linux/drivers/spi/spi-ep93xx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for Cirrus Logic EP93xx SPI controller.
   4 *
   5 * Copyright (C) 2010-2011 Mika Westerberg
   6 *
   7 * Explicit FIFO handling code was inspired by amba-pl022 driver.
   8 *
   9 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
  10 *
  11 * For more information about the SPI controller see documentation on Cirrus
  12 * Logic web site:
  13 *     https://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
  14 */
  15
  16#include <linux/io.h>
  17#include <linux/clk.h>
  18#include <linux/err.h>
  19#include <linux/delay.h>
  20#include <linux/device.h>
  21#include <linux/dmaengine.h>
  22#include <linux/bitops.h>
  23#include <linux/interrupt.h>
  24#include <linux/module.h>
  25#include <linux/platform_device.h>
  26#include <linux/sched.h>
  27#include <linux/scatterlist.h>
  28#include <linux/spi/spi.h>
  29
  30#include <linux/platform_data/dma-ep93xx.h>
  31#include <linux/platform_data/spi-ep93xx.h>
  32
  33#define SSPCR0                  0x0000
  34#define SSPCR0_SPO              BIT(6)
  35#define SSPCR0_SPH              BIT(7)
  36#define SSPCR0_SCR_SHIFT        8
  37
  38#define SSPCR1                  0x0004
  39#define SSPCR1_RIE              BIT(0)
  40#define SSPCR1_TIE              BIT(1)
  41#define SSPCR1_RORIE            BIT(2)
  42#define SSPCR1_LBM              BIT(3)
  43#define SSPCR1_SSE              BIT(4)
  44#define SSPCR1_MS               BIT(5)
  45#define SSPCR1_SOD              BIT(6)
  46
  47#define SSPDR                   0x0008
  48
  49#define SSPSR                   0x000c
  50#define SSPSR_TFE               BIT(0)
  51#define SSPSR_TNF               BIT(1)
  52#define SSPSR_RNE               BIT(2)
  53#define SSPSR_RFF               BIT(3)
  54#define SSPSR_BSY               BIT(4)
  55#define SSPCPSR                 0x0010
  56
  57#define SSPIIR                  0x0014
  58#define SSPIIR_RIS              BIT(0)
  59#define SSPIIR_TIS              BIT(1)
  60#define SSPIIR_RORIS            BIT(2)
  61#define SSPICR                  SSPIIR
  62
  63/* timeout in milliseconds */
  64#define SPI_TIMEOUT             5
  65/* maximum depth of RX/TX FIFO */
  66#define SPI_FIFO_SIZE           8
  67
  68/**
  69 * struct ep93xx_spi - EP93xx SPI controller structure
  70 * @clk: clock for the controller
  71 * @mmio: pointer to ioremap()'d registers
  72 * @sspdr_phys: physical address of the SSPDR register
  73 * @tx: current byte in transfer to transmit
  74 * @rx: current byte in transfer to receive
  75 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
  76 *              frame decreases this level and sending one frame increases it.
  77 * @dma_rx: RX DMA channel
  78 * @dma_tx: TX DMA channel
  79 * @dma_rx_data: RX parameters passed to the DMA engine
  80 * @dma_tx_data: TX parameters passed to the DMA engine
  81 * @rx_sgt: sg table for RX transfers
  82 * @tx_sgt: sg table for TX transfers
  83 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
  84 *            the client
  85 */
  86struct ep93xx_spi {
  87        struct clk                      *clk;
  88        void __iomem                    *mmio;
  89        unsigned long                   sspdr_phys;
  90        size_t                          tx;
  91        size_t                          rx;
  92        size_t                          fifo_level;
  93        struct dma_chan                 *dma_rx;
  94        struct dma_chan                 *dma_tx;
  95        struct ep93xx_dma_data          dma_rx_data;
  96        struct ep93xx_dma_data          dma_tx_data;
  97        struct sg_table                 rx_sgt;
  98        struct sg_table                 tx_sgt;
  99        void                            *zeropage;
 100};
 101
 102/* converts bits per word to CR0.DSS value */
 103#define bits_per_word_to_dss(bpw)       ((bpw) - 1)
 104
 105/**
 106 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
 107 * @master: SPI master
 108 * @rate: desired SPI output clock rate
 109 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
 110 * @div_scr: pointer to return the scr divider
 111 */
 112static int ep93xx_spi_calc_divisors(struct spi_master *master,
 113                                    u32 rate, u8 *div_cpsr, u8 *div_scr)
 114{
 115        struct ep93xx_spi *espi = spi_master_get_devdata(master);
 116        unsigned long spi_clk_rate = clk_get_rate(espi->clk);
 117        int cpsr, scr;
 118
 119        /*
 120         * Make sure that max value is between values supported by the
 121         * controller.
 122         */
 123        rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
 124
 125        /*
 126         * Calculate divisors so that we can get speed according the
 127         * following formula:
 128         *      rate = spi_clock_rate / (cpsr * (1 + scr))
 129         *
 130         * cpsr must be even number and starts from 2, scr can be any number
 131         * between 0 and 255.
 132         */
 133        for (cpsr = 2; cpsr <= 254; cpsr += 2) {
 134                for (scr = 0; scr <= 255; scr++) {
 135                        if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
 136                                *div_scr = (u8)scr;
 137                                *div_cpsr = (u8)cpsr;
 138                                return 0;
 139                        }
 140                }
 141        }
 142
 143        return -EINVAL;
 144}
 145
 146static int ep93xx_spi_chip_setup(struct spi_master *master,
 147                                 struct spi_device *spi,
 148                                 struct spi_transfer *xfer)
 149{
 150        struct ep93xx_spi *espi = spi_master_get_devdata(master);
 151        u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
 152        u8 div_cpsr = 0;
 153        u8 div_scr = 0;
 154        u16 cr0;
 155        int err;
 156
 157        err = ep93xx_spi_calc_divisors(master, xfer->speed_hz,
 158                                       &div_cpsr, &div_scr);
 159        if (err)
 160                return err;
 161
 162        cr0 = div_scr << SSPCR0_SCR_SHIFT;
 163        if (spi->mode & SPI_CPOL)
 164                cr0 |= SSPCR0_SPO;
 165        if (spi->mode & SPI_CPHA)
 166                cr0 |= SSPCR0_SPH;
 167        cr0 |= dss;
 168
 169        dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
 170                spi->mode, div_cpsr, div_scr, dss);
 171        dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0);
 172
 173        writel(div_cpsr, espi->mmio + SSPCPSR);
 174        writel(cr0, espi->mmio + SSPCR0);
 175
 176        return 0;
 177}
 178
 179static void ep93xx_do_write(struct spi_master *master)
 180{
 181        struct ep93xx_spi *espi = spi_master_get_devdata(master);
 182        struct spi_transfer *xfer = master->cur_msg->state;
 183        u32 val = 0;
 184
 185        if (xfer->bits_per_word > 8) {
 186                if (xfer->tx_buf)
 187                        val = ((u16 *)xfer->tx_buf)[espi->tx];
 188                espi->tx += 2;
 189        } else {
 190                if (xfer->tx_buf)
 191                        val = ((u8 *)xfer->tx_buf)[espi->tx];
 192                espi->tx += 1;
 193        }
 194        writel(val, espi->mmio + SSPDR);
 195}
 196
 197static void ep93xx_do_read(struct spi_master *master)
 198{
 199        struct ep93xx_spi *espi = spi_master_get_devdata(master);
 200        struct spi_transfer *xfer = master->cur_msg->state;
 201        u32 val;
 202
 203        val = readl(espi->mmio + SSPDR);
 204        if (xfer->bits_per_word > 8) {
 205                if (xfer->rx_buf)
 206                        ((u16 *)xfer->rx_buf)[espi->rx] = val;
 207                espi->rx += 2;
 208        } else {
 209                if (xfer->rx_buf)
 210                        ((u8 *)xfer->rx_buf)[espi->rx] = val;
 211                espi->rx += 1;
 212        }
 213}
 214
 215/**
 216 * ep93xx_spi_read_write() - perform next RX/TX transfer
 217 * @master: SPI master
 218 *
 219 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
 220 * called several times, the whole transfer will be completed. Returns
 221 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
 222 *
 223 * When this function is finished, RX FIFO should be empty and TX FIFO should be
 224 * full.
 225 */
 226static int ep93xx_spi_read_write(struct spi_master *master)
 227{
 228        struct ep93xx_spi *espi = spi_master_get_devdata(master);
 229        struct spi_transfer *xfer = master->cur_msg->state;
 230
 231        /* read as long as RX FIFO has frames in it */
 232        while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
 233                ep93xx_do_read(master);
 234                espi->fifo_level--;
 235        }
 236
 237        /* write as long as TX FIFO has room */
 238        while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
 239                ep93xx_do_write(master);
 240                espi->fifo_level++;
 241        }
 242
 243        if (espi->rx == xfer->len)
 244                return 0;
 245
 246        return -EINPROGRESS;
 247}
 248
 249static enum dma_transfer_direction
 250ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir)
 251{
 252        switch (dir) {
 253        case DMA_TO_DEVICE:
 254                return DMA_MEM_TO_DEV;
 255        case DMA_FROM_DEVICE:
 256                return DMA_DEV_TO_MEM;
 257        default:
 258                return DMA_TRANS_NONE;
 259        }
 260}
 261
 262/**
 263 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
 264 * @master: SPI master
 265 * @dir: DMA transfer direction
 266 *
 267 * Function configures the DMA, maps the buffer and prepares the DMA
 268 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
 269 * in case of failure.
 270 */
 271static struct dma_async_tx_descriptor *
 272ep93xx_spi_dma_prepare(struct spi_master *master,
 273                       enum dma_data_direction dir)
 274{
 275        struct ep93xx_spi *espi = spi_master_get_devdata(master);
 276        struct spi_transfer *xfer = master->cur_msg->state;
 277        struct dma_async_tx_descriptor *txd;
 278        enum dma_slave_buswidth buswidth;
 279        struct dma_slave_config conf;
 280        struct scatterlist *sg;
 281        struct sg_table *sgt;
 282        struct dma_chan *chan;
 283        const void *buf, *pbuf;
 284        size_t len = xfer->len;
 285        int i, ret, nents;
 286
 287        if (xfer->bits_per_word > 8)
 288                buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
 289        else
 290                buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
 291
 292        memset(&conf, 0, sizeof(conf));
 293        conf.direction = ep93xx_dma_data_to_trans_dir(dir);
 294
 295        if (dir == DMA_FROM_DEVICE) {
 296                chan = espi->dma_rx;
 297                buf = xfer->rx_buf;
 298                sgt = &espi->rx_sgt;
 299
 300                conf.src_addr = espi->sspdr_phys;
 301                conf.src_addr_width = buswidth;
 302        } else {
 303                chan = espi->dma_tx;
 304                buf = xfer->tx_buf;
 305                sgt = &espi->tx_sgt;
 306
 307                conf.dst_addr = espi->sspdr_phys;
 308                conf.dst_addr_width = buswidth;
 309        }
 310
 311        ret = dmaengine_slave_config(chan, &conf);
 312        if (ret)
 313                return ERR_PTR(ret);
 314
 315        /*
 316         * We need to split the transfer into PAGE_SIZE'd chunks. This is
 317         * because we are using @espi->zeropage to provide a zero RX buffer
 318         * for the TX transfers and we have only allocated one page for that.
 319         *
 320         * For performance reasons we allocate a new sg_table only when
 321         * needed. Otherwise we will re-use the current one. Eventually the
 322         * last sg_table is released in ep93xx_spi_release_dma().
 323         */
 324
 325        nents = DIV_ROUND_UP(len, PAGE_SIZE);
 326        if (nents != sgt->nents) {
 327                sg_free_table(sgt);
 328
 329                ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
 330                if (ret)
 331                        return ERR_PTR(ret);
 332        }
 333
 334        pbuf = buf;
 335        for_each_sg(sgt->sgl, sg, sgt->nents, i) {
 336                size_t bytes = min_t(size_t, len, PAGE_SIZE);
 337
 338                if (buf) {
 339                        sg_set_page(sg, virt_to_page(pbuf), bytes,
 340                                    offset_in_page(pbuf));
 341                } else {
 342                        sg_set_page(sg, virt_to_page(espi->zeropage),
 343                                    bytes, 0);
 344                }
 345
 346                pbuf += bytes;
 347                len -= bytes;
 348        }
 349
 350        if (WARN_ON(len)) {
 351                dev_warn(&master->dev, "len = %zu expected 0!\n", len);
 352                return ERR_PTR(-EINVAL);
 353        }
 354
 355        nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
 356        if (!nents)
 357                return ERR_PTR(-ENOMEM);
 358
 359        txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction,
 360                                      DMA_CTRL_ACK);
 361        if (!txd) {
 362                dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
 363                return ERR_PTR(-ENOMEM);
 364        }
 365        return txd;
 366}
 367
 368/**
 369 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
 370 * @master: SPI master
 371 * @dir: DMA transfer direction
 372 *
 373 * Function finishes with the DMA transfer. After this, the DMA buffer is
 374 * unmapped.
 375 */
 376static void ep93xx_spi_dma_finish(struct spi_master *master,
 377                                  enum dma_data_direction dir)
 378{
 379        struct ep93xx_spi *espi = spi_master_get_devdata(master);
 380        struct dma_chan *chan;
 381        struct sg_table *sgt;
 382
 383        if (dir == DMA_FROM_DEVICE) {
 384                chan = espi->dma_rx;
 385                sgt = &espi->rx_sgt;
 386        } else {
 387                chan = espi->dma_tx;
 388                sgt = &espi->tx_sgt;
 389        }
 390
 391        dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
 392}
 393
 394static void ep93xx_spi_dma_callback(void *callback_param)
 395{
 396        struct spi_master *master = callback_param;
 397
 398        ep93xx_spi_dma_finish(master, DMA_TO_DEVICE);
 399        ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
 400
 401        spi_finalize_current_transfer(master);
 402}
 403
 404static int ep93xx_spi_dma_transfer(struct spi_master *master)
 405{
 406        struct ep93xx_spi *espi = spi_master_get_devdata(master);
 407        struct dma_async_tx_descriptor *rxd, *txd;
 408
 409        rxd = ep93xx_spi_dma_prepare(master, DMA_FROM_DEVICE);
 410        if (IS_ERR(rxd)) {
 411                dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
 412                return PTR_ERR(rxd);
 413        }
 414
 415        txd = ep93xx_spi_dma_prepare(master, DMA_TO_DEVICE);
 416        if (IS_ERR(txd)) {
 417                ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
 418                dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
 419                return PTR_ERR(txd);
 420        }
 421
 422        /* We are ready when RX is done */
 423        rxd->callback = ep93xx_spi_dma_callback;
 424        rxd->callback_param = master;
 425
 426        /* Now submit both descriptors and start DMA */
 427        dmaengine_submit(rxd);
 428        dmaengine_submit(txd);
 429
 430        dma_async_issue_pending(espi->dma_rx);
 431        dma_async_issue_pending(espi->dma_tx);
 432
 433        /* signal that we need to wait for completion */
 434        return 1;
 435}
 436
 437static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
 438{
 439        struct spi_master *master = dev_id;
 440        struct ep93xx_spi *espi = spi_master_get_devdata(master);
 441        u32 val;
 442
 443        /*
 444         * If we got ROR (receive overrun) interrupt we know that something is
 445         * wrong. Just abort the message.
 446         */
 447        if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
 448                /* clear the overrun interrupt */
 449                writel(0, espi->mmio + SSPICR);
 450                dev_warn(&master->dev,
 451                         "receive overrun, aborting the message\n");
 452                master->cur_msg->status = -EIO;
 453        } else {
 454                /*
 455                 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
 456                 * simply execute next data transfer.
 457                 */
 458                if (ep93xx_spi_read_write(master)) {
 459                        /*
 460                         * In normal case, there still is some processing left
 461                         * for current transfer. Let's wait for the next
 462                         * interrupt then.
 463                         */
 464                        return IRQ_HANDLED;
 465                }
 466        }
 467
 468        /*
 469         * Current transfer is finished, either with error or with success. In
 470         * any case we disable interrupts and notify the worker to handle
 471         * any post-processing of the message.
 472         */
 473        val = readl(espi->mmio + SSPCR1);
 474        val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
 475        writel(val, espi->mmio + SSPCR1);
 476
 477        spi_finalize_current_transfer(master);
 478
 479        return IRQ_HANDLED;
 480}
 481
 482static int ep93xx_spi_transfer_one(struct spi_master *master,
 483                                   struct spi_device *spi,
 484                                   struct spi_transfer *xfer)
 485{
 486        struct ep93xx_spi *espi = spi_master_get_devdata(master);
 487        u32 val;
 488        int ret;
 489
 490        ret = ep93xx_spi_chip_setup(master, spi, xfer);
 491        if (ret) {
 492                dev_err(&master->dev, "failed to setup chip for transfer\n");
 493                return ret;
 494        }
 495
 496        master->cur_msg->state = xfer;
 497        espi->rx = 0;
 498        espi->tx = 0;
 499
 500        /*
 501         * There is no point of setting up DMA for the transfers which will
 502         * fit into the FIFO and can be transferred with a single interrupt.
 503         * So in these cases we will be using PIO and don't bother for DMA.
 504         */
 505        if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
 506                return ep93xx_spi_dma_transfer(master);
 507
 508        /* Using PIO so prime the TX FIFO and enable interrupts */
 509        ep93xx_spi_read_write(master);
 510
 511        val = readl(espi->mmio + SSPCR1);
 512        val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
 513        writel(val, espi->mmio + SSPCR1);
 514
 515        /* signal that we need to wait for completion */
 516        return 1;
 517}
 518
 519static int ep93xx_spi_prepare_message(struct spi_master *master,
 520                                      struct spi_message *msg)
 521{
 522        struct ep93xx_spi *espi = spi_master_get_devdata(master);
 523        unsigned long timeout;
 524
 525        /*
 526         * Just to be sure: flush any data from RX FIFO.
 527         */
 528        timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
 529        while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
 530                if (time_after(jiffies, timeout)) {
 531                        dev_warn(&master->dev,
 532                                 "timeout while flushing RX FIFO\n");
 533                        return -ETIMEDOUT;
 534                }
 535                readl(espi->mmio + SSPDR);
 536        }
 537
 538        /*
 539         * We explicitly handle FIFO level. This way we don't have to check TX
 540         * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
 541         */
 542        espi->fifo_level = 0;
 543
 544        return 0;
 545}
 546
 547static int ep93xx_spi_prepare_hardware(struct spi_master *master)
 548{
 549        struct ep93xx_spi *espi = spi_master_get_devdata(master);
 550        u32 val;
 551        int ret;
 552
 553        ret = clk_enable(espi->clk);
 554        if (ret)
 555                return ret;
 556
 557        val = readl(espi->mmio + SSPCR1);
 558        val |= SSPCR1_SSE;
 559        writel(val, espi->mmio + SSPCR1);
 560
 561        return 0;
 562}
 563
 564static int ep93xx_spi_unprepare_hardware(struct spi_master *master)
 565{
 566        struct ep93xx_spi *espi = spi_master_get_devdata(master);
 567        u32 val;
 568
 569        val = readl(espi->mmio + SSPCR1);
 570        val &= ~SSPCR1_SSE;
 571        writel(val, espi->mmio + SSPCR1);
 572
 573        clk_disable(espi->clk);
 574
 575        return 0;
 576}
 577
 578static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
 579{
 580        if (ep93xx_dma_chan_is_m2p(chan))
 581                return false;
 582
 583        chan->private = filter_param;
 584        return true;
 585}
 586
 587static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
 588{
 589        dma_cap_mask_t mask;
 590        int ret;
 591
 592        espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
 593        if (!espi->zeropage)
 594                return -ENOMEM;
 595
 596        dma_cap_zero(mask);
 597        dma_cap_set(DMA_SLAVE, mask);
 598
 599        espi->dma_rx_data.port = EP93XX_DMA_SSP;
 600        espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
 601        espi->dma_rx_data.name = "ep93xx-spi-rx";
 602
 603        espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
 604                                           &espi->dma_rx_data);
 605        if (!espi->dma_rx) {
 606                ret = -ENODEV;
 607                goto fail_free_page;
 608        }
 609
 610        espi->dma_tx_data.port = EP93XX_DMA_SSP;
 611        espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
 612        espi->dma_tx_data.name = "ep93xx-spi-tx";
 613
 614        espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
 615                                           &espi->dma_tx_data);
 616        if (!espi->dma_tx) {
 617                ret = -ENODEV;
 618                goto fail_release_rx;
 619        }
 620
 621        return 0;
 622
 623fail_release_rx:
 624        dma_release_channel(espi->dma_rx);
 625        espi->dma_rx = NULL;
 626fail_free_page:
 627        free_page((unsigned long)espi->zeropage);
 628
 629        return ret;
 630}
 631
 632static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
 633{
 634        if (espi->dma_rx) {
 635                dma_release_channel(espi->dma_rx);
 636                sg_free_table(&espi->rx_sgt);
 637        }
 638        if (espi->dma_tx) {
 639                dma_release_channel(espi->dma_tx);
 640                sg_free_table(&espi->tx_sgt);
 641        }
 642
 643        if (espi->zeropage)
 644                free_page((unsigned long)espi->zeropage);
 645}
 646
 647static int ep93xx_spi_probe(struct platform_device *pdev)
 648{
 649        struct spi_master *master;
 650        struct ep93xx_spi_info *info;
 651        struct ep93xx_spi *espi;
 652        struct resource *res;
 653        int irq;
 654        int error;
 655
 656        info = dev_get_platdata(&pdev->dev);
 657        if (!info) {
 658                dev_err(&pdev->dev, "missing platform data\n");
 659                return -EINVAL;
 660        }
 661
 662        irq = platform_get_irq(pdev, 0);
 663        if (irq < 0)
 664                return -EBUSY;
 665
 666        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 667        if (!res) {
 668                dev_err(&pdev->dev, "unable to get iomem resource\n");
 669                return -ENODEV;
 670        }
 671
 672        master = spi_alloc_master(&pdev->dev, sizeof(*espi));
 673        if (!master)
 674                return -ENOMEM;
 675
 676        master->use_gpio_descriptors = true;
 677        master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
 678        master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
 679        master->prepare_message = ep93xx_spi_prepare_message;
 680        master->transfer_one = ep93xx_spi_transfer_one;
 681        master->bus_num = pdev->id;
 682        master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
 683        master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
 684        /*
 685         * The SPI core will count the number of GPIO descriptors to figure
 686         * out the number of chip selects available on the platform.
 687         */
 688        master->num_chipselect = 0;
 689
 690        platform_set_drvdata(pdev, master);
 691
 692        espi = spi_master_get_devdata(master);
 693
 694        espi->clk = devm_clk_get(&pdev->dev, NULL);
 695        if (IS_ERR(espi->clk)) {
 696                dev_err(&pdev->dev, "unable to get spi clock\n");
 697                error = PTR_ERR(espi->clk);
 698                goto fail_release_master;
 699        }
 700
 701        /*
 702         * Calculate maximum and minimum supported clock rates
 703         * for the controller.
 704         */
 705        master->max_speed_hz = clk_get_rate(espi->clk) / 2;
 706        master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
 707
 708        espi->sspdr_phys = res->start + SSPDR;
 709
 710        espi->mmio = devm_ioremap_resource(&pdev->dev, res);
 711        if (IS_ERR(espi->mmio)) {
 712                error = PTR_ERR(espi->mmio);
 713                goto fail_release_master;
 714        }
 715
 716        error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
 717                                0, "ep93xx-spi", master);
 718        if (error) {
 719                dev_err(&pdev->dev, "failed to request irq\n");
 720                goto fail_release_master;
 721        }
 722
 723        if (info->use_dma && ep93xx_spi_setup_dma(espi))
 724                dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
 725
 726        /* make sure that the hardware is disabled */
 727        writel(0, espi->mmio + SSPCR1);
 728
 729        error = devm_spi_register_master(&pdev->dev, master);
 730        if (error) {
 731                dev_err(&pdev->dev, "failed to register SPI master\n");
 732                goto fail_free_dma;
 733        }
 734
 735        dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
 736                 (unsigned long)res->start, irq);
 737
 738        return 0;
 739
 740fail_free_dma:
 741        ep93xx_spi_release_dma(espi);
 742fail_release_master:
 743        spi_master_put(master);
 744
 745        return error;
 746}
 747
 748static int ep93xx_spi_remove(struct platform_device *pdev)
 749{
 750        struct spi_master *master = platform_get_drvdata(pdev);
 751        struct ep93xx_spi *espi = spi_master_get_devdata(master);
 752
 753        ep93xx_spi_release_dma(espi);
 754
 755        return 0;
 756}
 757
 758static struct platform_driver ep93xx_spi_driver = {
 759        .driver         = {
 760                .name   = "ep93xx-spi",
 761        },
 762        .probe          = ep93xx_spi_probe,
 763        .remove         = ep93xx_spi_remove,
 764};
 765module_platform_driver(ep93xx_spi_driver);
 766
 767MODULE_DESCRIPTION("EP93xx SPI Controller driver");
 768MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
 769MODULE_LICENSE("GPL");
 770MODULE_ALIAS("platform:ep93xx-spi");
 771