linux/drivers/perf/arm_spe_pmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Perf support for the Statistical Profiling Extension, introduced as
   4 * part of ARMv8.2.
   5 *
   6 * Copyright (C) 2016 ARM Limited
   7 *
   8 * Author: Will Deacon <will.deacon@arm.com>
   9 */
  10
  11#define PMUNAME                                 "arm_spe"
  12#define DRVNAME                                 PMUNAME "_pmu"
  13#define pr_fmt(fmt)                             DRVNAME ": " fmt
  14
  15#include <linux/bitops.h>
  16#include <linux/bug.h>
  17#include <linux/capability.h>
  18#include <linux/cpuhotplug.h>
  19#include <linux/cpumask.h>
  20#include <linux/device.h>
  21#include <linux/errno.h>
  22#include <linux/interrupt.h>
  23#include <linux/irq.h>
  24#include <linux/kernel.h>
  25#include <linux/list.h>
  26#include <linux/module.h>
  27#include <linux/of_address.h>
  28#include <linux/of_device.h>
  29#include <linux/perf_event.h>
  30#include <linux/perf/arm_pmu.h>
  31#include <linux/platform_device.h>
  32#include <linux/printk.h>
  33#include <linux/slab.h>
  34#include <linux/smp.h>
  35#include <linux/vmalloc.h>
  36
  37#include <asm/barrier.h>
  38#include <asm/cpufeature.h>
  39#include <asm/mmu.h>
  40#include <asm/sysreg.h>
  41
  42#define ARM_SPE_BUF_PAD_BYTE                    0
  43
  44struct arm_spe_pmu_buf {
  45        int                                     nr_pages;
  46        bool                                    snapshot;
  47        void                                    *base;
  48};
  49
  50struct arm_spe_pmu {
  51        struct pmu                              pmu;
  52        struct platform_device                  *pdev;
  53        cpumask_t                               supported_cpus;
  54        struct hlist_node                       hotplug_node;
  55
  56        int                                     irq; /* PPI */
  57        u16                                     pmsver;
  58        u16                                     min_period;
  59        u16                                     counter_sz;
  60
  61#define SPE_PMU_FEAT_FILT_EVT                   (1UL << 0)
  62#define SPE_PMU_FEAT_FILT_TYP                   (1UL << 1)
  63#define SPE_PMU_FEAT_FILT_LAT                   (1UL << 2)
  64#define SPE_PMU_FEAT_ARCH_INST                  (1UL << 3)
  65#define SPE_PMU_FEAT_LDS                        (1UL << 4)
  66#define SPE_PMU_FEAT_ERND                       (1UL << 5)
  67#define SPE_PMU_FEAT_DEV_PROBED                 (1UL << 63)
  68        u64                                     features;
  69
  70        u16                                     max_record_sz;
  71        u16                                     align;
  72        struct perf_output_handle __percpu      *handle;
  73};
  74
  75#define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
  76
  77/* Convert a free-running index from perf into an SPE buffer offset */
  78#define PERF_IDX2OFF(idx, buf)  ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
  79
  80/* Keep track of our dynamic hotplug state */
  81static enum cpuhp_state arm_spe_pmu_online;
  82
  83enum arm_spe_pmu_buf_fault_action {
  84        SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
  85        SPE_PMU_BUF_FAULT_ACT_FATAL,
  86        SPE_PMU_BUF_FAULT_ACT_OK,
  87};
  88
  89/* This sysfs gunk was really good fun to write. */
  90enum arm_spe_pmu_capabilities {
  91        SPE_PMU_CAP_ARCH_INST = 0,
  92        SPE_PMU_CAP_ERND,
  93        SPE_PMU_CAP_FEAT_MAX,
  94        SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
  95        SPE_PMU_CAP_MIN_IVAL,
  96};
  97
  98static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
  99        [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST,
 100        [SPE_PMU_CAP_ERND]      = SPE_PMU_FEAT_ERND,
 101};
 102
 103static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
 104{
 105        if (cap < SPE_PMU_CAP_FEAT_MAX)
 106                return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
 107
 108        switch (cap) {
 109        case SPE_PMU_CAP_CNT_SZ:
 110                return spe_pmu->counter_sz;
 111        case SPE_PMU_CAP_MIN_IVAL:
 112                return spe_pmu->min_period;
 113        default:
 114                WARN(1, "unknown cap %d\n", cap);
 115        }
 116
 117        return 0;
 118}
 119
 120static ssize_t arm_spe_pmu_cap_show(struct device *dev,
 121                                    struct device_attribute *attr,
 122                                    char *buf)
 123{
 124        struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
 125        struct dev_ext_attribute *ea =
 126                container_of(attr, struct dev_ext_attribute, attr);
 127        int cap = (long)ea->var;
 128
 129        return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap));
 130}
 131
 132#define SPE_EXT_ATTR_ENTRY(_name, _func, _var)                          \
 133        &((struct dev_ext_attribute[]) {                                \
 134                { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }   \
 135        })[0].attr.attr
 136
 137#define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)                             \
 138        SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
 139
 140static struct attribute *arm_spe_pmu_cap_attr[] = {
 141        SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
 142        SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
 143        SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
 144        SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
 145        NULL,
 146};
 147
 148static const struct attribute_group arm_spe_pmu_cap_group = {
 149        .name   = "caps",
 150        .attrs  = arm_spe_pmu_cap_attr,
 151};
 152
 153/* User ABI */
 154#define ATTR_CFG_FLD_ts_enable_CFG              config  /* PMSCR_EL1.TS */
 155#define ATTR_CFG_FLD_ts_enable_LO               0
 156#define ATTR_CFG_FLD_ts_enable_HI               0
 157#define ATTR_CFG_FLD_pa_enable_CFG              config  /* PMSCR_EL1.PA */
 158#define ATTR_CFG_FLD_pa_enable_LO               1
 159#define ATTR_CFG_FLD_pa_enable_HI               1
 160#define ATTR_CFG_FLD_pct_enable_CFG             config  /* PMSCR_EL1.PCT */
 161#define ATTR_CFG_FLD_pct_enable_LO              2
 162#define ATTR_CFG_FLD_pct_enable_HI              2
 163#define ATTR_CFG_FLD_jitter_CFG                 config  /* PMSIRR_EL1.RND */
 164#define ATTR_CFG_FLD_jitter_LO                  16
 165#define ATTR_CFG_FLD_jitter_HI                  16
 166#define ATTR_CFG_FLD_branch_filter_CFG          config  /* PMSFCR_EL1.B */
 167#define ATTR_CFG_FLD_branch_filter_LO           32
 168#define ATTR_CFG_FLD_branch_filter_HI           32
 169#define ATTR_CFG_FLD_load_filter_CFG            config  /* PMSFCR_EL1.LD */
 170#define ATTR_CFG_FLD_load_filter_LO             33
 171#define ATTR_CFG_FLD_load_filter_HI             33
 172#define ATTR_CFG_FLD_store_filter_CFG           config  /* PMSFCR_EL1.ST */
 173#define ATTR_CFG_FLD_store_filter_LO            34
 174#define ATTR_CFG_FLD_store_filter_HI            34
 175
 176#define ATTR_CFG_FLD_event_filter_CFG           config1 /* PMSEVFR_EL1 */
 177#define ATTR_CFG_FLD_event_filter_LO            0
 178#define ATTR_CFG_FLD_event_filter_HI            63
 179
 180#define ATTR_CFG_FLD_min_latency_CFG            config2 /* PMSLATFR_EL1.MINLAT */
 181#define ATTR_CFG_FLD_min_latency_LO             0
 182#define ATTR_CFG_FLD_min_latency_HI             11
 183
 184/* Why does everything I do descend into this? */
 185#define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                              \
 186        (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
 187
 188#define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)                               \
 189        __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
 190
 191#define GEN_PMU_FORMAT_ATTR(name)                                       \
 192        PMU_FORMAT_ATTR(name,                                           \
 193        _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,                 \
 194                             ATTR_CFG_FLD_##name##_LO,                  \
 195                             ATTR_CFG_FLD_##name##_HI))
 196
 197#define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)                            \
 198        ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
 199
 200#define ATTR_CFG_GET_FLD(attr, name)                                    \
 201        _ATTR_CFG_GET_FLD(attr,                                         \
 202                          ATTR_CFG_FLD_##name##_CFG,                    \
 203                          ATTR_CFG_FLD_##name##_LO,                     \
 204                          ATTR_CFG_FLD_##name##_HI)
 205
 206GEN_PMU_FORMAT_ATTR(ts_enable);
 207GEN_PMU_FORMAT_ATTR(pa_enable);
 208GEN_PMU_FORMAT_ATTR(pct_enable);
 209GEN_PMU_FORMAT_ATTR(jitter);
 210GEN_PMU_FORMAT_ATTR(branch_filter);
 211GEN_PMU_FORMAT_ATTR(load_filter);
 212GEN_PMU_FORMAT_ATTR(store_filter);
 213GEN_PMU_FORMAT_ATTR(event_filter);
 214GEN_PMU_FORMAT_ATTR(min_latency);
 215
 216static struct attribute *arm_spe_pmu_formats_attr[] = {
 217        &format_attr_ts_enable.attr,
 218        &format_attr_pa_enable.attr,
 219        &format_attr_pct_enable.attr,
 220        &format_attr_jitter.attr,
 221        &format_attr_branch_filter.attr,
 222        &format_attr_load_filter.attr,
 223        &format_attr_store_filter.attr,
 224        &format_attr_event_filter.attr,
 225        &format_attr_min_latency.attr,
 226        NULL,
 227};
 228
 229static const struct attribute_group arm_spe_pmu_format_group = {
 230        .name   = "format",
 231        .attrs  = arm_spe_pmu_formats_attr,
 232};
 233
 234static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
 235                                            struct device_attribute *attr,
 236                                            char *buf)
 237{
 238        struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
 239
 240        return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
 241}
 242static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
 243
 244static struct attribute *arm_spe_pmu_attrs[] = {
 245        &dev_attr_cpumask.attr,
 246        NULL,
 247};
 248
 249static const struct attribute_group arm_spe_pmu_group = {
 250        .attrs  = arm_spe_pmu_attrs,
 251};
 252
 253static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
 254        &arm_spe_pmu_group,
 255        &arm_spe_pmu_cap_group,
 256        &arm_spe_pmu_format_group,
 257        NULL,
 258};
 259
 260/* Convert between user ABI and register values */
 261static u64 arm_spe_event_to_pmscr(struct perf_event *event)
 262{
 263        struct perf_event_attr *attr = &event->attr;
 264        u64 reg = 0;
 265
 266        reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
 267        reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
 268        reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
 269
 270        if (!attr->exclude_user)
 271                reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
 272
 273        if (!attr->exclude_kernel)
 274                reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
 275
 276        if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
 277                reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
 278
 279        return reg;
 280}
 281
 282static void arm_spe_event_sanitise_period(struct perf_event *event)
 283{
 284        struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
 285        u64 period = event->hw.sample_period;
 286        u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
 287                         << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
 288
 289        if (period < spe_pmu->min_period)
 290                period = spe_pmu->min_period;
 291        else if (period > max_period)
 292                period = max_period;
 293        else
 294                period &= max_period;
 295
 296        event->hw.sample_period = period;
 297}
 298
 299static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
 300{
 301        struct perf_event_attr *attr = &event->attr;
 302        u64 reg = 0;
 303
 304        arm_spe_event_sanitise_period(event);
 305
 306        reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
 307        reg |= event->hw.sample_period;
 308
 309        return reg;
 310}
 311
 312static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
 313{
 314        struct perf_event_attr *attr = &event->attr;
 315        u64 reg = 0;
 316
 317        reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
 318        reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
 319        reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
 320
 321        if (reg)
 322                reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
 323
 324        if (ATTR_CFG_GET_FLD(attr, event_filter))
 325                reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
 326
 327        if (ATTR_CFG_GET_FLD(attr, min_latency))
 328                reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
 329
 330        return reg;
 331}
 332
 333static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
 334{
 335        struct perf_event_attr *attr = &event->attr;
 336        return ATTR_CFG_GET_FLD(attr, event_filter);
 337}
 338
 339static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
 340{
 341        struct perf_event_attr *attr = &event->attr;
 342        return ATTR_CFG_GET_FLD(attr, min_latency)
 343               << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
 344}
 345
 346static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
 347{
 348        struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
 349        u64 head = PERF_IDX2OFF(handle->head, buf);
 350
 351        memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
 352        if (!buf->snapshot)
 353                perf_aux_output_skip(handle, len);
 354}
 355
 356static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
 357{
 358        struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
 359        struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
 360        u64 head = PERF_IDX2OFF(handle->head, buf);
 361        u64 limit = buf->nr_pages * PAGE_SIZE;
 362
 363        /*
 364         * The trace format isn't parseable in reverse, so clamp
 365         * the limit to half of the buffer size in snapshot mode
 366         * so that the worst case is half a buffer of records, as
 367         * opposed to a single record.
 368         */
 369        if (head < limit >> 1)
 370                limit >>= 1;
 371
 372        /*
 373         * If we're within max_record_sz of the limit, we must
 374         * pad, move the head index and recompute the limit.
 375         */
 376        if (limit - head < spe_pmu->max_record_sz) {
 377                arm_spe_pmu_pad_buf(handle, limit - head);
 378                handle->head = PERF_IDX2OFF(limit, buf);
 379                limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
 380        }
 381
 382        return limit;
 383}
 384
 385static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
 386{
 387        struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
 388        struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
 389        const u64 bufsize = buf->nr_pages * PAGE_SIZE;
 390        u64 limit = bufsize;
 391        u64 head, tail, wakeup;
 392
 393        /*
 394         * The head can be misaligned for two reasons:
 395         *
 396         * 1. The hardware left PMBPTR pointing to the first byte after
 397         *    a record when generating a buffer management event.
 398         *
 399         * 2. We used perf_aux_output_skip to consume handle->size bytes
 400         *    and CIRC_SPACE was used to compute the size, which always
 401         *    leaves one entry free.
 402         *
 403         * Deal with this by padding to the next alignment boundary and
 404         * moving the head index. If we run out of buffer space, we'll
 405         * reduce handle->size to zero and end up reporting truncation.
 406         */
 407        head = PERF_IDX2OFF(handle->head, buf);
 408        if (!IS_ALIGNED(head, spe_pmu->align)) {
 409                unsigned long delta = roundup(head, spe_pmu->align) - head;
 410
 411                delta = min(delta, handle->size);
 412                arm_spe_pmu_pad_buf(handle, delta);
 413                head = PERF_IDX2OFF(handle->head, buf);
 414        }
 415
 416        /* If we've run out of free space, then nothing more to do */
 417        if (!handle->size)
 418                goto no_space;
 419
 420        /* Compute the tail and wakeup indices now that we've aligned head */
 421        tail = PERF_IDX2OFF(handle->head + handle->size, buf);
 422        wakeup = PERF_IDX2OFF(handle->wakeup, buf);
 423
 424        /*
 425         * Avoid clobbering unconsumed data. We know we have space, so
 426         * if we see head == tail we know that the buffer is empty. If
 427         * head > tail, then there's nothing to clobber prior to
 428         * wrapping.
 429         */
 430        if (head < tail)
 431                limit = round_down(tail, PAGE_SIZE);
 432
 433        /*
 434         * Wakeup may be arbitrarily far into the future. If it's not in
 435         * the current generation, either we'll wrap before hitting it,
 436         * or it's in the past and has been handled already.
 437         *
 438         * If there's a wakeup before we wrap, arrange to be woken up by
 439         * the page boundary following it. Keep the tail boundary if
 440         * that's lower.
 441         */
 442        if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
 443                limit = min(limit, round_up(wakeup, PAGE_SIZE));
 444
 445        if (limit > head)
 446                return limit;
 447
 448        arm_spe_pmu_pad_buf(handle, handle->size);
 449no_space:
 450        perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
 451        perf_aux_output_end(handle, 0);
 452        return 0;
 453}
 454
 455static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
 456{
 457        struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
 458        struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
 459        u64 limit = __arm_spe_pmu_next_off(handle);
 460        u64 head = PERF_IDX2OFF(handle->head, buf);
 461
 462        /*
 463         * If the head has come too close to the end of the buffer,
 464         * then pad to the end and recompute the limit.
 465         */
 466        if (limit && (limit - head < spe_pmu->max_record_sz)) {
 467                arm_spe_pmu_pad_buf(handle, limit - head);
 468                limit = __arm_spe_pmu_next_off(handle);
 469        }
 470
 471        return limit;
 472}
 473
 474static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
 475                                          struct perf_event *event)
 476{
 477        u64 base, limit;
 478        struct arm_spe_pmu_buf *buf;
 479
 480        /* Start a new aux session */
 481        buf = perf_aux_output_begin(handle, event);
 482        if (!buf) {
 483                event->hw.state |= PERF_HES_STOPPED;
 484                /*
 485                 * We still need to clear the limit pointer, since the
 486                 * profiler might only be disabled by virtue of a fault.
 487                 */
 488                limit = 0;
 489                goto out_write_limit;
 490        }
 491
 492        limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
 493                              : arm_spe_pmu_next_off(handle);
 494        if (limit)
 495                limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
 496
 497        limit += (u64)buf->base;
 498        base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
 499        write_sysreg_s(base, SYS_PMBPTR_EL1);
 500
 501out_write_limit:
 502        write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
 503}
 504
 505static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
 506{
 507        struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
 508        u64 offset, size;
 509
 510        offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
 511        size = offset - PERF_IDX2OFF(handle->head, buf);
 512
 513        if (buf->snapshot)
 514                handle->head = offset;
 515
 516        perf_aux_output_end(handle, size);
 517}
 518
 519static void arm_spe_pmu_disable_and_drain_local(void)
 520{
 521        /* Disable profiling at EL0 and EL1 */
 522        write_sysreg_s(0, SYS_PMSCR_EL1);
 523        isb();
 524
 525        /* Drain any buffered data */
 526        psb_csync();
 527        dsb(nsh);
 528
 529        /* Disable the profiling buffer */
 530        write_sysreg_s(0, SYS_PMBLIMITR_EL1);
 531        isb();
 532}
 533
 534/* IRQ handling */
 535static enum arm_spe_pmu_buf_fault_action
 536arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
 537{
 538        const char *err_str;
 539        u64 pmbsr;
 540        enum arm_spe_pmu_buf_fault_action ret;
 541
 542        /*
 543         * Ensure new profiling data is visible to the CPU and any external
 544         * aborts have been resolved.
 545         */
 546        psb_csync();
 547        dsb(nsh);
 548
 549        /* Ensure hardware updates to PMBPTR_EL1 are visible */
 550        isb();
 551
 552        /* Service required? */
 553        pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
 554        if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
 555                return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
 556
 557        /*
 558         * If we've lost data, disable profiling and also set the PARTIAL
 559         * flag to indicate that the last record is corrupted.
 560         */
 561        if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
 562                perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
 563                                             PERF_AUX_FLAG_PARTIAL);
 564
 565        /* Report collisions to userspace so that it can up the period */
 566        if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
 567                perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
 568
 569        /* We only expect buffer management events */
 570        switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
 571        case SYS_PMBSR_EL1_EC_BUF:
 572                /* Handled below */
 573                break;
 574        case SYS_PMBSR_EL1_EC_FAULT_S1:
 575        case SYS_PMBSR_EL1_EC_FAULT_S2:
 576                err_str = "Unexpected buffer fault";
 577                goto out_err;
 578        default:
 579                err_str = "Unknown error code";
 580                goto out_err;
 581        }
 582
 583        /* Buffer management event */
 584        switch (pmbsr &
 585                (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
 586        case SYS_PMBSR_EL1_BUF_BSC_FULL:
 587                ret = SPE_PMU_BUF_FAULT_ACT_OK;
 588                goto out_stop;
 589        default:
 590                err_str = "Unknown buffer status code";
 591        }
 592
 593out_err:
 594        pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
 595                           err_str, smp_processor_id(), pmbsr,
 596                           read_sysreg_s(SYS_PMBPTR_EL1),
 597                           read_sysreg_s(SYS_PMBLIMITR_EL1));
 598        ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
 599
 600out_stop:
 601        arm_spe_perf_aux_output_end(handle);
 602        return ret;
 603}
 604
 605static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
 606{
 607        struct perf_output_handle *handle = dev;
 608        struct perf_event *event = handle->event;
 609        enum arm_spe_pmu_buf_fault_action act;
 610
 611        if (!perf_get_aux(handle))
 612                return IRQ_NONE;
 613
 614        act = arm_spe_pmu_buf_get_fault_act(handle);
 615        if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
 616                return IRQ_NONE;
 617
 618        /*
 619         * Ensure perf callbacks have completed, which may disable the
 620         * profiling buffer in response to a TRUNCATION flag.
 621         */
 622        irq_work_run();
 623
 624        switch (act) {
 625        case SPE_PMU_BUF_FAULT_ACT_FATAL:
 626                /*
 627                 * If a fatal exception occurred then leaving the profiling
 628                 * buffer enabled is a recipe waiting to happen. Since
 629                 * fatal faults don't always imply truncation, make sure
 630                 * that the profiling buffer is disabled explicitly before
 631                 * clearing the syndrome register.
 632                 */
 633                arm_spe_pmu_disable_and_drain_local();
 634                break;
 635        case SPE_PMU_BUF_FAULT_ACT_OK:
 636                /*
 637                 * We handled the fault (the buffer was full), so resume
 638                 * profiling as long as we didn't detect truncation.
 639                 * PMBPTR might be misaligned, but we'll burn that bridge
 640                 * when we get to it.
 641                 */
 642                if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
 643                        arm_spe_perf_aux_output_begin(handle, event);
 644                        isb();
 645                }
 646                break;
 647        case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
 648                /* We've seen you before, but GCC has the memory of a sieve. */
 649                break;
 650        }
 651
 652        /* The buffer pointers are now sane, so resume profiling. */
 653        write_sysreg_s(0, SYS_PMBSR_EL1);
 654        return IRQ_HANDLED;
 655}
 656
 657static u64 arm_spe_pmsevfr_res0(u16 pmsver)
 658{
 659        switch (pmsver) {
 660        case ID_AA64DFR0_PMSVER_8_2:
 661                return SYS_PMSEVFR_EL1_RES0_8_2;
 662        case ID_AA64DFR0_PMSVER_8_3:
 663        /* Return the highest version we support in default */
 664        default:
 665                return SYS_PMSEVFR_EL1_RES0_8_3;
 666        }
 667}
 668
 669/* Perf callbacks */
 670static int arm_spe_pmu_event_init(struct perf_event *event)
 671{
 672        u64 reg;
 673        struct perf_event_attr *attr = &event->attr;
 674        struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
 675
 676        /* This is, of course, deeply driver-specific */
 677        if (attr->type != event->pmu->type)
 678                return -ENOENT;
 679
 680        if (event->cpu >= 0 &&
 681            !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
 682                return -ENOENT;
 683
 684        if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
 685                return -EOPNOTSUPP;
 686
 687        if (attr->exclude_idle)
 688                return -EOPNOTSUPP;
 689
 690        /*
 691         * Feedback-directed frequency throttling doesn't work when we
 692         * have a buffer of samples. We'd need to manually count the
 693         * samples in the buffer when it fills up and adjust the event
 694         * count to reflect that. Instead, just force the user to specify
 695         * a sample period.
 696         */
 697        if (attr->freq)
 698                return -EINVAL;
 699
 700        reg = arm_spe_event_to_pmsfcr(event);
 701        if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
 702            !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
 703                return -EOPNOTSUPP;
 704
 705        if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
 706            !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
 707                return -EOPNOTSUPP;
 708
 709        if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
 710            !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
 711                return -EOPNOTSUPP;
 712
 713        reg = arm_spe_event_to_pmscr(event);
 714        if (!perfmon_capable() &&
 715            (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
 716                    BIT(SYS_PMSCR_EL1_CX_SHIFT) |
 717                    BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
 718                return -EACCES;
 719
 720        return 0;
 721}
 722
 723static void arm_spe_pmu_start(struct perf_event *event, int flags)
 724{
 725        u64 reg;
 726        struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
 727        struct hw_perf_event *hwc = &event->hw;
 728        struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
 729
 730        hwc->state = 0;
 731        arm_spe_perf_aux_output_begin(handle, event);
 732        if (hwc->state)
 733                return;
 734
 735        reg = arm_spe_event_to_pmsfcr(event);
 736        write_sysreg_s(reg, SYS_PMSFCR_EL1);
 737
 738        reg = arm_spe_event_to_pmsevfr(event);
 739        write_sysreg_s(reg, SYS_PMSEVFR_EL1);
 740
 741        reg = arm_spe_event_to_pmslatfr(event);
 742        write_sysreg_s(reg, SYS_PMSLATFR_EL1);
 743
 744        if (flags & PERF_EF_RELOAD) {
 745                reg = arm_spe_event_to_pmsirr(event);
 746                write_sysreg_s(reg, SYS_PMSIRR_EL1);
 747                isb();
 748                reg = local64_read(&hwc->period_left);
 749                write_sysreg_s(reg, SYS_PMSICR_EL1);
 750        }
 751
 752        reg = arm_spe_event_to_pmscr(event);
 753        isb();
 754        write_sysreg_s(reg, SYS_PMSCR_EL1);
 755}
 756
 757static void arm_spe_pmu_stop(struct perf_event *event, int flags)
 758{
 759        struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
 760        struct hw_perf_event *hwc = &event->hw;
 761        struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
 762
 763        /* If we're already stopped, then nothing to do */
 764        if (hwc->state & PERF_HES_STOPPED)
 765                return;
 766
 767        /* Stop all trace generation */
 768        arm_spe_pmu_disable_and_drain_local();
 769
 770        if (flags & PERF_EF_UPDATE) {
 771                /*
 772                 * If there's a fault pending then ensure we contain it
 773                 * to this buffer, since we might be on the context-switch
 774                 * path.
 775                 */
 776                if (perf_get_aux(handle)) {
 777                        enum arm_spe_pmu_buf_fault_action act;
 778
 779                        act = arm_spe_pmu_buf_get_fault_act(handle);
 780                        if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
 781                                arm_spe_perf_aux_output_end(handle);
 782                        else
 783                                write_sysreg_s(0, SYS_PMBSR_EL1);
 784                }
 785
 786                /*
 787                 * This may also contain ECOUNT, but nobody else should
 788                 * be looking at period_left, since we forbid frequency
 789                 * based sampling.
 790                 */
 791                local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
 792                hwc->state |= PERF_HES_UPTODATE;
 793        }
 794
 795        hwc->state |= PERF_HES_STOPPED;
 796}
 797
 798static int arm_spe_pmu_add(struct perf_event *event, int flags)
 799{
 800        int ret = 0;
 801        struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
 802        struct hw_perf_event *hwc = &event->hw;
 803        int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
 804
 805        if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
 806                return -ENOENT;
 807
 808        hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
 809
 810        if (flags & PERF_EF_START) {
 811                arm_spe_pmu_start(event, PERF_EF_RELOAD);
 812                if (hwc->state & PERF_HES_STOPPED)
 813                        ret = -EINVAL;
 814        }
 815
 816        return ret;
 817}
 818
 819static void arm_spe_pmu_del(struct perf_event *event, int flags)
 820{
 821        arm_spe_pmu_stop(event, PERF_EF_UPDATE);
 822}
 823
 824static void arm_spe_pmu_read(struct perf_event *event)
 825{
 826}
 827
 828static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
 829                                   int nr_pages, bool snapshot)
 830{
 831        int i, cpu = event->cpu;
 832        struct page **pglist;
 833        struct arm_spe_pmu_buf *buf;
 834
 835        /* We need at least two pages for this to work. */
 836        if (nr_pages < 2)
 837                return NULL;
 838
 839        /*
 840         * We require an even number of pages for snapshot mode, so that
 841         * we can effectively treat the buffer as consisting of two equal
 842         * parts and give userspace a fighting chance of getting some
 843         * useful data out of it.
 844         */
 845        if (snapshot && (nr_pages & 1))
 846                return NULL;
 847
 848        if (cpu == -1)
 849                cpu = raw_smp_processor_id();
 850
 851        buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
 852        if (!buf)
 853                return NULL;
 854
 855        pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
 856        if (!pglist)
 857                goto out_free_buf;
 858
 859        for (i = 0; i < nr_pages; ++i)
 860                pglist[i] = virt_to_page(pages[i]);
 861
 862        buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
 863        if (!buf->base)
 864                goto out_free_pglist;
 865
 866        buf->nr_pages   = nr_pages;
 867        buf->snapshot   = snapshot;
 868
 869        kfree(pglist);
 870        return buf;
 871
 872out_free_pglist:
 873        kfree(pglist);
 874out_free_buf:
 875        kfree(buf);
 876        return NULL;
 877}
 878
 879static void arm_spe_pmu_free_aux(void *aux)
 880{
 881        struct arm_spe_pmu_buf *buf = aux;
 882
 883        vunmap(buf->base);
 884        kfree(buf);
 885}
 886
 887/* Initialisation and teardown functions */
 888static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
 889{
 890        static atomic_t pmu_idx = ATOMIC_INIT(-1);
 891
 892        int idx;
 893        char *name;
 894        struct device *dev = &spe_pmu->pdev->dev;
 895
 896        spe_pmu->pmu = (struct pmu) {
 897                .module = THIS_MODULE,
 898                .capabilities   = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
 899                .attr_groups    = arm_spe_pmu_attr_groups,
 900                /*
 901                 * We hitch a ride on the software context here, so that
 902                 * we can support per-task profiling (which is not possible
 903                 * with the invalid context as it doesn't get sched callbacks).
 904                 * This requires that userspace either uses a dummy event for
 905                 * perf_event_open, since the aux buffer is not setup until
 906                 * a subsequent mmap, or creates the profiling event in a
 907                 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
 908                 * once the buffer has been created.
 909                 */
 910                .task_ctx_nr    = perf_sw_context,
 911                .event_init     = arm_spe_pmu_event_init,
 912                .add            = arm_spe_pmu_add,
 913                .del            = arm_spe_pmu_del,
 914                .start          = arm_spe_pmu_start,
 915                .stop           = arm_spe_pmu_stop,
 916                .read           = arm_spe_pmu_read,
 917                .setup_aux      = arm_spe_pmu_setup_aux,
 918                .free_aux       = arm_spe_pmu_free_aux,
 919        };
 920
 921        idx = atomic_inc_return(&pmu_idx);
 922        name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
 923        if (!name) {
 924                dev_err(dev, "failed to allocate name for pmu %d\n", idx);
 925                return -ENOMEM;
 926        }
 927
 928        return perf_pmu_register(&spe_pmu->pmu, name, -1);
 929}
 930
 931static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
 932{
 933        perf_pmu_unregister(&spe_pmu->pmu);
 934}
 935
 936static void __arm_spe_pmu_dev_probe(void *info)
 937{
 938        int fld;
 939        u64 reg;
 940        struct arm_spe_pmu *spe_pmu = info;
 941        struct device *dev = &spe_pmu->pdev->dev;
 942
 943        fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
 944                                                   ID_AA64DFR0_PMSVER_SHIFT);
 945        if (!fld) {
 946                dev_err(dev,
 947                        "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
 948                        fld, smp_processor_id());
 949                return;
 950        }
 951        spe_pmu->pmsver = (u16)fld;
 952
 953        /* Read PMBIDR first to determine whether or not we have access */
 954        reg = read_sysreg_s(SYS_PMBIDR_EL1);
 955        if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
 956                dev_err(dev,
 957                        "profiling buffer owned by higher exception level\n");
 958                return;
 959        }
 960
 961        /* Minimum alignment. If it's out-of-range, then fail the probe */
 962        fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
 963        spe_pmu->align = 1 << fld;
 964        if (spe_pmu->align > SZ_2K) {
 965                dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
 966                        fld, smp_processor_id());
 967                return;
 968        }
 969
 970        /* It's now safe to read PMSIDR and figure out what we've got */
 971        reg = read_sysreg_s(SYS_PMSIDR_EL1);
 972        if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
 973                spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
 974
 975        if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
 976                spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
 977
 978        if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
 979                spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
 980
 981        if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
 982                spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
 983
 984        if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
 985                spe_pmu->features |= SPE_PMU_FEAT_LDS;
 986
 987        if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
 988                spe_pmu->features |= SPE_PMU_FEAT_ERND;
 989
 990        /* This field has a spaced out encoding, so just use a look-up */
 991        fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
 992        switch (fld) {
 993        case 0:
 994                spe_pmu->min_period = 256;
 995                break;
 996        case 2:
 997                spe_pmu->min_period = 512;
 998                break;
 999        case 3:
1000                spe_pmu->min_period = 768;
1001                break;
1002        case 4:
1003                spe_pmu->min_period = 1024;
1004                break;
1005        case 5:
1006                spe_pmu->min_period = 1536;
1007                break;
1008        case 6:
1009                spe_pmu->min_period = 2048;
1010                break;
1011        case 7:
1012                spe_pmu->min_period = 3072;
1013                break;
1014        default:
1015                dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1016                         fld);
1017                fallthrough;
1018        case 8:
1019                spe_pmu->min_period = 4096;
1020        }
1021
1022        /* Maximum record size. If it's out-of-range, then fail the probe */
1023        fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1024        spe_pmu->max_record_sz = 1 << fld;
1025        if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1026                dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1027                        fld, smp_processor_id());
1028                return;
1029        }
1030
1031        fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1032        switch (fld) {
1033        default:
1034                dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1035                         fld);
1036                fallthrough;
1037        case 2:
1038                spe_pmu->counter_sz = 12;
1039        }
1040
1041        dev_info(dev,
1042                 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1043                 cpumask_pr_args(&spe_pmu->supported_cpus),
1044                 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1045
1046        spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1047        return;
1048}
1049
1050static void __arm_spe_pmu_reset_local(void)
1051{
1052        /*
1053         * This is probably overkill, as we have no idea where we're
1054         * draining any buffered data to...
1055         */
1056        arm_spe_pmu_disable_and_drain_local();
1057
1058        /* Reset the buffer base pointer */
1059        write_sysreg_s(0, SYS_PMBPTR_EL1);
1060        isb();
1061
1062        /* Clear any pending management interrupts */
1063        write_sysreg_s(0, SYS_PMBSR_EL1);
1064        isb();
1065}
1066
1067static void __arm_spe_pmu_setup_one(void *info)
1068{
1069        struct arm_spe_pmu *spe_pmu = info;
1070
1071        __arm_spe_pmu_reset_local();
1072        enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1073}
1074
1075static void __arm_spe_pmu_stop_one(void *info)
1076{
1077        struct arm_spe_pmu *spe_pmu = info;
1078
1079        disable_percpu_irq(spe_pmu->irq);
1080        __arm_spe_pmu_reset_local();
1081}
1082
1083static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1084{
1085        struct arm_spe_pmu *spe_pmu;
1086
1087        spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1088        if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1089                return 0;
1090
1091        __arm_spe_pmu_setup_one(spe_pmu);
1092        return 0;
1093}
1094
1095static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1096{
1097        struct arm_spe_pmu *spe_pmu;
1098
1099        spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1100        if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1101                return 0;
1102
1103        __arm_spe_pmu_stop_one(spe_pmu);
1104        return 0;
1105}
1106
1107static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1108{
1109        int ret;
1110        cpumask_t *mask = &spe_pmu->supported_cpus;
1111
1112        /* Make sure we probe the hardware on a relevant CPU */
1113        ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1114        if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1115                return -ENXIO;
1116
1117        /* Request our PPIs (note that the IRQ is still disabled) */
1118        ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1119                                 spe_pmu->handle);
1120        if (ret)
1121                return ret;
1122
1123        /*
1124         * Register our hotplug notifier now so we don't miss any events.
1125         * This will enable the IRQ for any supported CPUs that are already
1126         * up.
1127         */
1128        ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1129                                       &spe_pmu->hotplug_node);
1130        if (ret)
1131                free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1132
1133        return ret;
1134}
1135
1136static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1137{
1138        cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1139        free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1140}
1141
1142/* Driver and device probing */
1143static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1144{
1145        struct platform_device *pdev = spe_pmu->pdev;
1146        int irq = platform_get_irq(pdev, 0);
1147
1148        if (irq < 0)
1149                return -ENXIO;
1150
1151        if (!irq_is_percpu(irq)) {
1152                dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1153                return -EINVAL;
1154        }
1155
1156        if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1157                dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1158                return -EINVAL;
1159        }
1160
1161        spe_pmu->irq = irq;
1162        return 0;
1163}
1164
1165static const struct of_device_id arm_spe_pmu_of_match[] = {
1166        { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1167        { /* Sentinel */ },
1168};
1169MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1170
1171static const struct platform_device_id arm_spe_match[] = {
1172        { ARMV8_SPE_PDEV_NAME, 0},
1173        { }
1174};
1175MODULE_DEVICE_TABLE(platform, arm_spe_match);
1176
1177static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1178{
1179        int ret;
1180        struct arm_spe_pmu *spe_pmu;
1181        struct device *dev = &pdev->dev;
1182
1183        /*
1184         * If kernelspace is unmapped when running at EL0, then the SPE
1185         * buffer will fault and prematurely terminate the AUX session.
1186         */
1187        if (arm64_kernel_unmapped_at_el0()) {
1188                dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1189                return -EPERM;
1190        }
1191
1192        spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1193        if (!spe_pmu) {
1194                dev_err(dev, "failed to allocate spe_pmu\n");
1195                return -ENOMEM;
1196        }
1197
1198        spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1199        if (!spe_pmu->handle)
1200                return -ENOMEM;
1201
1202        spe_pmu->pdev = pdev;
1203        platform_set_drvdata(pdev, spe_pmu);
1204
1205        ret = arm_spe_pmu_irq_probe(spe_pmu);
1206        if (ret)
1207                goto out_free_handle;
1208
1209        ret = arm_spe_pmu_dev_init(spe_pmu);
1210        if (ret)
1211                goto out_free_handle;
1212
1213        ret = arm_spe_pmu_perf_init(spe_pmu);
1214        if (ret)
1215                goto out_teardown_dev;
1216
1217        return 0;
1218
1219out_teardown_dev:
1220        arm_spe_pmu_dev_teardown(spe_pmu);
1221out_free_handle:
1222        free_percpu(spe_pmu->handle);
1223        return ret;
1224}
1225
1226static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1227{
1228        struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1229
1230        arm_spe_pmu_perf_destroy(spe_pmu);
1231        arm_spe_pmu_dev_teardown(spe_pmu);
1232        free_percpu(spe_pmu->handle);
1233        return 0;
1234}
1235
1236static struct platform_driver arm_spe_pmu_driver = {
1237        .id_table = arm_spe_match,
1238        .driver = {
1239                .name           = DRVNAME,
1240                .of_match_table = of_match_ptr(arm_spe_pmu_of_match),
1241                .suppress_bind_attrs = true,
1242        },
1243        .probe  = arm_spe_pmu_device_probe,
1244        .remove = arm_spe_pmu_device_remove,
1245};
1246
1247static int __init arm_spe_pmu_init(void)
1248{
1249        int ret;
1250
1251        ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1252                                      arm_spe_pmu_cpu_startup,
1253                                      arm_spe_pmu_cpu_teardown);
1254        if (ret < 0)
1255                return ret;
1256        arm_spe_pmu_online = ret;
1257
1258        ret = platform_driver_register(&arm_spe_pmu_driver);
1259        if (ret)
1260                cpuhp_remove_multi_state(arm_spe_pmu_online);
1261
1262        return ret;
1263}
1264
1265static void __exit arm_spe_pmu_exit(void)
1266{
1267        platform_driver_unregister(&arm_spe_pmu_driver);
1268        cpuhp_remove_multi_state(arm_spe_pmu_online);
1269}
1270
1271module_init(arm_spe_pmu_init);
1272module_exit(arm_spe_pmu_exit);
1273
1274MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1275MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1276MODULE_LICENSE("GPL v2");
1277