linux/drivers/scsi/scsi_lib.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 1999 Eric Youngdale
   4 * Copyright (C) 2014 Christoph Hellwig
   5 *
   6 *  SCSI queueing library.
   7 *      Initial versions: Eric Youngdale (eric@andante.org).
   8 *                        Based upon conversations with large numbers
   9 *                        of people at Linux Expo.
  10 */
  11
  12#include <linux/bio.h>
  13#include <linux/bitops.h>
  14#include <linux/blkdev.h>
  15#include <linux/completion.h>
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
  23#include <linux/blk-mq.h>
  24#include <linux/ratelimit.h>
  25#include <asm/unaligned.h>
  26
  27#include <scsi/scsi.h>
  28#include <scsi/scsi_cmnd.h>
  29#include <scsi/scsi_dbg.h>
  30#include <scsi/scsi_device.h>
  31#include <scsi/scsi_driver.h>
  32#include <scsi/scsi_eh.h>
  33#include <scsi/scsi_host.h>
  34#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
  35#include <scsi/scsi_dh.h>
  36
  37#include <trace/events/scsi.h>
  38
  39#include "scsi_debugfs.h"
  40#include "scsi_priv.h"
  41#include "scsi_logging.h"
  42
  43/*
  44 * Size of integrity metadata is usually small, 1 inline sg should
  45 * cover normal cases.
  46 */
  47#ifdef CONFIG_ARCH_NO_SG_CHAIN
  48#define  SCSI_INLINE_PROT_SG_CNT  0
  49#define  SCSI_INLINE_SG_CNT  0
  50#else
  51#define  SCSI_INLINE_PROT_SG_CNT  1
  52#define  SCSI_INLINE_SG_CNT  2
  53#endif
  54
  55static struct kmem_cache *scsi_sense_cache;
  56static DEFINE_MUTEX(scsi_sense_cache_mutex);
  57
  58static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
  59
  60int scsi_init_sense_cache(struct Scsi_Host *shost)
  61{
  62        int ret = 0;
  63
  64        mutex_lock(&scsi_sense_cache_mutex);
  65        if (!scsi_sense_cache) {
  66                scsi_sense_cache =
  67                        kmem_cache_create_usercopy("scsi_sense_cache",
  68                                SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
  69                                0, SCSI_SENSE_BUFFERSIZE, NULL);
  70                if (!scsi_sense_cache)
  71                        ret = -ENOMEM;
  72        }
  73        mutex_unlock(&scsi_sense_cache_mutex);
  74        return ret;
  75}
  76
  77/*
  78 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
  79 * not change behaviour from the previous unplug mechanism, experimentation
  80 * may prove this needs changing.
  81 */
  82#define SCSI_QUEUE_DELAY        3
  83
  84static void
  85scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
  86{
  87        struct Scsi_Host *host = cmd->device->host;
  88        struct scsi_device *device = cmd->device;
  89        struct scsi_target *starget = scsi_target(device);
  90
  91        /*
  92         * Set the appropriate busy bit for the device/host.
  93         *
  94         * If the host/device isn't busy, assume that something actually
  95         * completed, and that we should be able to queue a command now.
  96         *
  97         * Note that the prior mid-layer assumption that any host could
  98         * always queue at least one command is now broken.  The mid-layer
  99         * will implement a user specifiable stall (see
 100         * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 101         * if a command is requeued with no other commands outstanding
 102         * either for the device or for the host.
 103         */
 104        switch (reason) {
 105        case SCSI_MLQUEUE_HOST_BUSY:
 106                atomic_set(&host->host_blocked, host->max_host_blocked);
 107                break;
 108        case SCSI_MLQUEUE_DEVICE_BUSY:
 109        case SCSI_MLQUEUE_EH_RETRY:
 110                atomic_set(&device->device_blocked,
 111                           device->max_device_blocked);
 112                break;
 113        case SCSI_MLQUEUE_TARGET_BUSY:
 114                atomic_set(&starget->target_blocked,
 115                           starget->max_target_blocked);
 116                break;
 117        }
 118}
 119
 120static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
 121{
 122        if (cmd->request->rq_flags & RQF_DONTPREP) {
 123                cmd->request->rq_flags &= ~RQF_DONTPREP;
 124                scsi_mq_uninit_cmd(cmd);
 125        } else {
 126                WARN_ON_ONCE(true);
 127        }
 128        blk_mq_requeue_request(cmd->request, true);
 129}
 130
 131/**
 132 * __scsi_queue_insert - private queue insertion
 133 * @cmd: The SCSI command being requeued
 134 * @reason:  The reason for the requeue
 135 * @unbusy: Whether the queue should be unbusied
 136 *
 137 * This is a private queue insertion.  The public interface
 138 * scsi_queue_insert() always assumes the queue should be unbusied
 139 * because it's always called before the completion.  This function is
 140 * for a requeue after completion, which should only occur in this
 141 * file.
 142 */
 143static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 144{
 145        struct scsi_device *device = cmd->device;
 146
 147        SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 148                "Inserting command %p into mlqueue\n", cmd));
 149
 150        scsi_set_blocked(cmd, reason);
 151
 152        /*
 153         * Decrement the counters, since these commands are no longer
 154         * active on the host/device.
 155         */
 156        if (unbusy)
 157                scsi_device_unbusy(device, cmd);
 158
 159        /*
 160         * Requeue this command.  It will go before all other commands
 161         * that are already in the queue. Schedule requeue work under
 162         * lock such that the kblockd_schedule_work() call happens
 163         * before blk_cleanup_queue() finishes.
 164         */
 165        cmd->result = 0;
 166
 167        blk_mq_requeue_request(cmd->request, true);
 168}
 169
 170/**
 171 * scsi_queue_insert - Reinsert a command in the queue.
 172 * @cmd:    command that we are adding to queue.
 173 * @reason: why we are inserting command to queue.
 174 *
 175 * We do this for one of two cases. Either the host is busy and it cannot accept
 176 * any more commands for the time being, or the device returned QUEUE_FULL and
 177 * can accept no more commands.
 178 *
 179 * Context: This could be called either from an interrupt context or a normal
 180 * process context.
 181 */
 182void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 183{
 184        __scsi_queue_insert(cmd, reason, true);
 185}
 186
 187
 188/**
 189 * __scsi_execute - insert request and wait for the result
 190 * @sdev:       scsi device
 191 * @cmd:        scsi command
 192 * @data_direction: data direction
 193 * @buffer:     data buffer
 194 * @bufflen:    len of buffer
 195 * @sense:      optional sense buffer
 196 * @sshdr:      optional decoded sense header
 197 * @timeout:    request timeout in seconds
 198 * @retries:    number of times to retry request
 199 * @flags:      flags for ->cmd_flags
 200 * @rq_flags:   flags for ->rq_flags
 201 * @resid:      optional residual length
 202 *
 203 * Returns the scsi_cmnd result field if a command was executed, or a negative
 204 * Linux error code if we didn't get that far.
 205 */
 206int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 207                 int data_direction, void *buffer, unsigned bufflen,
 208                 unsigned char *sense, struct scsi_sense_hdr *sshdr,
 209                 int timeout, int retries, u64 flags, req_flags_t rq_flags,
 210                 int *resid)
 211{
 212        struct request *req;
 213        struct scsi_request *rq;
 214        int ret = DRIVER_ERROR << 24;
 215
 216        req = blk_get_request(sdev->request_queue,
 217                        data_direction == DMA_TO_DEVICE ?
 218                        REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN,
 219                        rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
 220        if (IS_ERR(req))
 221                return ret;
 222        rq = scsi_req(req);
 223
 224        if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
 225                                        buffer, bufflen, GFP_NOIO))
 226                goto out;
 227
 228        rq->cmd_len = COMMAND_SIZE(cmd[0]);
 229        memcpy(rq->cmd, cmd, rq->cmd_len);
 230        rq->retries = retries;
 231        req->timeout = timeout;
 232        req->cmd_flags |= flags;
 233        req->rq_flags |= rq_flags | RQF_QUIET;
 234
 235        /*
 236         * head injection *required* here otherwise quiesce won't work
 237         */
 238        blk_execute_rq(NULL, req, 1);
 239
 240        /*
 241         * Some devices (USB mass-storage in particular) may transfer
 242         * garbage data together with a residue indicating that the data
 243         * is invalid.  Prevent the garbage from being misinterpreted
 244         * and prevent security leaks by zeroing out the excess data.
 245         */
 246        if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
 247                memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
 248
 249        if (resid)
 250                *resid = rq->resid_len;
 251        if (sense && rq->sense_len)
 252                memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
 253        if (sshdr)
 254                scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
 255        ret = rq->result;
 256 out:
 257        blk_put_request(req);
 258
 259        return ret;
 260}
 261EXPORT_SYMBOL(__scsi_execute);
 262
 263/*
 264 * Wake up the error handler if necessary. Avoid as follows that the error
 265 * handler is not woken up if host in-flight requests number ==
 266 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 267 * with an RCU read lock in this function to ensure that this function in
 268 * its entirety either finishes before scsi_eh_scmd_add() increases the
 269 * host_failed counter or that it notices the shost state change made by
 270 * scsi_eh_scmd_add().
 271 */
 272static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
 273{
 274        unsigned long flags;
 275
 276        rcu_read_lock();
 277        __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
 278        if (unlikely(scsi_host_in_recovery(shost))) {
 279                spin_lock_irqsave(shost->host_lock, flags);
 280                if (shost->host_failed || shost->host_eh_scheduled)
 281                        scsi_eh_wakeup(shost);
 282                spin_unlock_irqrestore(shost->host_lock, flags);
 283        }
 284        rcu_read_unlock();
 285}
 286
 287void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
 288{
 289        struct Scsi_Host *shost = sdev->host;
 290        struct scsi_target *starget = scsi_target(sdev);
 291
 292        scsi_dec_host_busy(shost, cmd);
 293
 294        if (starget->can_queue > 0)
 295                atomic_dec(&starget->target_busy);
 296
 297        sbitmap_put(&sdev->budget_map, cmd->budget_token);
 298        cmd->budget_token = -1;
 299}
 300
 301static void scsi_kick_queue(struct request_queue *q)
 302{
 303        blk_mq_run_hw_queues(q, false);
 304}
 305
 306/*
 307 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 308 * and call blk_run_queue for all the scsi_devices on the target -
 309 * including current_sdev first.
 310 *
 311 * Called with *no* scsi locks held.
 312 */
 313static void scsi_single_lun_run(struct scsi_device *current_sdev)
 314{
 315        struct Scsi_Host *shost = current_sdev->host;
 316        struct scsi_device *sdev, *tmp;
 317        struct scsi_target *starget = scsi_target(current_sdev);
 318        unsigned long flags;
 319
 320        spin_lock_irqsave(shost->host_lock, flags);
 321        starget->starget_sdev_user = NULL;
 322        spin_unlock_irqrestore(shost->host_lock, flags);
 323
 324        /*
 325         * Call blk_run_queue for all LUNs on the target, starting with
 326         * current_sdev. We race with others (to set starget_sdev_user),
 327         * but in most cases, we will be first. Ideally, each LU on the
 328         * target would get some limited time or requests on the target.
 329         */
 330        scsi_kick_queue(current_sdev->request_queue);
 331
 332        spin_lock_irqsave(shost->host_lock, flags);
 333        if (starget->starget_sdev_user)
 334                goto out;
 335        list_for_each_entry_safe(sdev, tmp, &starget->devices,
 336                        same_target_siblings) {
 337                if (sdev == current_sdev)
 338                        continue;
 339                if (scsi_device_get(sdev))
 340                        continue;
 341
 342                spin_unlock_irqrestore(shost->host_lock, flags);
 343                scsi_kick_queue(sdev->request_queue);
 344                spin_lock_irqsave(shost->host_lock, flags);
 345
 346                scsi_device_put(sdev);
 347        }
 348 out:
 349        spin_unlock_irqrestore(shost->host_lock, flags);
 350}
 351
 352static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 353{
 354        if (scsi_device_busy(sdev) >= sdev->queue_depth)
 355                return true;
 356        if (atomic_read(&sdev->device_blocked) > 0)
 357                return true;
 358        return false;
 359}
 360
 361static inline bool scsi_target_is_busy(struct scsi_target *starget)
 362{
 363        if (starget->can_queue > 0) {
 364                if (atomic_read(&starget->target_busy) >= starget->can_queue)
 365                        return true;
 366                if (atomic_read(&starget->target_blocked) > 0)
 367                        return true;
 368        }
 369        return false;
 370}
 371
 372static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 373{
 374        if (atomic_read(&shost->host_blocked) > 0)
 375                return true;
 376        if (shost->host_self_blocked)
 377                return true;
 378        return false;
 379}
 380
 381static void scsi_starved_list_run(struct Scsi_Host *shost)
 382{
 383        LIST_HEAD(starved_list);
 384        struct scsi_device *sdev;
 385        unsigned long flags;
 386
 387        spin_lock_irqsave(shost->host_lock, flags);
 388        list_splice_init(&shost->starved_list, &starved_list);
 389
 390        while (!list_empty(&starved_list)) {
 391                struct request_queue *slq;
 392
 393                /*
 394                 * As long as shost is accepting commands and we have
 395                 * starved queues, call blk_run_queue. scsi_request_fn
 396                 * drops the queue_lock and can add us back to the
 397                 * starved_list.
 398                 *
 399                 * host_lock protects the starved_list and starved_entry.
 400                 * scsi_request_fn must get the host_lock before checking
 401                 * or modifying starved_list or starved_entry.
 402                 */
 403                if (scsi_host_is_busy(shost))
 404                        break;
 405
 406                sdev = list_entry(starved_list.next,
 407                                  struct scsi_device, starved_entry);
 408                list_del_init(&sdev->starved_entry);
 409                if (scsi_target_is_busy(scsi_target(sdev))) {
 410                        list_move_tail(&sdev->starved_entry,
 411                                       &shost->starved_list);
 412                        continue;
 413                }
 414
 415                /*
 416                 * Once we drop the host lock, a racing scsi_remove_device()
 417                 * call may remove the sdev from the starved list and destroy
 418                 * it and the queue.  Mitigate by taking a reference to the
 419                 * queue and never touching the sdev again after we drop the
 420                 * host lock.  Note: if __scsi_remove_device() invokes
 421                 * blk_cleanup_queue() before the queue is run from this
 422                 * function then blk_run_queue() will return immediately since
 423                 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 424                 */
 425                slq = sdev->request_queue;
 426                if (!blk_get_queue(slq))
 427                        continue;
 428                spin_unlock_irqrestore(shost->host_lock, flags);
 429
 430                scsi_kick_queue(slq);
 431                blk_put_queue(slq);
 432
 433                spin_lock_irqsave(shost->host_lock, flags);
 434        }
 435        /* put any unprocessed entries back */
 436        list_splice(&starved_list, &shost->starved_list);
 437        spin_unlock_irqrestore(shost->host_lock, flags);
 438}
 439
 440/**
 441 * scsi_run_queue - Select a proper request queue to serve next.
 442 * @q:  last request's queue
 443 *
 444 * The previous command was completely finished, start a new one if possible.
 445 */
 446static void scsi_run_queue(struct request_queue *q)
 447{
 448        struct scsi_device *sdev = q->queuedata;
 449
 450        if (scsi_target(sdev)->single_lun)
 451                scsi_single_lun_run(sdev);
 452        if (!list_empty(&sdev->host->starved_list))
 453                scsi_starved_list_run(sdev->host);
 454
 455        blk_mq_run_hw_queues(q, false);
 456}
 457
 458void scsi_requeue_run_queue(struct work_struct *work)
 459{
 460        struct scsi_device *sdev;
 461        struct request_queue *q;
 462
 463        sdev = container_of(work, struct scsi_device, requeue_work);
 464        q = sdev->request_queue;
 465        scsi_run_queue(q);
 466}
 467
 468void scsi_run_host_queues(struct Scsi_Host *shost)
 469{
 470        struct scsi_device *sdev;
 471
 472        shost_for_each_device(sdev, shost)
 473                scsi_run_queue(sdev->request_queue);
 474}
 475
 476static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 477{
 478        if (!blk_rq_is_passthrough(cmd->request)) {
 479                struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 480
 481                if (drv->uninit_command)
 482                        drv->uninit_command(cmd);
 483        }
 484}
 485
 486void scsi_free_sgtables(struct scsi_cmnd *cmd)
 487{
 488        if (cmd->sdb.table.nents)
 489                sg_free_table_chained(&cmd->sdb.table,
 490                                SCSI_INLINE_SG_CNT);
 491        if (scsi_prot_sg_count(cmd))
 492                sg_free_table_chained(&cmd->prot_sdb->table,
 493                                SCSI_INLINE_PROT_SG_CNT);
 494}
 495EXPORT_SYMBOL_GPL(scsi_free_sgtables);
 496
 497static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 498{
 499        scsi_free_sgtables(cmd);
 500        scsi_uninit_cmd(cmd);
 501}
 502
 503static void scsi_run_queue_async(struct scsi_device *sdev)
 504{
 505        if (scsi_target(sdev)->single_lun ||
 506            !list_empty(&sdev->host->starved_list)) {
 507                kblockd_schedule_work(&sdev->requeue_work);
 508        } else {
 509                /*
 510                 * smp_mb() present in sbitmap_queue_clear() or implied in
 511                 * .end_io is for ordering writing .device_busy in
 512                 * scsi_device_unbusy() and reading sdev->restarts.
 513                 */
 514                int old = atomic_read(&sdev->restarts);
 515
 516                /*
 517                 * ->restarts has to be kept as non-zero if new budget
 518                 *  contention occurs.
 519                 *
 520                 *  No need to run queue when either another re-run
 521                 *  queue wins in updating ->restarts or a new budget
 522                 *  contention occurs.
 523                 */
 524                if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
 525                        blk_mq_run_hw_queues(sdev->request_queue, true);
 526        }
 527}
 528
 529/* Returns false when no more bytes to process, true if there are more */
 530static bool scsi_end_request(struct request *req, blk_status_t error,
 531                unsigned int bytes)
 532{
 533        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 534        struct scsi_device *sdev = cmd->device;
 535        struct request_queue *q = sdev->request_queue;
 536
 537        if (blk_update_request(req, error, bytes))
 538                return true;
 539
 540        if (blk_queue_add_random(q))
 541                add_disk_randomness(req->rq_disk);
 542
 543        if (!blk_rq_is_scsi(req)) {
 544                WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
 545                cmd->flags &= ~SCMD_INITIALIZED;
 546        }
 547
 548        /*
 549         * Calling rcu_barrier() is not necessary here because the
 550         * SCSI error handler guarantees that the function called by
 551         * call_rcu() has been called before scsi_end_request() is
 552         * called.
 553         */
 554        destroy_rcu_head(&cmd->rcu);
 555
 556        /*
 557         * In the MQ case the command gets freed by __blk_mq_end_request,
 558         * so we have to do all cleanup that depends on it earlier.
 559         *
 560         * We also can't kick the queues from irq context, so we
 561         * will have to defer it to a workqueue.
 562         */
 563        scsi_mq_uninit_cmd(cmd);
 564
 565        /*
 566         * queue is still alive, so grab the ref for preventing it
 567         * from being cleaned up during running queue.
 568         */
 569        percpu_ref_get(&q->q_usage_counter);
 570
 571        __blk_mq_end_request(req, error);
 572
 573        scsi_run_queue_async(sdev);
 574
 575        percpu_ref_put(&q->q_usage_counter);
 576        return false;
 577}
 578
 579/**
 580 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 581 * @cmd:        SCSI command
 582 * @result:     scsi error code
 583 *
 584 * Translate a SCSI result code into a blk_status_t value. May reset the host
 585 * byte of @cmd->result.
 586 */
 587static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
 588{
 589        switch (host_byte(result)) {
 590        case DID_OK:
 591                /*
 592                 * Also check the other bytes than the status byte in result
 593                 * to handle the case when a SCSI LLD sets result to
 594                 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
 595                 */
 596                if (scsi_status_is_good(result) && (result & ~0xff) == 0)
 597                        return BLK_STS_OK;
 598                return BLK_STS_IOERR;
 599        case DID_TRANSPORT_FAILFAST:
 600        case DID_TRANSPORT_MARGINAL:
 601                return BLK_STS_TRANSPORT;
 602        case DID_TARGET_FAILURE:
 603                set_host_byte(cmd, DID_OK);
 604                return BLK_STS_TARGET;
 605        case DID_NEXUS_FAILURE:
 606                set_host_byte(cmd, DID_OK);
 607                return BLK_STS_NEXUS;
 608        case DID_ALLOC_FAILURE:
 609                set_host_byte(cmd, DID_OK);
 610                return BLK_STS_NOSPC;
 611        case DID_MEDIUM_ERROR:
 612                set_host_byte(cmd, DID_OK);
 613                return BLK_STS_MEDIUM;
 614        default:
 615                return BLK_STS_IOERR;
 616        }
 617}
 618
 619/* Helper for scsi_io_completion() when "reprep" action required. */
 620static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
 621                                      struct request_queue *q)
 622{
 623        /* A new command will be prepared and issued. */
 624        scsi_mq_requeue_cmd(cmd);
 625}
 626
 627static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
 628{
 629        struct request *req = cmd->request;
 630        unsigned long wait_for;
 631
 632        if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
 633                return false;
 634
 635        wait_for = (cmd->allowed + 1) * req->timeout;
 636        if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
 637                scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
 638                            wait_for/HZ);
 639                return true;
 640        }
 641        return false;
 642}
 643
 644/* Helper for scsi_io_completion() when special action required. */
 645static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
 646{
 647        struct request_queue *q = cmd->device->request_queue;
 648        struct request *req = cmd->request;
 649        int level = 0;
 650        enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 651              ACTION_DELAYED_RETRY} action;
 652        struct scsi_sense_hdr sshdr;
 653        bool sense_valid;
 654        bool sense_current = true;      /* false implies "deferred sense" */
 655        blk_status_t blk_stat;
 656
 657        sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 658        if (sense_valid)
 659                sense_current = !scsi_sense_is_deferred(&sshdr);
 660
 661        blk_stat = scsi_result_to_blk_status(cmd, result);
 662
 663        if (host_byte(result) == DID_RESET) {
 664                /* Third party bus reset or reset for error recovery
 665                 * reasons.  Just retry the command and see what
 666                 * happens.
 667                 */
 668                action = ACTION_RETRY;
 669        } else if (sense_valid && sense_current) {
 670                switch (sshdr.sense_key) {
 671                case UNIT_ATTENTION:
 672                        if (cmd->device->removable) {
 673                                /* Detected disc change.  Set a bit
 674                                 * and quietly refuse further access.
 675                                 */
 676                                cmd->device->changed = 1;
 677                                action = ACTION_FAIL;
 678                        } else {
 679                                /* Must have been a power glitch, or a
 680                                 * bus reset.  Could not have been a
 681                                 * media change, so we just retry the
 682                                 * command and see what happens.
 683                                 */
 684                                action = ACTION_RETRY;
 685                        }
 686                        break;
 687                case ILLEGAL_REQUEST:
 688                        /* If we had an ILLEGAL REQUEST returned, then
 689                         * we may have performed an unsupported
 690                         * command.  The only thing this should be
 691                         * would be a ten byte read where only a six
 692                         * byte read was supported.  Also, on a system
 693                         * where READ CAPACITY failed, we may have
 694                         * read past the end of the disk.
 695                         */
 696                        if ((cmd->device->use_10_for_rw &&
 697                            sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 698                            (cmd->cmnd[0] == READ_10 ||
 699                             cmd->cmnd[0] == WRITE_10)) {
 700                                /* This will issue a new 6-byte command. */
 701                                cmd->device->use_10_for_rw = 0;
 702                                action = ACTION_REPREP;
 703                        } else if (sshdr.asc == 0x10) /* DIX */ {
 704                                action = ACTION_FAIL;
 705                                blk_stat = BLK_STS_PROTECTION;
 706                        /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 707                        } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 708                                action = ACTION_FAIL;
 709                                blk_stat = BLK_STS_TARGET;
 710                        } else
 711                                action = ACTION_FAIL;
 712                        break;
 713                case ABORTED_COMMAND:
 714                        action = ACTION_FAIL;
 715                        if (sshdr.asc == 0x10) /* DIF */
 716                                blk_stat = BLK_STS_PROTECTION;
 717                        break;
 718                case NOT_READY:
 719                        /* If the device is in the process of becoming
 720                         * ready, or has a temporary blockage, retry.
 721                         */
 722                        if (sshdr.asc == 0x04) {
 723                                switch (sshdr.ascq) {
 724                                case 0x01: /* becoming ready */
 725                                case 0x04: /* format in progress */
 726                                case 0x05: /* rebuild in progress */
 727                                case 0x06: /* recalculation in progress */
 728                                case 0x07: /* operation in progress */
 729                                case 0x08: /* Long write in progress */
 730                                case 0x09: /* self test in progress */
 731                                case 0x14: /* space allocation in progress */
 732                                case 0x1a: /* start stop unit in progress */
 733                                case 0x1b: /* sanitize in progress */
 734                                case 0x1d: /* configuration in progress */
 735                                case 0x24: /* depopulation in progress */
 736                                        action = ACTION_DELAYED_RETRY;
 737                                        break;
 738                                case 0x0a: /* ALUA state transition */
 739                                        blk_stat = BLK_STS_AGAIN;
 740                                        fallthrough;
 741                                default:
 742                                        action = ACTION_FAIL;
 743                                        break;
 744                                }
 745                        } else
 746                                action = ACTION_FAIL;
 747                        break;
 748                case VOLUME_OVERFLOW:
 749                        /* See SSC3rXX or current. */
 750                        action = ACTION_FAIL;
 751                        break;
 752                case DATA_PROTECT:
 753                        action = ACTION_FAIL;
 754                        if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
 755                            (sshdr.asc == 0x55 &&
 756                             (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
 757                                /* Insufficient zone resources */
 758                                blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
 759                        }
 760                        break;
 761                default:
 762                        action = ACTION_FAIL;
 763                        break;
 764                }
 765        } else
 766                action = ACTION_FAIL;
 767
 768        if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
 769                action = ACTION_FAIL;
 770
 771        switch (action) {
 772        case ACTION_FAIL:
 773                /* Give up and fail the remainder of the request */
 774                if (!(req->rq_flags & RQF_QUIET)) {
 775                        static DEFINE_RATELIMIT_STATE(_rs,
 776                                        DEFAULT_RATELIMIT_INTERVAL,
 777                                        DEFAULT_RATELIMIT_BURST);
 778
 779                        if (unlikely(scsi_logging_level))
 780                                level =
 781                                     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 782                                                    SCSI_LOG_MLCOMPLETE_BITS);
 783
 784                        /*
 785                         * if logging is enabled the failure will be printed
 786                         * in scsi_log_completion(), so avoid duplicate messages
 787                         */
 788                        if (!level && __ratelimit(&_rs)) {
 789                                scsi_print_result(cmd, NULL, FAILED);
 790                                if (driver_byte(result) == DRIVER_SENSE)
 791                                        scsi_print_sense(cmd);
 792                                scsi_print_command(cmd);
 793                        }
 794                }
 795                if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
 796                        return;
 797                fallthrough;
 798        case ACTION_REPREP:
 799                scsi_io_completion_reprep(cmd, q);
 800                break;
 801        case ACTION_RETRY:
 802                /* Retry the same command immediately */
 803                __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
 804                break;
 805        case ACTION_DELAYED_RETRY:
 806                /* Retry the same command after a delay */
 807                __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
 808                break;
 809        }
 810}
 811
 812/*
 813 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
 814 * new result that may suppress further error checking. Also modifies
 815 * *blk_statp in some cases.
 816 */
 817static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
 818                                        blk_status_t *blk_statp)
 819{
 820        bool sense_valid;
 821        bool sense_current = true;      /* false implies "deferred sense" */
 822        struct request *req = cmd->request;
 823        struct scsi_sense_hdr sshdr;
 824
 825        sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 826        if (sense_valid)
 827                sense_current = !scsi_sense_is_deferred(&sshdr);
 828
 829        if (blk_rq_is_passthrough(req)) {
 830                if (sense_valid) {
 831                        /*
 832                         * SG_IO wants current and deferred errors
 833                         */
 834                        scsi_req(req)->sense_len =
 835                                min(8 + cmd->sense_buffer[7],
 836                                    SCSI_SENSE_BUFFERSIZE);
 837                }
 838                if (sense_current)
 839                        *blk_statp = scsi_result_to_blk_status(cmd, result);
 840        } else if (blk_rq_bytes(req) == 0 && sense_current) {
 841                /*
 842                 * Flush commands do not transfers any data, and thus cannot use
 843                 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 844                 * This sets *blk_statp explicitly for the problem case.
 845                 */
 846                *blk_statp = scsi_result_to_blk_status(cmd, result);
 847        }
 848        /*
 849         * Recovered errors need reporting, but they're always treated as
 850         * success, so fiddle the result code here.  For passthrough requests
 851         * we already took a copy of the original into sreq->result which
 852         * is what gets returned to the user
 853         */
 854        if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 855                bool do_print = true;
 856                /*
 857                 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
 858                 * skip print since caller wants ATA registers. Only occurs
 859                 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
 860                 */
 861                if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 862                        do_print = false;
 863                else if (req->rq_flags & RQF_QUIET)
 864                        do_print = false;
 865                if (do_print)
 866                        scsi_print_sense(cmd);
 867                result = 0;
 868                /* for passthrough, *blk_statp may be set */
 869                *blk_statp = BLK_STS_OK;
 870        }
 871        /*
 872         * Another corner case: the SCSI status byte is non-zero but 'good'.
 873         * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
 874         * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
 875         * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
 876         * intermediate statuses (both obsolete in SAM-4) as good.
 877         */
 878        if (status_byte(result) && scsi_status_is_good(result)) {
 879                result = 0;
 880                *blk_statp = BLK_STS_OK;
 881        }
 882        return result;
 883}
 884
 885/**
 886 * scsi_io_completion - Completion processing for SCSI commands.
 887 * @cmd:        command that is finished.
 888 * @good_bytes: number of processed bytes.
 889 *
 890 * We will finish off the specified number of sectors. If we are done, the
 891 * command block will be released and the queue function will be goosed. If we
 892 * are not done then we have to figure out what to do next:
 893 *
 894 *   a) We can call scsi_io_completion_reprep().  The request will be
 895 *      unprepared and put back on the queue.  Then a new command will
 896 *      be created for it.  This should be used if we made forward
 897 *      progress, or if we want to switch from READ(10) to READ(6) for
 898 *      example.
 899 *
 900 *   b) We can call scsi_io_completion_action().  The request will be
 901 *      put back on the queue and retried using the same command as
 902 *      before, possibly after a delay.
 903 *
 904 *   c) We can call scsi_end_request() with blk_stat other than
 905 *      BLK_STS_OK, to fail the remainder of the request.
 906 */
 907void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 908{
 909        int result = cmd->result;
 910        struct request_queue *q = cmd->device->request_queue;
 911        struct request *req = cmd->request;
 912        blk_status_t blk_stat = BLK_STS_OK;
 913
 914        if (unlikely(result))   /* a nz result may or may not be an error */
 915                result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
 916
 917        if (unlikely(blk_rq_is_passthrough(req))) {
 918                /*
 919                 * scsi_result_to_blk_status may have reset the host_byte
 920                 */
 921                scsi_req(req)->result = cmd->result;
 922        }
 923
 924        /*
 925         * Next deal with any sectors which we were able to correctly
 926         * handle.
 927         */
 928        SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 929                "%u sectors total, %d bytes done.\n",
 930                blk_rq_sectors(req), good_bytes));
 931
 932        /*
 933         * Failed, zero length commands always need to drop down
 934         * to retry code. Fast path should return in this block.
 935         */
 936        if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
 937                if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
 938                        return; /* no bytes remaining */
 939        }
 940
 941        /* Kill remainder if no retries. */
 942        if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
 943                if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
 944                        WARN_ONCE(true,
 945                            "Bytes remaining after failed, no-retry command");
 946                return;
 947        }
 948
 949        /*
 950         * If there had been no error, but we have leftover bytes in the
 951         * requeues just queue the command up again.
 952         */
 953        if (likely(result == 0))
 954                scsi_io_completion_reprep(cmd, q);
 955        else
 956                scsi_io_completion_action(cmd, result);
 957}
 958
 959static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
 960                struct request *rq)
 961{
 962        return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
 963               !op_is_write(req_op(rq)) &&
 964               sdev->host->hostt->dma_need_drain(rq);
 965}
 966
 967/**
 968 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
 969 * @cmd: SCSI command data structure to initialize.
 970 *
 971 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
 972 * for @cmd.
 973 *
 974 * Returns:
 975 * * BLK_STS_OK       - on success
 976 * * BLK_STS_RESOURCE - if the failure is retryable
 977 * * BLK_STS_IOERR    - if the failure is fatal
 978 */
 979blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
 980{
 981        struct scsi_device *sdev = cmd->device;
 982        struct request *rq = cmd->request;
 983        unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
 984        struct scatterlist *last_sg = NULL;
 985        blk_status_t ret;
 986        bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
 987        int count;
 988
 989        if (WARN_ON_ONCE(!nr_segs))
 990                return BLK_STS_IOERR;
 991
 992        /*
 993         * Make sure there is space for the drain.  The driver must adjust
 994         * max_hw_segments to be prepared for this.
 995         */
 996        if (need_drain)
 997                nr_segs++;
 998
 999        /*
1000         * If sg table allocation fails, requeue request later.
1001         */
1002        if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1003                        cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1004                return BLK_STS_RESOURCE;
1005
1006        /*
1007         * Next, walk the list, and fill in the addresses and sizes of
1008         * each segment.
1009         */
1010        count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1011
1012        if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1013                unsigned int pad_len =
1014                        (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1015
1016                last_sg->length += pad_len;
1017                cmd->extra_len += pad_len;
1018        }
1019
1020        if (need_drain) {
1021                sg_unmark_end(last_sg);
1022                last_sg = sg_next(last_sg);
1023                sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1024                sg_mark_end(last_sg);
1025
1026                cmd->extra_len += sdev->dma_drain_len;
1027                count++;
1028        }
1029
1030        BUG_ON(count > cmd->sdb.table.nents);
1031        cmd->sdb.table.nents = count;
1032        cmd->sdb.length = blk_rq_payload_bytes(rq);
1033
1034        if (blk_integrity_rq(rq)) {
1035                struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1036                int ivecs;
1037
1038                if (WARN_ON_ONCE(!prot_sdb)) {
1039                        /*
1040                         * This can happen if someone (e.g. multipath)
1041                         * queues a command to a device on an adapter
1042                         * that does not support DIX.
1043                         */
1044                        ret = BLK_STS_IOERR;
1045                        goto out_free_sgtables;
1046                }
1047
1048                ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1049
1050                if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1051                                prot_sdb->table.sgl,
1052                                SCSI_INLINE_PROT_SG_CNT)) {
1053                        ret = BLK_STS_RESOURCE;
1054                        goto out_free_sgtables;
1055                }
1056
1057                count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1058                                                prot_sdb->table.sgl);
1059                BUG_ON(count > ivecs);
1060                BUG_ON(count > queue_max_integrity_segments(rq->q));
1061
1062                cmd->prot_sdb = prot_sdb;
1063                cmd->prot_sdb->table.nents = count;
1064        }
1065
1066        return BLK_STS_OK;
1067out_free_sgtables:
1068        scsi_free_sgtables(cmd);
1069        return ret;
1070}
1071EXPORT_SYMBOL(scsi_alloc_sgtables);
1072
1073/**
1074 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1075 * @rq: Request associated with the SCSI command to be initialized.
1076 *
1077 * This function initializes the members of struct scsi_cmnd that must be
1078 * initialized before request processing starts and that won't be
1079 * reinitialized if a SCSI command is requeued.
1080 *
1081 * Called from inside blk_get_request() for pass-through requests and from
1082 * inside scsi_init_command() for filesystem requests.
1083 */
1084static void scsi_initialize_rq(struct request *rq)
1085{
1086        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1087
1088        scsi_req_init(&cmd->req);
1089        init_rcu_head(&cmd->rcu);
1090        cmd->jiffies_at_alloc = jiffies;
1091        cmd->retries = 0;
1092}
1093
1094/*
1095 * Only called when the request isn't completed by SCSI, and not freed by
1096 * SCSI
1097 */
1098static void scsi_cleanup_rq(struct request *rq)
1099{
1100        if (rq->rq_flags & RQF_DONTPREP) {
1101                scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1102                rq->rq_flags &= ~RQF_DONTPREP;
1103        }
1104}
1105
1106/* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1107void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1108{
1109        void *buf = cmd->sense_buffer;
1110        void *prot = cmd->prot_sdb;
1111        struct request *rq = blk_mq_rq_from_pdu(cmd);
1112        unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1113        unsigned long jiffies_at_alloc;
1114        int retries, to_clear;
1115        bool in_flight;
1116        int budget_token = cmd->budget_token;
1117
1118        if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1119                flags |= SCMD_INITIALIZED;
1120                scsi_initialize_rq(rq);
1121        }
1122
1123        jiffies_at_alloc = cmd->jiffies_at_alloc;
1124        retries = cmd->retries;
1125        in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1126        /*
1127         * Zero out the cmd, except for the embedded scsi_request. Only clear
1128         * the driver-private command data if the LLD does not supply a
1129         * function to initialize that data.
1130         */
1131        to_clear = sizeof(*cmd) - sizeof(cmd->req);
1132        if (!dev->host->hostt->init_cmd_priv)
1133                to_clear += dev->host->hostt->cmd_size;
1134        memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1135
1136        cmd->device = dev;
1137        cmd->sense_buffer = buf;
1138        cmd->prot_sdb = prot;
1139        cmd->flags = flags;
1140        INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1141        cmd->jiffies_at_alloc = jiffies_at_alloc;
1142        cmd->retries = retries;
1143        if (in_flight)
1144                __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1145        cmd->budget_token = budget_token;
1146
1147}
1148
1149static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1150                struct request *req)
1151{
1152        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1153
1154        /*
1155         * Passthrough requests may transfer data, in which case they must
1156         * a bio attached to them.  Or they might contain a SCSI command
1157         * that does not transfer data, in which case they may optionally
1158         * submit a request without an attached bio.
1159         */
1160        if (req->bio) {
1161                blk_status_t ret = scsi_alloc_sgtables(cmd);
1162                if (unlikely(ret != BLK_STS_OK))
1163                        return ret;
1164        } else {
1165                BUG_ON(blk_rq_bytes(req));
1166
1167                memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1168        }
1169
1170        cmd->cmd_len = scsi_req(req)->cmd_len;
1171        if (cmd->cmd_len == 0)
1172                cmd->cmd_len = scsi_command_size(cmd->cmnd);
1173        cmd->cmnd = scsi_req(req)->cmd;
1174        cmd->transfersize = blk_rq_bytes(req);
1175        cmd->allowed = scsi_req(req)->retries;
1176        return BLK_STS_OK;
1177}
1178
1179static blk_status_t
1180scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1181{
1182        switch (sdev->sdev_state) {
1183        case SDEV_CREATED:
1184                return BLK_STS_OK;
1185        case SDEV_OFFLINE:
1186        case SDEV_TRANSPORT_OFFLINE:
1187                /*
1188                 * If the device is offline we refuse to process any
1189                 * commands.  The device must be brought online
1190                 * before trying any recovery commands.
1191                 */
1192                if (!sdev->offline_already) {
1193                        sdev->offline_already = true;
1194                        sdev_printk(KERN_ERR, sdev,
1195                                    "rejecting I/O to offline device\n");
1196                }
1197                return BLK_STS_IOERR;
1198        case SDEV_DEL:
1199                /*
1200                 * If the device is fully deleted, we refuse to
1201                 * process any commands as well.
1202                 */
1203                sdev_printk(KERN_ERR, sdev,
1204                            "rejecting I/O to dead device\n");
1205                return BLK_STS_IOERR;
1206        case SDEV_BLOCK:
1207        case SDEV_CREATED_BLOCK:
1208                return BLK_STS_RESOURCE;
1209        case SDEV_QUIESCE:
1210                /*
1211                 * If the device is blocked we only accept power management
1212                 * commands.
1213                 */
1214                if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1215                        return BLK_STS_RESOURCE;
1216                return BLK_STS_OK;
1217        default:
1218                /*
1219                 * For any other not fully online state we only allow
1220                 * power management commands.
1221                 */
1222                if (req && !(req->rq_flags & RQF_PM))
1223                        return BLK_STS_IOERR;
1224                return BLK_STS_OK;
1225        }
1226}
1227
1228/*
1229 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1230 * and return the token else return -1.
1231 */
1232static inline int scsi_dev_queue_ready(struct request_queue *q,
1233                                  struct scsi_device *sdev)
1234{
1235        int token;
1236
1237        token = sbitmap_get(&sdev->budget_map);
1238        if (atomic_read(&sdev->device_blocked)) {
1239                if (token < 0)
1240                        goto out;
1241
1242                if (scsi_device_busy(sdev) > 1)
1243                        goto out_dec;
1244
1245                /*
1246                 * unblock after device_blocked iterates to zero
1247                 */
1248                if (atomic_dec_return(&sdev->device_blocked) > 0)
1249                        goto out_dec;
1250                SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1251                                   "unblocking device at zero depth\n"));
1252        }
1253
1254        return token;
1255out_dec:
1256        if (token >= 0)
1257                sbitmap_put(&sdev->budget_map, token);
1258out:
1259        return -1;
1260}
1261
1262/*
1263 * scsi_target_queue_ready: checks if there we can send commands to target
1264 * @sdev: scsi device on starget to check.
1265 */
1266static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1267                                           struct scsi_device *sdev)
1268{
1269        struct scsi_target *starget = scsi_target(sdev);
1270        unsigned int busy;
1271
1272        if (starget->single_lun) {
1273                spin_lock_irq(shost->host_lock);
1274                if (starget->starget_sdev_user &&
1275                    starget->starget_sdev_user != sdev) {
1276                        spin_unlock_irq(shost->host_lock);
1277                        return 0;
1278                }
1279                starget->starget_sdev_user = sdev;
1280                spin_unlock_irq(shost->host_lock);
1281        }
1282
1283        if (starget->can_queue <= 0)
1284                return 1;
1285
1286        busy = atomic_inc_return(&starget->target_busy) - 1;
1287        if (atomic_read(&starget->target_blocked) > 0) {
1288                if (busy)
1289                        goto starved;
1290
1291                /*
1292                 * unblock after target_blocked iterates to zero
1293                 */
1294                if (atomic_dec_return(&starget->target_blocked) > 0)
1295                        goto out_dec;
1296
1297                SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1298                                 "unblocking target at zero depth\n"));
1299        }
1300
1301        if (busy >= starget->can_queue)
1302                goto starved;
1303
1304        return 1;
1305
1306starved:
1307        spin_lock_irq(shost->host_lock);
1308        list_move_tail(&sdev->starved_entry, &shost->starved_list);
1309        spin_unlock_irq(shost->host_lock);
1310out_dec:
1311        if (starget->can_queue > 0)
1312                atomic_dec(&starget->target_busy);
1313        return 0;
1314}
1315
1316/*
1317 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1318 * return 0. We must end up running the queue again whenever 0 is
1319 * returned, else IO can hang.
1320 */
1321static inline int scsi_host_queue_ready(struct request_queue *q,
1322                                   struct Scsi_Host *shost,
1323                                   struct scsi_device *sdev,
1324                                   struct scsi_cmnd *cmd)
1325{
1326        if (scsi_host_in_recovery(shost))
1327                return 0;
1328
1329        if (atomic_read(&shost->host_blocked) > 0) {
1330                if (scsi_host_busy(shost) > 0)
1331                        goto starved;
1332
1333                /*
1334                 * unblock after host_blocked iterates to zero
1335                 */
1336                if (atomic_dec_return(&shost->host_blocked) > 0)
1337                        goto out_dec;
1338
1339                SCSI_LOG_MLQUEUE(3,
1340                        shost_printk(KERN_INFO, shost,
1341                                     "unblocking host at zero depth\n"));
1342        }
1343
1344        if (shost->host_self_blocked)
1345                goto starved;
1346
1347        /* We're OK to process the command, so we can't be starved */
1348        if (!list_empty(&sdev->starved_entry)) {
1349                spin_lock_irq(shost->host_lock);
1350                if (!list_empty(&sdev->starved_entry))
1351                        list_del_init(&sdev->starved_entry);
1352                spin_unlock_irq(shost->host_lock);
1353        }
1354
1355        __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1356
1357        return 1;
1358
1359starved:
1360        spin_lock_irq(shost->host_lock);
1361        if (list_empty(&sdev->starved_entry))
1362                list_add_tail(&sdev->starved_entry, &shost->starved_list);
1363        spin_unlock_irq(shost->host_lock);
1364out_dec:
1365        scsi_dec_host_busy(shost, cmd);
1366        return 0;
1367}
1368
1369/*
1370 * Busy state exporting function for request stacking drivers.
1371 *
1372 * For efficiency, no lock is taken to check the busy state of
1373 * shost/starget/sdev, since the returned value is not guaranteed and
1374 * may be changed after request stacking drivers call the function,
1375 * regardless of taking lock or not.
1376 *
1377 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1378 * needs to return 'not busy'. Otherwise, request stacking drivers
1379 * may hold requests forever.
1380 */
1381static bool scsi_mq_lld_busy(struct request_queue *q)
1382{
1383        struct scsi_device *sdev = q->queuedata;
1384        struct Scsi_Host *shost;
1385
1386        if (blk_queue_dying(q))
1387                return false;
1388
1389        shost = sdev->host;
1390
1391        /*
1392         * Ignore host/starget busy state.
1393         * Since block layer does not have a concept of fairness across
1394         * multiple queues, congestion of host/starget needs to be handled
1395         * in SCSI layer.
1396         */
1397        if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1398                return true;
1399
1400        return false;
1401}
1402
1403/*
1404 * Block layer request completion callback. May be called from interrupt
1405 * context.
1406 */
1407static void scsi_complete(struct request *rq)
1408{
1409        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1410        enum scsi_disposition disposition;
1411
1412        INIT_LIST_HEAD(&cmd->eh_entry);
1413
1414        atomic_inc(&cmd->device->iodone_cnt);
1415        if (cmd->result)
1416                atomic_inc(&cmd->device->ioerr_cnt);
1417
1418        disposition = scsi_decide_disposition(cmd);
1419        if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1420                disposition = SUCCESS;
1421
1422        scsi_log_completion(cmd, disposition);
1423
1424        switch (disposition) {
1425        case SUCCESS:
1426                scsi_finish_command(cmd);
1427                break;
1428        case NEEDS_RETRY:
1429                scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1430                break;
1431        case ADD_TO_MLQUEUE:
1432                scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1433                break;
1434        default:
1435                scsi_eh_scmd_add(cmd);
1436                break;
1437        }
1438}
1439
1440/**
1441 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1442 * @cmd: command block we are dispatching.
1443 *
1444 * Return: nonzero return request was rejected and device's queue needs to be
1445 * plugged.
1446 */
1447static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1448{
1449        struct Scsi_Host *host = cmd->device->host;
1450        int rtn = 0;
1451
1452        atomic_inc(&cmd->device->iorequest_cnt);
1453
1454        /* check if the device is still usable */
1455        if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1456                /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1457                 * returns an immediate error upwards, and signals
1458                 * that the device is no longer present */
1459                cmd->result = DID_NO_CONNECT << 16;
1460                goto done;
1461        }
1462
1463        /* Check to see if the scsi lld made this device blocked. */
1464        if (unlikely(scsi_device_blocked(cmd->device))) {
1465                /*
1466                 * in blocked state, the command is just put back on
1467                 * the device queue.  The suspend state has already
1468                 * blocked the queue so future requests should not
1469                 * occur until the device transitions out of the
1470                 * suspend state.
1471                 */
1472                SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1473                        "queuecommand : device blocked\n"));
1474                return SCSI_MLQUEUE_DEVICE_BUSY;
1475        }
1476
1477        /* Store the LUN value in cmnd, if needed. */
1478        if (cmd->device->lun_in_cdb)
1479                cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1480                               (cmd->device->lun << 5 & 0xe0);
1481
1482        scsi_log_send(cmd);
1483
1484        /*
1485         * Before we queue this command, check if the command
1486         * length exceeds what the host adapter can handle.
1487         */
1488        if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1489                SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1490                               "queuecommand : command too long. "
1491                               "cdb_size=%d host->max_cmd_len=%d\n",
1492                               cmd->cmd_len, cmd->device->host->max_cmd_len));
1493                cmd->result = (DID_ABORT << 16);
1494                goto done;
1495        }
1496
1497        if (unlikely(host->shost_state == SHOST_DEL)) {
1498                cmd->result = (DID_NO_CONNECT << 16);
1499                goto done;
1500
1501        }
1502
1503        trace_scsi_dispatch_cmd_start(cmd);
1504        rtn = host->hostt->queuecommand(host, cmd);
1505        if (rtn) {
1506                trace_scsi_dispatch_cmd_error(cmd, rtn);
1507                if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1508                    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1509                        rtn = SCSI_MLQUEUE_HOST_BUSY;
1510
1511                SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1512                        "queuecommand : request rejected\n"));
1513        }
1514
1515        return rtn;
1516 done:
1517        cmd->scsi_done(cmd);
1518        return 0;
1519}
1520
1521/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1522static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1523{
1524        return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1525                sizeof(struct scatterlist);
1526}
1527
1528static blk_status_t scsi_prepare_cmd(struct request *req)
1529{
1530        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1531        struct scsi_device *sdev = req->q->queuedata;
1532        struct Scsi_Host *shost = sdev->host;
1533        struct scatterlist *sg;
1534
1535        scsi_init_command(sdev, cmd);
1536
1537        cmd->request = req;
1538        cmd->tag = req->tag;
1539        cmd->prot_op = SCSI_PROT_NORMAL;
1540        if (blk_rq_bytes(req))
1541                cmd->sc_data_direction = rq_dma_dir(req);
1542        else
1543                cmd->sc_data_direction = DMA_NONE;
1544
1545        sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1546        cmd->sdb.table.sgl = sg;
1547
1548        if (scsi_host_get_prot(shost)) {
1549                memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1550
1551                cmd->prot_sdb->table.sgl =
1552                        (struct scatterlist *)(cmd->prot_sdb + 1);
1553        }
1554
1555        /*
1556         * Special handling for passthrough commands, which don't go to the ULP
1557         * at all:
1558         */
1559        if (blk_rq_is_scsi(req))
1560                return scsi_setup_scsi_cmnd(sdev, req);
1561
1562        if (sdev->handler && sdev->handler->prep_fn) {
1563                blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1564
1565                if (ret != BLK_STS_OK)
1566                        return ret;
1567        }
1568
1569        cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1570        memset(cmd->cmnd, 0, BLK_MAX_CDB);
1571        return scsi_cmd_to_driver(cmd)->init_command(cmd);
1572}
1573
1574static void scsi_mq_done(struct scsi_cmnd *cmd)
1575{
1576        if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1577                return;
1578        if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1579                return;
1580        trace_scsi_dispatch_cmd_done(cmd);
1581        blk_mq_complete_request(cmd->request);
1582}
1583
1584static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1585{
1586        struct scsi_device *sdev = q->queuedata;
1587
1588        sbitmap_put(&sdev->budget_map, budget_token);
1589}
1590
1591static int scsi_mq_get_budget(struct request_queue *q)
1592{
1593        struct scsi_device *sdev = q->queuedata;
1594        int token = scsi_dev_queue_ready(q, sdev);
1595
1596        if (token >= 0)
1597                return token;
1598
1599        atomic_inc(&sdev->restarts);
1600
1601        /*
1602         * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1603         * .restarts must be incremented before .device_busy is read because the
1604         * code in scsi_run_queue_async() depends on the order of these operations.
1605         */
1606        smp_mb__after_atomic();
1607
1608        /*
1609         * If all in-flight requests originated from this LUN are completed
1610         * before reading .device_busy, sdev->device_busy will be observed as
1611         * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1612         * soon. Otherwise, completion of one of these requests will observe
1613         * the .restarts flag, and the request queue will be run for handling
1614         * this request, see scsi_end_request().
1615         */
1616        if (unlikely(scsi_device_busy(sdev) == 0 &&
1617                                !scsi_device_blocked(sdev)))
1618                blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1619        return -1;
1620}
1621
1622static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1623{
1624        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1625
1626        cmd->budget_token = token;
1627}
1628
1629static int scsi_mq_get_rq_budget_token(struct request *req)
1630{
1631        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1632
1633        return cmd->budget_token;
1634}
1635
1636static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1637                         const struct blk_mq_queue_data *bd)
1638{
1639        struct request *req = bd->rq;
1640        struct request_queue *q = req->q;
1641        struct scsi_device *sdev = q->queuedata;
1642        struct Scsi_Host *shost = sdev->host;
1643        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1644        blk_status_t ret;
1645        int reason;
1646
1647        WARN_ON_ONCE(cmd->budget_token < 0);
1648
1649        /*
1650         * If the device is not in running state we will reject some or all
1651         * commands.
1652         */
1653        if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1654                ret = scsi_device_state_check(sdev, req);
1655                if (ret != BLK_STS_OK)
1656                        goto out_put_budget;
1657        }
1658
1659        ret = BLK_STS_RESOURCE;
1660        if (!scsi_target_queue_ready(shost, sdev))
1661                goto out_put_budget;
1662        if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1663                goto out_dec_target_busy;
1664
1665        if (!(req->rq_flags & RQF_DONTPREP)) {
1666                ret = scsi_prepare_cmd(req);
1667                if (ret != BLK_STS_OK)
1668                        goto out_dec_host_busy;
1669                req->rq_flags |= RQF_DONTPREP;
1670        } else {
1671                clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1672        }
1673
1674        cmd->flags &= SCMD_PRESERVED_FLAGS;
1675        if (sdev->simple_tags)
1676                cmd->flags |= SCMD_TAGGED;
1677        if (bd->last)
1678                cmd->flags |= SCMD_LAST;
1679
1680        scsi_set_resid(cmd, 0);
1681        memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1682        cmd->scsi_done = scsi_mq_done;
1683
1684        blk_mq_start_request(req);
1685        reason = scsi_dispatch_cmd(cmd);
1686        if (reason) {
1687                scsi_set_blocked(cmd, reason);
1688                ret = BLK_STS_RESOURCE;
1689                goto out_dec_host_busy;
1690        }
1691
1692        return BLK_STS_OK;
1693
1694out_dec_host_busy:
1695        scsi_dec_host_busy(shost, cmd);
1696out_dec_target_busy:
1697        if (scsi_target(sdev)->can_queue > 0)
1698                atomic_dec(&scsi_target(sdev)->target_busy);
1699out_put_budget:
1700        scsi_mq_put_budget(q, cmd->budget_token);
1701        cmd->budget_token = -1;
1702        switch (ret) {
1703        case BLK_STS_OK:
1704                break;
1705        case BLK_STS_RESOURCE:
1706        case BLK_STS_ZONE_RESOURCE:
1707                if (scsi_device_blocked(sdev))
1708                        ret = BLK_STS_DEV_RESOURCE;
1709                break;
1710        case BLK_STS_AGAIN:
1711                scsi_req(req)->result = DID_BUS_BUSY << 16;
1712                if (req->rq_flags & RQF_DONTPREP)
1713                        scsi_mq_uninit_cmd(cmd);
1714                break;
1715        default:
1716                if (unlikely(!scsi_device_online(sdev)))
1717                        scsi_req(req)->result = DID_NO_CONNECT << 16;
1718                else
1719                        scsi_req(req)->result = DID_ERROR << 16;
1720                /*
1721                 * Make sure to release all allocated resources when
1722                 * we hit an error, as we will never see this command
1723                 * again.
1724                 */
1725                if (req->rq_flags & RQF_DONTPREP)
1726                        scsi_mq_uninit_cmd(cmd);
1727                scsi_run_queue_async(sdev);
1728                break;
1729        }
1730        return ret;
1731}
1732
1733static enum blk_eh_timer_return scsi_timeout(struct request *req,
1734                bool reserved)
1735{
1736        if (reserved)
1737                return BLK_EH_RESET_TIMER;
1738        return scsi_times_out(req);
1739}
1740
1741static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1742                                unsigned int hctx_idx, unsigned int numa_node)
1743{
1744        struct Scsi_Host *shost = set->driver_data;
1745        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1746        struct scatterlist *sg;
1747        int ret = 0;
1748
1749        cmd->sense_buffer =
1750                kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1751        if (!cmd->sense_buffer)
1752                return -ENOMEM;
1753        cmd->req.sense = cmd->sense_buffer;
1754
1755        if (scsi_host_get_prot(shost)) {
1756                sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1757                        shost->hostt->cmd_size;
1758                cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1759        }
1760
1761        if (shost->hostt->init_cmd_priv) {
1762                ret = shost->hostt->init_cmd_priv(shost, cmd);
1763                if (ret < 0)
1764                        kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1765        }
1766
1767        return ret;
1768}
1769
1770static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1771                                 unsigned int hctx_idx)
1772{
1773        struct Scsi_Host *shost = set->driver_data;
1774        struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1775
1776        if (shost->hostt->exit_cmd_priv)
1777                shost->hostt->exit_cmd_priv(shost, cmd);
1778        kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1779}
1780
1781
1782static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx)
1783{
1784        struct Scsi_Host *shost = hctx->driver_data;
1785
1786        if (shost->hostt->mq_poll)
1787                return shost->hostt->mq_poll(shost, hctx->queue_num);
1788
1789        return 0;
1790}
1791
1792static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1793                          unsigned int hctx_idx)
1794{
1795        struct Scsi_Host *shost = data;
1796
1797        hctx->driver_data = shost;
1798        return 0;
1799}
1800
1801static int scsi_map_queues(struct blk_mq_tag_set *set)
1802{
1803        struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1804
1805        if (shost->hostt->map_queues)
1806                return shost->hostt->map_queues(shost);
1807        return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1808}
1809
1810void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1811{
1812        struct device *dev = shost->dma_dev;
1813
1814        /*
1815         * this limit is imposed by hardware restrictions
1816         */
1817        blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1818                                        SG_MAX_SEGMENTS));
1819
1820        if (scsi_host_prot_dma(shost)) {
1821                shost->sg_prot_tablesize =
1822                        min_not_zero(shost->sg_prot_tablesize,
1823                                     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1824                BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1825                blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1826        }
1827
1828        if (dev->dma_mask) {
1829                shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1830                                dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1831        }
1832        blk_queue_max_hw_sectors(q, shost->max_sectors);
1833        blk_queue_segment_boundary(q, shost->dma_boundary);
1834        dma_set_seg_boundary(dev, shost->dma_boundary);
1835
1836        blk_queue_max_segment_size(q, shost->max_segment_size);
1837        blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1838        dma_set_max_seg_size(dev, queue_max_segment_size(q));
1839
1840        /*
1841         * Set a reasonable default alignment:  The larger of 32-byte (dword),
1842         * which is a common minimum for HBAs, and the minimum DMA alignment,
1843         * which is set by the platform.
1844         *
1845         * Devices that require a bigger alignment can increase it later.
1846         */
1847        blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1848}
1849EXPORT_SYMBOL_GPL(__scsi_init_queue);
1850
1851static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1852        .get_budget     = scsi_mq_get_budget,
1853        .put_budget     = scsi_mq_put_budget,
1854        .queue_rq       = scsi_queue_rq,
1855        .complete       = scsi_complete,
1856        .timeout        = scsi_timeout,
1857#ifdef CONFIG_BLK_DEBUG_FS
1858        .show_rq        = scsi_show_rq,
1859#endif
1860        .init_request   = scsi_mq_init_request,
1861        .exit_request   = scsi_mq_exit_request,
1862        .initialize_rq_fn = scsi_initialize_rq,
1863        .cleanup_rq     = scsi_cleanup_rq,
1864        .busy           = scsi_mq_lld_busy,
1865        .map_queues     = scsi_map_queues,
1866        .init_hctx      = scsi_init_hctx,
1867        .poll           = scsi_mq_poll,
1868        .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1869        .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1870};
1871
1872
1873static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1874{
1875        struct Scsi_Host *shost = hctx->driver_data;
1876
1877        shost->hostt->commit_rqs(shost, hctx->queue_num);
1878}
1879
1880static const struct blk_mq_ops scsi_mq_ops = {
1881        .get_budget     = scsi_mq_get_budget,
1882        .put_budget     = scsi_mq_put_budget,
1883        .queue_rq       = scsi_queue_rq,
1884        .commit_rqs     = scsi_commit_rqs,
1885        .complete       = scsi_complete,
1886        .timeout        = scsi_timeout,
1887#ifdef CONFIG_BLK_DEBUG_FS
1888        .show_rq        = scsi_show_rq,
1889#endif
1890        .init_request   = scsi_mq_init_request,
1891        .exit_request   = scsi_mq_exit_request,
1892        .initialize_rq_fn = scsi_initialize_rq,
1893        .cleanup_rq     = scsi_cleanup_rq,
1894        .busy           = scsi_mq_lld_busy,
1895        .map_queues     = scsi_map_queues,
1896        .init_hctx      = scsi_init_hctx,
1897        .poll           = scsi_mq_poll,
1898        .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1899        .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1900};
1901
1902struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1903{
1904        sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1905        if (IS_ERR(sdev->request_queue))
1906                return NULL;
1907
1908        sdev->request_queue->queuedata = sdev;
1909        __scsi_init_queue(sdev->host, sdev->request_queue);
1910        blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1911        return sdev->request_queue;
1912}
1913
1914int scsi_mq_setup_tags(struct Scsi_Host *shost)
1915{
1916        unsigned int cmd_size, sgl_size;
1917        struct blk_mq_tag_set *tag_set = &shost->tag_set;
1918
1919        sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1920                                scsi_mq_inline_sgl_size(shost));
1921        cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1922        if (scsi_host_get_prot(shost))
1923                cmd_size += sizeof(struct scsi_data_buffer) +
1924                        sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1925
1926        memset(tag_set, 0, sizeof(*tag_set));
1927        if (shost->hostt->commit_rqs)
1928                tag_set->ops = &scsi_mq_ops;
1929        else
1930                tag_set->ops = &scsi_mq_ops_no_commit;
1931        tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1932        tag_set->nr_maps = shost->nr_maps ? : 1;
1933        tag_set->queue_depth = shost->can_queue;
1934        tag_set->cmd_size = cmd_size;
1935        tag_set->numa_node = NUMA_NO_NODE;
1936        tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1937        tag_set->flags |=
1938                BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1939        tag_set->driver_data = shost;
1940        if (shost->host_tagset)
1941                tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1942
1943        return blk_mq_alloc_tag_set(tag_set);
1944}
1945
1946void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1947{
1948        blk_mq_free_tag_set(&shost->tag_set);
1949}
1950
1951/**
1952 * scsi_device_from_queue - return sdev associated with a request_queue
1953 * @q: The request queue to return the sdev from
1954 *
1955 * Return the sdev associated with a request queue or NULL if the
1956 * request_queue does not reference a SCSI device.
1957 */
1958struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1959{
1960        struct scsi_device *sdev = NULL;
1961
1962        if (q->mq_ops == &scsi_mq_ops_no_commit ||
1963            q->mq_ops == &scsi_mq_ops)
1964                sdev = q->queuedata;
1965        if (!sdev || !get_device(&sdev->sdev_gendev))
1966                sdev = NULL;
1967
1968        return sdev;
1969}
1970
1971/**
1972 * scsi_block_requests - Utility function used by low-level drivers to prevent
1973 * further commands from being queued to the device.
1974 * @shost:  host in question
1975 *
1976 * There is no timer nor any other means by which the requests get unblocked
1977 * other than the low-level driver calling scsi_unblock_requests().
1978 */
1979void scsi_block_requests(struct Scsi_Host *shost)
1980{
1981        shost->host_self_blocked = 1;
1982}
1983EXPORT_SYMBOL(scsi_block_requests);
1984
1985/**
1986 * scsi_unblock_requests - Utility function used by low-level drivers to allow
1987 * further commands to be queued to the device.
1988 * @shost:  host in question
1989 *
1990 * There is no timer nor any other means by which the requests get unblocked
1991 * other than the low-level driver calling scsi_unblock_requests(). This is done
1992 * as an API function so that changes to the internals of the scsi mid-layer
1993 * won't require wholesale changes to drivers that use this feature.
1994 */
1995void scsi_unblock_requests(struct Scsi_Host *shost)
1996{
1997        shost->host_self_blocked = 0;
1998        scsi_run_host_queues(shost);
1999}
2000EXPORT_SYMBOL(scsi_unblock_requests);
2001
2002void scsi_exit_queue(void)
2003{
2004        kmem_cache_destroy(scsi_sense_cache);
2005}
2006
2007/**
2008 *      scsi_mode_select - issue a mode select
2009 *      @sdev:  SCSI device to be queried
2010 *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
2011 *      @sp:    Save page bit (0 == don't save, 1 == save)
2012 *      @modepage: mode page being requested
2013 *      @buffer: request buffer (may not be smaller than eight bytes)
2014 *      @len:   length of request buffer.
2015 *      @timeout: command timeout
2016 *      @retries: number of retries before failing
2017 *      @data: returns a structure abstracting the mode header data
2018 *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2019 *              must be SCSI_SENSE_BUFFERSIZE big.
2020 *
2021 *      Returns zero if successful; negative error number or scsi
2022 *      status on error
2023 *
2024 */
2025int
2026scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2027                 unsigned char *buffer, int len, int timeout, int retries,
2028                 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2029{
2030        unsigned char cmd[10];
2031        unsigned char *real_buffer;
2032        int ret;
2033
2034        memset(cmd, 0, sizeof(cmd));
2035        cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2036
2037        if (sdev->use_10_for_ms) {
2038                if (len > 65535)
2039                        return -EINVAL;
2040                real_buffer = kmalloc(8 + len, GFP_KERNEL);
2041                if (!real_buffer)
2042                        return -ENOMEM;
2043                memcpy(real_buffer + 8, buffer, len);
2044                len += 8;
2045                real_buffer[0] = 0;
2046                real_buffer[1] = 0;
2047                real_buffer[2] = data->medium_type;
2048                real_buffer[3] = data->device_specific;
2049                real_buffer[4] = data->longlba ? 0x01 : 0;
2050                real_buffer[5] = 0;
2051                real_buffer[6] = data->block_descriptor_length >> 8;
2052                real_buffer[7] = data->block_descriptor_length;
2053
2054                cmd[0] = MODE_SELECT_10;
2055                cmd[7] = len >> 8;
2056                cmd[8] = len;
2057        } else {
2058                if (len > 255 || data->block_descriptor_length > 255 ||
2059                    data->longlba)
2060                        return -EINVAL;
2061
2062                real_buffer = kmalloc(4 + len, GFP_KERNEL);
2063                if (!real_buffer)
2064                        return -ENOMEM;
2065                memcpy(real_buffer + 4, buffer, len);
2066                len += 4;
2067                real_buffer[0] = 0;
2068                real_buffer[1] = data->medium_type;
2069                real_buffer[2] = data->device_specific;
2070                real_buffer[3] = data->block_descriptor_length;
2071
2072                cmd[0] = MODE_SELECT;
2073                cmd[4] = len;
2074        }
2075
2076        ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2077                               sshdr, timeout, retries, NULL);
2078        kfree(real_buffer);
2079        return ret;
2080}
2081EXPORT_SYMBOL_GPL(scsi_mode_select);
2082
2083/**
2084 *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2085 *      @sdev:  SCSI device to be queried
2086 *      @dbd:   set if mode sense will allow block descriptors to be returned
2087 *      @modepage: mode page being requested
2088 *      @buffer: request buffer (may not be smaller than eight bytes)
2089 *      @len:   length of request buffer.
2090 *      @timeout: command timeout
2091 *      @retries: number of retries before failing
2092 *      @data: returns a structure abstracting the mode header data
2093 *      @sshdr: place to put sense data (or NULL if no sense to be collected).
2094 *              must be SCSI_SENSE_BUFFERSIZE big.
2095 *
2096 *      Returns zero if unsuccessful, or the header offset (either 4
2097 *      or 8 depending on whether a six or ten byte command was
2098 *      issued) if successful.
2099 */
2100int
2101scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2102                  unsigned char *buffer, int len, int timeout, int retries,
2103                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2104{
2105        unsigned char cmd[12];
2106        int use_10_for_ms;
2107        int header_length;
2108        int result, retry_count = retries;
2109        struct scsi_sense_hdr my_sshdr;
2110
2111        memset(data, 0, sizeof(*data));
2112        memset(&cmd[0], 0, 12);
2113
2114        dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2115        cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
2116        cmd[2] = modepage;
2117
2118        /* caller might not be interested in sense, but we need it */
2119        if (!sshdr)
2120                sshdr = &my_sshdr;
2121
2122 retry:
2123        use_10_for_ms = sdev->use_10_for_ms;
2124
2125        if (use_10_for_ms) {
2126                if (len < 8)
2127                        len = 8;
2128
2129                cmd[0] = MODE_SENSE_10;
2130                cmd[8] = len;
2131                header_length = 8;
2132        } else {
2133                if (len < 4)
2134                        len = 4;
2135
2136                cmd[0] = MODE_SENSE;
2137                cmd[4] = len;
2138                header_length = 4;
2139        }
2140
2141        memset(buffer, 0, len);
2142
2143        result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2144                                  sshdr, timeout, retries, NULL);
2145
2146        /* This code looks awful: what it's doing is making sure an
2147         * ILLEGAL REQUEST sense return identifies the actual command
2148         * byte as the problem.  MODE_SENSE commands can return
2149         * ILLEGAL REQUEST if the code page isn't supported */
2150
2151        if (use_10_for_ms && !scsi_status_is_good(result) &&
2152            driver_byte(result) == DRIVER_SENSE) {
2153                if (scsi_sense_valid(sshdr)) {
2154                        if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2155                            (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2156                                /*
2157                                 * Invalid command operation code
2158                                 */
2159                                sdev->use_10_for_ms = 0;
2160                                goto retry;
2161                        }
2162                }
2163        }
2164
2165        if (scsi_status_is_good(result)) {
2166                if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2167                             (modepage == 6 || modepage == 8))) {
2168                        /* Initio breakage? */
2169                        header_length = 0;
2170                        data->length = 13;
2171                        data->medium_type = 0;
2172                        data->device_specific = 0;
2173                        data->longlba = 0;
2174                        data->block_descriptor_length = 0;
2175                } else if (use_10_for_ms) {
2176                        data->length = buffer[0]*256 + buffer[1] + 2;
2177                        data->medium_type = buffer[2];
2178                        data->device_specific = buffer[3];
2179                        data->longlba = buffer[4] & 0x01;
2180                        data->block_descriptor_length = buffer[6]*256
2181                                + buffer[7];
2182                } else {
2183                        data->length = buffer[0] + 1;
2184                        data->medium_type = buffer[1];
2185                        data->device_specific = buffer[2];
2186                        data->block_descriptor_length = buffer[3];
2187                }
2188                data->header_length = header_length;
2189        } else if ((status_byte(result) == CHECK_CONDITION) &&
2190                   scsi_sense_valid(sshdr) &&
2191                   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2192                retry_count--;
2193                goto retry;
2194        }
2195
2196        return result;
2197}
2198EXPORT_SYMBOL(scsi_mode_sense);
2199
2200/**
2201 *      scsi_test_unit_ready - test if unit is ready
2202 *      @sdev:  scsi device to change the state of.
2203 *      @timeout: command timeout
2204 *      @retries: number of retries before failing
2205 *      @sshdr: outpout pointer for decoded sense information.
2206 *
2207 *      Returns zero if unsuccessful or an error if TUR failed.  For
2208 *      removable media, UNIT_ATTENTION sets ->changed flag.
2209 **/
2210int
2211scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2212                     struct scsi_sense_hdr *sshdr)
2213{
2214        char cmd[] = {
2215                TEST_UNIT_READY, 0, 0, 0, 0, 0,
2216        };
2217        int result;
2218
2219        /* try to eat the UNIT_ATTENTION if there are enough retries */
2220        do {
2221                result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2222                                          timeout, 1, NULL);
2223                if (sdev->removable && scsi_sense_valid(sshdr) &&
2224                    sshdr->sense_key == UNIT_ATTENTION)
2225                        sdev->changed = 1;
2226        } while (scsi_sense_valid(sshdr) &&
2227                 sshdr->sense_key == UNIT_ATTENTION && --retries);
2228
2229        return result;
2230}
2231EXPORT_SYMBOL(scsi_test_unit_ready);
2232
2233/**
2234 *      scsi_device_set_state - Take the given device through the device state model.
2235 *      @sdev:  scsi device to change the state of.
2236 *      @state: state to change to.
2237 *
2238 *      Returns zero if successful or an error if the requested
2239 *      transition is illegal.
2240 */
2241int
2242scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2243{
2244        enum scsi_device_state oldstate = sdev->sdev_state;
2245
2246        if (state == oldstate)
2247                return 0;
2248
2249        switch (state) {
2250        case SDEV_CREATED:
2251                switch (oldstate) {
2252                case SDEV_CREATED_BLOCK:
2253                        break;
2254                default:
2255                        goto illegal;
2256                }
2257                break;
2258
2259        case SDEV_RUNNING:
2260                switch (oldstate) {
2261                case SDEV_CREATED:
2262                case SDEV_OFFLINE:
2263                case SDEV_TRANSPORT_OFFLINE:
2264                case SDEV_QUIESCE:
2265                case SDEV_BLOCK:
2266                        break;
2267                default:
2268                        goto illegal;
2269                }
2270                break;
2271
2272        case SDEV_QUIESCE:
2273                switch (oldstate) {
2274                case SDEV_RUNNING:
2275                case SDEV_OFFLINE:
2276                case SDEV_TRANSPORT_OFFLINE:
2277                        break;
2278                default:
2279                        goto illegal;
2280                }
2281                break;
2282
2283        case SDEV_OFFLINE:
2284        case SDEV_TRANSPORT_OFFLINE:
2285                switch (oldstate) {
2286                case SDEV_CREATED:
2287                case SDEV_RUNNING:
2288                case SDEV_QUIESCE:
2289                case SDEV_BLOCK:
2290                        break;
2291                default:
2292                        goto illegal;
2293                }
2294                break;
2295
2296        case SDEV_BLOCK:
2297                switch (oldstate) {
2298                case SDEV_RUNNING:
2299                case SDEV_CREATED_BLOCK:
2300                case SDEV_QUIESCE:
2301                case SDEV_OFFLINE:
2302                        break;
2303                default:
2304                        goto illegal;
2305                }
2306                break;
2307
2308        case SDEV_CREATED_BLOCK:
2309                switch (oldstate) {
2310                case SDEV_CREATED:
2311                        break;
2312                default:
2313                        goto illegal;
2314                }
2315                break;
2316
2317        case SDEV_CANCEL:
2318                switch (oldstate) {
2319                case SDEV_CREATED:
2320                case SDEV_RUNNING:
2321                case SDEV_QUIESCE:
2322                case SDEV_OFFLINE:
2323                case SDEV_TRANSPORT_OFFLINE:
2324                        break;
2325                default:
2326                        goto illegal;
2327                }
2328                break;
2329
2330        case SDEV_DEL:
2331                switch (oldstate) {
2332                case SDEV_CREATED:
2333                case SDEV_RUNNING:
2334                case SDEV_OFFLINE:
2335                case SDEV_TRANSPORT_OFFLINE:
2336                case SDEV_CANCEL:
2337                case SDEV_BLOCK:
2338                case SDEV_CREATED_BLOCK:
2339                        break;
2340                default:
2341                        goto illegal;
2342                }
2343                break;
2344
2345        }
2346        sdev->offline_already = false;
2347        sdev->sdev_state = state;
2348        return 0;
2349
2350 illegal:
2351        SCSI_LOG_ERROR_RECOVERY(1,
2352                                sdev_printk(KERN_ERR, sdev,
2353                                            "Illegal state transition %s->%s",
2354                                            scsi_device_state_name(oldstate),
2355                                            scsi_device_state_name(state))
2356                                );
2357        return -EINVAL;
2358}
2359EXPORT_SYMBOL(scsi_device_set_state);
2360
2361/**
2362 *      scsi_evt_emit - emit a single SCSI device uevent
2363 *      @sdev: associated SCSI device
2364 *      @evt: event to emit
2365 *
2366 *      Send a single uevent (scsi_event) to the associated scsi_device.
2367 */
2368static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2369{
2370        int idx = 0;
2371        char *envp[3];
2372
2373        switch (evt->evt_type) {
2374        case SDEV_EVT_MEDIA_CHANGE:
2375                envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2376                break;
2377        case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2378                scsi_rescan_device(&sdev->sdev_gendev);
2379                envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2380                break;
2381        case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2382                envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2383                break;
2384        case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2385               envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2386                break;
2387        case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2388                envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2389                break;
2390        case SDEV_EVT_LUN_CHANGE_REPORTED:
2391                envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2392                break;
2393        case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2394                envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2395                break;
2396        case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2397                envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2398                break;
2399        default:
2400                /* do nothing */
2401                break;
2402        }
2403
2404        envp[idx++] = NULL;
2405
2406        kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2407}
2408
2409/**
2410 *      scsi_evt_thread - send a uevent for each scsi event
2411 *      @work: work struct for scsi_device
2412 *
2413 *      Dispatch queued events to their associated scsi_device kobjects
2414 *      as uevents.
2415 */
2416void scsi_evt_thread(struct work_struct *work)
2417{
2418        struct scsi_device *sdev;
2419        enum scsi_device_event evt_type;
2420        LIST_HEAD(event_list);
2421
2422        sdev = container_of(work, struct scsi_device, event_work);
2423
2424        for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2425                if (test_and_clear_bit(evt_type, sdev->pending_events))
2426                        sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2427
2428        while (1) {
2429                struct scsi_event *evt;
2430                struct list_head *this, *tmp;
2431                unsigned long flags;
2432
2433                spin_lock_irqsave(&sdev->list_lock, flags);
2434                list_splice_init(&sdev->event_list, &event_list);
2435                spin_unlock_irqrestore(&sdev->list_lock, flags);
2436
2437                if (list_empty(&event_list))
2438                        break;
2439
2440                list_for_each_safe(this, tmp, &event_list) {
2441                        evt = list_entry(this, struct scsi_event, node);
2442                        list_del(&evt->node);
2443                        scsi_evt_emit(sdev, evt);
2444                        kfree(evt);
2445                }
2446        }
2447}
2448
2449/**
2450 *      sdev_evt_send - send asserted event to uevent thread
2451 *      @sdev: scsi_device event occurred on
2452 *      @evt: event to send
2453 *
2454 *      Assert scsi device event asynchronously.
2455 */
2456void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2457{
2458        unsigned long flags;
2459
2460#if 0
2461        /* FIXME: currently this check eliminates all media change events
2462         * for polled devices.  Need to update to discriminate between AN
2463         * and polled events */
2464        if (!test_bit(evt->evt_type, sdev->supported_events)) {
2465                kfree(evt);
2466                return;
2467        }
2468#endif
2469
2470        spin_lock_irqsave(&sdev->list_lock, flags);
2471        list_add_tail(&evt->node, &sdev->event_list);
2472        schedule_work(&sdev->event_work);
2473        spin_unlock_irqrestore(&sdev->list_lock, flags);
2474}
2475EXPORT_SYMBOL_GPL(sdev_evt_send);
2476
2477/**
2478 *      sdev_evt_alloc - allocate a new scsi event
2479 *      @evt_type: type of event to allocate
2480 *      @gfpflags: GFP flags for allocation
2481 *
2482 *      Allocates and returns a new scsi_event.
2483 */
2484struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2485                                  gfp_t gfpflags)
2486{
2487        struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2488        if (!evt)
2489                return NULL;
2490
2491        evt->evt_type = evt_type;
2492        INIT_LIST_HEAD(&evt->node);
2493
2494        /* evt_type-specific initialization, if any */
2495        switch (evt_type) {
2496        case SDEV_EVT_MEDIA_CHANGE:
2497        case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2498        case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2499        case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2500        case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2501        case SDEV_EVT_LUN_CHANGE_REPORTED:
2502        case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2503        case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2504        default:
2505                /* do nothing */
2506                break;
2507        }
2508
2509        return evt;
2510}
2511EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2512
2513/**
2514 *      sdev_evt_send_simple - send asserted event to uevent thread
2515 *      @sdev: scsi_device event occurred on
2516 *      @evt_type: type of event to send
2517 *      @gfpflags: GFP flags for allocation
2518 *
2519 *      Assert scsi device event asynchronously, given an event type.
2520 */
2521void sdev_evt_send_simple(struct scsi_device *sdev,
2522                          enum scsi_device_event evt_type, gfp_t gfpflags)
2523{
2524        struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2525        if (!evt) {
2526                sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2527                            evt_type);
2528                return;
2529        }
2530
2531        sdev_evt_send(sdev, evt);
2532}
2533EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2534
2535/**
2536 *      scsi_device_quiesce - Block all commands except power management.
2537 *      @sdev:  scsi device to quiesce.
2538 *
2539 *      This works by trying to transition to the SDEV_QUIESCE state
2540 *      (which must be a legal transition).  When the device is in this
2541 *      state, only power management requests will be accepted, all others will
2542 *      be deferred.
2543 *
2544 *      Must be called with user context, may sleep.
2545 *
2546 *      Returns zero if unsuccessful or an error if not.
2547 */
2548int
2549scsi_device_quiesce(struct scsi_device *sdev)
2550{
2551        struct request_queue *q = sdev->request_queue;
2552        int err;
2553
2554        /*
2555         * It is allowed to call scsi_device_quiesce() multiple times from
2556         * the same context but concurrent scsi_device_quiesce() calls are
2557         * not allowed.
2558         */
2559        WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2560
2561        if (sdev->quiesced_by == current)
2562                return 0;
2563
2564        blk_set_pm_only(q);
2565
2566        blk_mq_freeze_queue(q);
2567        /*
2568         * Ensure that the effect of blk_set_pm_only() will be visible
2569         * for percpu_ref_tryget() callers that occur after the queue
2570         * unfreeze even if the queue was already frozen before this function
2571         * was called. See also https://lwn.net/Articles/573497/.
2572         */
2573        synchronize_rcu();
2574        blk_mq_unfreeze_queue(q);
2575
2576        mutex_lock(&sdev->state_mutex);
2577        err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2578        if (err == 0)
2579                sdev->quiesced_by = current;
2580        else
2581                blk_clear_pm_only(q);
2582        mutex_unlock(&sdev->state_mutex);
2583
2584        return err;
2585}
2586EXPORT_SYMBOL(scsi_device_quiesce);
2587
2588/**
2589 *      scsi_device_resume - Restart user issued commands to a quiesced device.
2590 *      @sdev:  scsi device to resume.
2591 *
2592 *      Moves the device from quiesced back to running and restarts the
2593 *      queues.
2594 *
2595 *      Must be called with user context, may sleep.
2596 */
2597void scsi_device_resume(struct scsi_device *sdev)
2598{
2599        /* check if the device state was mutated prior to resume, and if
2600         * so assume the state is being managed elsewhere (for example
2601         * device deleted during suspend)
2602         */
2603        mutex_lock(&sdev->state_mutex);
2604        if (sdev->sdev_state == SDEV_QUIESCE)
2605                scsi_device_set_state(sdev, SDEV_RUNNING);
2606        if (sdev->quiesced_by) {
2607                sdev->quiesced_by = NULL;
2608                blk_clear_pm_only(sdev->request_queue);
2609        }
2610        mutex_unlock(&sdev->state_mutex);
2611}
2612EXPORT_SYMBOL(scsi_device_resume);
2613
2614static void
2615device_quiesce_fn(struct scsi_device *sdev, void *data)
2616{
2617        scsi_device_quiesce(sdev);
2618}
2619
2620void
2621scsi_target_quiesce(struct scsi_target *starget)
2622{
2623        starget_for_each_device(starget, NULL, device_quiesce_fn);
2624}
2625EXPORT_SYMBOL(scsi_target_quiesce);
2626
2627static void
2628device_resume_fn(struct scsi_device *sdev, void *data)
2629{
2630        scsi_device_resume(sdev);
2631}
2632
2633void
2634scsi_target_resume(struct scsi_target *starget)
2635{
2636        starget_for_each_device(starget, NULL, device_resume_fn);
2637}
2638EXPORT_SYMBOL(scsi_target_resume);
2639
2640/**
2641 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2642 * @sdev: device to block
2643 *
2644 * Pause SCSI command processing on the specified device. Does not sleep.
2645 *
2646 * Returns zero if successful or a negative error code upon failure.
2647 *
2648 * Notes:
2649 * This routine transitions the device to the SDEV_BLOCK state (which must be
2650 * a legal transition). When the device is in this state, command processing
2651 * is paused until the device leaves the SDEV_BLOCK state. See also
2652 * scsi_internal_device_unblock_nowait().
2653 */
2654int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2655{
2656        struct request_queue *q = sdev->request_queue;
2657        int err = 0;
2658
2659        err = scsi_device_set_state(sdev, SDEV_BLOCK);
2660        if (err) {
2661                err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2662
2663                if (err)
2664                        return err;
2665        }
2666
2667        /*
2668         * The device has transitioned to SDEV_BLOCK.  Stop the
2669         * block layer from calling the midlayer with this device's
2670         * request queue.
2671         */
2672        blk_mq_quiesce_queue_nowait(q);
2673        return 0;
2674}
2675EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2676
2677/**
2678 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2679 * @sdev: device to block
2680 *
2681 * Pause SCSI command processing on the specified device and wait until all
2682 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2683 *
2684 * Returns zero if successful or a negative error code upon failure.
2685 *
2686 * Note:
2687 * This routine transitions the device to the SDEV_BLOCK state (which must be
2688 * a legal transition). When the device is in this state, command processing
2689 * is paused until the device leaves the SDEV_BLOCK state. See also
2690 * scsi_internal_device_unblock().
2691 */
2692static int scsi_internal_device_block(struct scsi_device *sdev)
2693{
2694        struct request_queue *q = sdev->request_queue;
2695        int err;
2696
2697        mutex_lock(&sdev->state_mutex);
2698        err = scsi_internal_device_block_nowait(sdev);
2699        if (err == 0)
2700                blk_mq_quiesce_queue(q);
2701        mutex_unlock(&sdev->state_mutex);
2702
2703        return err;
2704}
2705
2706void scsi_start_queue(struct scsi_device *sdev)
2707{
2708        struct request_queue *q = sdev->request_queue;
2709
2710        blk_mq_unquiesce_queue(q);
2711}
2712
2713/**
2714 * scsi_internal_device_unblock_nowait - resume a device after a block request
2715 * @sdev:       device to resume
2716 * @new_state:  state to set the device to after unblocking
2717 *
2718 * Restart the device queue for a previously suspended SCSI device. Does not
2719 * sleep.
2720 *
2721 * Returns zero if successful or a negative error code upon failure.
2722 *
2723 * Notes:
2724 * This routine transitions the device to the SDEV_RUNNING state or to one of
2725 * the offline states (which must be a legal transition) allowing the midlayer
2726 * to goose the queue for this device.
2727 */
2728int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2729                                        enum scsi_device_state new_state)
2730{
2731        switch (new_state) {
2732        case SDEV_RUNNING:
2733        case SDEV_TRANSPORT_OFFLINE:
2734                break;
2735        default:
2736                return -EINVAL;
2737        }
2738
2739        /*
2740         * Try to transition the scsi device to SDEV_RUNNING or one of the
2741         * offlined states and goose the device queue if successful.
2742         */
2743        switch (sdev->sdev_state) {
2744        case SDEV_BLOCK:
2745        case SDEV_TRANSPORT_OFFLINE:
2746                sdev->sdev_state = new_state;
2747                break;
2748        case SDEV_CREATED_BLOCK:
2749                if (new_state == SDEV_TRANSPORT_OFFLINE ||
2750                    new_state == SDEV_OFFLINE)
2751                        sdev->sdev_state = new_state;
2752                else
2753                        sdev->sdev_state = SDEV_CREATED;
2754                break;
2755        case SDEV_CANCEL:
2756        case SDEV_OFFLINE:
2757                break;
2758        default:
2759                return -EINVAL;
2760        }
2761        scsi_start_queue(sdev);
2762
2763        return 0;
2764}
2765EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2766
2767/**
2768 * scsi_internal_device_unblock - resume a device after a block request
2769 * @sdev:       device to resume
2770 * @new_state:  state to set the device to after unblocking
2771 *
2772 * Restart the device queue for a previously suspended SCSI device. May sleep.
2773 *
2774 * Returns zero if successful or a negative error code upon failure.
2775 *
2776 * Notes:
2777 * This routine transitions the device to the SDEV_RUNNING state or to one of
2778 * the offline states (which must be a legal transition) allowing the midlayer
2779 * to goose the queue for this device.
2780 */
2781static int scsi_internal_device_unblock(struct scsi_device *sdev,
2782                                        enum scsi_device_state new_state)
2783{
2784        int ret;
2785
2786        mutex_lock(&sdev->state_mutex);
2787        ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2788        mutex_unlock(&sdev->state_mutex);
2789
2790        return ret;
2791}
2792
2793static void
2794device_block(struct scsi_device *sdev, void *data)
2795{
2796        int ret;
2797
2798        ret = scsi_internal_device_block(sdev);
2799
2800        WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2801                  dev_name(&sdev->sdev_gendev), ret);
2802}
2803
2804static int
2805target_block(struct device *dev, void *data)
2806{
2807        if (scsi_is_target_device(dev))
2808                starget_for_each_device(to_scsi_target(dev), NULL,
2809                                        device_block);
2810        return 0;
2811}
2812
2813void
2814scsi_target_block(struct device *dev)
2815{
2816        if (scsi_is_target_device(dev))
2817                starget_for_each_device(to_scsi_target(dev), NULL,
2818                                        device_block);
2819        else
2820                device_for_each_child(dev, NULL, target_block);
2821}
2822EXPORT_SYMBOL_GPL(scsi_target_block);
2823
2824static void
2825device_unblock(struct scsi_device *sdev, void *data)
2826{
2827        scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2828}
2829
2830static int
2831target_unblock(struct device *dev, void *data)
2832{
2833        if (scsi_is_target_device(dev))
2834                starget_for_each_device(to_scsi_target(dev), data,
2835                                        device_unblock);
2836        return 0;
2837}
2838
2839void
2840scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2841{
2842        if (scsi_is_target_device(dev))
2843                starget_for_each_device(to_scsi_target(dev), &new_state,
2844                                        device_unblock);
2845        else
2846                device_for_each_child(dev, &new_state, target_unblock);
2847}
2848EXPORT_SYMBOL_GPL(scsi_target_unblock);
2849
2850int
2851scsi_host_block(struct Scsi_Host *shost)
2852{
2853        struct scsi_device *sdev;
2854        int ret = 0;
2855
2856        /*
2857         * Call scsi_internal_device_block_nowait so we can avoid
2858         * calling synchronize_rcu() for each LUN.
2859         */
2860        shost_for_each_device(sdev, shost) {
2861                mutex_lock(&sdev->state_mutex);
2862                ret = scsi_internal_device_block_nowait(sdev);
2863                mutex_unlock(&sdev->state_mutex);
2864                if (ret) {
2865                        scsi_device_put(sdev);
2866                        break;
2867                }
2868        }
2869
2870        /*
2871         * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2872         * calling synchronize_rcu() once is enough.
2873         */
2874        WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2875
2876        if (!ret)
2877                synchronize_rcu();
2878
2879        return ret;
2880}
2881EXPORT_SYMBOL_GPL(scsi_host_block);
2882
2883int
2884scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2885{
2886        struct scsi_device *sdev;
2887        int ret = 0;
2888
2889        shost_for_each_device(sdev, shost) {
2890                ret = scsi_internal_device_unblock(sdev, new_state);
2891                if (ret) {
2892                        scsi_device_put(sdev);
2893                        break;
2894                }
2895        }
2896        return ret;
2897}
2898EXPORT_SYMBOL_GPL(scsi_host_unblock);
2899
2900/**
2901 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2902 * @sgl:        scatter-gather list
2903 * @sg_count:   number of segments in sg
2904 * @offset:     offset in bytes into sg, on return offset into the mapped area
2905 * @len:        bytes to map, on return number of bytes mapped
2906 *
2907 * Returns virtual address of the start of the mapped page
2908 */
2909void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2910                          size_t *offset, size_t *len)
2911{
2912        int i;
2913        size_t sg_len = 0, len_complete = 0;
2914        struct scatterlist *sg;
2915        struct page *page;
2916
2917        WARN_ON(!irqs_disabled());
2918
2919        for_each_sg(sgl, sg, sg_count, i) {
2920                len_complete = sg_len; /* Complete sg-entries */
2921                sg_len += sg->length;
2922                if (sg_len > *offset)
2923                        break;
2924        }
2925
2926        if (unlikely(i == sg_count)) {
2927                printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2928                        "elements %d\n",
2929                       __func__, sg_len, *offset, sg_count);
2930                WARN_ON(1);
2931                return NULL;
2932        }
2933
2934        /* Offset starting from the beginning of first page in this sg-entry */
2935        *offset = *offset - len_complete + sg->offset;
2936
2937        /* Assumption: contiguous pages can be accessed as "page + i" */
2938        page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2939        *offset &= ~PAGE_MASK;
2940
2941        /* Bytes in this sg-entry from *offset to the end of the page */
2942        sg_len = PAGE_SIZE - *offset;
2943        if (*len > sg_len)
2944                *len = sg_len;
2945
2946        return kmap_atomic(page);
2947}
2948EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2949
2950/**
2951 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2952 * @virt:       virtual address to be unmapped
2953 */
2954void scsi_kunmap_atomic_sg(void *virt)
2955{
2956        kunmap_atomic(virt);
2957}
2958EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2959
2960void sdev_disable_disk_events(struct scsi_device *sdev)
2961{
2962        atomic_inc(&sdev->disk_events_disable_depth);
2963}
2964EXPORT_SYMBOL(sdev_disable_disk_events);
2965
2966void sdev_enable_disk_events(struct scsi_device *sdev)
2967{
2968        if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2969                return;
2970        atomic_dec(&sdev->disk_events_disable_depth);
2971}
2972EXPORT_SYMBOL(sdev_enable_disk_events);
2973
2974static unsigned char designator_prio(const unsigned char *d)
2975{
2976        if (d[1] & 0x30)
2977                /* not associated with LUN */
2978                return 0;
2979
2980        if (d[3] == 0)
2981                /* invalid length */
2982                return 0;
2983
2984        /*
2985         * Order of preference for lun descriptor:
2986         * - SCSI name string
2987         * - NAA IEEE Registered Extended
2988         * - EUI-64 based 16-byte
2989         * - EUI-64 based 12-byte
2990         * - NAA IEEE Registered
2991         * - NAA IEEE Extended
2992         * - EUI-64 based 8-byte
2993         * - SCSI name string (truncated)
2994         * - T10 Vendor ID
2995         * as longer descriptors reduce the likelyhood
2996         * of identification clashes.
2997         */
2998
2999        switch (d[1] & 0xf) {
3000        case 8:
3001                /* SCSI name string, variable-length UTF-8 */
3002                return 9;
3003        case 3:
3004                switch (d[4] >> 4) {
3005                case 6:
3006                        /* NAA registered extended */
3007                        return 8;
3008                case 5:
3009                        /* NAA registered */
3010                        return 5;
3011                case 4:
3012                        /* NAA extended */
3013                        return 4;
3014                case 3:
3015                        /* NAA locally assigned */
3016                        return 1;
3017                default:
3018                        break;
3019                }
3020                break;
3021        case 2:
3022                switch (d[3]) {
3023                case 16:
3024                        /* EUI64-based, 16 byte */
3025                        return 7;
3026                case 12:
3027                        /* EUI64-based, 12 byte */
3028                        return 6;
3029                case 8:
3030                        /* EUI64-based, 8 byte */
3031                        return 3;
3032                default:
3033                        break;
3034                }
3035                break;
3036        case 1:
3037                /* T10 vendor ID */
3038                return 1;
3039        default:
3040                break;
3041        }
3042
3043        return 0;
3044}
3045
3046/**
3047 * scsi_vpd_lun_id - return a unique device identification
3048 * @sdev: SCSI device
3049 * @id:   buffer for the identification
3050 * @id_len:  length of the buffer
3051 *
3052 * Copies a unique device identification into @id based
3053 * on the information in the VPD page 0x83 of the device.
3054 * The string will be formatted as a SCSI name string.
3055 *
3056 * Returns the length of the identification or error on failure.
3057 * If the identifier is longer than the supplied buffer the actual
3058 * identifier length is returned and the buffer is not zero-padded.
3059 */
3060int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3061{
3062        u8 cur_id_prio = 0;
3063        u8 cur_id_size = 0;
3064        const unsigned char *d, *cur_id_str;
3065        const struct scsi_vpd *vpd_pg83;
3066        int id_size = -EINVAL;
3067
3068        rcu_read_lock();
3069        vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3070        if (!vpd_pg83) {
3071                rcu_read_unlock();
3072                return -ENXIO;
3073        }
3074
3075        /* The id string must be at least 20 bytes + terminating NULL byte */
3076        if (id_len < 21) {
3077                rcu_read_unlock();
3078                return -EINVAL;
3079        }
3080
3081        memset(id, 0, id_len);
3082        for (d = vpd_pg83->data + 4;
3083             d < vpd_pg83->data + vpd_pg83->len;
3084             d += d[3] + 4) {
3085                u8 prio = designator_prio(d);
3086
3087                if (prio == 0 || cur_id_prio > prio)
3088                        continue;
3089
3090                switch (d[1] & 0xf) {
3091                case 0x1:
3092                        /* T10 Vendor ID */
3093                        if (cur_id_size > d[3])
3094                                break;
3095                        cur_id_prio = prio;
3096                        cur_id_size = d[3];
3097                        if (cur_id_size + 4 > id_len)
3098                                cur_id_size = id_len - 4;
3099                        cur_id_str = d + 4;
3100                        id_size = snprintf(id, id_len, "t10.%*pE",
3101                                           cur_id_size, cur_id_str);
3102                        break;
3103                case 0x2:
3104                        /* EUI-64 */
3105                        cur_id_prio = prio;
3106                        cur_id_size = d[3];
3107                        cur_id_str = d + 4;
3108                        switch (cur_id_size) {
3109                        case 8:
3110                                id_size = snprintf(id, id_len,
3111                                                   "eui.%8phN",
3112                                                   cur_id_str);
3113                                break;
3114                        case 12:
3115                                id_size = snprintf(id, id_len,
3116                                                   "eui.%12phN",
3117                                                   cur_id_str);
3118                                break;
3119                        case 16:
3120                                id_size = snprintf(id, id_len,
3121                                                   "eui.%16phN",
3122                                                   cur_id_str);
3123                                break;
3124                        default:
3125                                break;
3126                        }
3127                        break;
3128                case 0x3:
3129                        /* NAA */
3130                        cur_id_prio = prio;
3131                        cur_id_size = d[3];
3132                        cur_id_str = d + 4;
3133                        switch (cur_id_size) {
3134                        case 8:
3135                                id_size = snprintf(id, id_len,
3136                                                   "naa.%8phN",
3137                                                   cur_id_str);
3138                                break;
3139                        case 16:
3140                                id_size = snprintf(id, id_len,
3141                                                   "naa.%16phN",
3142                                                   cur_id_str);
3143                                break;
3144                        default:
3145                                break;
3146                        }
3147                        break;
3148                case 0x8:
3149                        /* SCSI name string */
3150                        if (cur_id_size > d[3])
3151                                break;
3152                        /* Prefer others for truncated descriptor */
3153                        if (d[3] > id_len) {
3154                                prio = 2;
3155                                if (cur_id_prio > prio)
3156                                        break;
3157                        }
3158                        cur_id_prio = prio;
3159                        cur_id_size = id_size = d[3];
3160                        cur_id_str = d + 4;
3161                        if (cur_id_size >= id_len)
3162                                cur_id_size = id_len - 1;
3163                        memcpy(id, cur_id_str, cur_id_size);
3164                        break;
3165                default:
3166                        break;
3167                }
3168        }
3169        rcu_read_unlock();
3170
3171        return id_size;
3172}
3173EXPORT_SYMBOL(scsi_vpd_lun_id);
3174
3175/*
3176 * scsi_vpd_tpg_id - return a target port group identifier
3177 * @sdev: SCSI device
3178 *
3179 * Returns the Target Port Group identifier from the information
3180 * froom VPD page 0x83 of the device.
3181 *
3182 * Returns the identifier or error on failure.
3183 */
3184int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3185{
3186        const unsigned char *d;
3187        const struct scsi_vpd *vpd_pg83;
3188        int group_id = -EAGAIN, rel_port = -1;
3189
3190        rcu_read_lock();
3191        vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3192        if (!vpd_pg83) {
3193                rcu_read_unlock();
3194                return -ENXIO;
3195        }
3196
3197        d = vpd_pg83->data + 4;
3198        while (d < vpd_pg83->data + vpd_pg83->len) {
3199                switch (d[1] & 0xf) {
3200                case 0x4:
3201                        /* Relative target port */
3202                        rel_port = get_unaligned_be16(&d[6]);
3203                        break;
3204                case 0x5:
3205                        /* Target port group */
3206                        group_id = get_unaligned_be16(&d[6]);
3207                        break;
3208                default:
3209                        break;
3210                }
3211                d += d[3] + 4;
3212        }
3213        rcu_read_unlock();
3214
3215        if (group_id >= 0 && rel_id && rel_port != -1)
3216                *rel_id = rel_port;
3217
3218        return group_id;
3219}
3220EXPORT_SYMBOL(scsi_vpd_tpg_id);
3221