linux/drivers/rtc/rtc-sun6i.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * An RTC driver for Allwinner A31/A23
   4 *
   5 * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org>
   6 *
   7 * based on rtc-sunxi.c
   8 *
   9 * An RTC driver for Allwinner A10/A20
  10 *
  11 * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/clk-provider.h>
  16#include <linux/delay.h>
  17#include <linux/err.h>
  18#include <linux/fs.h>
  19#include <linux/init.h>
  20#include <linux/interrupt.h>
  21#include <linux/io.h>
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/of.h>
  25#include <linux/of_address.h>
  26#include <linux/of_device.h>
  27#include <linux/platform_device.h>
  28#include <linux/rtc.h>
  29#include <linux/slab.h>
  30#include <linux/types.h>
  31
  32/* Control register */
  33#define SUN6I_LOSC_CTRL                         0x0000
  34#define SUN6I_LOSC_CTRL_KEY                     (0x16aa << 16)
  35#define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS         BIT(15)
  36#define SUN6I_LOSC_CTRL_ALM_DHMS_ACC            BIT(9)
  37#define SUN6I_LOSC_CTRL_RTC_HMS_ACC             BIT(8)
  38#define SUN6I_LOSC_CTRL_RTC_YMD_ACC             BIT(7)
  39#define SUN6I_LOSC_CTRL_EXT_LOSC_EN             BIT(4)
  40#define SUN6I_LOSC_CTRL_EXT_OSC                 BIT(0)
  41#define SUN6I_LOSC_CTRL_ACC_MASK                GENMASK(9, 7)
  42
  43#define SUN6I_LOSC_CLK_PRESCAL                  0x0008
  44
  45/* RTC */
  46#define SUN6I_RTC_YMD                           0x0010
  47#define SUN6I_RTC_HMS                           0x0014
  48
  49/* Alarm 0 (counter) */
  50#define SUN6I_ALRM_COUNTER                      0x0020
  51#define SUN6I_ALRM_CUR_VAL                      0x0024
  52#define SUN6I_ALRM_EN                           0x0028
  53#define SUN6I_ALRM_EN_CNT_EN                    BIT(0)
  54#define SUN6I_ALRM_IRQ_EN                       0x002c
  55#define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN            BIT(0)
  56#define SUN6I_ALRM_IRQ_STA                      0x0030
  57#define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND         BIT(0)
  58
  59/* Alarm 1 (wall clock) */
  60#define SUN6I_ALRM1_EN                          0x0044
  61#define SUN6I_ALRM1_IRQ_EN                      0x0048
  62#define SUN6I_ALRM1_IRQ_STA                     0x004c
  63#define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND       BIT(0)
  64
  65/* Alarm config */
  66#define SUN6I_ALARM_CONFIG                      0x0050
  67#define SUN6I_ALARM_CONFIG_WAKEUP               BIT(0)
  68
  69#define SUN6I_LOSC_OUT_GATING                   0x0060
  70#define SUN6I_LOSC_OUT_GATING_EN_OFFSET         0
  71
  72/*
  73 * Get date values
  74 */
  75#define SUN6I_DATE_GET_DAY_VALUE(x)             ((x)  & 0x0000001f)
  76#define SUN6I_DATE_GET_MON_VALUE(x)             (((x) & 0x00000f00) >> 8)
  77#define SUN6I_DATE_GET_YEAR_VALUE(x)            (((x) & 0x003f0000) >> 16)
  78#define SUN6I_LEAP_GET_VALUE(x)                 (((x) & 0x00400000) >> 22)
  79
  80/*
  81 * Get time values
  82 */
  83#define SUN6I_TIME_GET_SEC_VALUE(x)             ((x)  & 0x0000003f)
  84#define SUN6I_TIME_GET_MIN_VALUE(x)             (((x) & 0x00003f00) >> 8)
  85#define SUN6I_TIME_GET_HOUR_VALUE(x)            (((x) & 0x001f0000) >> 16)
  86
  87/*
  88 * Set date values
  89 */
  90#define SUN6I_DATE_SET_DAY_VALUE(x)             ((x)       & 0x0000001f)
  91#define SUN6I_DATE_SET_MON_VALUE(x)             ((x) <<  8 & 0x00000f00)
  92#define SUN6I_DATE_SET_YEAR_VALUE(x)            ((x) << 16 & 0x003f0000)
  93#define SUN6I_LEAP_SET_VALUE(x)                 ((x) << 22 & 0x00400000)
  94
  95/*
  96 * Set time values
  97 */
  98#define SUN6I_TIME_SET_SEC_VALUE(x)             ((x)       & 0x0000003f)
  99#define SUN6I_TIME_SET_MIN_VALUE(x)             ((x) <<  8 & 0x00003f00)
 100#define SUN6I_TIME_SET_HOUR_VALUE(x)            ((x) << 16 & 0x001f0000)
 101
 102/*
 103 * The year parameter passed to the driver is usually an offset relative to
 104 * the year 1900. This macro is used to convert this offset to another one
 105 * relative to the minimum year allowed by the hardware.
 106 *
 107 * The year range is 1970 - 2033. This range is selected to match Allwinner's
 108 * driver, even though it is somewhat limited.
 109 */
 110#define SUN6I_YEAR_MIN                          1970
 111#define SUN6I_YEAR_OFF                          (SUN6I_YEAR_MIN - 1900)
 112
 113/*
 114 * There are other differences between models, including:
 115 *
 116 *   - number of GPIO pins that can be configured to hold a certain level
 117 *   - crypto-key related registers (H5, H6)
 118 *   - boot process related (super standby, secondary processor entry address)
 119 *     registers (R40, H6)
 120 *   - SYS power domain controls (R40)
 121 *   - DCXO controls (H6)
 122 *   - RC oscillator calibration (H6)
 123 *
 124 * These functions are not covered by this driver.
 125 */
 126struct sun6i_rtc_clk_data {
 127        unsigned long rc_osc_rate;
 128        unsigned int fixed_prescaler : 16;
 129        unsigned int has_prescaler : 1;
 130        unsigned int has_out_clk : 1;
 131        unsigned int export_iosc : 1;
 132        unsigned int has_losc_en : 1;
 133        unsigned int has_auto_swt : 1;
 134};
 135
 136struct sun6i_rtc_dev {
 137        struct rtc_device *rtc;
 138        const struct sun6i_rtc_clk_data *data;
 139        void __iomem *base;
 140        int irq;
 141        unsigned long alarm;
 142
 143        struct clk_hw hw;
 144        struct clk_hw *int_osc;
 145        struct clk *losc;
 146        struct clk *ext_losc;
 147
 148        spinlock_t lock;
 149};
 150
 151static struct sun6i_rtc_dev *sun6i_rtc;
 152
 153static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
 154                                               unsigned long parent_rate)
 155{
 156        struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
 157        u32 val = 0;
 158
 159        val = readl(rtc->base + SUN6I_LOSC_CTRL);
 160        if (val & SUN6I_LOSC_CTRL_EXT_OSC)
 161                return parent_rate;
 162
 163        if (rtc->data->fixed_prescaler)
 164                parent_rate /= rtc->data->fixed_prescaler;
 165
 166        if (rtc->data->has_prescaler) {
 167                val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
 168                val &= GENMASK(4, 0);
 169        }
 170
 171        return parent_rate / (val + 1);
 172}
 173
 174static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
 175{
 176        struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
 177
 178        return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
 179}
 180
 181static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
 182{
 183        struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
 184        unsigned long flags;
 185        u32 val;
 186
 187        if (index > 1)
 188                return -EINVAL;
 189
 190        spin_lock_irqsave(&rtc->lock, flags);
 191        val = readl(rtc->base + SUN6I_LOSC_CTRL);
 192        val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
 193        val |= SUN6I_LOSC_CTRL_KEY;
 194        val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
 195        if (rtc->data->has_losc_en) {
 196                val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN;
 197                val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0;
 198        }
 199        writel(val, rtc->base + SUN6I_LOSC_CTRL);
 200        spin_unlock_irqrestore(&rtc->lock, flags);
 201
 202        return 0;
 203}
 204
 205static const struct clk_ops sun6i_rtc_osc_ops = {
 206        .recalc_rate    = sun6i_rtc_osc_recalc_rate,
 207
 208        .get_parent     = sun6i_rtc_osc_get_parent,
 209        .set_parent     = sun6i_rtc_osc_set_parent,
 210};
 211
 212static void __init sun6i_rtc_clk_init(struct device_node *node,
 213                                      const struct sun6i_rtc_clk_data *data)
 214{
 215        struct clk_hw_onecell_data *clk_data;
 216        struct sun6i_rtc_dev *rtc;
 217        struct clk_init_data init = {
 218                .ops            = &sun6i_rtc_osc_ops,
 219                .name           = "losc",
 220        };
 221        const char *iosc_name = "rtc-int-osc";
 222        const char *clkout_name = "osc32k-out";
 223        const char *parents[2];
 224        u32 reg;
 225
 226        rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
 227        if (!rtc)
 228                return;
 229
 230        rtc->data = data;
 231        clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL);
 232        if (!clk_data) {
 233                kfree(rtc);
 234                return;
 235        }
 236
 237        spin_lock_init(&rtc->lock);
 238
 239        rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
 240        if (IS_ERR(rtc->base)) {
 241                pr_crit("Can't map RTC registers");
 242                goto err;
 243        }
 244
 245        reg = SUN6I_LOSC_CTRL_KEY;
 246        if (rtc->data->has_auto_swt) {
 247                /* Bypass auto-switch to int osc, on ext losc failure */
 248                reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS;
 249                writel(reg, rtc->base + SUN6I_LOSC_CTRL);
 250        }
 251
 252        /* Switch to the external, more precise, oscillator, if present */
 253        if (of_get_property(node, "clocks", NULL)) {
 254                reg |= SUN6I_LOSC_CTRL_EXT_OSC;
 255                if (rtc->data->has_losc_en)
 256                        reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN;
 257        }
 258        writel(reg, rtc->base + SUN6I_LOSC_CTRL);
 259
 260        /* Yes, I know, this is ugly. */
 261        sun6i_rtc = rtc;
 262
 263        /* Only read IOSC name from device tree if it is exported */
 264        if (rtc->data->export_iosc)
 265                of_property_read_string_index(node, "clock-output-names", 2,
 266                                              &iosc_name);
 267
 268        rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
 269                                                                iosc_name,
 270                                                                NULL, 0,
 271                                                                rtc->data->rc_osc_rate,
 272                                                                300000000);
 273        if (IS_ERR(rtc->int_osc)) {
 274                pr_crit("Couldn't register the internal oscillator\n");
 275                goto err;
 276        }
 277
 278        parents[0] = clk_hw_get_name(rtc->int_osc);
 279        /* If there is no external oscillator, this will be NULL and ... */
 280        parents[1] = of_clk_get_parent_name(node, 0);
 281
 282        rtc->hw.init = &init;
 283
 284        init.parent_names = parents;
 285        /* ... number of clock parents will be 1. */
 286        init.num_parents = of_clk_get_parent_count(node) + 1;
 287        of_property_read_string_index(node, "clock-output-names", 0,
 288                                      &init.name);
 289
 290        rtc->losc = clk_register(NULL, &rtc->hw);
 291        if (IS_ERR(rtc->losc)) {
 292                pr_crit("Couldn't register the LOSC clock\n");
 293                goto err_register;
 294        }
 295
 296        of_property_read_string_index(node, "clock-output-names", 1,
 297                                      &clkout_name);
 298        rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name,
 299                                          0, rtc->base + SUN6I_LOSC_OUT_GATING,
 300                                          SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0,
 301                                          &rtc->lock);
 302        if (IS_ERR(rtc->ext_losc)) {
 303                pr_crit("Couldn't register the LOSC external gate\n");
 304                goto err_register;
 305        }
 306
 307        clk_data->num = 2;
 308        clk_data->hws[0] = &rtc->hw;
 309        clk_data->hws[1] = __clk_get_hw(rtc->ext_losc);
 310        if (rtc->data->export_iosc) {
 311                clk_data->hws[2] = rtc->int_osc;
 312                clk_data->num = 3;
 313        }
 314        of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
 315        return;
 316
 317err_register:
 318        clk_hw_unregister_fixed_rate(rtc->int_osc);
 319err:
 320        kfree(clk_data);
 321}
 322
 323static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = {
 324        .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
 325        .has_prescaler = 1,
 326};
 327
 328static void __init sun6i_a31_rtc_clk_init(struct device_node *node)
 329{
 330        sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data);
 331}
 332CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc",
 333                      sun6i_a31_rtc_clk_init);
 334
 335static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = {
 336        .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
 337        .has_prescaler = 1,
 338        .has_out_clk = 1,
 339};
 340
 341static void __init sun8i_a23_rtc_clk_init(struct device_node *node)
 342{
 343        sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data);
 344}
 345CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc",
 346                      sun8i_a23_rtc_clk_init);
 347
 348static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = {
 349        .rc_osc_rate = 16000000,
 350        .fixed_prescaler = 32,
 351        .has_prescaler = 1,
 352        .has_out_clk = 1,
 353        .export_iosc = 1,
 354};
 355
 356static void __init sun8i_h3_rtc_clk_init(struct device_node *node)
 357{
 358        sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data);
 359}
 360CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc",
 361                      sun8i_h3_rtc_clk_init);
 362/* As far as we are concerned, clocks for H5 are the same as H3 */
 363CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc",
 364                      sun8i_h3_rtc_clk_init);
 365
 366static const struct sun6i_rtc_clk_data sun50i_h6_rtc_data = {
 367        .rc_osc_rate = 16000000,
 368        .fixed_prescaler = 32,
 369        .has_prescaler = 1,
 370        .has_out_clk = 1,
 371        .export_iosc = 1,
 372        .has_losc_en = 1,
 373        .has_auto_swt = 1,
 374};
 375
 376static void __init sun50i_h6_rtc_clk_init(struct device_node *node)
 377{
 378        sun6i_rtc_clk_init(node, &sun50i_h6_rtc_data);
 379}
 380CLK_OF_DECLARE_DRIVER(sun50i_h6_rtc_clk, "allwinner,sun50i-h6-rtc",
 381                      sun50i_h6_rtc_clk_init);
 382
 383/*
 384 * The R40 user manual is self-conflicting on whether the prescaler is
 385 * fixed or configurable. The clock diagram shows it as fixed, but there
 386 * is also a configurable divider in the RTC block.
 387 */
 388static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data = {
 389        .rc_osc_rate = 16000000,
 390        .fixed_prescaler = 512,
 391};
 392static void __init sun8i_r40_rtc_clk_init(struct device_node *node)
 393{
 394        sun6i_rtc_clk_init(node, &sun8i_r40_rtc_data);
 395}
 396CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk, "allwinner,sun8i-r40-rtc",
 397                      sun8i_r40_rtc_clk_init);
 398
 399static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = {
 400        .rc_osc_rate = 32000,
 401        .has_out_clk = 1,
 402};
 403
 404static void __init sun8i_v3_rtc_clk_init(struct device_node *node)
 405{
 406        sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data);
 407}
 408CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc",
 409                      sun8i_v3_rtc_clk_init);
 410
 411static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
 412{
 413        struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
 414        irqreturn_t ret = IRQ_NONE;
 415        u32 val;
 416
 417        spin_lock(&chip->lock);
 418        val = readl(chip->base + SUN6I_ALRM_IRQ_STA);
 419
 420        if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
 421                val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND;
 422                writel(val, chip->base + SUN6I_ALRM_IRQ_STA);
 423
 424                rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
 425
 426                ret = IRQ_HANDLED;
 427        }
 428        spin_unlock(&chip->lock);
 429
 430        return ret;
 431}
 432
 433static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
 434{
 435        u32 alrm_val = 0;
 436        u32 alrm_irq_val = 0;
 437        u32 alrm_wake_val = 0;
 438        unsigned long flags;
 439
 440        if (to) {
 441                alrm_val = SUN6I_ALRM_EN_CNT_EN;
 442                alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN;
 443                alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP;
 444        } else {
 445                writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
 446                       chip->base + SUN6I_ALRM_IRQ_STA);
 447        }
 448
 449        spin_lock_irqsave(&chip->lock, flags);
 450        writel(alrm_val, chip->base + SUN6I_ALRM_EN);
 451        writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
 452        writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
 453        spin_unlock_irqrestore(&chip->lock, flags);
 454}
 455
 456static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
 457{
 458        struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
 459        u32 date, time;
 460
 461        /*
 462         * read again in case it changes
 463         */
 464        do {
 465                date = readl(chip->base + SUN6I_RTC_YMD);
 466                time = readl(chip->base + SUN6I_RTC_HMS);
 467        } while ((date != readl(chip->base + SUN6I_RTC_YMD)) ||
 468                 (time != readl(chip->base + SUN6I_RTC_HMS)));
 469
 470        rtc_tm->tm_sec  = SUN6I_TIME_GET_SEC_VALUE(time);
 471        rtc_tm->tm_min  = SUN6I_TIME_GET_MIN_VALUE(time);
 472        rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time);
 473
 474        rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date);
 475        rtc_tm->tm_mon  = SUN6I_DATE_GET_MON_VALUE(date);
 476        rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date);
 477
 478        rtc_tm->tm_mon  -= 1;
 479
 480        /*
 481         * switch from (data_year->min)-relative offset to
 482         * a (1900)-relative one
 483         */
 484        rtc_tm->tm_year += SUN6I_YEAR_OFF;
 485
 486        return 0;
 487}
 488
 489static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
 490{
 491        struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
 492        unsigned long flags;
 493        u32 alrm_st;
 494        u32 alrm_en;
 495
 496        spin_lock_irqsave(&chip->lock, flags);
 497        alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
 498        alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
 499        spin_unlock_irqrestore(&chip->lock, flags);
 500
 501        wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
 502        wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
 503        rtc_time64_to_tm(chip->alarm, &wkalrm->time);
 504
 505        return 0;
 506}
 507
 508static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
 509{
 510        struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
 511        struct rtc_time *alrm_tm = &wkalrm->time;
 512        struct rtc_time tm_now;
 513        unsigned long time_now = 0;
 514        unsigned long time_set = 0;
 515        unsigned long time_gap = 0;
 516        int ret = 0;
 517
 518        ret = sun6i_rtc_gettime(dev, &tm_now);
 519        if (ret < 0) {
 520                dev_err(dev, "Error in getting time\n");
 521                return -EINVAL;
 522        }
 523
 524        time_set = rtc_tm_to_time64(alrm_tm);
 525        time_now = rtc_tm_to_time64(&tm_now);
 526        if (time_set <= time_now) {
 527                dev_err(dev, "Date to set in the past\n");
 528                return -EINVAL;
 529        }
 530
 531        time_gap = time_set - time_now;
 532
 533        if (time_gap > U32_MAX) {
 534                dev_err(dev, "Date too far in the future\n");
 535                return -EINVAL;
 536        }
 537
 538        sun6i_rtc_setaie(0, chip);
 539        writel(0, chip->base + SUN6I_ALRM_COUNTER);
 540        usleep_range(100, 300);
 541
 542        writel(time_gap, chip->base + SUN6I_ALRM_COUNTER);
 543        chip->alarm = time_set;
 544
 545        sun6i_rtc_setaie(wkalrm->enabled, chip);
 546
 547        return 0;
 548}
 549
 550static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset,
 551                          unsigned int mask, unsigned int ms_timeout)
 552{
 553        const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
 554        u32 reg;
 555
 556        do {
 557                reg = readl(chip->base + offset);
 558                reg &= mask;
 559
 560                if (!reg)
 561                        return 0;
 562
 563        } while (time_before(jiffies, timeout));
 564
 565        return -ETIMEDOUT;
 566}
 567
 568static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
 569{
 570        struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
 571        u32 date = 0;
 572        u32 time = 0;
 573
 574        rtc_tm->tm_year -= SUN6I_YEAR_OFF;
 575        rtc_tm->tm_mon += 1;
 576
 577        date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
 578                SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon)  |
 579                SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year);
 580
 581        if (is_leap_year(rtc_tm->tm_year + SUN6I_YEAR_MIN))
 582                date |= SUN6I_LEAP_SET_VALUE(1);
 583
 584        time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec)  |
 585                SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min)  |
 586                SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
 587
 588        /* Check whether registers are writable */
 589        if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
 590                           SUN6I_LOSC_CTRL_ACC_MASK, 50)) {
 591                dev_err(dev, "rtc is still busy.\n");
 592                return -EBUSY;
 593        }
 594
 595        writel(time, chip->base + SUN6I_RTC_HMS);
 596
 597        /*
 598         * After writing the RTC HH-MM-SS register, the
 599         * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
 600         * be cleared until the real writing operation is finished
 601         */
 602
 603        if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
 604                           SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) {
 605                dev_err(dev, "Failed to set rtc time.\n");
 606                return -ETIMEDOUT;
 607        }
 608
 609        writel(date, chip->base + SUN6I_RTC_YMD);
 610
 611        /*
 612         * After writing the RTC YY-MM-DD register, the
 613         * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
 614         * be cleared until the real writing operation is finished
 615         */
 616
 617        if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
 618                           SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) {
 619                dev_err(dev, "Failed to set rtc time.\n");
 620                return -ETIMEDOUT;
 621        }
 622
 623        return 0;
 624}
 625
 626static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
 627{
 628        struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
 629
 630        if (!enabled)
 631                sun6i_rtc_setaie(enabled, chip);
 632
 633        return 0;
 634}
 635
 636static const struct rtc_class_ops sun6i_rtc_ops = {
 637        .read_time              = sun6i_rtc_gettime,
 638        .set_time               = sun6i_rtc_settime,
 639        .read_alarm             = sun6i_rtc_getalarm,
 640        .set_alarm              = sun6i_rtc_setalarm,
 641        .alarm_irq_enable       = sun6i_rtc_alarm_irq_enable
 642};
 643
 644#ifdef CONFIG_PM_SLEEP
 645/* Enable IRQ wake on suspend, to wake up from RTC. */
 646static int sun6i_rtc_suspend(struct device *dev)
 647{
 648        struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
 649
 650        if (device_may_wakeup(dev))
 651                enable_irq_wake(chip->irq);
 652
 653        return 0;
 654}
 655
 656/* Disable IRQ wake on resume. */
 657static int sun6i_rtc_resume(struct device *dev)
 658{
 659        struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
 660
 661        if (device_may_wakeup(dev))
 662                disable_irq_wake(chip->irq);
 663
 664        return 0;
 665}
 666#endif
 667
 668static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops,
 669        sun6i_rtc_suspend, sun6i_rtc_resume);
 670
 671static int sun6i_rtc_probe(struct platform_device *pdev)
 672{
 673        struct sun6i_rtc_dev *chip = sun6i_rtc;
 674        int ret;
 675
 676        if (!chip)
 677                return -ENODEV;
 678
 679        platform_set_drvdata(pdev, chip);
 680
 681        chip->irq = platform_get_irq(pdev, 0);
 682        if (chip->irq < 0)
 683                return chip->irq;
 684
 685        ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq,
 686                               0, dev_name(&pdev->dev), chip);
 687        if (ret) {
 688                dev_err(&pdev->dev, "Could not request IRQ\n");
 689                return ret;
 690        }
 691
 692        /* clear the alarm counter value */
 693        writel(0, chip->base + SUN6I_ALRM_COUNTER);
 694
 695        /* disable counter alarm */
 696        writel(0, chip->base + SUN6I_ALRM_EN);
 697
 698        /* disable counter alarm interrupt */
 699        writel(0, chip->base + SUN6I_ALRM_IRQ_EN);
 700
 701        /* disable week alarm */
 702        writel(0, chip->base + SUN6I_ALRM1_EN);
 703
 704        /* disable week alarm interrupt */
 705        writel(0, chip->base + SUN6I_ALRM1_IRQ_EN);
 706
 707        /* clear counter alarm pending interrupts */
 708        writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
 709               chip->base + SUN6I_ALRM_IRQ_STA);
 710
 711        /* clear week alarm pending interrupts */
 712        writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND,
 713               chip->base + SUN6I_ALRM1_IRQ_STA);
 714
 715        /* disable alarm wakeup */
 716        writel(0, chip->base + SUN6I_ALARM_CONFIG);
 717
 718        clk_prepare_enable(chip->losc);
 719
 720        device_init_wakeup(&pdev->dev, 1);
 721
 722        chip->rtc = devm_rtc_allocate_device(&pdev->dev);
 723        if (IS_ERR(chip->rtc))
 724                return PTR_ERR(chip->rtc);
 725
 726        chip->rtc->ops = &sun6i_rtc_ops;
 727        chip->rtc->range_max = 2019686399LL; /* 2033-12-31 23:59:59 */
 728
 729        ret = devm_rtc_register_device(chip->rtc);
 730        if (ret)
 731                return ret;
 732
 733        dev_info(&pdev->dev, "RTC enabled\n");
 734
 735        return 0;
 736}
 737
 738/*
 739 * As far as RTC functionality goes, all models are the same. The
 740 * datasheets claim that different models have different number of
 741 * registers available for non-volatile storage, but experiments show
 742 * that all SoCs have 16 registers available for this purpose.
 743 */
 744static const struct of_device_id sun6i_rtc_dt_ids[] = {
 745        { .compatible = "allwinner,sun6i-a31-rtc" },
 746        { .compatible = "allwinner,sun8i-a23-rtc" },
 747        { .compatible = "allwinner,sun8i-h3-rtc" },
 748        { .compatible = "allwinner,sun8i-r40-rtc" },
 749        { .compatible = "allwinner,sun8i-v3-rtc" },
 750        { .compatible = "allwinner,sun50i-h5-rtc" },
 751        { .compatible = "allwinner,sun50i-h6-rtc" },
 752        { /* sentinel */ },
 753};
 754MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);
 755
 756static struct platform_driver sun6i_rtc_driver = {
 757        .probe          = sun6i_rtc_probe,
 758        .driver         = {
 759                .name           = "sun6i-rtc",
 760                .of_match_table = sun6i_rtc_dt_ids,
 761                .pm = &sun6i_rtc_pm_ops,
 762        },
 763};
 764builtin_platform_driver(sun6i_rtc_driver);
 765