: PCI device to prepare
2537 * @enable: True to enable wake-up event generation; false to disable
2538 *
2539 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2540 * and this function allows them to set that up cleanly - pci_enable_wake()
2541 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2542 * ordering constraints.
2543 *
2544 * This function only returns error code if the device is not allowed to wake
2545 * up the system from sleep or it is not capable of generating PME# from both
2546 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2547 */
2548int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2549{
2550        return pci_pme_capable(dev, PCI_D3cold) ?
2551                        pci_enable_wake(dev, PCI_D3cold, enable) :
2552                        pci_enable_wake(dev, PCI_D3hot, enable);
2553}
2554EXPORT_SYMBOL(pci_wake_from_d3);
2555
2556/**
2557 * pci_target_state - find an appropriate low power state for a given PCI dev
2558 * @dev: PCI device
2559 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2560 *
2561 * Use underlying platform code to find a supported low power state for @dev.
2562 * If the platform can't manage @dev, return the deepest state from which it
2563 * can generate wake events, based on any available PME info.
2564 */
2565static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2566{
2567        pci_power_t target_state = PCI_D3hot;
2568
2569        if (platform_pci_power_manageable(dev)) {
2570                /*
2571                 * Call the platform to find the target state for the device.
2572                 */
2573                pci_power_t state = platform_pci_choose_state(dev);
2574
2575                switch (state) {
2576                case PCI_POWER_ERROR:
2577                case PCI_UNKNOWN:
2578                        break;
2579                case PCI_D1:
2580                case PCI_D2:
2581                        if (pci_no_d1d2(dev))
2582                                break;
2583                        fallthrough;
2584                default:
2585                        target_state = state;
2586                }
2587
2588                return target_state;
2589        }
2590
2591        if (!dev->pm_cap)
2592                target_state = PCI_D0;
2593
2594        /*
2595         * If the device is in D3cold even though it's not power-manageable by
2596         * the platform, it may have been powered down by non-standard means.
2597         * Best to let it slumber.
2598         */
2599        if (dev->current_state == PCI_D3cold)
2600                target_state = PCI_D3cold;
2601
2602        if (wakeup) {
2603                /*
2604                 * Find the deepest state from which the device can generate
2605                 * PME#.
2606                 */
2607                if (dev->pme_support) {
2608                        while (target_state
2609                              && !(dev->pme_support & (1 << target_state)))
2610                                target_state--;
2611                }
2612        }
2613
2614        return target_state;
2615}
2616
2617/**
2618 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2619 *                        into a sleep state
2620 * @dev: Device to handle.
2621 *
2622 * Choose the power state appropriate for the device depending on whether
2623 * it can wake up the system and/or is power manageable by the platform
2624 * (PCI_D3hot is the default) and put the device into that state.
2625 */
2626int pci_prepare_to_sleep(struct pci_dev *dev)
2627{
2628        bool wakeup = device_may_wakeup(&dev->dev);
2629        pci_power_t target_state = pci_target_state(dev, wakeup);
2630        int error;
2631
2632        if (target_state == PCI_POWER_ERROR)
2633                return -EIO;
2634
2635        /*
2636         * There are systems (for example, Intel mobile chips since Coffee
2637         * Lake) where the power drawn while suspended can be significantly
2638         * reduced by disabling PTM on PCIe root ports as this allows the
2639         * port to enter a lower-power PM state and the SoC to reach a
2640         * lower-power idle state as a whole.
2641         */
2642        if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2643                pci_disable_ptm(dev);
2644
2645        pci_enable_wake(dev, target_state, wakeup);
2646
2647        error = pci_set_power_state(dev, target_state);
2648
2649        if (error) {
2650                pci_enable_wake(dev, target_state, false);
2651                pci_restore_ptm_state(dev);
2652        }
2653
2654        return error;
2655}
2656EXPORT_SYMBOL(pci_prepare_to_sleep);
2657
2658/**
2659 * pci_back_from_sleep - turn PCI device on during system-wide transition
2660 *                       into working state
2661 * @dev: Device to handle.
2662 *
2663 * Disable device's system wake-up capability and put it into D0.
2664 */
2665int pci_back_from_sleep(struct pci_dev *dev)
2666{
2667        pci_enable_wake(dev, PCI_D0, false);
2668        return pci_set_power_state(dev, PCI_D0);
2669}
2670EXPORT_SYMBOL(pci_back_from_sleep);
2671
2672/**
2673 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2674 * @dev: PCI device being suspended.
2675 *
2676 * Prepare @dev to generate wake-up events at run time and put it into a low
2677 * power state.
2678 */
2679int pci_finish_runtime_suspend(struct pci_dev *dev)
2680{
2681        pci_power_t target_state;
2682        int error;
2683
2684        target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2685        if (target_state == PCI_POWER_ERROR)
2686                return -EIO;
2687
2688        dev->runtime_d3cold = target_state == PCI_D3cold;
2689
2690        /*
2691         * There are systems (for example, Intel mobile chips since Coffee
2692         * Lake) where the power drawn while suspended can be significantly
2693         * reduced by disabling PTM on PCIe root ports as this allows the
2694         * port to enter a lower-power PM state and the SoC to reach a
2695         * lower-power idle state as a whole.
2696         */
2697        if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2698                pci_disable_ptm(dev);
2699
2700        __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2701
2702        error = pci_set_power_state(dev, target_state);
2703
2704        if (error) {
2705                pci_enable_wake(dev, target_state, false);
2706                pci_restore_ptm_state(dev);
2707                dev->runtime_d3cold = false;
2708        }
2709
2710        return error;
2711}
2712
2713/**
2714 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2715 * @dev: Device to check.
2716 *
2717 * Return true if the device itself is capable of generating wake-up events
2718 * (through the platform or using the native PCIe PME) or if the device supports
2719 * PME and one of its upstream bridges can generate wake-up events.
2720 */
2721bool pci_dev_run_wake(struct pci_dev *dev)
2722{
2723        struct pci_bus *bus = dev->bus;
2724
2725        if (!dev->pme_support)
2726                return false;
2727
2728        /* PME-capable in principle, but not from the target power state */
2729        if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2730                return false;
2731
2732        if (device_can_wakeup(&dev->dev))
2733                return true;
2734
2735        while (bus->parent) {
2736                struct pci_dev *bridge = bus->self;
2737
2738                if (device_can_wakeup(&bridge->dev))
2739                        return true;
2740
2741                bus = bus->parent;
2742        }
2743
2744        /* We have reached the root bus. */
2745        if (bus->bridge)
2746                return device_can_wakeup(bus->bridge);
2747
2748        return false;
2749}
2750EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2751
2752/**
2753 * pci_dev_need_resume - Check if it is necessary to resume the device.
2754 * @pci_dev: Device to check.
2755 *
2756 * Return 'true' if the device is not runtime-suspended or it has to be
2757 * reconfigured due to wakeup settings difference between system and runtime
2758 * suspend, or the current power state of it is not suitable for the upcoming
2759 * (system-wide) transition.
2760 */
2761bool pci_dev_need_resume(struct pci_dev *pci_dev)
2762{
2763        struct device *dev = &pci_dev->dev;
2764        pci_power_t target_state;
2765
2766        if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2767                return true;
2768
2769        target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2770
2771        /*
2772         * If the earlier platform check has not triggered, D3cold is just power
2773         * removal on top of D3hot, so no need to resume the device in that
2774         * case.
2775         */
2776        return target_state != pci_dev->current_state &&
2777                target_state != PCI_D3cold &&
2778                pci_dev->current_state != PCI_D3hot;
2779}
2780
2781/**
2782 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2783 * @pci_dev: Device to check.
2784 *
2785 * If the device is suspended and it is not configured for system wakeup,
2786 * disable PME for it to prevent it from waking up the system unnecessarily.
2787 *
2788 * Note that if the device's power state is D3cold and the platform check in
2789 * pci_dev_need_resume() has not triggered, the device's configuration need not
2790 * be changed.
2791 */
2792void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2793{
2794        struct device *dev = &pci_dev->dev;
2795
2796        spin_lock_irq(&dev->power.lock);
2797
2798        if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2799            pci_dev->current_state < PCI_D3cold)
2800                __pci_pme_active(pci_dev, false);
2801
2802        spin_unlock_irq(&dev->power.lock);
2803}
2804
2805/**
2806 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2807 * @pci_dev: Device to handle.
2808 *
2809 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2810 * it might have been disabled during the prepare phase of system suspend if
2811 * the device was not configured for system wakeup.
2812 */
2813void pci_dev_complete_resume(struct pci_dev *pci_dev)
2814{
2815        struct device *dev = &pci_dev->dev;
2816
2817        if (!pci_dev_run_wake(pci_dev))
2818                return;
2819
2820        spin_lock_irq(&dev->power.lock);
2821
2822        if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2823                __pci_pme_active(pci_dev, true);
2824
2825        spin_unlock_irq(&dev->power.lock);
2826}
2827
2828void pci_config_pm_runtime_get(struct pci_dev *pdev)
2829{
2830        struct device *dev = &pdev->dev;
2831        struct device *parent = dev->parent;
2832
2833        if (parent)
2834                pm_runtime_get_sync(parent);
2835        pm_runtime_get_noresume(dev);
2836        /*
2837         * pdev->current_state is set to PCI_D3cold during suspending,
2838         * so wait until suspending completes
2839         */
2840        pm_runtime_barrier(dev);
2841        /*
2842         * Only need to resume devices in D3cold, because config
2843         * registers are still accessible for devices suspended but
2844         * not in D3cold.
2845         */
2846        if (pdev->current_state == PCI_D3cold)
2847                pm_runtime_resume(dev);
2848}
2849
2850void pci_config_pm_runtime_put(struct pci_dev *pdev)
2851{
2852        struct device *dev = &pdev->dev;
2853        struct device *parent = dev->parent;
2854
2855        pm_runtime_put(dev);
2856        if (parent)
2857                pm_runtime_put_sync(parent);
2858}
2859
2860static const struct dmi_system_id bridge_d3_blacklist[] = {
2861#ifdef CONFIG_X86
2862        {
2863                /*
2864                 * Gigabyte X299 root port is not marked as hotplug capable
2865                 * which allows Linux to power manage it.  However, this
2866                 * confuses the BIOS SMI handler so don't power manage root
2867                 * ports on that system.
2868                 */
2869                .ident = "X299 DESIGNARE EX-CF",
2870                .matches = {
2871                        DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2872                        DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2873                },
2874        },
2875#endif
2876        { }
2877};
2878
2879/**
2880 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2881 * @bridge: Bridge to check
2882 *
2883 * This function checks if it is possible to move the bridge to D3.
2884 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2885 */
2886bool pci_bridge_d3_possible(struct pci_dev *bridge)
2887{
2888        if (!pci_is_pcie(bridge))
2889                return false;
2890
2891        switch (pci_pcie_type(bridge)) {
2892        case PCI_EXP_TYPE_ROOT_PORT:
2893        case PCI_EXP_TYPE_UPSTREAM:
2894        case PCI_EXP_TYPE_DOWNSTREAM:
2895                if (pci_bridge_d3_disable)
2896                        return false;
2897
2898                /*
2899                 * Hotplug ports handled by firmware in System Management Mode
2900                 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2901                 */
2902                if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2903                        return false;
2904
2905                if (pci_bridge_d3_force)
2906                        return true;
2907
2908                /* Even the oldest 2010 Thunderbolt controller supports D3. */
2909                if (bridge->is_thunderbolt)
2910                        return true;
2911
2912                /* Platform might know better if the bridge supports D3 */
2913                if (platform_pci_bridge_d3(bridge))
2914                        return true;
2915
2916                /*
2917                 * Hotplug ports handled natively by the OS were not validated
2918                 * by vendors for runtime D3 at least until 2018 because there
2919                 * was no OS support.
2920                 */
2921                if (bridge->is_hotplug_bridge)
2922                        return false;
2923
2924                if (dmi_check_system(bridge_d3_blacklist))
2925                        return false;
2926
2927                /*
2928                 * It should be safe to put PCIe ports from 2015 or newer
2929                 * to D3.
2930                 */
2931                if (dmi_get_bios_year() >= 2015)
2932                        return true;
2933                break;
2934        }
2935
2936        return false;
2937}
2938
2939static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2940{
2941        bool *d3cold_ok = data;
2942
2943        if (/* The device needs to be allowed to go D3cold ... */
2944            dev->no_d3cold || !dev->d3cold_allowed ||
2945
2946            /* ... and if it is wakeup capable to do so from D3cold. */
2947            (device_may_wakeup(&dev->dev) &&
2948             !pci_pme_capable(dev, PCI_D3cold)) ||
2949
2950            /* If it is a bridge it must be allowed to go to D3. */
2951            !pci_power_manageable(dev))
2952
2953                *d3cold_ok = false;
2954
2955        return !*d3cold_ok;
2956}
2957
2958/*
2959 * pci_bridge_d3_update - Update bridge D3 capabilities
2960 * @dev: PCI device which is changed
2961 *
2962 * Update upstream bridge PM capabilities accordingly depending on if the
2963 * device PM configuration was changed or the device is being removed.  The
2964 * change is also propagated upstream.
2965 */
2966void pci_bridge_d3_update(struct pci_dev *dev)
2967{
2968        bool remove = !device_is_registered(&dev->dev);
2969        struct pci_dev *bridge;
2970        bool d3cold_ok = true;
2971
2972        bridge = pci_upstream_bridge(dev);
2973        if (!bridge || !pci_bridge_d3_possible(bridge))
2974                return;
2975
2976        /*
2977         * If D3 is currently allowed for the bridge, removing one of its
2978         * children won't change that.
2979         */
2980        if (remove && bridge->bridge_d3)
2981                return;
2982
2983        /*
2984         * If D3 is currently allowed for the bridge and a child is added or
2985         * changed, disallowance of D3 can only be caused by that child, so
2986         * we only need to check that single device, not any of its siblings.
2987         *
2988         * If D3 is currently not allowed for the bridge, checking the device
2989         * first may allow us to skip checking its siblings.
2990         */
2991        if (!remove)
2992                pci_dev_check_d3cold(dev, &d3cold_ok);
2993
2994        /*
2995         * If D3 is currently not allowed for the bridge, this may be caused
2996         * either by the device being changed/removed or any of its siblings,
2997         * so we need to go through all children to find out if one of them
2998         * continues to block D3.
2999         */
3000        if (d3cold_ok && !bridge->bridge_d3)
3001                pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3002                             &d3cold_ok);
3003
3004        if (bridge->bridge_d3 != d3cold_ok) {
3005                bridge->bridge_d3 = d3cold_ok;
3006                /* Propagate change to upstream bridges */
3007                pci_bridge_d3_update(bridge);
3008        }
3009}
3010
3011/**
3012 * pci_d3cold_enable - Enable D3cold for device
3013 * @dev: PCI device to handle
3014 *
3015 * This function can be used in drivers to enable D3cold from the device
3016 * they handle.  It also updates upstream PCI bridge PM capabilities
3017 * accordingly.
3018 */
3019void pci_d3cold_enable(struct pci_dev *dev)
3020{
3021        if (dev->no_d3cold) {
3022                dev->no_d3cold = false;
3023                pci_bridge_d3_update(dev);
3024        }
3025}
3026EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3027
3028/**
3029 * pci_d3cold_disable - Disable D3cold for device
3030 * @dev: PCI device to handle
3031 *
3032 * This function can be used in drivers to disable D3cold from the device
3033 * they handle.  It also updates upstream PCI bridge PM capabilities
3034 * accordingly.
3035 */
3036void pci_d3cold_disable(struct pci_dev *dev)
3037{
3038        if (!dev->no_d3cold) {
3039                dev->no_d3cold = true;
3040                pci_bridge_d3_update(dev);
3041        }
3042}
3043EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3044
3045/**
3046 * pci_pm_init - Initialize PM functions of given PCI device
3047 * @dev: PCI device to handle.
3048 */
3049void pci_pm_init(struct pci_dev *dev)
3050{
3051        int pm;
3052        u16 status;
3053        u16 pmc;
3054
3055        pm_runtime_forbid(&dev->dev);
3056        pm_runtime_set_active(&dev->dev);
3057        pm_runtime_enable(&dev->dev);
3058        device_enable_async_suspend(&dev->dev);
3059        dev->wakeup_prepared = false;
3060
3061        dev->pm_cap = 0;
3062        dev->pme_support = 0;
3063
3064        /* find PCI PM capability in list */
3065        pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3066        if (!pm)
3067                return;
3068        /* Check device's ability to generate PME# */
3069        pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3070
3071        if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3072                pci_err(dev, "unsupported PM cap regs version (%u)\n",
3073                        pmc & PCI_PM_CAP_VER_MASK);
3074                return;
3075        }
3076
3077        dev->pm_cap = pm;
3078        dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3079        dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3080        dev->bridge_d3 = pci_bridge_d3_possible(dev);
3081        dev->d3cold_allowed = true;
3082
3083        dev->d1_support = false;
3084        dev->d2_support = false;
3085        if (!pci_no_d1d2(dev)) {
3086                if (pmc & PCI_PM_CAP_D1)
3087                        dev->d1_support = true;
3088                if (pmc & PCI_PM_CAP_D2)
3089                        dev->d2_support = true;
3090
3091                if (dev->d1_support || dev->d2_support)
3092                        pci_info(dev, "supports%s%s\n",
3093                                   dev->d1_support ? " D1" : "",
3094                                   dev->d2_support ? " D2" : "");
3095        }
3096
3097        pmc &= PCI_PM_CAP_PME_MASK;
3098        if (pmc) {
3099                pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3100                         (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3101                         (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3102                         (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3103                         (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3104                         (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3105                dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3106                dev->pme_poll = true;
3107                /*
3108                 * Make device's PM flags reflect the wake-up capability, but
3109                 * let the user space enable it to wake up the system as needed.
3110                 */
3111                device_set_wakeup_capable(&dev->dev, true);
3112                /* Disable the PME# generation functionality */
3113                pci_pme_active(dev, false);
3114        }
3115
3116        pci_read_config_word(dev, PCI_STATUS, &status);
3117        if (status & PCI_STATUS_IMM_READY)
3118                dev->imm_ready = 1;
3119}
3120
3121static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3122{
3123        unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3124
3125        switch (prop) {
3126        case PCI_EA_P_MEM:
3127        case PCI_EA_P_VF_MEM:
3128                flags |= IORESOURCE_MEM;
3129                break;
3130        case PCI_EA_P_MEM_PREFETCH:
3131        case PCI_EA_P_VF_MEM_PREFETCH:
3132                flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3133                break;
3134        case PCI_EA_P_IO:
3135                flags |= IORESOURCE_IO;
3136                break;
3137        default:
3138                return 0;
3139        }
3140
3141        return flags;
3142}
3143
3144static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3145                                            u8 prop)
3146{
3147        if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3148                return &dev->resource[bei];
3149#ifdef CONFIG_PCI_IOV
3150        else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3151                 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3152                return &dev->resource[PCI_IOV_RESOURCES +
3153                                      bei - PCI_EA_BEI_VF_BAR0];
3154#endif
3155        else if (bei == PCI_EA_BEI_ROM)
3156                return &dev->resource[PCI_ROM_RESOURCE];
3157        else
3158                return NULL;
3159}
3160
3161/* Read an Enhanced Allocation (EA) entry */
3162static int pci_ea_read(struct pci_dev *dev, int offset)
3163{
3164        struct resource *res;
3165        int ent_size, ent_offset = offset;
3166        resource_size_t start, end;
3167        unsigned long flags;
3168        u32 dw0, bei, base, max_offset;
3169        u8 prop;
3170        bool support_64 = (sizeof(resource_size_t) >= 8);
3171
3172        pci_read_config_dword(dev, ent_offset, &dw0);
3173        ent_offset += 4;
3174
3175        /* Entry size field indicates DWORDs after 1st */
3176        ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3177
3178        if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3179                goto out;
3180
3181        bei = (dw0 & PCI_EA_BEI) >> 4;
3182        prop = (dw0 & PCI_EA_PP) >> 8;
3183
3184        /*
3185         * If the Property is in the reserved range, try the Secondary
3186         * Property instead.
3187         */
3188        if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3189                prop = (dw0 & PCI_EA_SP) >> 16;
3190        if (prop > PCI_EA_P_BRIDGE_IO)
3191                goto out;
3192
3193        res = pci_ea_get_resource(dev, bei, prop);
3194        if (!res) {
3195                pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3196                goto out;
3197        }
3198
3199        flags = pci_ea_flags(dev, prop);
3200        if (!flags) {
3201                pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3202                goto out;
3203        }
3204
3205        /* Read Base */
3206        pci_read_config_dword(dev, ent_offset, &base);
3207        start = (base & PCI_EA_FIELD_MASK);
3208        ent_offset += 4;
3209
3210        /* Read MaxOffset */
3211        pci_read_config_dword(dev, ent_offset, &max_offset);
3212        ent_offset += 4;
3213
3214        /* Read Base MSBs (if 64-bit entry) */
3215        if (base & PCI_EA_IS_64) {
3216                u32 base_upper;
3217
3218                pci_read_config_dword(dev, ent_offset, &base_upper);
3219                ent_offset += 4;
3220
3221                flags |= IORESOURCE_MEM_64;
3222
3223                /* entry starts above 32-bit boundary, can't use */
3224                if (!support_64 && base_upper)
3225                        goto out;
3226
3227                if (support_64)
3228                        start |= ((u64)base_upper << 32);
3229        }
3230
3231        end = start + (max_offset | 0x03);
3232
3233        /* Read MaxOffset MSBs (if 64-bit entry) */
3234        if (max_offset & PCI_EA_IS_64) {
3235                u32 max_offset_upper;
3236
3237                pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3238                ent_offset += 4;
3239
3240                flags |= IORESOURCE_MEM_64;
3241
3242                /* entry too big, can't use */
3243                if (!support_64 && max_offset_upper)
3244                        goto out;
3245
3246                if (support_64)
3247                        end += ((u64)max_offset_upper << 32);
3248        }
3249
3250        if (end < start) {
3251                pci_err(dev, "EA Entry crosses address boundary\n");
3252                goto out;
3253        }
3254
3255        if (ent_size != ent_offset - offset) {
3256                pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3257                        ent_size, ent_offset - offset);
3258                goto out;
3259        }
3260
3261        res->name = pci_name(dev);
3262        res->start = start;
3263        res->end = end;
3264        res->flags = flags;
3265
3266        if (bei <= PCI_EA_BEI_BAR5)
3267                pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3268                           bei, res, prop);
3269        else if (bei == PCI_EA_BEI_ROM)
3270                pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3271                           res, prop);
3272        else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3273                pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3274                           bei - PCI_EA_BEI_VF_BAR0, res, prop);
3275        else
3276                pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3277                           bei, res, prop);
3278
3279out:
3280        return offset + ent_size;
3281}
3282
3283/* Enhanced Allocation Initialization */
3284void pci_ea_init(struct pci_dev *dev)
3285{
3286        int ea;
3287        u8 num_ent;
3288        int offset;
3289        int i;
3290
3291        /* find PCI EA capability in list */
3292        ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3293        if (!ea)
3294                return;
3295
3296        /* determine the number of entries */
3297        pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3298                                        &num_ent);
3299        num_ent &= PCI_EA_NUM_ENT_MASK;
3300
3301        offset = ea + PCI_EA_FIRST_ENT;
3302
3303        /* Skip DWORD 2 for type 1 functions */
3304        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3305                offset += 4;
3306
3307        /* parse each EA entry */
3308        for (i = 0; i < num_ent; ++i)
3309                offset = pci_ea_read(dev, offset);
3310}
3311
3312static void pci_add_saved_cap(struct pci_dev *pci_dev,
3313        struct pci_cap_saved_state *new_cap)
3314{
3315        hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3316}
3317
3318/**
3319 * _pci_add_cap_save_buffer - allocate buffer for saving given
3320 *                            capability registers
3321 * @dev: the PCI device
3322 * @cap: the capability to allocate the buffer for
3323 * @extended: Standard or Extended capability ID
3324 * @size: requested size of the buffer
3325 */
3326static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3327                                    bool extended, unsigned int size)
3328{
3329        int pos;
3330        struct pci_cap_saved_state *save_state;
3331
3332        if (extended)
3333                pos = pci_find_ext_capability(dev, cap);
3334        else
3335                pos = pci_find_capability(dev, cap);
3336
3337        if (!pos)
3338                return 0;
3339
3340        save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3341        if (!save_state)
3342                return -ENOMEM;
3343
3344        save_state->cap.cap_nr = cap;
3345        save_state->cap.cap_extended = extended;
3346        save_state->cap.size = size;
3347        pci_add_saved_cap(dev, save_state);
3348
3349        return 0;
3350}
3351
3352int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3353{
3354        return _pci_add_cap_save_buffer(dev, cap, false, size);
3355}
3356
3357int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3358{
3359        return _pci_add_cap_save_buffer(dev, cap, true, size);
3360}
3361
3362/**
3363 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3364 * @dev: the PCI device
3365 */
3366void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3367{
3368        int error;
3369
3370        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3371                                        PCI_EXP_SAVE_REGS * sizeof(u16));
3372        if (error)
3373                pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3374
3375        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3376        if (error)
3377                pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3378
3379        error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3380                                            2 * sizeof(u16));
3381        if (error)
3382                pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3383
3384        pci_allocate_vc_save_buffers(dev);
3385}
3386
3387void pci_free_cap_save_buffers(struct pci_dev *dev)
3388{
3389        struct pci_cap_saved_state *tmp;
3390        struct hlist_node *n;
3391
3392        hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3393                kfree(tmp);
3394}
3395
3396/**
3397 * pci_configure_ari - enable or disable ARI forwarding
3398 * @dev: the PCI device
3399 *
3400 * If @dev and its upstream bridge both support ARI, enable ARI in the
3401 * bridge.  Otherwise, disable ARI in the bridge.
3402 */
3403void pci_configure_ari(struct pci_dev *dev)
3404{
3405        u32 cap;
3406        struct pci_dev *bridge;
3407
3408        if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3409                return;
3410
3411        bridge = dev->bus->self;
3412        if (!bridge)
3413                return;
3414
3415        pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3416        if (!(cap & PCI_EXP_DEVCAP2_ARI))
3417                return;
3418
3419        if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3420                pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3421                                         PCI_EXP_DEVCTL2_ARI);
3422                bridge->ari_enabled = 1;
3423        } else {
3424                pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3425                                           PCI_EXP_DEVCTL2_ARI);
3426                bridge->ari_enabled = 0;
3427        }
3428}
3429
3430static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3431{
3432        int pos;
3433        u16 cap, ctrl;
3434
3435        pos = pdev->acs_cap;
3436        if (!pos)
3437                return false;
3438
3439        /*
3440         * Except for egress control, capabilities are either required
3441         * or only required if controllable.  Features missing from the
3442         * capability field can therefore be assumed as hard-wired enabled.
3443         */
3444        pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3445        acs_flags &= (cap | PCI_ACS_EC);
3446
3447        pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3448        return (ctrl & acs_flags) == acs_flags;
3449}
3450
3451/**
3452 * pci_acs_enabled - test ACS against required flags for a given device
3453 * @pdev: device to test
3454 * @acs_flags: required PCI ACS flags
3455 *
3456 * Return true if the device supports the provided flags.  Automatically
3457 * filters out flags that are not implemented on multifunction devices.
3458 *
3459 * Note that this interface checks the effective ACS capabilities of the
3460 * device rather than the actual capabilities.  For instance, most single
3461 * function endpoints are not required to support ACS because they have no
3462 * opportunity for peer-to-peer access.  We therefore return 'true'
3463 * regardless of whether the device exposes an ACS capability.  This makes
3464 * it much easier for callers of this function to ignore the actual type
3465 * or topology of the device when testing ACS support.
3466 */
3467bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3468{
3469        int ret;
3470
3471        ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3472        if (ret >= 0)
3473                return ret > 0;
3474
3475        /*
3476         * Conventional PCI and PCI-X devices never support ACS, either
3477         * effectively or actually.  The shared bus topology implies that
3478         * any device on the bus can receive or snoop DMA.
3479         */
3480        if (!pci_is_pcie(pdev))
3481                return false;
3482
3483        switch (pci_pcie_type(pdev)) {
3484        /*
3485         * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3486         * but since their primary interface is PCI/X, we conservatively
3487         * handle them as we would a non-PCIe device.
3488         */
3489        case PCI_EXP_TYPE_PCIE_BRIDGE:
3490        /*
3491         * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3492         * applicable... must never implement an ACS Extended Capability...".
3493         * This seems arbitrary, but we take a conservative interpretation
3494         * of this statement.
3495         */
3496        case PCI_EXP_TYPE_PCI_BRIDGE:
3497        case PCI_EXP_TYPE_RC_EC:
3498                return false;
3499        /*
3500         * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3501         * implement ACS in order to indicate their peer-to-peer capabilities,
3502         * regardless of whether they are single- or multi-function devices.
3503         */
3504        case PCI_EXP_TYPE_DOWNSTREAM:
3505        case PCI_EXP_TYPE_ROOT_PORT:
3506                return pci_acs_flags_enabled(pdev, acs_flags);
3507        /*
3508         * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3509         * implemented by the remaining PCIe types to indicate peer-to-peer
3510         * capabilities, but only when they are part of a multifunction
3511         * device.  The footnote for section 6.12 indicates the specific
3512         * PCIe types included here.
3513         */
3514        case PCI_EXP_TYPE_ENDPOINT:
3515        case PCI_EXP_TYPE_UPSTREAM:
3516        case PCI_EXP_TYPE_LEG_END:
3517        case PCI_EXP_TYPE_RC_END:
3518                if (!pdev->multifunction)
3519                        break;
3520
3521                return pci_acs_flags_enabled(pdev, acs_flags);
3522        }
3523
3524        /*
3525         * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3526         * to single function devices with the exception of downstream ports.
3527         */
3528        return true;
3529}
3530
3531/**
3532 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3533 * @start: starting downstream device
3534 * @end: ending upstream device or NULL to search to the root bus
3535 * @acs_flags: required flags
3536 *
3537 * Walk up a device tree from start to end testing PCI ACS support.  If
3538 * any step along the way does not support the required flags, return false.
3539 */
3540bool pci_acs_path_enabled(struct pci_dev *start,
3541                          struct pci_dev *end, u16 acs_flags)
3542{
3543        struct pci_dev *pdev, *parent = start;
3544
3545        do {
3546                pdev = parent;
3547
3548                if (!pci_acs_enabled(pdev, acs_flags))
3549                        return false;
3550
3551                if (pci_is_root_bus(pdev->bus))
3552                        return (end == NULL);
3553
3554                parent = pdev->bus->self;
3555        } while (pdev != end);
3556
3557        return true;
3558}
3559
3560/**
3561 * pci_acs_init - Initialize ACS if hardware supports it
3562 * @dev: the PCI device
3563 */
3564void pci_acs_init(struct pci_dev *dev)
3565{
3566        dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3567
3568        /*
3569         * Attempt to enable ACS regardless of capability because some Root
3570         * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3571         * the standard ACS capability but still support ACS via those
3572         * quirks.
3573         */
3574        pci_enable_acs(dev);
3575}
3576
3577/**
3578 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3579 * @pdev: PCI device
3580 * @bar: BAR to find
3581 *
3582 * Helper to find the position of the ctrl register for a BAR.
3583 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3584 * Returns -ENOENT if no ctrl register for the BAR could be found.
3585 */
3586static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3587{
3588        unsigned int pos, nbars, i;
3589        u32 ctrl;
3590
3591        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3592        if (!pos)
3593                return -ENOTSUPP;
3594
3595        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3596        nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3597                    PCI_REBAR_CTRL_NBAR_SHIFT;
3598
3599        for (i = 0; i < nbars; i++, pos += 8) {
3600                int bar_idx;
3601
3602                pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3603                bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3604                if (bar_idx == bar)
3605                        return pos;
3606        }
3607
3608        return -ENOENT;
3609}
3610
3611/**
3612 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3613 * @pdev: PCI device
3614 * @bar: BAR to query
3615 *
3616 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3617 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3618 */
3619u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3620{
3621        int pos;
3622        u32 cap;
3623
3624        pos = pci_rebar_find_pos(pdev, bar);
3625        if (pos < 0)
3626                return 0;
3627
3628        pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3629        cap &= PCI_REBAR_CAP_SIZES;
3630
3631        /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3632        if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3633            bar == 0 && cap == 0x7000)
3634                cap = 0x3f000;
3635
3636        return cap >> 4;
3637}
3638EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3639
3640/**
3641 * pci_rebar_get_current_size - get the current size of a BAR
3642 * @pdev: PCI device
3643 * @bar: BAR to set size to
3644 *
3645 * Read the size of a BAR from the resizable BAR config.
3646 * Returns size if found or negative error code.
3647 */
3648int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3649{
3650        int pos;
3651        u32 ctrl;
3652
3653        pos = pci_rebar_find_pos(pdev, bar);
3654        if (pos < 0)
3655                return pos;
3656
3657        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3658        return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3659}
3660
3661/**
3662 * pci_rebar_set_size - set a new size for a BAR
3663 * @pdev: PCI device
3664 * @bar: BAR to set size to
3665 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3666 *
3667 * Set the new size of a BAR as defined in the spec.
3668 * Returns zero if resizing was successful, error code otherwise.
3669 */
3670int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3671{
3672        int pos;
3673        u32 ctrl;
3674
3675        pos = pci_rebar_find_pos(pdev, bar);
3676        if (pos < 0)
3677                return pos;
3678
3679        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3680        ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3681        ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3682        pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3683        return 0;
3684}
3685
3686/**
3687 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3688 * @dev: the PCI device
3689 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3690 *      PCI_EXP_DEVCAP2_ATOMIC_COMP32
3691 *      PCI_EXP_DEVCAP2_ATOMIC_COMP64
3692 *      PCI_EXP_DEVCAP2_ATOMIC_COMP128
3693 *
3694 * Return 0 if all upstream bridges support AtomicOp routing, egress
3695 * blocking is disabled on all upstream ports, and the root port supports
3696 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3697 * AtomicOp completion), or negative otherwise.
3698 */
3699int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3700{
3701        struct pci_bus *bus = dev->bus;
3702        struct pci_dev *bridge;
3703        u32 cap, ctl2;
3704
3705        if (!pci_is_pcie(dev))
3706                return -EINVAL;
3707
3708        /*
3709         * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3710         * AtomicOp requesters.  For now, we only support endpoints as
3711         * requesters and root ports as completers.  No endpoints as
3712         * completers, and no peer-to-peer.
3713         */
3714
3715        switch (pci_pcie_type(dev)) {
3716        case PCI_EXP_TYPE_ENDPOINT:
3717        case PCI_EXP_TYPE_LEG_END:
3718        case PCI_EXP_TYPE_RC_END:
3719                break;
3720        default:
3721                return -EINVAL;
3722        }
3723
3724        while (bus->parent) {
3725                bridge = bus->self;
3726
3727                pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3728
3729                switch (pci_pcie_type(bridge)) {
3730                /* Ensure switch ports support AtomicOp routing */
3731                case PCI_EXP_TYPE_UPSTREAM:
3732                case PCI_EXP_TYPE_DOWNSTREAM:
3733                        if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3734                                return -EINVAL;
3735                        break;
3736
3737                /* Ensure root port supports all the sizes we care about */
3738                case PCI_EXP_TYPE_ROOT_PORT:
3739                        if ((cap & cap_mask) != cap_mask)
3740                                return -EINVAL;
3741                        break;
3742                }
3743
3744                /* Ensure upstream ports don't block AtomicOps on egress */
3745                if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3746                        pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3747                                                   &ctl2);
3748                        if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3749                                return -EINVAL;
3750                }
3751
3752                bus = bus->parent;
3753        }
3754
3755        pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3756                                 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3757        return 0;
3758}
3759EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3760
3761/**
3762 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3763 * @dev: the PCI device
3764 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3765 *
3766 * Perform INTx swizzling for a device behind one level of bridge.  This is
3767 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3768 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3769 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3770 * the PCI Express Base Specification, Revision 2.1)
3771 */
3772u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3773{
3774        int slot;
3775
3776        if (pci_ari_enabled(dev->bus))
3777                slot = 0;
3778        else
3779                slot = PCI_SLOT(dev->devfn);
3780
3781        return (((pin - 1) + slot) % 4) + 1;
3782}
3783
3784int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3785{
3786        u8 pin;
3787
3788        pin = dev->pin;
3789        if (!pin)
3790                return -1;
3791
3792        while (!pci_is_root_bus(dev->bus)) {
3793                pin = pci_swizzle_interrupt_pin(dev, pin);
3794                dev = dev->bus->self;
3795        }
3796        *bridge = dev;
3797        return pin;
3798}
3799
3800/**
3801 * pci_common_swizzle - swizzle INTx all the way to root bridge
3802 * @dev: the PCI device
3803 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3804 *
3805 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3806 * bridges all the way up to a PCI root bus.
3807 */
3808u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3809{
3810        u8 pin = *pinp;
3811
3812        while (!pci_is_root_bus(dev->bus)) {
3813                pin = pci_swizzle_interrupt_pin(dev, pin);
3814                dev = dev->bus->self;
3815        }
3816        *pinp = pin;
3817        return PCI_SLOT(dev->devfn);
3818}
3819EXPORT_SYMBOL_GPL(pci_common_swizzle);
3820
3821/**
3822 * pci_release_region - Release a PCI bar
3823 * @pdev: PCI device whose resources were previously reserved by
3824 *        pci_request_region()
3825 * @bar: BAR to release
3826 *
3827 * Releases the PCI I/O and memory resources previously reserved by a
3828 * successful call to pci_request_region().  Call this function only
3829 * after all use of the PCI regions has ceased.
3830 */
3831void pci_release_region(struct pci_dev *pdev, int bar)
3832{
3833        struct pci_devres *dr;
3834
3835        if (pci_resource_len(pdev, bar) == 0)
3836                return;
3837        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3838                release_region(pci_resource_start(pdev, bar),
3839                                pci_resource_len(pdev, bar));
3840        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3841                release_mem_region(pci_resource_start(pdev, bar),
3842                                pci_resource_len(pdev, bar));
3843
3844        dr = find_pci_dr(pdev);
3845        if (dr)
3846                dr->region_mask &= ~(1 << bar);
3847}
3848EXPORT_SYMBOL(pci_release_region);
3849
3850/**
3851 * __pci_request_region - Reserved PCI I/O and memory resource
3852 * @pdev: PCI device whose resources are to be reserved
3853 * @bar: BAR to be reserved
3854 * @res_name: Name to be associated with resource.
3855 * @exclusive: whether the region access is exclusive or not
3856 *
3857 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3858 * being reserved by owner @res_name.  Do not access any
3859 * address inside the PCI regions unless this call returns
3860 * successfully.
3861 *
3862 * If @exclusive is set, then the region is marked so that userspace
3863 * is explicitly not allowed to map the resource via /dev/mem or
3864 * sysfs MMIO access.
3865 *
3866 * Returns 0 on success, or %EBUSY on error.  A warning
3867 * message is also printed on failure.
3868 */
3869static int __pci_request_region(struct pci_dev *pdev, int bar,
3870                                const char *res_name, int exclusive)
3871{
3872        struct pci_devres *dr;
3873
3874        if (pci_resource_len(pdev, bar) == 0)
3875                return 0;
3876
3877        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3878                if (!request_region(pci_resource_start(pdev, bar),
3879                            pci_resource_len(pdev, bar), res_name))
3880                        goto err_out;
3881        } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3882                if (!__request_mem_region(pci_resource_start(pdev, bar),
3883                                        pci_resource_len(pdev, bar), res_name,
3884                                        exclusive))
3885                        goto err_out;
3886        }
3887
3888        dr = find_pci_dr(pdev);
3889        if (dr)
3890                dr->region_mask |= 1 << bar;
3891
3892        return 0;
3893
3894err_out:
3895        pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3896                 &pdev->resource[bar]);
3897        return -EBUSY;
3898}
3899
3900/**
3901 * pci_request_region - Reserve PCI I/O and memory resource
3902 * @pdev: PCI device whose resources are to be reserved
3903 * @bar: BAR to be reserved
3904 * @res_name: Name to be associated with resource
3905 *
3906 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3907 * being reserved by owner @res_name.  Do not access any
3908 * address inside the PCI regions unless this call returns
3909 * successfully.
3910 *
3911 * Returns 0 on success, or %EBUSY on error.  A warning
3912 * message is also printed on failure.
3913 */
3914int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3915{
3916        return __pci_request_region(pdev, bar, res_name, 0);
3917}
3918EXPORT_SYMBOL(pci_request_region);
3919
3920/**
3921 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3922 * @pdev: PCI device whose resources were previously reserved
3923 * @bars: Bitmask of BARs to be released
3924 *
3925 * Release selected PCI I/O and memory resources previously reserved.
3926 * Call this function only after all use of the PCI regions has ceased.
3927 */
3928void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3929{
3930        int i;
3931
3932        for (i = 0; i < PCI_STD_NUM_BARS; i++)
3933                if (bars & (1 << i))
3934                        pci_release_region(pdev, i);
3935}
3936EXPORT_SYMBOL(pci_release_selected_regions);
3937
3938static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3939                                          const char *res_name, int excl)
3940{
3941        int i;
3942
3943        for (i = 0; i < PCI_STD_NUM_BARS; i++)
3944                if (bars & (1 << i))
3945                        if (__pci_request_region(pdev, i, res_name, excl))
3946                                goto err_out;
3947        return 0;
3948
3949err_out:
3950        while (--i >= 0)
3951                if (bars & (1 << i))
3952                        pci_release_region(pdev, i);
3953
3954        return -EBUSY;
3955}
3956
3957
3958/**
3959 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3960 * @pdev: PCI device whose resources are to be reserved
3961 * @bars: Bitmask of BARs to be requested
3962 * @res_name: Name to be associated with resource
3963 */
3964int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3965                                 const char *res_name)
3966{
3967        return __pci_request_selected_regions(pdev, bars, res_name, 0);
3968}
3969EXPORT_SYMBOL(pci_request_selected_regions);
3970
3971int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3972                                           const char *res_name)
3973{
3974        return __pci_request_selected_regions(pdev, bars, res_name,
3975                        IORESOURCE_EXCLUSIVE);
3976}
3977EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3978
3979/**
3980 * pci_release_regions - Release reserved PCI I/O and memory resources
3981 * @pdev: PCI device whose resources were previously reserved by
3982 *        pci_request_regions()
3983 *
3984 * Releases all PCI I/O and memory resources previously reserved by a
3985 * successful call to pci_request_regions().  Call this function only
3986 * after all use of the PCI regions has ceased.
3987 */
3988
3989void pci_release_regions(struct pci_dev *pdev)
3990{
3991        pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3992}
3993EXPORT_SYMBOL(pci_release_regions);
3994
3995/**
3996 * pci_request_regions - Reserve PCI I/O and memory resources
3997 * @pdev: PCI device whose resources are to be reserved
3998 * @res_name: Name to be associated with resource.
3999 *
4000 * Mark all PCI regions associated with PCI device @pdev as
4001 * being reserved by owner @res_name.  Do not access any
4002 * address inside the PCI regions unless this call returns
4003 * successfully.
4004 *
4005 * Returns 0 on success, or %EBUSY on error.  A warning
4006 * message is also printed on failure.
4007 */
4008int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4009{
4010        return pci_request_selected_regions(pdev,
4011                        ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4012}
4013EXPORT_SYMBOL(pci_request_regions);
4014
4015/**
4016 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4017 * @pdev: PCI device whose resources are to be reserved
4018 * @res_name: Name to be associated with resource.
4019 *
4020 * Mark all PCI regions associated with PCI device @pdev as being reserved
4021 * by owner @res_name.  Do not access any address inside the PCI regions
4022 * unless this call returns successfully.
4023 *
4024 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4025 * and the sysfs MMIO access will not be allowed.
4026 *
4027 * Returns 0 on success, or %EBUSY on error.  A warning message is also
4028 * printed on failure.
4029 */
4030int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4031{
4032        return pci_request_selected_regions_exclusive(pdev,
4033                                ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4034}
4035EXPORT_SYMBOL(pci_request_regions_exclusive);
4036
4037/*
4038 * Record the PCI IO range (expressed as CPU physical address + size).
4039 * Return a negative value if an error has occurred, zero otherwise
4040 */
4041int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4042                        resource_size_t size)
4043{
4044        int ret = 0;
4045#ifdef PCI_IOBASE
4046        struct logic_pio_hwaddr *range;
4047
4048        if (!size || addr + size < addr)
4049                return -EINVAL;
4050
4051        range = kzalloc(sizeof(*range), GFP_ATOMIC);
4052        if (!range)
4053                return -ENOMEM;
4054
4055        range->fwnode = fwnode;
4056        range->size = size;
4057        range->hw_start = addr;
4058        range->flags = LOGIC_PIO_CPU_MMIO;
4059
4060        ret = logic_pio_register_range(range);
4061        if (ret)
4062                kfree(range);
4063
4064        /* Ignore duplicates due to deferred probing */
4065        if (ret == -EEXIST)
4066                ret = 0;
4067#endif
4068
4069        return ret;
4070}
4071
4072phys_addr_t pci_pio_to_address(unsigned long pio)
4073{
4074        phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4075
4076#ifdef PCI_IOBASE
4077        if (pio >= MMIO_UPPER_LIMIT)
4078                return address;
4079
4080        address = logic_pio_to_hwaddr(pio);
4081#endif
4082
4083        return address;
4084}
4085EXPORT_SYMBOL_GPL(pci_pio_to_address);
4086
4087unsigned long __weak pci_address_to_pio(phys_addr_t address)
4088{
4089#ifdef PCI_IOBASE
4090        return logic_pio_trans_cpuaddr(address);
4091#else
4092        if (address > IO_SPACE_LIMIT)
4093                return (unsigned long)-1;
4094
4095        return (unsigned long) address;
4096#endif
4097}
4098
4099/**
4100 * pci_remap_iospace - Remap the memory mapped I/O space
4101 * @res: Resource describing the I/O space
4102 * @phys_addr: physical address of range to be mapped
4103 *
4104 * Remap the memory mapped I/O space described by the @res and the CPU
4105 * physical address @phys_addr into virtual address space.  Only
4106 * architectures that have memory mapped IO functions defined (and the
4107 * PCI_IOBASE value defined) should call this function.
4108 */
4109int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4110{
4111#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4112        unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4113
4114        if (!(res->flags & IORESOURCE_IO))
4115                return -EINVAL;
4116
4117        if (res->end > IO_SPACE_LIMIT)
4118                return -EINVAL;
4119
4120        return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4121                                  pgprot_device(PAGE_KERNEL));
4122#else
4123        /*
4124         * This architecture does not have memory mapped I/O space,
4125         * so this function should never be called
4126         */
4127        WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4128        return -ENODEV;
4129#endif
4130}
4131EXPORT_SYMBOL(pci_remap_iospace);
4132
4133/**
4134 * pci_unmap_iospace - Unmap the memory mapped I/O space
4135 * @res: resource to be unmapped
4136 *
4137 * Unmap the CPU virtual address @res from virtual address space.  Only
4138 * architectures that have memory mapped IO functions defined (and the
4139 * PCI_IOBASE value defined) should call this function.
4140 */
4141void pci_unmap_iospace(struct resource *res)
4142{
4143#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4144        unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4145
4146        vunmap_range(vaddr, vaddr + resource_size(res));
4147#endif
4148}
4149EXPORT_SYMBOL(pci_unmap_iospace);
4150
4151static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4152{
4153        struct resource **res = ptr;
4154
4155        pci_unmap_iospace(*res);
4156}
4157
4158/**
4159 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4160 * @dev: Generic device to remap IO address for
4161 * @res: Resource describing the I/O space
4162 * @phys_addr: physical address of range to be mapped
4163 *
4164 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4165 * detach.
4166 */
4167int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4168                           phys_addr_t phys_addr)
4169{
4170        const struct resource **ptr;
4171        int error;
4172
4173        ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4174        if (!ptr)
4175                return -ENOMEM;
4176
4177        error = pci_remap_iospace(res, phys_addr);
4178        if (error) {
4179                devres_free(ptr);
4180        } else  {
4181                *ptr = res;
4182                devres_add(dev, ptr);
4183        }
4184
4185        return error;
4186}
4187EXPORT_SYMBOL(devm_pci_remap_iospace);
4188
4189/**
4190 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4191 * @dev: Generic device to remap IO address for
4192 * @offset: Resource address to map
4193 * @size: Size of map
4194 *
4195 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4196 * detach.
4197 */
4198void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4199                                      resource_size_t offset,
4200                                      resource_size_t size)
4201{
4202        void __iomem **ptr, *addr;
4203
4204        ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4205        if (!ptr)
4206                return NULL;
4207
4208        addr = pci_remap_cfgspace(offset, size);
4209        if (addr) {
4210                *ptr = addr;
4211                devres_add(dev, ptr);
4212        } else
4213                devres_free(ptr);
4214
4215        return addr;
4216}
4217EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4218
4219/**
4220 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4221 * @dev: generic device to handle the resource for
4222 * @res: configuration space resource to be handled
4223 *
4224 * Checks that a resource is a valid memory region, requests the memory
4225 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4226 * proper PCI configuration space memory attributes are guaranteed.
4227 *
4228 * All operations are managed and will be undone on driver detach.
4229 *
4230 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4231 * on failure. Usage example::
4232 *
4233 *      res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4234 *      base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4235 *      if (IS_ERR(base))
4236 *              return PTR_ERR(base);
4237 */
4238void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4239                                          struct resource *res)
4240{
4241        resource_size_t size;
4242        const char *name;
4243        void __iomem *dest_ptr;
4244
4245        BUG_ON(!dev);
4246
4247        if (!res || resource_type(res) != IORESOURCE_MEM) {
4248                dev_err(dev, "invalid resource\n");
4249                return IOMEM_ERR_PTR(-EINVAL);
4250        }
4251
4252        size = resource_size(res);
4253
4254        if (res->name)
4255                name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4256                                      res->name);
4257        else
4258                name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4259        if (!name)
4260                return IOMEM_ERR_PTR(-ENOMEM);
4261
4262        if (!devm_request_mem_region(dev, res->start, size, name)) {
4263                dev_err(dev, "can't request region for resource %pR\n", res);
4264                return IOMEM_ERR_PTR(-EBUSY);
4265        }
4266
4267        dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4268        if (!dest_ptr) {
4269                dev_err(dev, "ioremap failed for resource %pR\n", res);
4270                devm_release_mem_region(dev, res->start, size);
4271                dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4272        }
4273
4274        return dest_ptr;
4275}
4276EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4277
4278static void __pci_set_master(struct pci_dev *dev, bool enable)
4279{
4280        u16 old_cmd, cmd;
4281
4282        pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4283        if (enable)
4284                cmd = old_cmd | PCI_COMMAND_MASTER;
4285        else
4286                cmd = old_cmd & ~PCI_COMMAND_MASTER;
4287        if (cmd != old_cmd) {
4288                pci_dbg(dev, "%s bus mastering\n",
4289                        enable ? "enabling" : "disabling");
4290                pci_write_config_word(dev, PCI_COMMAND, cmd);
4291        }
4292        dev->is_busmaster = enable;
4293}
4294
4295/**
4296 * pcibios_setup - process "pci=" kernel boot arguments
4297 * @str: string used to pass in "pci=" kernel boot arguments
4298 *
4299 * Process kernel boot arguments.  This is the default implementation.
4300 * Architecture specific implementations can override this as necessary.
4301 */
4302char * __weak __init pcibios_setup(char *str)
4303{
4304        return str;
4305}
4306
4307/**
4308 * pcibios_set_master - enable PCI bus-mastering for device dev
4309 * @dev: the PCI device to enable
4310 *
4311 * Enables PCI bus-mastering for the device.  This is the default
4312 * implementation.  Architecture specific implementations can override
4313 * this if necessary.
4314 */
4315void __weak pcibios_set_master(struct pci_dev *dev)
4316{
4317        u8 lat;
4318
4319        /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4320        if (pci_is_pcie(dev))
4321                return;
4322
4323        pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4324        if (lat < 16)
4325                lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4326        else if (lat > pcibios_max_latency)
4327                lat = pcibios_max_latency;
4328        else
4329                return;
4330
4331        pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4332}
4333
4334/**
4335 * pci_set_master - enables bus-mastering for device dev
4336 * @dev: the PCI device to enable
4337 *
4338 * Enables bus-mastering on the device and calls pcibios_set_master()
4339 * to do the needed arch specific settings.
4340 */
4341void pci_set_master(struct pci_dev *dev)
4342{
4343        __pci_set_master(dev, true);
4344        pcibios_set_master(dev);
4345}
4346EXPORT_SYMBOL(pci_set_master);
4347
4348/**
4349 * pci_clear_master - disables bus-mastering for device dev
4350 * @dev: the PCI device to disable
4351 */
4352void pci_clear_master(struct pci_dev *dev)
4353{
4354        __pci_set_master(dev, false);
4355}
4356EXPORT_SYMBOL(pci_clear_master);
4357
4358/**
4359 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4360 * @dev: the PCI device for which MWI is to be enabled
4361 *
4362 * Helper function for pci_set_mwi.
4363 * Originally copied from drivers/net/acenic.c.
4364 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4365 *
4366 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4367 */
4368int pci_set_cacheline_size(struct pci_dev *dev)
4369{
4370        u8 cacheline_size;
4371
4372        if (!pci_cache_line_size)
4373                return -EINVAL;
4374
4375        /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4376           equal to or multiple of the right value. */
4377        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4378        if (cacheline_size >= pci_cache_line_size &&
4379            (cacheline_size % pci_cache_line_size) == 0)
4380                return 0;
4381
4382        /* Write the correct value. */
4383        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4384        /* Read it back. */
4385        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4386        if (cacheline_size == pci_cache_line_size)
4387                return 0;
4388
4389        pci_dbg(dev, "cache line size of %d is not supported\n",
4390                   pci_cache_line_size << 2);
4391
4392        return -EINVAL;
4393}
4394EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4395
4396/**
4397 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4398 * @dev: the PCI device for which MWI is enabled
4399 *
4400 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4401 *
4402 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4403 */
4404int pci_set_mwi(struct pci_dev *dev)
4405{
4406#ifdef PCI_DISABLE_MWI
4407        return 0;
4408#else
4409        int rc;
4410        u16 cmd;
4411
4412        rc = pci_set_cacheline_size(dev);
4413        if (rc)
4414                return rc;
4415
4416        pci_read_config_word(dev, PCI_COMMAND, &cmd);
4417        if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4418                pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4419                cmd |= PCI_COMMAND_INVALIDATE;
4420                pci_write_config_word(dev, PCI_COMMAND, cmd);
4421        }
4422        return 0;
4423#endif
4424}
4425EXPORT_SYMBOL(pci_set_mwi);
4426
4427/**
4428 * pcim_set_mwi - a device-managed pci_set_mwi()
4429 * @dev: the PCI device for which MWI is enabled
4430 *
4431 * Managed pci_set_mwi().
4432 *
4433 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4434 */
4435int pcim_set_mwi(struct pci_dev *dev)
4436{
4437        struct pci_devres *dr;
4438
4439        dr = find_pci_dr(dev);
4440        if (!dr)
4441                return -ENOMEM;
4442
4443        dr->mwi = 1;
4444        return pci_set_mwi(dev);
4445}
4446EXPORT_SYMBOL(pcim_set_mwi);
4447
4448/**
4449 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4450 * @dev: the PCI device for which MWI is enabled
4451 *
4452 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4453 * Callers are not required to check the return value.
4454 *
4455 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4456 */
4457int pci_try_set_mwi(struct pci_dev *dev)
4458{
4459#ifdef PCI_DISABLE_MWI
4460        return 0;
4461#else
4462        return pci_set_mwi(dev);
4463#endif
4464}
4465EXPORT_SYMBOL(pci_try_set_mwi);
4466
4467/**
4468 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4469 * @dev: the PCI device to disable
4470 *
4471 * Disables PCI Memory-Write-Invalidate transaction on the device
4472 */
4473void pci_clear_mwi(struct pci_dev *dev)
4474{
4475#ifndef PCI_DISABLE_MWI
4476        u16 cmd;
4477
4478        pci_read_config_word(dev, PCI_COMMAND, &cmd);
4479        if (cmd & PCI_COMMAND_INVALIDATE) {
4480                cmd &= ~PCI_COMMAND_INVALIDATE;
4481                pci_write_config_word(dev, PCI_COMMAND, cmd);
4482        }
4483#endif
4484}
4485EXPORT_SYMBOL(pci_clear_mwi);
4486
4487/**
4488 * pci_disable_parity - disable parity checking for device
4489 * @dev: the PCI device to operate on
4490 *
4491 * Disable parity checking for device @dev
4492 */
4493void pci_disable_parity(struct pci_dev *dev)
4494{
4495        u16 cmd;
4496
4497        pci_read_config_word(dev, PCI_COMMAND, &cmd);
4498        if (cmd & PCI_COMMAND_PARITY) {
4499                cmd &= ~PCI_COMMAND_PARITY;
4500                pci_write_config_word(dev, PCI_COMMAND, cmd);
4501        }
4502}
4503
4504/**
4505 * pci_intx - enables/disables PCI INTx for device dev
4506 * @pdev: the PCI device to operate on
4507 * @enable: boolean: whether to enable or disable PCI INTx
4508 *
4509 * Enables/disables PCI INTx for device @pdev
4510 */
4511void pci_intx(struct pci_dev *pdev, int enable)
4512{
4513        u16 pci_command, new;
4514
4515        pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4516
4517        if (enable)
4518                new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4519        else
4520                new = pci_command | PCI_COMMAND_INTX_DISABLE;
4521
4522        if (new != pci_command) {
4523                struct pci_devres *dr;
4524
4525                pci_write_config_word(pdev, PCI_COMMAND, new);
4526
4527                dr = find_pci_dr(pdev);
4528                if (dr && !dr->restore_intx) {
4529                        dr->restore_intx = 1;
4530                        dr->orig_intx = !enable;
4531                }
4532        }
4533}
4534EXPORT_SYMBOL_GPL(pci_intx);
4535
4536static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4537{
4538        struct pci_bus *bus = dev->bus;
4539        bool mask_updated = true;
4540        u32 cmd_status_dword;
4541        u16 origcmd, newcmd;
4542        unsigned long flags;
4543        bool irq_pending;
4544
4545        /*
4546         * We do a single dword read to retrieve both command and status.
4547         * Document assumptions that make this possible.
4548         */
4549        BUILD_BUG_ON(PCI_COMMAND % 4);
4550        BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4551
4552        raw_spin_lock_irqsave(&pci_lock, flags);
4553
4554        bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4555
4556        irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4557
4558        /*
4559         * Check interrupt status register to see whether our device
4560         * triggered the interrupt (when masking) or the next IRQ is
4561         * already pending (when unmasking).
4562         */
4563        if (mask != irq_pending) {
4564                mask_updated = false;
4565                goto done;
4566        }
4567
4568        origcmd = cmd_status_dword;
4569        newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4570        if (mask)
4571                newcmd |= PCI_COMMAND_INTX_DISABLE;
4572        if (newcmd != origcmd)
4573                bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4574
4575done:
4576        raw_spin_unlock_irqrestore(&pci_lock, flags);
4577
4578        return mask_updated;
4579}
4580
4581/**
4582 * pci_check_and_mask_intx - mask INTx on pending interrupt
4583 * @dev: the PCI device to operate on
4584 *
4585 * Check if the device dev has its INTx line asserted, mask it and return
4586 * true in that case. False is returned if no interrupt was pending.
4587 */
4588bool pci_check_and_mask_intx(struct pci_dev *dev)
4589{
4590        return pci_check_and_set_intx_mask(dev, true);
4591}
4592EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4593
4594/**
4595 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4596 * @dev: the PCI device to operate on
4597 *
4598 * Check if the device dev has its INTx line asserted, unmask it if not and
4599 * return true. False is returned and the mask remains active if there was
4600 * still an interrupt pending.
4601 */
4602bool pci_check_and_unmask_intx(struct pci_dev *dev)
4603{
4604        return pci_check_and_set_intx_mask(dev, false);
4605}
4606EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4607
4608/**
4609 * pci_wait_for_pending_transaction - wait for pending transaction
4610 * @dev: the PCI device to operate on
4611 *
4612 * Return 0 if transaction is pending 1 otherwise.
4613 */
4614int pci_wait_for_pending_transaction(struct pci_dev *dev)
4615{
4616        if (!pci_is_pcie(dev))
4617                return 1;
4618
4619        return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4620                                    PCI_EXP_DEVSTA_TRPND);
4621}
4622EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4623
4624/**
4625 * pcie_has_flr - check if a device supports function level resets
4626 * @dev: device to check
4627 *
4628 * Returns true if the device advertises support for PCIe function level
4629 * resets.
4630 */
4631bool pcie_has_flr(struct pci_dev *dev)
4632{
4633        u32 cap;
4634
4635        if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4636                return false;
4637
4638        pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4639        return cap & PCI_EXP_DEVCAP_FLR;
4640}
4641EXPORT_SYMBOL_GPL(pcie_has_flr);
4642
4643/**
4644 * pcie_flr - initiate a PCIe function level reset
4645 * @dev: device to reset
4646 *
4647 * Initiate a function level reset on @dev.  The caller should ensure the
4648 * device supports FLR before calling this function, e.g. by using the
4649 * pcie_has_flr() helper.
4650 */
4651int pcie_flr(struct pci_dev *dev)
4652{
4653        if (!pci_wait_for_pending_transaction(dev))
4654                pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4655
4656        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4657
4658        if (dev->imm_ready)
4659                return 0;
4660
4661        /*
4662         * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4663         * 100ms, but may silently discard requests while the FLR is in
4664         * progress.  Wait 100ms before trying to access the device.
4665         */
4666        msleep(100);
4667
4668        return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4669}
4670EXPORT_SYMBOL_GPL(pcie_flr);
4671
4672static int pci_af_flr(struct pci_dev *dev, int probe)
4673{
4674        int pos;
4675        u8 cap;
4676
4677        pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4678        if (!pos)
4679                return -ENOTTY;
4680
4681        if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4682                return -ENOTTY;
4683
4684        pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4685        if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4686                return -ENOTTY;
4687
4688        if (probe)
4689                return 0;
4690
4691        /*
4692         * Wait for Transaction Pending bit to clear.  A word-aligned test
4693         * is used, so we use the control offset rather than status and shift
4694         * the test bit to match.
4695         */
4696        if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4697                                 PCI_AF_STATUS_TP << 8))
4698                pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4699
4700        pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4701
4702        if (dev->imm_ready)
4703                return 0;
4704
4705        /*
4706         * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4707         * updated 27 July 2006; a device must complete an FLR within
4708         * 100ms, but may silently discard requests while the FLR is in
4709         * progress.  Wait 100ms before trying to access the device.
4710         */
4711        msleep(100);
4712
4713        return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4714}
4715
4716/**
4717 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4718 * @dev: Device to reset.
4719 * @probe: If set, only check if the device can be reset this way.
4720 *
4721 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4722 * unset, it will be reinitialized internally when going from PCI_D3hot to
4723 * PCI_D0.  If that's the case and the device is not in a low-power state
4724 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4725 *
4726 * NOTE: This causes the caller to sleep for twice the device power transition
4727 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4728 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4729 * Moreover, only devices in D0 can be reset by this function.
4730 */
4731static int pci_pm_reset(struct pci_dev *dev, int probe)
4732{
4733        u16 csr;
4734
4735        if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4736                return -ENOTTY;
4737
4738        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4739        if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4740                return -ENOTTY;
4741
4742        if (probe)
4743                return 0;
4744
4745        if (dev->current_state != PCI_D0)
4746                return -EINVAL;
4747
4748        csr &= ~PCI_PM_CTRL_STATE_MASK;
4749        csr |= PCI_D3hot;
4750        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4751        pci_dev_d3_sleep(dev);
4752
4753        csr &= ~PCI_PM_CTRL_STATE_MASK;
4754        csr |= PCI_D0;
4755        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4756        pci_dev_d3_sleep(dev);
4757
4758        return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4759}
4760
4761/**
4762 * pcie_wait_for_link_delay - Wait until link is active or inactive
4763 * @pdev: Bridge device
4764 * @active: waiting for active or inactive?
4765 * @delay: Delay to wait after link has become active (in ms)
4766 *
4767 * Use this to wait till link becomes active or inactive.
4768 */
4769static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4770                                     int delay)
4771{
4772        int timeout = 1000;
4773        bool ret;
4774        u16 lnk_status;
4775
4776        /*
4777         * Some controllers might not implement link active reporting. In this
4778         * case, we wait for 1000 ms + any delay requested by the caller.
4779         */
4780        if (!pdev->link_active_reporting) {
4781                msleep(timeout + delay);
4782                return true;
4783        }
4784
4785        /*
4786         * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4787         * after which we should expect an link active if the reset was
4788         * successful. If so, software must wait a minimum 100ms before sending
4789         * configuration requests to devices downstream this port.
4790         *
4791         * If the link fails to activate, either the device was physically
4792         * removed or the link is permanently failed.
4793         */
4794        if (active)
4795                msleep(20);
4796        for (;;) {
4797                pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4798                ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4799                if (ret == active)
4800                        break;
4801                if (timeout <= 0)
4802                        break;
4803                msleep(10);
4804                timeout -= 10;
4805        }
4806        if (active && ret)
4807                msleep(delay);
4808
4809        return ret == active;
4810}
4811
4812/**
4813 * pcie_wait_for_link - Wait until link is active or inactive
4814 * @pdev: Bridge device
4815 * @active: waiting for active or inactive?
4816 *
4817 * Use this to wait till link becomes active or inactive.
4818 */
4819bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4820{
4821        return pcie_wait_for_link_delay(pdev, active, 100);
4822}
4823
4824/*
4825 * Find maximum D3cold delay required by all the devices on the bus.  The
4826 * spec says 100 ms, but firmware can lower it and we allow drivers to
4827 * increase it as well.
4828 *
4829 * Called with @pci_bus_sem locked for reading.
4830 */
4831static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4832{
4833        const struct pci_dev *pdev;
4834        int min_delay = 100;
4835        int max_delay = 0;
4836
4837        list_for_each_entry(pdev, &bus->devices, bus_list) {
4838                if (pdev->d3cold_delay < min_delay)
4839                        min_delay = pdev->d3cold_delay;
4840                if (pdev->d3cold_delay > max_delay)
4841                        max_delay = pdev->d3cold_delay;
4842        }
4843
4844        return max(min_delay, max_delay);
4845}
4846
4847/**
4848 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4849 * @dev: PCI bridge
4850 *
4851 * Handle necessary delays before access to the devices on the secondary
4852 * side of the bridge are permitted after D3cold to D0 transition.
4853 *
4854 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4855 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4856 * 4.3.2.
4857 */
4858void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4859{
4860        struct pci_dev *child;
4861        int delay;
4862
4863        if (pci_dev_is_disconnected(dev))
4864                return;
4865
4866        if (!pci_is_bridge(dev) || !dev->bridge_d3)
4867                return;
4868
4869        down_read(&pci_bus_sem);
4870
4871        /*
4872         * We only deal with devices that are present currently on the bus.
4873         * For any hot-added devices the access delay is handled in pciehp
4874         * board_added(). In case of ACPI hotplug the firmware is expected
4875         * to configure the devices before OS is notified.
4876         */
4877        if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4878                up_read(&pci_bus_sem);
4879                return;
4880        }
4881
4882        /* Take d3cold_delay requirements into account */
4883        delay = pci_bus_max_d3cold_delay(dev->subordinate);
4884        if (!delay) {
4885                up_read(&pci_bus_sem);
4886                return;
4887        }
4888
4889        child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4890                                 bus_list);
4891        up_read(&pci_bus_sem);
4892
4893        /*
4894         * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4895         * accessing the device after reset (that is 1000 ms + 100 ms). In
4896         * practice this should not be needed because we don't do power
4897         * management for them (see pci_bridge_d3_possible()).
4898         */
4899        if (!pci_is_pcie(dev)) {
4900                pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4901                msleep(1000 + delay);
4902                return;
4903        }
4904
4905        /*
4906         * For PCIe downstream and root ports that do not support speeds
4907         * greater than 5 GT/s need to wait minimum 100 ms. For higher
4908         * speeds (gen3) we need to wait first for the data link layer to
4909         * become active.
4910         *
4911         * However, 100 ms is the minimum and the PCIe spec says the
4912         * software must allow at least 1s before it can determine that the
4913         * device that did not respond is a broken device. There is
4914         * evidence that 100 ms is not always enough, for example certain
4915         * Titan Ridge xHCI controller does not always respond to
4916         * configuration requests if we only wait for 100 ms (see
4917         * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4918         *
4919         * Therefore we wait for 100 ms and check for the device presence.
4920         * If it is still not present give it an additional 100 ms.
4921         */
4922        if (!pcie_downstream_port(dev))
4923                return;
4924
4925        if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4926                pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4927                msleep(delay);
4928        } else {
4929                pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4930                        delay);
4931                if (!pcie_wait_for_link_delay(dev, true, delay)) {
4932                        /* Did not train, no need to wait any further */
4933                        pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4934                        return;
4935                }
4936        }
4937
4938        if (!pci_device_is_present(child)) {
4939                pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4940                msleep(delay);
4941        }
4942}
4943
4944void pci_reset_secondary_bus(struct pci_dev *dev)
4945{
4946        u16 ctrl;
4947
4948        pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4949        ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4950        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4951
4952        /*
4953         * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4954         * this to 2ms to ensure that we meet the minimum requirement.
4955         */
4956        msleep(2);
4957
4958        ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4959        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4960
4961        /*
4962         * Trhfa for conventional PCI is 2^25 clock cycles.
4963         * Assuming a minimum 33MHz clock this results in a 1s
4964         * delay before we can consider subordinate devices to
4965         * be re-initialized.  PCIe has some ways to shorten this,
4966         * but we don't make use of them yet.
4967         */
4968        ssleep(1);
4969}
4970
4971void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4972{
4973        pci_reset_secondary_bus(dev);
4974}
4975
4976/**
4977 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4978 * @dev: Bridge device
4979 *
4980 * Use the bridge control register to assert reset on the secondary bus.
4981 * Devices on the secondary bus are left in power-on state.
4982 */
4983int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4984{
4985        pcibios_reset_secondary_bus(dev);
4986
4987        return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4988}
4989EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4990
4991static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4992{
4993        struct pci_dev *pdev;
4994
4995        if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4996            !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4997                return -ENOTTY;
4998
4999        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5000                if (pdev != dev)
5001                        return -ENOTTY;
5002
5003        if (probe)
5004                return 0;
5005
5006        return pci_bridge_secondary_bus_reset(dev->bus->self);
5007}
5008
5009static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
5010{
5011        int rc = -ENOTTY;
5012
5013        if (!hotplug || !try_module_get(hotplug->owner))
5014                return rc;
5015
5016        if (hotplug->ops->reset_slot)
5017                rc = hotplug->ops->reset_slot(hotplug, probe);
5018
5019        module_put(hotplug->owner);
5020
5021        return rc;
5022}
5023
5024static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
5025{
5026        if (dev->multifunction || dev->subordinate || !dev->slot ||
5027            dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5028                return -ENOTTY;
5029
5030        return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5031}
5032
5033static void pci_dev_lock(struct pci_dev *dev)
5034{
5035        pci_cfg_access_lock(dev);
5036        /* block PM suspend, driver probe, etc. */
5037        device_lock(&dev->dev);
5038}
5039
5040/* Return 1 on successful lock, 0 on contention */
5041static int pci_dev_trylock(struct pci_dev *dev)
5042{
5043        if (pci_cfg_access_trylock(dev)) {
5044                if (device_trylock(&dev->dev))
5045                        return 1;
5046                pci_cfg_access_unlock(dev);
5047        }
5048
5049        return 0;
5050}
5051
5052static void pci_dev_unlock(struct pci_dev *dev)
5053{
5054        device_unlock(&dev->dev);
5055        pci_cfg_access_unlock(dev);
5056}
5057
5058static void pci_dev_save_and_disable(struct pci_dev *dev)
5059{
5060        const struct pci_error_handlers *err_handler =
5061                        dev->driver ? dev->driver->err_handler : NULL;
5062
5063        /*
5064         * dev->driver->err_handler->reset_prepare() is protected against
5065         * races with ->remove() by the device lock, which must be held by
5066         * the caller.
5067         */
5068        if (err_handler && err_handler->reset_prepare)
5069                err_handler->reset_prepare(dev);
5070
5071        /*
5072         * Wake-up device prior to save.  PM registers default to D0 after
5073         * reset and a simple register restore doesn't reliably return
5074         * to a non-D0 state anyway.
5075         */
5076        pci_set_power_state(dev, PCI_D0);
5077
5078        pci_save_state(dev);
5079        /*
5080         * Disable the device by clearing the Command register, except for
5081         * INTx-disable which is set.  This not only disables MMIO and I/O port
5082         * BARs, but also prevents the device from being Bus Master, preventing
5083         * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5084         * compliant devices, INTx-disable prevents legacy interrupts.
5085         */
5086        pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5087}
5088
5089static void pci_dev_restore(struct pci_dev *dev)
5090{
5091        const struct pci_error_handlers *err_handler =
5092                        dev->driver ? dev->driver->err_handler : NULL;
5093
5094        pci_restore_state(dev);
5095
5096        /*
5097         * dev->driver->err_handler->reset_done() is protected against
5098         * races with ->remove() by the device lock, which must be held by
5099         * the caller.
5100         */
5101        if (err_handler && err_handler->reset_done)
5102                err_handler->reset_done(dev);
5103}
5104
5105/**
5106 * __pci_reset_function_locked - reset a PCI device function while holding
5107 * the @dev mutex lock.
5108 * @dev: PCI device to reset
5109 *
5110 * Some devices allow an individual function to be reset without affecting
5111 * other functions in the same device.  The PCI device must be responsive
5112 * to PCI config space in order to use this function.
5113 *
5114 * The device function is presumed to be unused and the caller is holding
5115 * the device mutex lock when this function is called.
5116 *
5117 * Resetting the device will make the contents of PCI configuration space
5118 * random, so any caller of this must be prepared to reinitialise the
5119 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5120 * etc.
5121 *
5122 * Returns 0 if the device function was successfully reset or negative if the
5123 * device doesn't support resetting a single function.
5124 */
5125int __pci_reset_function_locked(struct pci_dev *dev)
5126{
5127        int rc;
5128
5129        might_sleep();
5130
5131        /*
5132         * A reset method returns -ENOTTY if it doesn't support this device
5133         * and we should try the next method.
5134         *
5135         * If it returns 0 (success), we're finished.  If it returns any
5136         * other error, we're also finished: this indicates that further
5137         * reset mechanisms might be broken on the device.
5138         */
5139        rc = pci_dev_specific_reset(dev, 0);
5140        if (rc != -ENOTTY)
5141                return rc;
5142        if (pcie_has_flr(dev)) {
5143                rc = pcie_flr(dev);
5144                if (rc != -ENOTTY)
5145                        return rc;
5146        }
5147        rc = pci_af_flr(dev, 0);
5148        if (rc != -ENOTTY)
5149                return rc;
5150        rc = pci_pm_reset(dev, 0);
5151        if (rc != -ENOTTY)
5152                return rc;
5153        rc = pci_dev_reset_slot_function(dev, 0);
5154        if (rc != -ENOTTY)
5155                return rc;
5156        return pci_parent_bus_reset(dev, 0);
5157}
5158EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5159
5160/**
5161 * pci_probe_reset_function - check whether the device can be safely reset
5162 * @dev: PCI device to reset
5163 *
5164 * Some devices allow an individual function to be reset without affecting
5165 * other functions in the same device.  The PCI device must be responsive
5166 * to PCI config space in order to use this function.
5167 *
5168 * Returns 0 if the device function can be reset or negative if the
5169 * device doesn't support resetting a single function.
5170 */
5171int pci_probe_reset_function(struct pci_dev *dev)
5172{
5173        int rc;
5174
5175        might_sleep();
5176
5177        rc = pci_dev_specific_reset(dev, 1);
5178        if (rc != -ENOTTY)
5179                return rc;
5180        if (pcie_has_flr(dev))
5181                return 0;
5182        rc = pci_af_flr(dev, 1);
5183        if (rc != -ENOTTY)
5184                return rc;
5185        rc = pci_pm_reset(dev, 1);
5186        if (rc != -ENOTTY)
5187                return rc;
5188        rc = pci_dev_reset_slot_function(dev, 1);
5189        if (rc != -ENOTTY)
5190                return rc;
5191
5192        return pci_parent_bus_reset(dev, 1);
5193}
5194
5195/**
5196 * pci_reset_function - quiesce and reset a PCI device function
5197 * @dev: PCI device to reset
5198 *
5199 * Some devices allow an individual function to be reset without affecting
5200 * other functions in the same device.  The PCI device must be responsive
5201 * to PCI config space in order to use this function.
5202 *
5203 * This function does not just reset the PCI portion of a device, but
5204 * clears all the state associated with the device.  This function differs
5205 * from __pci_reset_function_locked() in that it saves and restores device state
5206 * over the reset and takes the PCI device lock.
5207 *
5208 * Returns 0 if the device function was successfully reset or negative if the
5209 * device doesn't support resetting a single function.
5210 */
5211int pci_reset_function(struct pci_dev *dev)
5212{
5213        int rc;
5214
5215        if (!dev->reset_fn)
5216                return -ENOTTY;
5217
5218        pci_dev_lock(dev);
5219        pci_dev_save_and_disable(dev);
5220
5221        rc = __pci_reset_function_locked(dev);
5222
5223        pci_dev_restore(dev);
5224        pci_dev_unlock(dev);
5225
5226        return rc;
5227}
5228EXPORT_SYMBOL_GPL(pci_reset_function);
5229
5230/**
5231 * pci_reset_function_locked - quiesce and reset a PCI device function
5232 * @dev: PCI device to reset
5233 *
5234 * Some devices allow an individual function to be reset without affecting
5235 * other functions in the same device.  The PCI device must be responsive
5236 * to PCI config space in order to use this function.
5237 *
5238 * This function does not just reset the PCI portion of a device, but
5239 * clears all the state associated with the device.  This function differs
5240 * from __pci_reset_function_locked() in that it saves and restores device state
5241 * over the reset.  It also differs from pci_reset_function() in that it
5242 * requires the PCI device lock to be held.
5243 *
5244 * Returns 0 if the device function was successfully reset or negative if the
5245 * device doesn't support resetting a single function.
5246 */
5247int pci_reset_function_locked(struct pci_dev *dev)
5248{
5249        int rc;
5250
5251        if (!dev->reset_fn)
5252                return -ENOTTY;
5253
5254        pci_dev_save_and_disable(dev);
5255
5256        rc = __pci_reset_function_locked(dev);
5257
5258        pci_dev_restore(dev);
5259
5260        return rc;
5261}
5262EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5263
5264/**
5265 * pci_try_reset_function - quiesce and reset a PCI device function
5266 * @dev: PCI device to reset
5267 *
5268 * Same as above, except return -EAGAIN if unable to lock device.
5269 */
5270int pci_try_reset_function(struct pci_dev *dev)
5271{
5272        int rc;
5273
5274        if (!dev->reset_fn)
5275                return -ENOTTY;
5276
5277        if (!pci_dev_trylock(dev))
5278                return -EAGAIN;
5279
5280        pci_dev_save_and_disable(dev);
5281        rc = __pci_reset_function_locked(dev);
5282        pci_dev_restore(dev);
5283        pci_dev_unlock(dev);
5284
5285        return rc;
5286}
5287EXPORT_SYMBOL_GPL(pci_try_reset_function);
5288
5289/* Do any devices on or below this bus prevent a bus reset? */
5290static bool pci_bus_resetable(struct pci_bus *bus)
5291{
5292        struct pci_dev *dev;
5293
5294
5295        if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5296                return false;
5297
5298        list_for_each_entry(dev, &bus->devices, bus_list) {
5299                if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5300                    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5301                        return false;
5302        }
5303
5304        return true;
5305}
5306
5307/* Lock devices from the top of the tree down */
5308static void pci_bus_lock(struct pci_bus *bus)
5309{
5310        struct pci_dev *dev;
5311
5312        list_for_each_entry(dev, &bus->devices, bus_list) {
5313                pci_dev_lock(dev);
5314                if (dev->subordinate)
5315                        pci_bus_lock(dev->subordinate);
5316        }
5317}
5318
5319/* Unlock devices from the bottom of the tree up */
5320static void pci_bus_unlock(struct pci_bus *bus)
5321{
5322        struct pci_dev *dev;
5323
5324        list_for_each_entry(dev, &bus->devices, bus_list) {
5325                if (dev->subordinate)
5326                        pci_bus_unlock(dev->subordinate);
5327                pci_dev_unlock(dev);
5328        }
5329}
5330
5331/* Return 1 on successful lock, 0 on contention */
5332static int pci_bus_trylock(struct pci_bus *bus)
5333{
5334        struct pci_dev *dev;
5335
5336        list_for_each_entry(dev, &bus->devices, bus_list) {
5337                if (!pci_dev_trylock(dev))
5338                        goto unlock;
5339                if (dev->subordinate) {
5340                        if (!pci_bus_trylock(dev->subordinate)) {
5341                                pci_dev_unlock(dev);
5342                                goto unlock;
5343                        }
5344                }
5345        }
5346        return 1;
5347
5348unlock:
5349        list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5350                if (dev->subordinate)
5351                        pci_bus_unlock(dev->subordinate);
5352                pci_dev_unlock(dev);
5353        }
5354        return 0;
5355}
5356
5357/* Do any devices on or below this slot prevent a bus reset? */
5358static bool pci_slot_resetable(struct pci_slot *slot)
5359{
5360        struct pci_dev *dev;
5361
5362        if (slot->bus->self &&
5363            (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5364                return false;
5365
5366        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5367                if (!dev->slot || dev->slot != slot)
5368                        continue;
5369                if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5370                    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5371                        return false;
5372        }
5373
5374        return true;
5375}
5376
5377/* Lock devices from the top of the tree down */
5378static void pci_slot_lock(struct pci_slot *slot)
5379{
5380        struct pci_dev *dev;
5381
5382        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5383                if (!dev->slot || dev->slot != slot)
5384                        continue;
5385                pci_dev_lock(dev);
5386                if (dev->subordinate)
5387                        pci_bus_lock(dev->subordinate);
5388        }
5389}
5390
5391/* Unlock devices from the bottom of the tree up */
5392static void pci_slot_unlock(struct pci_slot *slot)
5393{
5394        struct pci_dev *dev;
5395
5396        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5397                if (!dev->slot || dev->slot != slot)
5398                        continue;
5399                if (dev->subordinate)
5400                        pci_bus_unlock(dev->subordinate);
5401                pci_dev_unlock(dev);
5402        }
5403}
5404
5405/* Return 1 on successful lock, 0 on contention */
5406static int pci_slot_trylock(struct pci_slot *slot)
5407{
5408        struct pci_dev *dev;
5409
5410        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5411                if (!dev->slot || dev->slot != slot)
5412                        continue;
5413                if (!pci_dev_trylock(dev))
5414                        goto unlock;
5415                if (dev->subordinate) {
5416                        if (!pci_bus_trylock(dev->subordinate)) {
5417                                pci_dev_unlock(dev);
5418                                goto unlock;
5419                        }
5420                }
5421        }
5422        return 1;
5423
5424unlock:
5425        list_for_each_entry_continue_reverse(dev,
5426                                             &slot->bus->devices, bus_list) {
5427                if (!dev->slot || dev->slot != slot)
5428                        continue;
5429                if (dev->subordinate)
5430                        pci_bus_unlock(dev->subordinate);
5431                pci_dev_unlock(dev);
5432        }
5433        return 0;
5434}
5435
5436/*
5437 * Save and disable devices from the top of the tree down while holding
5438 * the @dev mutex lock for the entire tree.
5439 */
5440static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5441{
5442        struct pci_dev *dev;
5443
5444        list_for_each_entry(dev, &bus->devices, bus_list) {
5445                pci_dev_save_and_disable(dev);
5446                if (dev->subordinate)
5447                        pci_bus_save_and_disable_locked(dev->subordinate);
5448        }
5449}
5450
5451/*
5452 * Restore devices from top of the tree down while holding @dev mutex lock
5453 * for the entire tree.  Parent bridges need to be restored before we can
5454 * get to subordinate devices.
5455 */
5456static void pci_bus_restore_locked(struct pci_bus *bus)
5457{
5458        struct pci_dev *dev;
5459
5460        list_for_each_entry(dev, &bus->devices, bus_list) {
5461                pci_dev_restore(dev);
5462                if (dev->subordinate)
5463                        pci_bus_restore_locked(dev->subordinate);
5464        }
5465}
5466
5467/*
5468 * Save and disable devices from the top of the tree down while holding
5469 * the @dev mutex lock for the entire tree.
5470 */
5471static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5472{
5473        struct pci_dev *dev;
5474
5475        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5476                if (!dev->slot || dev->slot != slot)
5477                        continue;
5478                pci_dev_save_and_disable(dev);
5479                if (dev->subordinate)
5480                        pci_bus_save_and_disable_locked(dev->subordinate);
5481        }
5482}
5483
5484/*
5485 * Restore devices from top of the tree down while holding @dev mutex lock
5486 * for the entire tree.  Parent bridges need to be restored before we can
5487 * get to subordinate devices.
5488 */
5489static void pci_slot_restore_locked(struct pci_slot *slot)
5490{
5491        struct pci_dev *dev;
5492
5493        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5494                if (!dev->slot || dev->slot != slot)
5495                        continue;
5496                pci_dev_restore(dev);
5497                if (dev->subordinate)
5498                        pci_bus_restore_locked(dev->subordinate);
5499        }
5500}
5501
5502static int pci_slot_reset(struct pci_slot *slot, int probe)
5503{
5504        int rc;
5505
5506        if (!slot || !pci_slot_resetable(slot))
5507                return -ENOTTY;
5508
5509        if (!probe)
5510                pci_slot_lock(slot);
5511
5512        might_sleep();
5513
5514        rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5515
5516        if (!probe)
5517                pci_slot_unlock(slot);
5518
5519        return rc;
5520}
5521
5522/**
5523 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5524 * @slot: PCI slot to probe
5525 *
5526 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5527 */
5528int pci_probe_reset_slot(struct pci_slot *slot)
5529{
5530        return pci_slot_reset(slot, 1);
5531}
5532EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5533
5534/**
5535 * __pci_reset_slot - Try to reset a PCI slot
5536 * @slot: PCI slot to reset
5537 *
5538 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5539 * independent of other slots.  For instance, some slots may support slot power
5540 * control.  In the case of a 1:1 bus to slot architecture, this function may
5541 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5542 * Generally a slot reset should be attempted before a bus reset.  All of the
5543 * function of the slot and any subordinate buses behind the slot are reset
5544 * through this function.  PCI config space of all devices in the slot and
5545 * behind the slot is saved before and restored after reset.
5546 *
5547 * Same as above except return -EAGAIN if the slot cannot be locked
5548 */
5549static int __pci_reset_slot(struct pci_slot *slot)
5550{
5551        int rc;
5552
5553        rc = pci_slot_reset(slot, 1);
5554        if (rc)
5555                return rc;
5556
5557        if (pci_slot_trylock(slot)) {
5558                pci_slot_save_and_disable_locked(slot);
5559                might_sleep();
5560                rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5561                pci_slot_restore_locked(slot);
5562                pci_slot_unlock(slot);
5563        } else
5564                rc = -EAGAIN;
5565
5566        return rc;
5567}
5568
5569static int pci_bus_reset(struct pci_bus *bus, int probe)
5570{
5571        int ret;
5572
5573        if (!bus->self || !pci_bus_resetable(bus))
5574                return -ENOTTY;
5575
5576        if (probe)
5577                return 0;
5578
5579        pci_bus_lock(bus);
5580
5581        might_sleep();
5582
5583        ret = pci_bridge_secondary_bus_reset(bus->self);
5584
5585        pci_bus_unlock(bus);
5586
5587        return ret;
5588}
5589
5590/**
5591 * pci_bus_error_reset - reset the bridge's subordinate bus
5592 * @bridge: The parent device that connects to the bus to reset
5593 *
5594 * This function will first try to reset the slots on this bus if the method is
5595 * available. If slot reset fails or is not available, this will fall back to a
5596 * secondary bus reset.
5597 */
5598int pci_bus_error_reset(struct pci_dev *bridge)
5599{
5600        struct pci_bus *bus = bridge->subordinate;
5601        struct pci_slot *slot;
5602
5603        if (!bus)
5604                return -ENOTTY;
5605
5606        mutex_lock(&pci_slot_mutex);
5607        if (list_empty(&bus->slots))
5608                goto bus_reset;
5609
5610        list_for_each_entry(slot, &bus->slots, list)
5611                if (pci_probe_reset_slot(slot))
5612                        goto bus_reset;
5613
5614        list_for_each_entry(slot, &bus->slots, list)
5615                if (pci_slot_reset(slot, 0))
5616                        goto bus_reset;
5617
5618        mutex_unlock(&pci_slot_mutex);
5619        return 0;
5620bus_reset:
5621        mutex_unlock(&pci_slot_mutex);
5622        return pci_bus_reset(bridge->subordinate, 0);
5623}
5624
5625/**
5626 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5627 * @bus: PCI bus to probe
5628 *
5629 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5630 */
5631int pci_probe_reset_bus(struct pci_bus *bus)
5632{
5633        return pci_bus_reset(bus, 1);
5634}
5635EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5636
5637/**
5638 * __pci_reset_bus - Try to reset a PCI bus
5639 * @bus: top level PCI bus to reset
5640 *
5641 * Same as above except return -EAGAIN if the bus cannot be locked
5642 */
5643static int __pci_reset_bus(struct pci_bus *bus)
5644{
5645        int rc;
5646
5647        rc = pci_bus_reset(bus, 1);
5648        if (rc)
5649                return rc;
5650
5651        if (pci_bus_trylock(bus)) {
5652                pci_bus_save_and_disable_locked(bus);
5653                might_sleep();
5654                rc = pci_bridge_secondary_bus_reset(bus->self);
5655                pci_bus_restore_locked(bus);
5656                pci_bus_unlock(bus);
5657        } else
5658                rc = -EAGAIN;
5659
5660        return rc;
5661}
5662
5663/**
5664 * pci_reset_bus - Try to reset a PCI bus
5665 * @pdev: top level PCI device to reset via slot/bus
5666 *
5667 * Same as above except return -EAGAIN if the bus cannot be locked
5668 */
5669int pci_reset_bus(struct pci_dev *pdev)
5670{
5671        return (!pci_probe_reset_slot(pdev->slot)) ?
5672            __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5673}
5674EXPORT_SYMBOL_GPL(pci_reset_bus);
5675
5676/**
5677 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5678 * @dev: PCI device to query
5679 *
5680 * Returns mmrbc: maximum designed memory read count in bytes or
5681 * appropriate error value.
5682 */
5683int pcix_get_max_mmrbc(struct pci_dev *dev)
5684{
5685        int cap;
5686        u32 stat;
5687
5688        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5689        if (!cap)
5690                return -EINVAL;
5691
5692        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5693                return -EINVAL;
5694
5695        return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5696}
5697EXPORT_SYMBOL(pcix_get_max_mmrbc);
5698
5699/**
5700 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5701 * @dev: PCI device to query
5702 *
5703 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5704 * value.
5705 */
5706int pcix_get_mmrbc(struct pci_dev *dev)
5707{
5708        int cap;
5709        u16 cmd;
5710
5711        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5712        if (!cap)
5713                return -EINVAL;
5714
5715        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5716                return -EINVAL;
5717
5718        return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5719}
5720EXPORT_SYMBOL(pcix_get_mmrbc);
5721
5722/**
5723 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5724 * @dev: PCI device to query
5725 * @mmrbc: maximum memory read count in bytes
5726 *    valid values are 512, 1024, 2048, 4096
5727 *
5728 * If possible sets maximum memory read byte count, some bridges have errata
5729 * that prevent this.
5730 */
5731int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5732{
5733        int cap;
5734        u32 stat, v, o;
5735        u16 cmd;
5736
5737        if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5738                return -EINVAL;
5739
5740        v = ffs(mmrbc) - 10;
5741
5742        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5743        if (!cap)
5744                return -EINVAL;
5745
5746        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5747                return -EINVAL;
5748
5749        if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5750                return -E2BIG;
5751
5752        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5753                return -EINVAL;
5754
5755        o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5756        if (o != v) {
5757                if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5758                        return -EIO;
5759
5760                cmd &= ~PCI_X_CMD_MAX_READ;
5761                cmd |= v << 2;
5762                if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5763                        return -EIO;
5764        }
5765        return 0;
5766}
5767EXPORT_SYMBOL(pcix_set_mmrbc);
5768
5769/**
5770 * pcie_get_readrq - get PCI Express read request size
5771 * @dev: PCI device to query
5772 *
5773 * Returns maximum memory read request in bytes or appropriate error value.
5774 */
5775int pcie_get_readrq(struct pci_dev *dev)
5776{
5777        u16 ctl;
5778
5779        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5780
5781        return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5782}
5783EXPORT_SYMBOL(pcie_get_readrq);
5784
5785/**
5786 * pcie_set_readrq - set PCI Express maximum memory read request
5787 * @dev: PCI device to query
5788 * @rq: maximum memory read count in bytes
5789 *    valid values are 128, 256, 512, 1024, 2048, 4096
5790 *
5791 * If possible sets maximum memory read request in bytes
5792 */
5793int pcie_set_readrq(struct pci_dev *dev, int rq)
5794{
5795        u16 v;
5796        int ret;
5797
5798        if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5799                return -EINVAL;
5800
5801        /*
5802         * If using the "performance" PCIe config, we clamp the read rq
5803         * size to the max packet size to keep the host bridge from
5804         * generating requests larger than we can cope with.
5805         */
5806        if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5807                int mps = pcie_get_mps(dev);
5808
5809                if (mps < rq)
5810                        rq = mps;
5811        }
5812
5813        v = (ffs(rq) - 8) << 12;
5814
5815        ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5816                                                  PCI_EXP_DEVCTL_READRQ, v);
5817
5818        return pcibios_err_to_errno(ret);
5819}
5820EXPORT_SYMBOL(pcie_set_readrq);
5821
5822/**
5823 * pcie_get_mps - get PCI Express maximum payload size
5824 * @dev: PCI device to query
5825 *
5826 * Returns maximum payload size in bytes
5827 */
5828int pcie_get_mps(struct pci_dev *dev)
5829{
5830        u16 ctl;
5831
5832        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5833
5834        return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5835}
5836EXPORT_SYMBOL(pcie_get_mps);
5837
5838/**
5839 * pcie_set_mps - set PCI Express maximum payload size
5840 * @dev: PCI device to query
5841 * @mps: maximum payload size in bytes
5842 *    valid values are 128, 256, 512, 1024, 2048, 4096
5843 *
5844 * If possible sets maximum payload size
5845 */
5846int pcie_set_mps(struct pci_dev *dev, int mps)
5847{
5848        u16 v;
5849        int ret;
5850
5851        if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5852                return -EINVAL;
5853
5854        v = ffs(mps) - 8;
5855        if (v > dev->pcie_mpss)
5856                return -EINVAL;
5857        v <<= 5;
5858
5859        ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5860                                                  PCI_EXP_DEVCTL_PAYLOAD, v);
5861
5862        return pcibios_err_to_errno(ret);
5863}
5864EXPORT_SYMBOL(pcie_set_mps);
5865
5866/**
5867 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5868 *                            device and its bandwidth limitation
5869 * @dev: PCI device to query
5870 * @limiting_dev: storage for device causing the bandwidth limitation
5871 * @speed: storage for speed of limiting device
5872 * @width: storage for width of limiting device
5873 *
5874 * Walk up the PCI device chain and find the point where the minimum
5875 * bandwidth is available.  Return the bandwidth available there and (if
5876 * limiting_dev, speed, and width pointers are supplied) information about
5877 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5878 * raw bandwidth.
5879 */
5880u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5881                             enum pci_bus_speed *speed,
5882                             enum pcie_link_width *width)
5883{
5884        u16 lnksta;
5885        enum pci_bus_speed next_speed;
5886        enum pcie_link_width next_width;
5887        u32 bw, next_bw;
5888
5889        if (speed)
5890                *speed = PCI_SPEED_UNKNOWN;
5891        if (width)
5892                *width = PCIE_LNK_WIDTH_UNKNOWN;
5893
5894        bw = 0;
5895
5896        while (dev) {
5897                pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5898
5899                next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5900                next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5901                        PCI_EXP_LNKSTA_NLW_SHIFT;
5902
5903                next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5904
5905                /* Check if current device limits the total bandwidth */
5906                if (!bw || next_bw <= bw) {
5907                        bw = next_bw;
5908
5909                        if (limiting_dev)
5910                                *limiting_dev = dev;
5911                        if (speed)
5912                                *speed = next_speed;
5913                        if (width)
5914                                *width = next_width;
5915                }
5916
5917                dev = pci_upstream_bridge(dev);
5918        }
5919
5920        return bw;
5921}
5922EXPORT_SYMBOL(pcie_bandwidth_available);
5923
5924/**
5925 * pcie_get_speed_cap - query for the PCI device's link speed capability
5926 * @dev: PCI device to query
5927 *
5928 * Query the PCI device speed capability.  Return the maximum link speed
5929 * supported by the device.
5930 */
5931enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5932{
5933        u32 lnkcap2, lnkcap;
5934
5935        /*
5936         * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5937         * implementation note there recommends using the Supported Link
5938         * Speeds Vector in Link Capabilities 2 when supported.
5939         *
5940         * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5941         * should use the Supported Link Speeds field in Link Capabilities,
5942         * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5943         */
5944        pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5945
5946        /* PCIe r3.0-compliant */
5947        if (lnkcap2)
5948                return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5949
5950        pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5951        if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5952                return PCIE_SPEED_5_0GT;
5953        else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5954                return PCIE_SPEED_2_5GT;
5955
5956        return PCI_SPEED_UNKNOWN;
5957}
5958EXPORT_SYMBOL(pcie_get_speed_cap);
5959
5960/**
5961 * pcie_get_width_cap - query for the PCI device's link width capability
5962 * @dev: PCI device to query
5963 *
5964 * Query the PCI device width capability.  Return the maximum link width
5965 * supported by the device.
5966 */
5967enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5968{
5969        u32 lnkcap;
5970
5971        pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5972        if (lnkcap)
5973                return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5974
5975        return PCIE_LNK_WIDTH_UNKNOWN;
5976}
5977EXPORT_SYMBOL(pcie_get_width_cap);
5978
5979/**
5980 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5981 * @dev: PCI device
5982 * @speed: storage for link speed
5983 * @width: storage for link width
5984 *
5985 * Calculate a PCI device's link bandwidth by querying for its link speed
5986 * and width, multiplying them, and applying encoding overhead.  The result
5987 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5988 */
5989u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5990                           enum pcie_link_width *width)
5991{
5992        *speed = pcie_get_speed_cap(dev);
5993        *width = pcie_get_width_cap(dev);
5994
5995        if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5996                return 0;
5997
5998        return *width * PCIE_SPEED2MBS_ENC(*speed);
5999}
6000
6001/**
6002 * __pcie_print_link_status - Report the PCI device's link speed and width
6003 * @dev: PCI device to query
6004 * @verbose: Print info even when enough bandwidth is available
6005 *
6006 * If the available bandwidth at the device is less than the device is
6007 * capable of, report the device's maximum possible bandwidth and the
6008 * upstream link that limits its performance.  If @verbose, always print
6009 * the available bandwidth, even if the device isn't constrained.
6010 */
6011void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6012{
6013        enum pcie_link_width width, width_cap;
6014        enum pci_bus_speed speed, speed_cap;
6015        struct pci_dev *limiting_dev = NULL;
6016        u32 bw_avail, bw_cap;
6017
6018        bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6019        bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6020
6021        if (bw_avail >= bw_cap && verbose)
6022                pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6023                         bw_cap / 1000, bw_cap % 1000,
6024                         pci_speed_string(speed_cap), width_cap);
6025        else if (bw_avail < bw_cap)
6026                pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6027                         bw_avail / 1000, bw_avail % 1000,
6028                         pci_speed_string(speed), width,
6029                         limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6030                         bw_cap / 1000, bw_cap % 1000,
6031                         pci_speed_string(speed_cap), width_cap);
6032}
6033
6034/**
6035 * pcie_print_link_status - Report the PCI device's link speed and width
6036 * @dev: PCI device to query
6037 *
6038 * Report the available bandwidth at the device.
6039 */
6040void pcie_print_link_status(struct pci_dev *dev)
6041{
6042        __pcie_print_link_status(dev, true);
6043}
6044EXPORT_SYMBOL(pcie_print_link_status);
6045
6046/**
6047 * pci_select_bars - Make BAR mask from the type of resource
6048 * @dev: the PCI device for which BAR mask is made
6049 * @flags: resource type mask to be selected
6050 *
6051 * This helper routine makes bar mask from the type of resource.
6052 */
6053int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6054{
6055        int i, bars = 0;
6056        for (i = 0; i < PCI_NUM_RESOURCES; i++)
6057                if (pci_resource_flags(dev, i) & flags)
6058                        bars |= (1 << i);
6059        return bars;
6060}
6061EXPORT_SYMBOL(pci_select_bars);
6062
6063/* Some architectures require additional programming to enable VGA */
6064static arch_set_vga_state_t arch_set_vga_state;
6065
6066void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6067{
6068        arch_set_vga_state = func;      /* NULL disables */
6069}
6070
6071static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6072                                  unsigned int command_bits, u32 flags)
6073{
6074        if (arch_set_vga_state)
6075                return arch_set_vga_state(dev, decode, command_bits,
6076                                                flags);
6077        return 0;
6078}
6079
6080/**
6081 * pci_set_vga_state - set VGA decode state on device and parents if requested
6082 * @dev: the PCI device
6083 * @decode: true = enable decoding, false = disable decoding
6084 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6085 * @flags: traverse ancestors and change bridges
6086 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6087 */
6088int pci_set_vga_state(struct pci_dev *dev, bool decode,
6089                      unsigned int command_bits, u32 flags)
6090{
6091        struct pci_bus *bus;
6092        struct pci_dev *bridge;
6093        u16 cmd;
6094        int rc;
6095
6096        WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6097
6098        /* ARCH specific VGA enables */
6099        rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6100        if (rc)
6101                return rc;
6102
6103        if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6104                pci_read_config_word(dev, PCI_COMMAND, &cmd);
6105                if (decode)
6106                        cmd |= command_bits;
6107                else
6108                        cmd &= ~command_bits;
6109                pci_write_config_word(dev, PCI_COMMAND, cmd);
6110        }
6111
6112        if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6113                return 0;
6114
6115        bus = dev->bus;
6116        while (bus) {
6117                bridge = bus->self;
6118                if (bridge) {
6119                        pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6120                                             &cmd);
6121                        if (decode)
6122                                cmd |= PCI_BRIDGE_CTL_VGA;
6123                        else
6124                                cmd &= ~PCI_BRIDGE_CTL_VGA;
6125                        pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6126                                              cmd);
6127                }
6128                bus = bus->parent;
6129        }
6130        return 0;
6131}
6132
6133#ifdef CONFIG_ACPI
6134bool pci_pr3_present(struct pci_dev *pdev)
6135{
6136        struct acpi_device *adev;
6137
6138        if (acpi_disabled)
6139                return false;
6140
6141        adev = ACPI_COMPANION(&pdev->dev);
6142        if (!adev)
6143                return false;
6144
6145        return adev->power.flags.power_resources &&
6146                acpi_has_method(adev->handle, "_PR3");
6147}
6148EXPORT_SYMBOL_GPL(pci_pr3_present);
6149#endif
6150
6151/**
6152 * pci_add_dma_alias - Add a DMA devfn alias for a device
6153 * @dev: the PCI device for which alias is added
6154 * @devfn_from: alias slot and function
6155 * @nr_devfns: number of subsequent devfns to alias
6156 *
6157 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6158 * which is used to program permissible bus-devfn source addresses for DMA
6159 * requests in an IOMMU.  These aliases factor into IOMMU group creation
6160 * and are useful for devices generating DMA requests beyond or different
6161 * from their logical bus-devfn.  Examples include device quirks where the
6162 * device simply uses the wrong devfn, as well as non-transparent bridges
6163 * where the alias may be a proxy for devices in another domain.
6164 *
6165 * IOMMU group creation is performed during device discovery or addition,
6166 * prior to any potential DMA mapping and therefore prior to driver probing
6167 * (especially for userspace assigned devices where IOMMU group definition
6168 * cannot be left as a userspace activity).  DMA aliases should therefore
6169 * be configured via quirks, such as the PCI fixup header quirk.
6170 */
6171void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6172{
6173        int devfn_to;
6174
6175        nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6176        devfn_to = devfn_from + nr_devfns - 1;
6177
6178        if (!dev->dma_alias_mask)
6179                dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6180        if (!dev->dma_alias_mask) {
6181                pci_warn(dev, "Unable to allocate DMA alias mask\n");
6182                return;
6183        }
6184
6185        bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6186
6187        if (nr_devfns == 1)
6188                pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6189                                PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6190        else if (nr_devfns > 1)
6191                pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6192                                PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6193                                PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6194}
6195
6196bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6197{
6198        return (dev1->dma_alias_mask &&
6199                test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6200               (dev2->dma_alias_mask &&
6201                test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6202               pci_real_dma_dev(dev1) == dev2 ||
6203               pci_real_dma_dev(dev2) == dev1;
6204}
6205
6206bool pci_device_is_present(struct pci_dev *pdev)
6207{
6208        u32 v;
6209
6210        if (pci_dev_is_disconnected(pdev))
6211                return false;
6212        return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6213}
6214EXPORT_SYMBOL_GPL(pci_device_is_present);
6215
6216void pci_ignore_hotplug(struct pci_dev *dev)
6217{
6218        struct pci_dev *bridge = dev->bus->self;
6219
6220        dev->ignore_hotplug = 1;
6221        /* Propagate the "ignore hotplug" setting to the parent bridge. */
6222        if (bridge)
6223                bridge->ignore_hotplug = 1;
6224}
6225EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6226
6227/**
6228 * pci_real_dma_dev - Get PCI DMA device for PCI device
6229 * @dev: the PCI device that may have a PCI DMA alias
6230 *
6231 * Permits the platform to provide architecture-specific functionality to
6232 * devices needing to alias DMA to another PCI device on another PCI bus. If
6233 * the PCI device is on the same bus, it is recommended to use
6234 * pci_add_dma_alias(). This is the default implementation. Architecture
6235 * implementations can override this.
6236 */
6237struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6238{
6239        return dev;
6240}
6241
6242resource_size_t __weak pcibios_default_alignment(void)
6243{
6244        return 0;
6245}
6246
6247/*
6248 * Arches that don't want to expose struct resource to userland as-is in
6249 * sysfs and /proc can implement their own pci_resource_to_user().
6250 */
6251void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6252                                 const struct resource *rsrc,
6253                                 resource_size_t *start, resource_size_t *end)
6254{
6255        *start = rsrc->start;
6256        *end = rsrc->end;
6257}
6258
6259static char *resource_alignment_param;
6260static DEFINE_SPINLOCK(resource_alignment_lock);
6261
6262/**
6263 * pci_specified_resource_alignment - get resource alignment specified by user.
6264 * @dev: the PCI device to get
6265 * @resize: whether or not to change resources' size when reassigning alignment
6266 *
6267 * RETURNS: Resource alignment if it is specified.
6268 *          Zero if it is not specified.
6269 */
6270static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6271                                                        bool *resize)
6272{
6273        int align_order, count;
6274        resource_size_t align = pcibios_default_alignment();
6275        const char *p;
6276        int ret;
6277
6278        spin_lock(&resource_alignment_lock);
6279        p = resource_alignment_param;
6280        if (!p || !*p)
6281                goto out;
6282        if (pci_has_flag(PCI_PROBE_ONLY)) {
6283                align = 0;
6284                pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6285                goto out;
6286        }
6287
6288        while (*p) {
6289                count = 0;
6290                if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6291                    p[count] == '@') {
6292                        p += count + 1;
6293                        if (align_order > 63) {
6294                                pr_err("PCI: Invalid requested alignment (order %d)\n",
6295                                       align_order);
6296                                align_order = PAGE_SHIFT;
6297                        }
6298                } else {
6299                        align_order = PAGE_SHIFT;
6300                }
6301
6302                ret = pci_dev_str_match(dev, p, &p);
6303                if (ret == 1) {
6304                        *resize = true;
6305                        align = 1ULL << align_order;
6306                        break;
6307                } else if (ret < 0) {
6308                        pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6309                               p);
6310                        break;
6311                }
6312
6313                if (*p != ';' && *p != ',') {
6314                        /* End of param or invalid format */
6315                        break;
6316                }
6317                p++;
6318        }
6319out:
6320        spin_unlock(&resource_alignment_lock);
6321        return align;
6322}
6323
6324static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6325                                           resource_size_t align, bool resize)
6326{
6327        struct resource *r = &dev->resource[bar];
6328        resource_size_t size;
6329
6330        if (!(r->flags & IORESOURCE_MEM))
6331                return;
6332
6333        if (r->flags & IORESOURCE_PCI_FIXED) {
6334                pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6335                         bar, r, (unsigned long long)align);
6336                return;
6337        }
6338
6339        size = resource_size(r);
6340        if (size >= align)
6341                return;
6342
6343        /*
6344         * Increase the alignment of the resource.  There are two ways we
6345         * can do this:
6346         *
6347         * 1) Increase the size of the resource.  BARs are aligned on their
6348         *    size, so when we reallocate space for this resource, we'll
6349         *    allocate it with the larger alignment.  This also prevents
6350         *    assignment of any other BARs inside the alignment region, so
6351         *    if we're requesting page alignment, this means no other BARs
6352         *    will share the page.
6353         *
6354         *    The disadvantage is that this makes the resource larger than
6355         *    the hardware BAR, which may break drivers that compute things
6356         *    based on the resource size, e.g., to find registers at a
6357         *    fixed offset before the end of the BAR.
6358         *
6359         * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6360         *    set r->start to the desired alignment.  By itself this
6361         *    doesn't prevent other BARs being put inside the alignment
6362         *    region, but if we realign *every* resource of every device in
6363         *    the system, none of them will share an alignment region.
6364         *
6365         * When the user has requested alignment for only some devices via
6366         * the "pci=resource_alignment" argument, "resize" is true and we
6367         * use the first method.  Otherwise we assume we're aligning all
6368         * devices and we use the second.
6369         */
6370
6371        pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6372                 bar, r, (unsigned long long)align);
6373
6374        if (resize) {
6375                r->start = 0;
6376                r->end = align - 1;
6377        } else {
6378                r->flags &= ~IORESOURCE_SIZEALIGN;
6379                r->flags |= IORESOURCE_STARTALIGN;
6380                r->start = align;
6381                r->end = r->start + size - 1;
6382        }
6383        r->flags |= IORESOURCE_UNSET;
6384}
6385
6386/*
6387 * This function disables memory decoding and releases memory resources
6388 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6389 * It also rounds up size to specified alignment.
6390 * Later on, the kernel will assign page-aligned memory resource back
6391 * to the device.
6392 */
6393void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6394{
6395        int i;
6396        struct resource *r;
6397        resource_size_t align;
6398        u16 command;
6399        bool resize = false;
6400
6401        /*
6402         * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6403         * 3.4.1.11.  Their resources are allocated from the space
6404         * described by the VF BARx register in the PF's SR-IOV capability.
6405         * We can't influence their alignment here.
6406         */
6407        if (dev->is_virtfn)
6408                return;
6409
6410        /* check if specified PCI is target device to reassign */
6411        align = pci_specified_resource_alignment(dev, &resize);
6412        if (!align)
6413                return;
6414
6415        if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6416            (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6417                pci_warn(dev, "Can't reassign resources to host bridge\n");
6418                return;
6419        }
6420
6421        pci_read_config_word(dev, PCI_COMMAND, &command);
6422        command &= ~PCI_COMMAND_MEMORY;
6423        pci_write_config_word(dev, PCI_COMMAND, command);
6424
6425        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6426                pci_request_resource_alignment(dev, i, align, resize);
6427
6428        /*
6429         * Need to disable bridge's resource window,
6430         * to enable the kernel to reassign new resource
6431         * window later on.
6432         */
6433        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6434                for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6435                        r = &dev->resource[i];
6436                        if (!(r->flags & IORESOURCE_MEM))
6437                                continue;
6438                        r->flags |= IORESOURCE_UNSET;
6439                        r->end = resource_size(r) - 1;
6440                        r->start = 0;
6441                }
6442                pci_disable_bridge_window(dev);
6443        }
6444}
6445
6446static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6447{
6448        size_t count = 0;
6449
6450        spin_lock(&resource_alignment_lock);
6451        if (resource_alignment_param)
6452                count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6453        spin_unlock(&resource_alignment_lock);
6454
6455        /*
6456         * When set by the command line, resource_alignment_param will not
6457         * have a trailing line feed, which is ugly. So conditionally add
6458         * it here.
6459         */
6460        if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6461                buf[count - 1] = '\n';
6462                buf[count++] = 0;
6463        }
6464
6465        return count;
6466}
6467
6468static ssize_t resource_alignment_store(struct bus_type *bus,
6469                                        const char *buf, size_t count)
6470{
6471        char *param = kstrndup(buf, count, GFP_KERNEL);
6472
6473        if (!param)
6474                return -ENOMEM;
6475
6476        spin_lock(&resource_alignment_lock);
6477        kfree(resource_alignment_param);
6478        resource_alignment_param = param;
6479        spin_unlock(&resource_alignment_lock);
6480        return count;
6481}
6482
6483static BUS_ATTR_RW(resource_alignment);
6484
6485static int __init pci_resource_alignment_sysfs_init(void)
6486{
6487        return bus_create_file(&pci_bus_type,
6488                                        &bus_attr_resource_alignment);
6489}
6490late_initcall(pci_resource_alignment_sysfs_init);
6491
6492static void pci_no_domains(void)
6493{
6494#ifdef CONFIG_PCI_DOMAINS
6495        pci_domains_supported = 0;
6496#endif
6497}
6498
6499#ifdef CONFIG_PCI_DOMAINS_GENERIC
6500static atomic_t __domain_nr = ATOMIC_INIT(-1);
6501
6502static int pci_get_new_domain_nr(void)
6503{
6504        return atomic_inc_return(&__domain_nr);
6505}
6506
6507static int of_pci_bus_find_domain_nr(struct device *parent)
6508{
6509        static int use_dt_domains = -1;
6510        int domain = -1;
6511
6512        if (parent)
6513                domain = of_get_pci_domain_nr(parent->of_node);
6514
6515        /*
6516         * Check DT domain and use_dt_domains values.
6517         *
6518         * If DT domain property is valid (domain >= 0) and
6519         * use_dt_domains != 0, the DT assignment is valid since this means
6520         * we have not previously allocated a domain number by using
6521         * pci_get_new_domain_nr(); we should also update use_dt_domains to
6522         * 1, to indicate that we have just assigned a domain number from
6523         * DT.
6524         *
6525         * If DT domain property value is not valid (ie domain < 0), and we
6526         * have not previously assigned a domain number from DT
6527         * (use_dt_domains != 1) we should assign a domain number by
6528         * using the:
6529         *
6530         * pci_get_new_domain_nr()
6531         *
6532         * API and update the use_dt_domains value to keep track of method we
6533         * are using to assign domain numbers (use_dt_domains = 0).
6534         *
6535         * All other combinations imply we have a platform that is trying
6536         * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6537         * which is a recipe for domain mishandling and it is prevented by
6538         * invalidating the domain value (domain = -1) and printing a
6539         * corresponding error.
6540         */
6541        if (domain >= 0 && use_dt_domains) {
6542                use_dt_domains = 1;
6543        } else if (domain < 0 && use_dt_domains != 1) {
6544                use_dt_domains = 0;
6545                domain = pci_get_new_domain_nr();
6546        } else {
6547                if (parent)
6548                        pr_err("Node %pOF has ", parent->of_node);
6549                pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6550                domain = -1;
6551        }
6552
6553        return domain;
6554}
6555
6556int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6557{
6558        return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6559                               acpi_pci_bus_find_domain_nr(bus);
6560}
6561#endif
6562
6563/**
6564 * pci_ext_cfg_avail - can we access extended PCI config space?
6565 *
6566 * Returns 1 if we can access PCI extended config space (offsets
6567 * greater than 0xff). This is the default implementation. Architecture
6568 * implementations can override this.
6569 */
6570int __weak pci_ext_cfg_avail(void)
6571{
6572        return 1;
6573}
6574
6575void __weak pci_fixup_cardbus(struct pci_bus *bus)
6576{
6577}
6578EXPORT_SYMBOL(pci_fixup_cardbus);
6579
6580static int __init pci_setup(char *str)
6581{
6582        while (str) {
6583                char *k = strchr(str, ',');
6584                if (k)
6585                        *k++ = 0;
6586                if (*str && (str = pcibios_setup(str)) && *str) {
6587                        if (!strcmp(str, "nomsi")) {
6588                                pci_no_msi();
6589                        } else if (!strncmp(str, "noats", 5)) {
6590                                pr_info("PCIe: ATS is disabled\n");
6591                                pcie_ats_disabled = true;
6592                        } else if (!strcmp(str, "noaer")) {
6593                                pci_no_aer();
6594                        } else if (!strcmp(str, "earlydump")) {
6595                                pci_early_dump = true;
6596                        } else if (!strncmp(str, "realloc=", 8)) {
6597                                pci_realloc_get_opt(str + 8);
6598                        } else if (!strncmp(str, "realloc", 7)) {
6599                                pci_realloc_get_opt("on");
6600                        } else if (!strcmp(str, "nodomains")) {
6601                                pci_no_domains();
6602                        } else if (!strncmp(str, "noari", 5)) {
6603                                pcie_ari_disabled = true;
6604                        } else if (!strncmp(str, "cbiosize=", 9)) {
6605                                pci_cardbus_io_size = memparse(str + 9, &str);
6606                        } else if (!strncmp(str, "cbmemsize=", 10)) {
6607                                pci_cardbus_mem_size = memparse(str + 10, &str);
6608                        } else if (!strncmp(str, "resource_alignment=", 19)) {
6609                                resource_alignment_param = str + 19;
6610                        } else if (!strncmp(str, "ecrc=", 5)) {
6611                                pcie_ecrc_get_policy(str + 5);
6612                        } else if (!strncmp(str, "hpiosize=", 9)) {
6613                                pci_hotplug_io_size = memparse(str + 9, &str);
6614                        } else if (!strncmp(str, "hpmmiosize=", 11)) {
6615                                pci_hotplug_mmio_size = memparse(str + 11, &str);
6616                        } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6617                                pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6618                        } else if (!strncmp(str, "hpmemsize=", 10)) {
6619                                pci_hotplug_mmio_size = memparse(str + 10, &str);
6620                                pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6621                        } else if (!strncmp(str, "hpbussize=", 10)) {
6622                                pci_hotplug_bus_size =
6623                                        simple_strtoul(str + 10, &str, 0);
6624                                if (pci_hotplug_bus_size > 0xff)
6625                                        pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6626                        } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6627                                pcie_bus_config = PCIE_BUS_TUNE_OFF;
6628                        } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6629                                pcie_bus_config = PCIE_BUS_SAFE;
6630                        } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6631                                pcie_bus_config = PCIE_BUS_PERFORMANCE;
6632                        } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6633                                pcie_bus_config = PCIE_BUS_PEER2PEER;
6634                        } else if (!strncmp(str, "pcie_scan_all", 13)) {
6635                                pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6636                        } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6637                                disable_acs_redir_param = str + 18;
6638                        } else {
6639                                pr_err("PCI: Unknown option `%s'\n", str);
6640                        }
6641                }
6642                str = k;
6643        }
6644        return 0;
6645}
6646early_param("pci", pci_setup);
6647
6648/*
6649 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6650 * in pci_setup(), above, to point to data in the __initdata section which
6651 * will be freed after the init sequence is complete. We can't allocate memory
6652 * in pci_setup() because some architectures do not have any memory allocation
6653 * service available during an early_param() call. So we allocate memory and
6654 * copy the variable here before the init section is freed.
6655 *
6656 */
6657static int __init pci_realloc_setup_params(void)
6658{
6659        resource_alignment_param = kstrdup(resource_alignment_param,
6660                                           GFP_KERNEL);
6661        disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6662
6663        return 0;
6664}
6665pure_initcall(pci_realloc_setup_params);
6666