linux/drivers/scsi/sym53c8xx_2/sym_malloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 
   4 * of PCI-SCSI IO processors.
   5 *
   6 * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
   7 *
   8 * This driver is derived from the Linux sym53c8xx driver.
   9 * Copyright (C) 1998-2000  Gerard Roudier
  10 *
  11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 
  12 * a port of the FreeBSD ncr driver to Linux-1.2.13.
  13 *
  14 * The original ncr driver has been written for 386bsd and FreeBSD by
  15 *         Wolfgang Stanglmeier        <wolf@cologne.de>
  16 *         Stefan Esser                <se@mi.Uni-Koeln.de>
  17 * Copyright (C) 1994  Wolfgang Stanglmeier
  18 *
  19 * Other major contributions:
  20 *
  21 * NVRAM detection and reading.
  22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
  23 *
  24 *-----------------------------------------------------------------------------
  25 */
  26
  27#include "sym_glue.h"
  28
  29/*
  30 *  Simple power of two buddy-like generic allocator.
  31 *  Provides naturally aligned memory chunks.
  32 *
  33 *  This simple code is not intended to be fast, but to 
  34 *  provide power of 2 aligned memory allocations.
  35 *  Since the SCRIPTS processor only supplies 8 bit arithmetic, 
  36 *  this allocator allows simple and fast address calculations  
  37 *  from the SCRIPTS code. In addition, cache line alignment 
  38 *  is guaranteed for power of 2 cache line size.
  39 *
  40 *  This allocator has been developed for the Linux sym53c8xx  
  41 *  driver, since this O/S does not provide naturally aligned 
  42 *  allocations.
  43 *  It has the advantage of allowing the driver to use private 
  44 *  pages of memory that will be useful if we ever need to deal 
  45 *  with IO MMUs for PCI.
  46 */
  47static void *___sym_malloc(m_pool_p mp, int size)
  48{
  49        int i = 0;
  50        int s = (1 << SYM_MEM_SHIFT);
  51        int j;
  52        void *a;
  53        m_link_p h = mp->h;
  54
  55        if (size > SYM_MEM_CLUSTER_SIZE)
  56                return NULL;
  57
  58        while (size > s) {
  59                s <<= 1;
  60                ++i;
  61        }
  62
  63        j = i;
  64        while (!h[j].next) {
  65                if (s == SYM_MEM_CLUSTER_SIZE) {
  66                        h[j].next = (m_link_p) M_GET_MEM_CLUSTER();
  67                        if (h[j].next)
  68                                h[j].next->next = NULL;
  69                        break;
  70                }
  71                ++j;
  72                s <<= 1;
  73        }
  74        a = h[j].next;
  75        if (a) {
  76                h[j].next = h[j].next->next;
  77                while (j > i) {
  78                        j -= 1;
  79                        s >>= 1;
  80                        h[j].next = (m_link_p) (a+s);
  81                        h[j].next->next = NULL;
  82                }
  83        }
  84#ifdef DEBUG
  85        printf("___sym_malloc(%d) = %p\n", size, (void *) a);
  86#endif
  87        return a;
  88}
  89
  90/*
  91 *  Counter-part of the generic allocator.
  92 */
  93static void ___sym_mfree(m_pool_p mp, void *ptr, int size)
  94{
  95        int i = 0;
  96        int s = (1 << SYM_MEM_SHIFT);
  97        m_link_p q;
  98        unsigned long a, b;
  99        m_link_p h = mp->h;
 100
 101#ifdef DEBUG
 102        printf("___sym_mfree(%p, %d)\n", ptr, size);
 103#endif
 104
 105        if (size > SYM_MEM_CLUSTER_SIZE)
 106                return;
 107
 108        while (size > s) {
 109                s <<= 1;
 110                ++i;
 111        }
 112
 113        a = (unsigned long)ptr;
 114
 115        while (1) {
 116                if (s == SYM_MEM_CLUSTER_SIZE) {
 117#ifdef SYM_MEM_FREE_UNUSED
 118                        M_FREE_MEM_CLUSTER((void *)a);
 119#else
 120                        ((m_link_p) a)->next = h[i].next;
 121                        h[i].next = (m_link_p) a;
 122#endif
 123                        break;
 124                }
 125                b = a ^ s;
 126                q = &h[i];
 127                while (q->next && q->next != (m_link_p) b) {
 128                        q = q->next;
 129                }
 130                if (!q->next) {
 131                        ((m_link_p) a)->next = h[i].next;
 132                        h[i].next = (m_link_p) a;
 133                        break;
 134                }
 135                q->next = q->next->next;
 136                a = a & b;
 137                s <<= 1;
 138                ++i;
 139        }
 140}
 141
 142/*
 143 *  Verbose and zeroing allocator that wrapps to the generic allocator.
 144 */
 145static void *__sym_calloc2(m_pool_p mp, int size, char *name, int uflags)
 146{
 147        void *p;
 148
 149        p = ___sym_malloc(mp, size);
 150
 151        if (DEBUG_FLAGS & DEBUG_ALLOC) {
 152                printf ("new %-10s[%4d] @%p.\n", name, size, p);
 153        }
 154
 155        if (p)
 156                memset(p, 0, size);
 157        else if (uflags & SYM_MEM_WARN)
 158                printf ("__sym_calloc2: failed to allocate %s[%d]\n", name, size);
 159        return p;
 160}
 161#define __sym_calloc(mp, s, n)  __sym_calloc2(mp, s, n, SYM_MEM_WARN)
 162
 163/*
 164 *  Its counter-part.
 165 */
 166static void __sym_mfree(m_pool_p mp, void *ptr, int size, char *name)
 167{
 168        if (DEBUG_FLAGS & DEBUG_ALLOC)
 169                printf ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
 170
 171        ___sym_mfree(mp, ptr, size);
 172}
 173
 174/*
 175 *  Default memory pool we donnot need to involve in DMA.
 176 *
 177 *  With DMA abstraction, we use functions (methods), to 
 178 *  distinguish between non DMAable memory and DMAable memory.
 179 */
 180static void *___mp0_get_mem_cluster(m_pool_p mp)
 181{
 182        void *m = sym_get_mem_cluster();
 183        if (m)
 184                ++mp->nump;
 185        return m;
 186}
 187
 188#ifdef  SYM_MEM_FREE_UNUSED
 189static void ___mp0_free_mem_cluster(m_pool_p mp, void *m)
 190{
 191        sym_free_mem_cluster(m);
 192        --mp->nump;
 193}
 194#else
 195#define ___mp0_free_mem_cluster NULL
 196#endif
 197
 198static struct sym_m_pool mp0 = {
 199        NULL,
 200        ___mp0_get_mem_cluster,
 201        ___mp0_free_mem_cluster
 202};
 203
 204/*
 205 *  Methods that maintains DMAable pools according to user allocations.
 206 *  New pools are created on the fly when a new pool id is provided.
 207 *  They are deleted on the fly when they get emptied.
 208 */
 209/* Get a memory cluster that matches the DMA constraints of a given pool */
 210static void * ___get_dma_mem_cluster(m_pool_p mp)
 211{
 212        m_vtob_p vbp;
 213        void *vaddr;
 214
 215        vbp = __sym_calloc(&mp0, sizeof(*vbp), "VTOB");
 216        if (!vbp)
 217                goto out_err;
 218
 219        vaddr = sym_m_get_dma_mem_cluster(mp, vbp);
 220        if (vaddr) {
 221                int hc = VTOB_HASH_CODE(vaddr);
 222                vbp->next = mp->vtob[hc];
 223                mp->vtob[hc] = vbp;
 224                ++mp->nump;
 225        }
 226        return vaddr;
 227out_err:
 228        return NULL;
 229}
 230
 231#ifdef  SYM_MEM_FREE_UNUSED
 232/* Free a memory cluster and associated resources for DMA */
 233static void ___free_dma_mem_cluster(m_pool_p mp, void *m)
 234{
 235        m_vtob_p *vbpp, vbp;
 236        int hc = VTOB_HASH_CODE(m);
 237
 238        vbpp = &mp->vtob[hc];
 239        while (*vbpp && (*vbpp)->vaddr != m)
 240                vbpp = &(*vbpp)->next;
 241        if (*vbpp) {
 242                vbp = *vbpp;
 243                *vbpp = (*vbpp)->next;
 244                sym_m_free_dma_mem_cluster(mp, vbp);
 245                __sym_mfree(&mp0, vbp, sizeof(*vbp), "VTOB");
 246                --mp->nump;
 247        }
 248}
 249#endif
 250
 251/* Fetch the memory pool for a given pool id (i.e. DMA constraints) */
 252static inline m_pool_p ___get_dma_pool(m_pool_ident_t dev_dmat)
 253{
 254        m_pool_p mp;
 255        for (mp = mp0.next;
 256                mp && !sym_m_pool_match(mp->dev_dmat, dev_dmat);
 257                        mp = mp->next);
 258        return mp;
 259}
 260
 261/* Create a new memory DMAable pool (when fetch failed) */
 262static m_pool_p ___cre_dma_pool(m_pool_ident_t dev_dmat)
 263{
 264        m_pool_p mp = __sym_calloc(&mp0, sizeof(*mp), "MPOOL");
 265        if (mp) {
 266                mp->dev_dmat = dev_dmat;
 267                mp->get_mem_cluster = ___get_dma_mem_cluster;
 268#ifdef  SYM_MEM_FREE_UNUSED
 269                mp->free_mem_cluster = ___free_dma_mem_cluster;
 270#endif
 271                mp->next = mp0.next;
 272                mp0.next = mp;
 273                return mp;
 274        }
 275        return NULL;
 276}
 277
 278#ifdef  SYM_MEM_FREE_UNUSED
 279/* Destroy a DMAable memory pool (when got emptied) */
 280static void ___del_dma_pool(m_pool_p p)
 281{
 282        m_pool_p *pp = &mp0.next;
 283
 284        while (*pp && *pp != p)
 285                pp = &(*pp)->next;
 286        if (*pp) {
 287                *pp = (*pp)->next;
 288                __sym_mfree(&mp0, p, sizeof(*p), "MPOOL");
 289        }
 290}
 291#endif
 292
 293/* This lock protects only the memory allocation/free.  */
 294static DEFINE_SPINLOCK(sym53c8xx_lock);
 295
 296/*
 297 *  Actual allocator for DMAable memory.
 298 */
 299void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name)
 300{
 301        unsigned long flags;
 302        m_pool_p mp;
 303        void *m = NULL;
 304
 305        spin_lock_irqsave(&sym53c8xx_lock, flags);
 306        mp = ___get_dma_pool(dev_dmat);
 307        if (!mp)
 308                mp = ___cre_dma_pool(dev_dmat);
 309        if (!mp)
 310                goto out;
 311        m = __sym_calloc(mp, size, name);
 312#ifdef  SYM_MEM_FREE_UNUSED
 313        if (!mp->nump)
 314                ___del_dma_pool(mp);
 315#endif
 316
 317 out:
 318        spin_unlock_irqrestore(&sym53c8xx_lock, flags);
 319        return m;
 320}
 321
 322void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name)
 323{
 324        unsigned long flags;
 325        m_pool_p mp;
 326
 327        spin_lock_irqsave(&sym53c8xx_lock, flags);
 328        mp = ___get_dma_pool(dev_dmat);
 329        if (!mp)
 330                goto out;
 331        __sym_mfree(mp, m, size, name);
 332#ifdef  SYM_MEM_FREE_UNUSED
 333        if (!mp->nump)
 334                ___del_dma_pool(mp);
 335#endif
 336 out:
 337        spin_unlock_irqrestore(&sym53c8xx_lock, flags);
 338}
 339
 340/*
 341 *  Actual virtual to bus physical address translator 
 342 *  for 32 bit addressable DMAable memory.
 343 */
 344dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m)
 345{
 346        unsigned long flags;
 347        m_pool_p mp;
 348        int hc = VTOB_HASH_CODE(m);
 349        m_vtob_p vp = NULL;
 350        void *a = (void *)((unsigned long)m & ~SYM_MEM_CLUSTER_MASK);
 351        dma_addr_t b;
 352
 353        spin_lock_irqsave(&sym53c8xx_lock, flags);
 354        mp = ___get_dma_pool(dev_dmat);
 355        if (mp) {
 356                vp = mp->vtob[hc];
 357                while (vp && vp->vaddr != a)
 358                        vp = vp->next;
 359        }
 360        if (!vp)
 361                panic("sym: VTOBUS FAILED!\n");
 362        b = vp->baddr + (m - a);
 363        spin_unlock_irqrestore(&sym53c8xx_lock, flags);
 364        return b;
 365}
 366