linux/drivers/vfio/pci/vfio_pci_config.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * VFIO PCI config space virtualization
   4 *
   5 * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
   6 *     Author: Alex Williamson <alex.williamson@redhat.com>
   7 *
   8 * Derived from original vfio:
   9 * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
  10 * Author: Tom Lyon, pugs@cisco.com
  11 */
  12
  13/*
  14 * This code handles reading and writing of PCI configuration registers.
  15 * This is hairy because we want to allow a lot of flexibility to the
  16 * user driver, but cannot trust it with all of the config fields.
  17 * Tables determine which fields can be read and written, as well as
  18 * which fields are 'virtualized' - special actions and translations to
  19 * make it appear to the user that he has control, when in fact things
  20 * must be negotiated with the underlying OS.
  21 */
  22
  23#include <linux/fs.h>
  24#include <linux/pci.h>
  25#include <linux/uaccess.h>
  26#include <linux/vfio.h>
  27#include <linux/slab.h>
  28
  29#include "vfio_pci_private.h"
  30
  31/* Fake capability ID for standard config space */
  32#define PCI_CAP_ID_BASIC        0
  33
  34#define is_bar(offset)  \
  35        ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
  36         (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
  37
  38/*
  39 * Lengths of PCI Config Capabilities
  40 *   0: Removed from the user visible capability list
  41 *   FF: Variable length
  42 */
  43static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
  44        [PCI_CAP_ID_BASIC]      = PCI_STD_HEADER_SIZEOF, /* pci config header */
  45        [PCI_CAP_ID_PM]         = PCI_PM_SIZEOF,
  46        [PCI_CAP_ID_AGP]        = PCI_AGP_SIZEOF,
  47        [PCI_CAP_ID_VPD]        = PCI_CAP_VPD_SIZEOF,
  48        [PCI_CAP_ID_SLOTID]     = 0,            /* bridge - don't care */
  49        [PCI_CAP_ID_MSI]        = 0xFF,         /* 10, 14, 20, or 24 */
  50        [PCI_CAP_ID_CHSWP]      = 0,            /* cpci - not yet */
  51        [PCI_CAP_ID_PCIX]       = 0xFF,         /* 8 or 24 */
  52        [PCI_CAP_ID_HT]         = 0xFF,         /* hypertransport */
  53        [PCI_CAP_ID_VNDR]       = 0xFF,         /* variable */
  54        [PCI_CAP_ID_DBG]        = 0,            /* debug - don't care */
  55        [PCI_CAP_ID_CCRC]       = 0,            /* cpci - not yet */
  56        [PCI_CAP_ID_SHPC]       = 0,            /* hotswap - not yet */
  57        [PCI_CAP_ID_SSVID]      = 0,            /* bridge - don't care */
  58        [PCI_CAP_ID_AGP3]       = 0,            /* AGP8x - not yet */
  59        [PCI_CAP_ID_SECDEV]     = 0,            /* secure device not yet */
  60        [PCI_CAP_ID_EXP]        = 0xFF,         /* 20 or 44 */
  61        [PCI_CAP_ID_MSIX]       = PCI_CAP_MSIX_SIZEOF,
  62        [PCI_CAP_ID_SATA]       = 0xFF,
  63        [PCI_CAP_ID_AF]         = PCI_CAP_AF_SIZEOF,
  64};
  65
  66/*
  67 * Lengths of PCIe/PCI-X Extended Config Capabilities
  68 *   0: Removed or masked from the user visible capability list
  69 *   FF: Variable length
  70 */
  71static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
  72        [PCI_EXT_CAP_ID_ERR]    =       PCI_ERR_ROOT_COMMAND,
  73        [PCI_EXT_CAP_ID_VC]     =       0xFF,
  74        [PCI_EXT_CAP_ID_DSN]    =       PCI_EXT_CAP_DSN_SIZEOF,
  75        [PCI_EXT_CAP_ID_PWR]    =       PCI_EXT_CAP_PWR_SIZEOF,
  76        [PCI_EXT_CAP_ID_RCLD]   =       0,      /* root only - don't care */
  77        [PCI_EXT_CAP_ID_RCILC]  =       0,      /* root only - don't care */
  78        [PCI_EXT_CAP_ID_RCEC]   =       0,      /* root only - don't care */
  79        [PCI_EXT_CAP_ID_MFVC]   =       0xFF,
  80        [PCI_EXT_CAP_ID_VC9]    =       0xFF,   /* same as CAP_ID_VC */
  81        [PCI_EXT_CAP_ID_RCRB]   =       0,      /* root only - don't care */
  82        [PCI_EXT_CAP_ID_VNDR]   =       0xFF,
  83        [PCI_EXT_CAP_ID_CAC]    =       0,      /* obsolete */
  84        [PCI_EXT_CAP_ID_ACS]    =       0xFF,
  85        [PCI_EXT_CAP_ID_ARI]    =       PCI_EXT_CAP_ARI_SIZEOF,
  86        [PCI_EXT_CAP_ID_ATS]    =       PCI_EXT_CAP_ATS_SIZEOF,
  87        [PCI_EXT_CAP_ID_SRIOV]  =       PCI_EXT_CAP_SRIOV_SIZEOF,
  88        [PCI_EXT_CAP_ID_MRIOV]  =       0,      /* not yet */
  89        [PCI_EXT_CAP_ID_MCAST]  =       PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
  90        [PCI_EXT_CAP_ID_PRI]    =       PCI_EXT_CAP_PRI_SIZEOF,
  91        [PCI_EXT_CAP_ID_AMD_XXX] =      0,      /* not yet */
  92        [PCI_EXT_CAP_ID_REBAR]  =       0xFF,
  93        [PCI_EXT_CAP_ID_DPA]    =       0xFF,
  94        [PCI_EXT_CAP_ID_TPH]    =       0xFF,
  95        [PCI_EXT_CAP_ID_LTR]    =       PCI_EXT_CAP_LTR_SIZEOF,
  96        [PCI_EXT_CAP_ID_SECPCI] =       0,      /* not yet */
  97        [PCI_EXT_CAP_ID_PMUX]   =       0,      /* not yet */
  98        [PCI_EXT_CAP_ID_PASID]  =       0,      /* not yet */
  99};
 100
 101/*
 102 * Read/Write Permission Bits - one bit for each bit in capability
 103 * Any field can be read if it exists, but what is read depends on
 104 * whether the field is 'virtualized', or just pass through to the
 105 * hardware.  Any virtualized field is also virtualized for writes.
 106 * Writes are only permitted if they have a 1 bit here.
 107 */
 108struct perm_bits {
 109        u8      *virt;          /* read/write virtual data, not hw */
 110        u8      *write;         /* writeable bits */
 111        int     (*readfn)(struct vfio_pci_device *vdev, int pos, int count,
 112                          struct perm_bits *perm, int offset, __le32 *val);
 113        int     (*writefn)(struct vfio_pci_device *vdev, int pos, int count,
 114                           struct perm_bits *perm, int offset, __le32 val);
 115};
 116
 117#define NO_VIRT         0
 118#define ALL_VIRT        0xFFFFFFFFU
 119#define NO_WRITE        0
 120#define ALL_WRITE       0xFFFFFFFFU
 121
 122static int vfio_user_config_read(struct pci_dev *pdev, int offset,
 123                                 __le32 *val, int count)
 124{
 125        int ret = -EINVAL;
 126        u32 tmp_val = 0;
 127
 128        switch (count) {
 129        case 1:
 130        {
 131                u8 tmp;
 132                ret = pci_user_read_config_byte(pdev, offset, &tmp);
 133                tmp_val = tmp;
 134                break;
 135        }
 136        case 2:
 137        {
 138                u16 tmp;
 139                ret = pci_user_read_config_word(pdev, offset, &tmp);
 140                tmp_val = tmp;
 141                break;
 142        }
 143        case 4:
 144                ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
 145                break;
 146        }
 147
 148        *val = cpu_to_le32(tmp_val);
 149
 150        return ret;
 151}
 152
 153static int vfio_user_config_write(struct pci_dev *pdev, int offset,
 154                                  __le32 val, int count)
 155{
 156        int ret = -EINVAL;
 157        u32 tmp_val = le32_to_cpu(val);
 158
 159        switch (count) {
 160        case 1:
 161                ret = pci_user_write_config_byte(pdev, offset, tmp_val);
 162                break;
 163        case 2:
 164                ret = pci_user_write_config_word(pdev, offset, tmp_val);
 165                break;
 166        case 4:
 167                ret = pci_user_write_config_dword(pdev, offset, tmp_val);
 168                break;
 169        }
 170
 171        return ret;
 172}
 173
 174static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
 175                                    int count, struct perm_bits *perm,
 176                                    int offset, __le32 *val)
 177{
 178        __le32 virt = 0;
 179
 180        memcpy(val, vdev->vconfig + pos, count);
 181
 182        memcpy(&virt, perm->virt + offset, count);
 183
 184        /* Any non-virtualized bits? */
 185        if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
 186                struct pci_dev *pdev = vdev->pdev;
 187                __le32 phys_val = 0;
 188                int ret;
 189
 190                ret = vfio_user_config_read(pdev, pos, &phys_val, count);
 191                if (ret)
 192                        return ret;
 193
 194                *val = (phys_val & ~virt) | (*val & virt);
 195        }
 196
 197        return count;
 198}
 199
 200static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
 201                                     int count, struct perm_bits *perm,
 202                                     int offset, __le32 val)
 203{
 204        __le32 virt = 0, write = 0;
 205
 206        memcpy(&write, perm->write + offset, count);
 207
 208        if (!write)
 209                return count; /* drop, no writable bits */
 210
 211        memcpy(&virt, perm->virt + offset, count);
 212
 213        /* Virtualized and writable bits go to vconfig */
 214        if (write & virt) {
 215                __le32 virt_val = 0;
 216
 217                memcpy(&virt_val, vdev->vconfig + pos, count);
 218
 219                virt_val &= ~(write & virt);
 220                virt_val |= (val & (write & virt));
 221
 222                memcpy(vdev->vconfig + pos, &virt_val, count);
 223        }
 224
 225        /* Non-virtualzed and writable bits go to hardware */
 226        if (write & ~virt) {
 227                struct pci_dev *pdev = vdev->pdev;
 228                __le32 phys_val = 0;
 229                int ret;
 230
 231                ret = vfio_user_config_read(pdev, pos, &phys_val, count);
 232                if (ret)
 233                        return ret;
 234
 235                phys_val &= ~(write & ~virt);
 236                phys_val |= (val & (write & ~virt));
 237
 238                ret = vfio_user_config_write(pdev, pos, phys_val, count);
 239                if (ret)
 240                        return ret;
 241        }
 242
 243        return count;
 244}
 245
 246/* Allow direct read from hardware, except for capability next pointer */
 247static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
 248                                   int count, struct perm_bits *perm,
 249                                   int offset, __le32 *val)
 250{
 251        int ret;
 252
 253        ret = vfio_user_config_read(vdev->pdev, pos, val, count);
 254        if (ret)
 255                return ret;
 256
 257        if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
 258                if (offset < 4)
 259                        memcpy(val, vdev->vconfig + pos, count);
 260        } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
 261                if (offset == PCI_CAP_LIST_ID && count > 1)
 262                        memcpy(val, vdev->vconfig + pos,
 263                               min(PCI_CAP_FLAGS, count));
 264                else if (offset == PCI_CAP_LIST_NEXT)
 265                        memcpy(val, vdev->vconfig + pos, 1);
 266        }
 267
 268        return count;
 269}
 270
 271/* Raw access skips any kind of virtualization */
 272static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos,
 273                                 int count, struct perm_bits *perm,
 274                                 int offset, __le32 val)
 275{
 276        int ret;
 277
 278        ret = vfio_user_config_write(vdev->pdev, pos, val, count);
 279        if (ret)
 280                return ret;
 281
 282        return count;
 283}
 284
 285static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos,
 286                                int count, struct perm_bits *perm,
 287                                int offset, __le32 *val)
 288{
 289        int ret;
 290
 291        ret = vfio_user_config_read(vdev->pdev, pos, val, count);
 292        if (ret)
 293                return ret;
 294
 295        return count;
 296}
 297
 298/* Virt access uses only virtualization */
 299static int vfio_virt_config_write(struct vfio_pci_device *vdev, int pos,
 300                                  int count, struct perm_bits *perm,
 301                                  int offset, __le32 val)
 302{
 303        memcpy(vdev->vconfig + pos, &val, count);
 304        return count;
 305}
 306
 307static int vfio_virt_config_read(struct vfio_pci_device *vdev, int pos,
 308                                 int count, struct perm_bits *perm,
 309                                 int offset, __le32 *val)
 310{
 311        memcpy(val, vdev->vconfig + pos, count);
 312        return count;
 313}
 314
 315/* Default capability regions to read-only, no-virtualization */
 316static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
 317        [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
 318};
 319static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
 320        [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
 321};
 322/*
 323 * Default unassigned regions to raw read-write access.  Some devices
 324 * require this to function as they hide registers between the gaps in
 325 * config space (be2net).  Like MMIO and I/O port registers, we have
 326 * to trust the hardware isolation.
 327 */
 328static struct perm_bits unassigned_perms = {
 329        .readfn = vfio_raw_config_read,
 330        .writefn = vfio_raw_config_write
 331};
 332
 333static struct perm_bits virt_perms = {
 334        .readfn = vfio_virt_config_read,
 335        .writefn = vfio_virt_config_write
 336};
 337
 338static void free_perm_bits(struct perm_bits *perm)
 339{
 340        kfree(perm->virt);
 341        kfree(perm->write);
 342        perm->virt = NULL;
 343        perm->write = NULL;
 344}
 345
 346static int alloc_perm_bits(struct perm_bits *perm, int size)
 347{
 348        /*
 349         * Round up all permission bits to the next dword, this lets us
 350         * ignore whether a read/write exceeds the defined capability
 351         * structure.  We can do this because:
 352         *  - Standard config space is already dword aligned
 353         *  - Capabilities are all dword aligned (bits 0:1 of next reserved)
 354         *  - Express capabilities defined as dword aligned
 355         */
 356        size = round_up(size, 4);
 357
 358        /*
 359         * Zero state is
 360         * - All Readable, None Writeable, None Virtualized
 361         */
 362        perm->virt = kzalloc(size, GFP_KERNEL);
 363        perm->write = kzalloc(size, GFP_KERNEL);
 364        if (!perm->virt || !perm->write) {
 365                free_perm_bits(perm);
 366                return -ENOMEM;
 367        }
 368
 369        perm->readfn = vfio_default_config_read;
 370        perm->writefn = vfio_default_config_write;
 371
 372        return 0;
 373}
 374
 375/*
 376 * Helper functions for filling in permission tables
 377 */
 378static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
 379{
 380        p->virt[off] = virt;
 381        p->write[off] = write;
 382}
 383
 384/* Handle endian-ness - pci and tables are little-endian */
 385static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
 386{
 387        *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
 388        *(__le16 *)(&p->write[off]) = cpu_to_le16(write);
 389}
 390
 391/* Handle endian-ness - pci and tables are little-endian */
 392static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
 393{
 394        *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
 395        *(__le32 *)(&p->write[off]) = cpu_to_le32(write);
 396}
 397
 398/* Caller should hold memory_lock semaphore */
 399bool __vfio_pci_memory_enabled(struct vfio_pci_device *vdev)
 400{
 401        struct pci_dev *pdev = vdev->pdev;
 402        u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
 403
 404        /*
 405         * SR-IOV VF memory enable is handled by the MSE bit in the
 406         * PF SR-IOV capability, there's therefore no need to trigger
 407         * faults based on the virtual value.
 408         */
 409        return pdev->no_command_memory || (cmd & PCI_COMMAND_MEMORY);
 410}
 411
 412/*
 413 * Restore the *real* BARs after we detect a FLR or backdoor reset.
 414 * (backdoor = some device specific technique that we didn't catch)
 415 */
 416static void vfio_bar_restore(struct vfio_pci_device *vdev)
 417{
 418        struct pci_dev *pdev = vdev->pdev;
 419        u32 *rbar = vdev->rbar;
 420        u16 cmd;
 421        int i;
 422
 423        if (pdev->is_virtfn)
 424                return;
 425
 426        pci_info(pdev, "%s: reset recovery - restoring BARs\n", __func__);
 427
 428        for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
 429                pci_user_write_config_dword(pdev, i, *rbar);
 430
 431        pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
 432
 433        if (vdev->nointx) {
 434                pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
 435                cmd |= PCI_COMMAND_INTX_DISABLE;
 436                pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
 437        }
 438}
 439
 440static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
 441{
 442        unsigned long flags = pci_resource_flags(pdev, bar);
 443        u32 val;
 444
 445        if (flags & IORESOURCE_IO)
 446                return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
 447
 448        val = PCI_BASE_ADDRESS_SPACE_MEMORY;
 449
 450        if (flags & IORESOURCE_PREFETCH)
 451                val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
 452
 453        if (flags & IORESOURCE_MEM_64)
 454                val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
 455
 456        return cpu_to_le32(val);
 457}
 458
 459/*
 460 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
 461 * to reflect the hardware capabilities.  This implements BAR sizing.
 462 */
 463static void vfio_bar_fixup(struct vfio_pci_device *vdev)
 464{
 465        struct pci_dev *pdev = vdev->pdev;
 466        int i;
 467        __le32 *vbar;
 468        u64 mask;
 469
 470        if (!vdev->bardirty)
 471                return;
 472
 473        vbar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
 474
 475        for (i = 0; i < PCI_STD_NUM_BARS; i++, vbar++) {
 476                int bar = i + PCI_STD_RESOURCES;
 477
 478                if (!pci_resource_start(pdev, bar)) {
 479                        *vbar = 0; /* Unmapped by host = unimplemented to user */
 480                        continue;
 481                }
 482
 483                mask = ~(pci_resource_len(pdev, bar) - 1);
 484
 485                *vbar &= cpu_to_le32((u32)mask);
 486                *vbar |= vfio_generate_bar_flags(pdev, bar);
 487
 488                if (*vbar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
 489                        vbar++;
 490                        *vbar &= cpu_to_le32((u32)(mask >> 32));
 491                        i++;
 492                }
 493        }
 494
 495        vbar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
 496
 497        /*
 498         * NB. REGION_INFO will have reported zero size if we weren't able
 499         * to read the ROM, but we still return the actual BAR size here if
 500         * it exists (or the shadow ROM space).
 501         */
 502        if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
 503                mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
 504                mask |= PCI_ROM_ADDRESS_ENABLE;
 505                *vbar &= cpu_to_le32((u32)mask);
 506        } else if (pdev->resource[PCI_ROM_RESOURCE].flags &
 507                                        IORESOURCE_ROM_SHADOW) {
 508                mask = ~(0x20000 - 1);
 509                mask |= PCI_ROM_ADDRESS_ENABLE;
 510                *vbar &= cpu_to_le32((u32)mask);
 511        } else
 512                *vbar = 0;
 513
 514        vdev->bardirty = false;
 515}
 516
 517static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
 518                                  int count, struct perm_bits *perm,
 519                                  int offset, __le32 *val)
 520{
 521        if (is_bar(offset)) /* pos == offset for basic config */
 522                vfio_bar_fixup(vdev);
 523
 524        count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
 525
 526        /* Mask in virtual memory enable */
 527        if (offset == PCI_COMMAND && vdev->pdev->no_command_memory) {
 528                u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
 529                u32 tmp_val = le32_to_cpu(*val);
 530
 531                tmp_val |= cmd & PCI_COMMAND_MEMORY;
 532                *val = cpu_to_le32(tmp_val);
 533        }
 534
 535        return count;
 536}
 537
 538/* Test whether BARs match the value we think they should contain */
 539static bool vfio_need_bar_restore(struct vfio_pci_device *vdev)
 540{
 541        int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
 542        u32 bar;
 543
 544        for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
 545                if (vdev->rbar[i]) {
 546                        ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
 547                        if (ret || vdev->rbar[i] != bar)
 548                                return true;
 549                }
 550        }
 551
 552        return false;
 553}
 554
 555static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
 556                                   int count, struct perm_bits *perm,
 557                                   int offset, __le32 val)
 558{
 559        struct pci_dev *pdev = vdev->pdev;
 560        __le16 *virt_cmd;
 561        u16 new_cmd = 0;
 562        int ret;
 563
 564        virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
 565
 566        if (offset == PCI_COMMAND) {
 567                bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
 568                u16 phys_cmd;
 569
 570                ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
 571                if (ret)
 572                        return ret;
 573
 574                new_cmd = le32_to_cpu(val);
 575
 576                phys_io = !!(phys_cmd & PCI_COMMAND_IO);
 577                virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
 578                new_io = !!(new_cmd & PCI_COMMAND_IO);
 579
 580                phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
 581                virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
 582                new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
 583
 584                if (!new_mem)
 585                        vfio_pci_zap_and_down_write_memory_lock(vdev);
 586                else
 587                        down_write(&vdev->memory_lock);
 588
 589                /*
 590                 * If the user is writing mem/io enable (new_mem/io) and we
 591                 * think it's already enabled (virt_mem/io), but the hardware
 592                 * shows it disabled (phys_mem/io, then the device has
 593                 * undergone some kind of backdoor reset and needs to be
 594                 * restored before we allow it to enable the bars.
 595                 * SR-IOV devices will trigger this - for mem enable let's
 596                 * catch this now and for io enable it will be caught later
 597                 */
 598                if ((new_mem && virt_mem && !phys_mem &&
 599                     !pdev->no_command_memory) ||
 600                    (new_io && virt_io && !phys_io) ||
 601                    vfio_need_bar_restore(vdev))
 602                        vfio_bar_restore(vdev);
 603        }
 604
 605        count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
 606        if (count < 0) {
 607                if (offset == PCI_COMMAND)
 608                        up_write(&vdev->memory_lock);
 609                return count;
 610        }
 611
 612        /*
 613         * Save current memory/io enable bits in vconfig to allow for
 614         * the test above next time.
 615         */
 616        if (offset == PCI_COMMAND) {
 617                u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
 618
 619                *virt_cmd &= cpu_to_le16(~mask);
 620                *virt_cmd |= cpu_to_le16(new_cmd & mask);
 621
 622                up_write(&vdev->memory_lock);
 623        }
 624
 625        /* Emulate INTx disable */
 626        if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
 627                bool virt_intx_disable;
 628
 629                virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
 630                                       PCI_COMMAND_INTX_DISABLE);
 631
 632                if (virt_intx_disable && !vdev->virq_disabled) {
 633                        vdev->virq_disabled = true;
 634                        vfio_pci_intx_mask(vdev);
 635                } else if (!virt_intx_disable && vdev->virq_disabled) {
 636                        vdev->virq_disabled = false;
 637                        vfio_pci_intx_unmask(vdev);
 638                }
 639        }
 640
 641        if (is_bar(offset))
 642                vdev->bardirty = true;
 643
 644        return count;
 645}
 646
 647/* Permissions for the Basic PCI Header */
 648static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
 649{
 650        if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
 651                return -ENOMEM;
 652
 653        perm->readfn = vfio_basic_config_read;
 654        perm->writefn = vfio_basic_config_write;
 655
 656        /* Virtualized for SR-IOV functions, which just have FFFF */
 657        p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
 658        p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
 659
 660        /*
 661         * Virtualize INTx disable, we use it internally for interrupt
 662         * control and can emulate it for non-PCI 2.3 devices.
 663         */
 664        p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
 665
 666        /* Virtualize capability list, we might want to skip/disable */
 667        p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
 668
 669        /* No harm to write */
 670        p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
 671        p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
 672        p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
 673
 674        /* Virtualize all bars, can't touch the real ones */
 675        p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
 676        p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
 677        p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
 678        p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
 679        p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
 680        p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
 681        p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
 682
 683        /* Allow us to adjust capability chain */
 684        p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
 685
 686        /* Sometimes used by sw, just virtualize */
 687        p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
 688
 689        /* Virtualize interrupt pin to allow hiding INTx */
 690        p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
 691
 692        return 0;
 693}
 694
 695static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
 696                                int count, struct perm_bits *perm,
 697                                int offset, __le32 val)
 698{
 699        count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
 700        if (count < 0)
 701                return count;
 702
 703        if (offset == PCI_PM_CTRL) {
 704                pci_power_t state;
 705
 706                switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
 707                case 0:
 708                        state = PCI_D0;
 709                        break;
 710                case 1:
 711                        state = PCI_D1;
 712                        break;
 713                case 2:
 714                        state = PCI_D2;
 715                        break;
 716                case 3:
 717                        state = PCI_D3hot;
 718                        break;
 719                }
 720
 721                vfio_pci_set_power_state(vdev, state);
 722        }
 723
 724        return count;
 725}
 726
 727/* Permissions for the Power Management capability */
 728static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
 729{
 730        if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
 731                return -ENOMEM;
 732
 733        perm->writefn = vfio_pm_config_write;
 734
 735        /*
 736         * We always virtualize the next field so we can remove
 737         * capabilities from the chain if we want to.
 738         */
 739        p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
 740
 741        /*
 742         * Power management is defined *per function*, so we can let
 743         * the user change power state, but we trap and initiate the
 744         * change ourselves, so the state bits are read-only.
 745         */
 746        p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
 747        return 0;
 748}
 749
 750static int vfio_vpd_config_write(struct vfio_pci_device *vdev, int pos,
 751                                 int count, struct perm_bits *perm,
 752                                 int offset, __le32 val)
 753{
 754        struct pci_dev *pdev = vdev->pdev;
 755        __le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
 756        __le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
 757        u16 addr;
 758        u32 data;
 759
 760        /*
 761         * Write through to emulation.  If the write includes the upper byte
 762         * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
 763         * have work to do.
 764         */
 765        count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
 766        if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
 767            offset + count <= PCI_VPD_ADDR + 1)
 768                return count;
 769
 770        addr = le16_to_cpu(*paddr);
 771
 772        if (addr & PCI_VPD_ADDR_F) {
 773                data = le32_to_cpu(*pdata);
 774                if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
 775                        return count;
 776        } else {
 777                data = 0;
 778                if (pci_read_vpd(pdev, addr, 4, &data) < 0)
 779                        return count;
 780                *pdata = cpu_to_le32(data);
 781        }
 782
 783        /*
 784         * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
 785         * signal completion.  If an error occurs above, we assume that not
 786         * toggling this bit will induce a driver timeout.
 787         */
 788        addr ^= PCI_VPD_ADDR_F;
 789        *paddr = cpu_to_le16(addr);
 790
 791        return count;
 792}
 793
 794/* Permissions for Vital Product Data capability */
 795static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
 796{
 797        if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
 798                return -ENOMEM;
 799
 800        perm->writefn = vfio_vpd_config_write;
 801
 802        /*
 803         * We always virtualize the next field so we can remove
 804         * capabilities from the chain if we want to.
 805         */
 806        p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
 807
 808        /*
 809         * Both the address and data registers are virtualized to
 810         * enable access through the pci_vpd_read/write functions
 811         */
 812        p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
 813        p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
 814
 815        return 0;
 816}
 817
 818/* Permissions for PCI-X capability */
 819static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
 820{
 821        /* Alloc 24, but only 8 are used in v0 */
 822        if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
 823                return -ENOMEM;
 824
 825        p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
 826
 827        p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
 828        p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
 829        return 0;
 830}
 831
 832static int vfio_exp_config_write(struct vfio_pci_device *vdev, int pos,
 833                                 int count, struct perm_bits *perm,
 834                                 int offset, __le32 val)
 835{
 836        __le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
 837                                  offset + PCI_EXP_DEVCTL);
 838        int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ;
 839
 840        count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
 841        if (count < 0)
 842                return count;
 843
 844        /*
 845         * The FLR bit is virtualized, if set and the device supports PCIe
 846         * FLR, issue a reset_function.  Regardless, clear the bit, the spec
 847         * requires it to be always read as zero.  NB, reset_function might
 848         * not use a PCIe FLR, we don't have that level of granularity.
 849         */
 850        if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
 851                u32 cap;
 852                int ret;
 853
 854                *ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);
 855
 856                ret = pci_user_read_config_dword(vdev->pdev,
 857                                                 pos - offset + PCI_EXP_DEVCAP,
 858                                                 &cap);
 859
 860                if (!ret && (cap & PCI_EXP_DEVCAP_FLR)) {
 861                        vfio_pci_zap_and_down_write_memory_lock(vdev);
 862                        pci_try_reset_function(vdev->pdev);
 863                        up_write(&vdev->memory_lock);
 864                }
 865        }
 866
 867        /*
 868         * MPS is virtualized to the user, writes do not change the physical
 869         * register since determining a proper MPS value requires a system wide
 870         * device view.  The MRRS is largely independent of MPS, but since the
 871         * user does not have that system-wide view, they might set a safe, but
 872         * inefficiently low value.  Here we allow writes through to hardware,
 873         * but we set the floor to the physical device MPS setting, so that
 874         * we can at least use full TLPs, as defined by the MPS value.
 875         *
 876         * NB, if any devices actually depend on an artificially low MRRS
 877         * setting, this will need to be revisited, perhaps with a quirk
 878         * though pcie_set_readrq().
 879         */
 880        if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) {
 881                readrq = 128 <<
 882                        ((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12);
 883                readrq = max(readrq, pcie_get_mps(vdev->pdev));
 884
 885                pcie_set_readrq(vdev->pdev, readrq);
 886        }
 887
 888        return count;
 889}
 890
 891/* Permissions for PCI Express capability */
 892static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
 893{
 894        /* Alloc largest of possible sizes */
 895        if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
 896                return -ENOMEM;
 897
 898        perm->writefn = vfio_exp_config_write;
 899
 900        p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
 901
 902        /*
 903         * Allow writes to device control fields, except devctl_phantom,
 904         * which could confuse IOMMU, MPS, which can break communication
 905         * with other physical devices, and the ARI bit in devctl2, which
 906         * is set at probe time.  FLR and MRRS get virtualized via our
 907         * writefn.
 908         */
 909        p_setw(perm, PCI_EXP_DEVCTL,
 910               PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD |
 911               PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM);
 912        p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
 913        return 0;
 914}
 915
 916static int vfio_af_config_write(struct vfio_pci_device *vdev, int pos,
 917                                int count, struct perm_bits *perm,
 918                                int offset, __le32 val)
 919{
 920        u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;
 921
 922        count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
 923        if (count < 0)
 924                return count;
 925
 926        /*
 927         * The FLR bit is virtualized, if set and the device supports AF
 928         * FLR, issue a reset_function.  Regardless, clear the bit, the spec
 929         * requires it to be always read as zero.  NB, reset_function might
 930         * not use an AF FLR, we don't have that level of granularity.
 931         */
 932        if (*ctrl & PCI_AF_CTRL_FLR) {
 933                u8 cap;
 934                int ret;
 935
 936                *ctrl &= ~PCI_AF_CTRL_FLR;
 937
 938                ret = pci_user_read_config_byte(vdev->pdev,
 939                                                pos - offset + PCI_AF_CAP,
 940                                                &cap);
 941
 942                if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP)) {
 943                        vfio_pci_zap_and_down_write_memory_lock(vdev);
 944                        pci_try_reset_function(vdev->pdev);
 945                        up_write(&vdev->memory_lock);
 946                }
 947        }
 948
 949        return count;
 950}
 951
 952/* Permissions for Advanced Function capability */
 953static int __init init_pci_cap_af_perm(struct perm_bits *perm)
 954{
 955        if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
 956                return -ENOMEM;
 957
 958        perm->writefn = vfio_af_config_write;
 959
 960        p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
 961        p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
 962        return 0;
 963}
 964
 965/* Permissions for Advanced Error Reporting extended capability */
 966static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
 967{
 968        u32 mask;
 969
 970        if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
 971                return -ENOMEM;
 972
 973        /*
 974         * Virtualize the first dword of all express capabilities
 975         * because it includes the next pointer.  This lets us later
 976         * remove capabilities from the chain if we need to.
 977         */
 978        p_setd(perm, 0, ALL_VIRT, NO_WRITE);
 979
 980        /* Writable bits mask */
 981        mask =  PCI_ERR_UNC_UND |               /* Undefined */
 982                PCI_ERR_UNC_DLP |               /* Data Link Protocol */
 983                PCI_ERR_UNC_SURPDN |            /* Surprise Down */
 984                PCI_ERR_UNC_POISON_TLP |        /* Poisoned TLP */
 985                PCI_ERR_UNC_FCP |               /* Flow Control Protocol */
 986                PCI_ERR_UNC_COMP_TIME |         /* Completion Timeout */
 987                PCI_ERR_UNC_COMP_ABORT |        /* Completer Abort */
 988                PCI_ERR_UNC_UNX_COMP |          /* Unexpected Completion */
 989                PCI_ERR_UNC_RX_OVER |           /* Receiver Overflow */
 990                PCI_ERR_UNC_MALF_TLP |          /* Malformed TLP */
 991                PCI_ERR_UNC_ECRC |              /* ECRC Error Status */
 992                PCI_ERR_UNC_UNSUP |             /* Unsupported Request */
 993                PCI_ERR_UNC_ACSV |              /* ACS Violation */
 994                PCI_ERR_UNC_INTN |              /* internal error */
 995                PCI_ERR_UNC_MCBTLP |            /* MC blocked TLP */
 996                PCI_ERR_UNC_ATOMEG |            /* Atomic egress blocked */
 997                PCI_ERR_UNC_TLPPRE;             /* TLP prefix blocked */
 998        p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
 999        p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
1000        p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
1001
1002        mask =  PCI_ERR_COR_RCVR |              /* Receiver Error Status */
1003                PCI_ERR_COR_BAD_TLP |           /* Bad TLP Status */
1004                PCI_ERR_COR_BAD_DLLP |          /* Bad DLLP Status */
1005                PCI_ERR_COR_REP_ROLL |          /* REPLAY_NUM Rollover */
1006                PCI_ERR_COR_REP_TIMER |         /* Replay Timer Timeout */
1007                PCI_ERR_COR_ADV_NFAT |          /* Advisory Non-Fatal */
1008                PCI_ERR_COR_INTERNAL |          /* Corrected Internal */
1009                PCI_ERR_COR_LOG_OVER;           /* Header Log Overflow */
1010        p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
1011        p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
1012
1013        mask =  PCI_ERR_CAP_ECRC_GENE |         /* ECRC Generation Enable */
1014                PCI_ERR_CAP_ECRC_CHKE;          /* ECRC Check Enable */
1015        p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
1016        return 0;
1017}
1018
1019/* Permissions for Power Budgeting extended capability */
1020static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
1021{
1022        if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
1023                return -ENOMEM;
1024
1025        p_setd(perm, 0, ALL_VIRT, NO_WRITE);
1026
1027        /* Writing the data selector is OK, the info is still read-only */
1028        p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
1029        return 0;
1030}
1031
1032/*
1033 * Initialize the shared permission tables
1034 */
1035void vfio_pci_uninit_perm_bits(void)
1036{
1037        free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
1038
1039        free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
1040        free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
1041        free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
1042        free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
1043        free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
1044
1045        free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1046        free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1047}
1048
1049int __init vfio_pci_init_perm_bits(void)
1050{
1051        int ret;
1052
1053        /* Basic config space */
1054        ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
1055
1056        /* Capabilities */
1057        ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
1058        ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
1059        ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
1060        cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1061        ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
1062        ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
1063
1064        /* Extended capabilities */
1065        ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1066        ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1067        ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1068
1069        if (ret)
1070                vfio_pci_uninit_perm_bits();
1071
1072        return ret;
1073}
1074
1075static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
1076{
1077        u8 cap;
1078        int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
1079                                                 PCI_STD_HEADER_SIZEOF;
1080        cap = vdev->pci_config_map[pos];
1081
1082        if (cap == PCI_CAP_ID_BASIC)
1083                return 0;
1084
1085        /* XXX Can we have to abutting capabilities of the same type? */
1086        while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
1087                pos--;
1088
1089        return pos;
1090}
1091
1092static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
1093                                int count, struct perm_bits *perm,
1094                                int offset, __le32 *val)
1095{
1096        /* Update max available queue size from msi_qmax */
1097        if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1098                __le16 *flags;
1099                int start;
1100
1101                start = vfio_find_cap_start(vdev, pos);
1102
1103                flags = (__le16 *)&vdev->vconfig[start];
1104
1105                *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
1106                *flags |= cpu_to_le16(vdev->msi_qmax << 1);
1107        }
1108
1109        return vfio_default_config_read(vdev, pos, count, perm, offset, val);
1110}
1111
1112static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
1113                                 int count, struct perm_bits *perm,
1114                                 int offset, __le32 val)
1115{
1116        count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
1117        if (count < 0)
1118                return count;
1119
1120        /* Fixup and write configured queue size and enable to hardware */
1121        if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1122                __le16 *pflags;
1123                u16 flags;
1124                int start, ret;
1125
1126                start = vfio_find_cap_start(vdev, pos);
1127
1128                pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
1129
1130                flags = le16_to_cpu(*pflags);
1131
1132                /* MSI is enabled via ioctl */
1133                if  (!is_msi(vdev))
1134                        flags &= ~PCI_MSI_FLAGS_ENABLE;
1135
1136                /* Check queue size */
1137                if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
1138                        flags &= ~PCI_MSI_FLAGS_QSIZE;
1139                        flags |= vdev->msi_qmax << 4;
1140                }
1141
1142                /* Write back to virt and to hardware */
1143                *pflags = cpu_to_le16(flags);
1144                ret = pci_user_write_config_word(vdev->pdev,
1145                                                 start + PCI_MSI_FLAGS,
1146                                                 flags);
1147                if (ret)
1148                        return ret;
1149        }
1150
1151        return count;
1152}
1153
1154/*
1155 * MSI determination is per-device, so this routine gets used beyond
1156 * initialization time. Don't add __init
1157 */
1158static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
1159{
1160        if (alloc_perm_bits(perm, len))
1161                return -ENOMEM;
1162
1163        perm->readfn = vfio_msi_config_read;
1164        perm->writefn = vfio_msi_config_write;
1165
1166        p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1167
1168        /*
1169         * The upper byte of the control register is reserved,
1170         * just setup the lower byte.
1171         */
1172        p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
1173        p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
1174        if (flags & PCI_MSI_FLAGS_64BIT) {
1175                p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
1176                p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
1177                if (flags & PCI_MSI_FLAGS_MASKBIT) {
1178                        p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
1179                        p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1180                }
1181        } else {
1182                p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1183                if (flags & PCI_MSI_FLAGS_MASKBIT) {
1184                        p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1185                        p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1186                }
1187        }
1188        return 0;
1189}
1190
1191/* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
1192static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
1193{
1194        struct pci_dev *pdev = vdev->pdev;
1195        int len, ret;
1196        u16 flags;
1197
1198        ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1199        if (ret)
1200                return pcibios_err_to_errno(ret);
1201
1202        len = 10; /* Minimum size */
1203        if (flags & PCI_MSI_FLAGS_64BIT)
1204                len += 4;
1205        if (flags & PCI_MSI_FLAGS_MASKBIT)
1206                len += 10;
1207
1208        if (vdev->msi_perm)
1209                return len;
1210
1211        vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
1212        if (!vdev->msi_perm)
1213                return -ENOMEM;
1214
1215        ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1216        if (ret) {
1217                kfree(vdev->msi_perm);
1218                return ret;
1219        }
1220
1221        return len;
1222}
1223
1224/* Determine extended capability length for VC (2 & 9) and MFVC */
1225static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
1226{
1227        struct pci_dev *pdev = vdev->pdev;
1228        u32 tmp;
1229        int ret, evcc, phases, vc_arb;
1230        int len = PCI_CAP_VC_BASE_SIZEOF;
1231
1232        ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1233        if (ret)
1234                return pcibios_err_to_errno(ret);
1235
1236        evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1237        ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1238        if (ret)
1239                return pcibios_err_to_errno(ret);
1240
1241        if (tmp & PCI_VC_CAP2_128_PHASE)
1242                phases = 128;
1243        else if (tmp & PCI_VC_CAP2_64_PHASE)
1244                phases = 64;
1245        else if (tmp & PCI_VC_CAP2_32_PHASE)
1246                phases = 32;
1247        else
1248                phases = 0;
1249
1250        vc_arb = phases * 4;
1251
1252        /*
1253         * Port arbitration tables are root & switch only;
1254         * function arbitration tables are function 0 only.
1255         * In either case, we'll never let user write them so
1256         * we don't care how big they are
1257         */
1258        len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1259        if (vc_arb) {
1260                len = round_up(len, 16);
1261                len += vc_arb / 8;
1262        }
1263        return len;
1264}
1265
1266static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
1267{
1268        struct pci_dev *pdev = vdev->pdev;
1269        u32 dword;
1270        u16 word;
1271        u8 byte;
1272        int ret;
1273
1274        switch (cap) {
1275        case PCI_CAP_ID_MSI:
1276                return vfio_msi_cap_len(vdev, pos);
1277        case PCI_CAP_ID_PCIX:
1278                ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1279                if (ret)
1280                        return pcibios_err_to_errno(ret);
1281
1282                if (PCI_X_CMD_VERSION(word)) {
1283                        if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1284                                /* Test for extended capabilities */
1285                                pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
1286                                                      &dword);
1287                                vdev->extended_caps = (dword != 0);
1288                        }
1289                        return PCI_CAP_PCIX_SIZEOF_V2;
1290                } else
1291                        return PCI_CAP_PCIX_SIZEOF_V0;
1292        case PCI_CAP_ID_VNDR:
1293                /* length follows next field */
1294                ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1295                if (ret)
1296                        return pcibios_err_to_errno(ret);
1297
1298                return byte;
1299        case PCI_CAP_ID_EXP:
1300                if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1301                        /* Test for extended capabilities */
1302                        pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1303                        vdev->extended_caps = (dword != 0);
1304                }
1305
1306                /* length based on version and type */
1307                if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) {
1308                        if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1309                                return 0xc; /* "All Devices" only, no link */
1310                        return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1311                } else {
1312                        if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1313                                return 0x2c; /* No link */
1314                        return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1315                }
1316        case PCI_CAP_ID_HT:
1317                ret = pci_read_config_byte(pdev, pos + 3, &byte);
1318                if (ret)
1319                        return pcibios_err_to_errno(ret);
1320
1321                return (byte & HT_3BIT_CAP_MASK) ?
1322                        HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1323        case PCI_CAP_ID_SATA:
1324                ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1325                if (ret)
1326                        return pcibios_err_to_errno(ret);
1327
1328                byte &= PCI_SATA_REGS_MASK;
1329                if (byte == PCI_SATA_REGS_INLINE)
1330                        return PCI_SATA_SIZEOF_LONG;
1331                else
1332                        return PCI_SATA_SIZEOF_SHORT;
1333        default:
1334                pci_warn(pdev, "%s: unknown length for PCI cap %#x@%#x\n",
1335                         __func__, cap, pos);
1336        }
1337
1338        return 0;
1339}
1340
1341static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
1342{
1343        struct pci_dev *pdev = vdev->pdev;
1344        u8 byte;
1345        u32 dword;
1346        int ret;
1347
1348        switch (ecap) {
1349        case PCI_EXT_CAP_ID_VNDR:
1350                ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1351                if (ret)
1352                        return pcibios_err_to_errno(ret);
1353
1354                return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1355        case PCI_EXT_CAP_ID_VC:
1356        case PCI_EXT_CAP_ID_VC9:
1357        case PCI_EXT_CAP_ID_MFVC:
1358                return vfio_vc_cap_len(vdev, epos);
1359        case PCI_EXT_CAP_ID_ACS:
1360                ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1361                if (ret)
1362                        return pcibios_err_to_errno(ret);
1363
1364                if (byte & PCI_ACS_EC) {
1365                        int bits;
1366
1367                        ret = pci_read_config_byte(pdev,
1368                                                   epos + PCI_ACS_EGRESS_BITS,
1369                                                   &byte);
1370                        if (ret)
1371                                return pcibios_err_to_errno(ret);
1372
1373                        bits = byte ? round_up(byte, 32) : 256;
1374                        return 8 + (bits / 8);
1375                }
1376                return 8;
1377
1378        case PCI_EXT_CAP_ID_REBAR:
1379                ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1380                if (ret)
1381                        return pcibios_err_to_errno(ret);
1382
1383                byte &= PCI_REBAR_CTRL_NBAR_MASK;
1384                byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1385
1386                return 4 + (byte * 8);
1387        case PCI_EXT_CAP_ID_DPA:
1388                ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1389                if (ret)
1390                        return pcibios_err_to_errno(ret);
1391
1392                byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1393                return PCI_DPA_BASE_SIZEOF + byte + 1;
1394        case PCI_EXT_CAP_ID_TPH:
1395                ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1396                if (ret)
1397                        return pcibios_err_to_errno(ret);
1398
1399                if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1400                        int sts;
1401
1402                        sts = dword & PCI_TPH_CAP_ST_MASK;
1403                        sts >>= PCI_TPH_CAP_ST_SHIFT;
1404                        return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1405                }
1406                return PCI_TPH_BASE_SIZEOF;
1407        default:
1408                pci_warn(pdev, "%s: unknown length for PCI ecap %#x@%#x\n",
1409                         __func__, ecap, epos);
1410        }
1411
1412        return 0;
1413}
1414
1415static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
1416                                   int offset, int size)
1417{
1418        struct pci_dev *pdev = vdev->pdev;
1419        int ret = 0;
1420
1421        /*
1422         * We try to read physical config space in the largest chunks
1423         * we can, assuming that all of the fields support dword access.
1424         * pci_save_state() makes this same assumption and seems to do ok.
1425         */
1426        while (size) {
1427                int filled;
1428
1429                if (size >= 4 && !(offset % 4)) {
1430                        __le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1431                        u32 dword;
1432
1433                        ret = pci_read_config_dword(pdev, offset, &dword);
1434                        if (ret)
1435                                return ret;
1436                        *dwordp = cpu_to_le32(dword);
1437                        filled = 4;
1438                } else if (size >= 2 && !(offset % 2)) {
1439                        __le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1440                        u16 word;
1441
1442                        ret = pci_read_config_word(pdev, offset, &word);
1443                        if (ret)
1444                                return ret;
1445                        *wordp = cpu_to_le16(word);
1446                        filled = 2;
1447                } else {
1448                        u8 *byte = &vdev->vconfig[offset];
1449                        ret = pci_read_config_byte(pdev, offset, byte);
1450                        if (ret)
1451                                return ret;
1452                        filled = 1;
1453                }
1454
1455                offset += filled;
1456                size -= filled;
1457        }
1458
1459        return ret;
1460}
1461
1462static int vfio_cap_init(struct vfio_pci_device *vdev)
1463{
1464        struct pci_dev *pdev = vdev->pdev;
1465        u8 *map = vdev->pci_config_map;
1466        u16 status;
1467        u8 pos, *prev, cap;
1468        int loops, ret, caps = 0;
1469
1470        /* Any capabilities? */
1471        ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1472        if (ret)
1473                return ret;
1474
1475        if (!(status & PCI_STATUS_CAP_LIST))
1476                return 0; /* Done */
1477
1478        ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1479        if (ret)
1480                return ret;
1481
1482        /* Mark the previous position in case we want to skip a capability */
1483        prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1484
1485        /* We can bound our loop, capabilities are dword aligned */
1486        loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1487        while (pos && loops--) {
1488                u8 next;
1489                int i, len = 0;
1490
1491                ret = pci_read_config_byte(pdev, pos, &cap);
1492                if (ret)
1493                        return ret;
1494
1495                ret = pci_read_config_byte(pdev,
1496                                           pos + PCI_CAP_LIST_NEXT, &next);
1497                if (ret)
1498                        return ret;
1499
1500                /*
1501                 * ID 0 is a NULL capability, conflicting with our fake
1502                 * PCI_CAP_ID_BASIC.  As it has no content, consider it
1503                 * hidden for now.
1504                 */
1505                if (cap && cap <= PCI_CAP_ID_MAX) {
1506                        len = pci_cap_length[cap];
1507                        if (len == 0xFF) { /* Variable length */
1508                                len = vfio_cap_len(vdev, cap, pos);
1509                                if (len < 0)
1510                                        return len;
1511                        }
1512                }
1513
1514                if (!len) {
1515                        pci_info(pdev, "%s: hiding cap %#x@%#x\n", __func__,
1516                                 cap, pos);
1517                        *prev = next;
1518                        pos = next;
1519                        continue;
1520                }
1521
1522                /* Sanity check, do we overlap other capabilities? */
1523                for (i = 0; i < len; i++) {
1524                        if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1525                                continue;
1526
1527                        pci_warn(pdev, "%s: PCI config conflict @%#x, was cap %#x now cap %#x\n",
1528                                 __func__, pos + i, map[pos + i], cap);
1529                }
1530
1531                BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1532
1533                memset(map + pos, cap, len);
1534                ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1535                if (ret)
1536                        return ret;
1537
1538                prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1539                pos = next;
1540                caps++;
1541        }
1542
1543        /* If we didn't fill any capabilities, clear the status flag */
1544        if (!caps) {
1545                __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1546                *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1547        }
1548
1549        return 0;
1550}
1551
1552static int vfio_ecap_init(struct vfio_pci_device *vdev)
1553{
1554        struct pci_dev *pdev = vdev->pdev;
1555        u8 *map = vdev->pci_config_map;
1556        u16 epos;
1557        __le32 *prev = NULL;
1558        int loops, ret, ecaps = 0;
1559
1560        if (!vdev->extended_caps)
1561                return 0;
1562
1563        epos = PCI_CFG_SPACE_SIZE;
1564
1565        loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1566
1567        while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1568                u32 header;
1569                u16 ecap;
1570                int i, len = 0;
1571                bool hidden = false;
1572
1573                ret = pci_read_config_dword(pdev, epos, &header);
1574                if (ret)
1575                        return ret;
1576
1577                ecap = PCI_EXT_CAP_ID(header);
1578
1579                if (ecap <= PCI_EXT_CAP_ID_MAX) {
1580                        len = pci_ext_cap_length[ecap];
1581                        if (len == 0xFF) {
1582                                len = vfio_ext_cap_len(vdev, ecap, epos);
1583                                if (len < 0)
1584                                        return len;
1585                        }
1586                }
1587
1588                if (!len) {
1589                        pci_info(pdev, "%s: hiding ecap %#x@%#x\n",
1590                                 __func__, ecap, epos);
1591
1592                        /* If not the first in the chain, we can skip over it */
1593                        if (prev) {
1594                                u32 val = epos = PCI_EXT_CAP_NEXT(header);
1595                                *prev &= cpu_to_le32(~(0xffcU << 20));
1596                                *prev |= cpu_to_le32(val << 20);
1597                                continue;
1598                        }
1599
1600                        /*
1601                         * Otherwise, fill in a placeholder, the direct
1602                         * readfn will virtualize this automatically
1603                         */
1604                        len = PCI_CAP_SIZEOF;
1605                        hidden = true;
1606                }
1607
1608                for (i = 0; i < len; i++) {
1609                        if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1610                                continue;
1611
1612                        pci_warn(pdev, "%s: PCI config conflict @%#x, was ecap %#x now ecap %#x\n",
1613                                 __func__, epos + i, map[epos + i], ecap);
1614                }
1615
1616                /*
1617                 * Even though ecap is 2 bytes, we're currently a long way
1618                 * from exceeding 1 byte capabilities.  If we ever make it
1619                 * up to 0xFE we'll need to up this to a two-byte, byte map.
1620                 */
1621                BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1622
1623                memset(map + epos, ecap, len);
1624                ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1625                if (ret)
1626                        return ret;
1627
1628                /*
1629                 * If we're just using this capability to anchor the list,
1630                 * hide the real ID.  Only count real ecaps.  XXX PCI spec
1631                 * indicates to use cap id = 0, version = 0, next = 0 if
1632                 * ecaps are absent, hope users check all the way to next.
1633                 */
1634                if (hidden)
1635                        *(__le32 *)&vdev->vconfig[epos] &=
1636                                cpu_to_le32((0xffcU << 20));
1637                else
1638                        ecaps++;
1639
1640                prev = (__le32 *)&vdev->vconfig[epos];
1641                epos = PCI_EXT_CAP_NEXT(header);
1642        }
1643
1644        if (!ecaps)
1645                *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1646
1647        return 0;
1648}
1649
1650/*
1651 * Nag about hardware bugs, hopefully to have vendors fix them, but at least
1652 * to collect a list of dependencies for the VF INTx pin quirk below.
1653 */
1654static const struct pci_device_id known_bogus_vf_intx_pin[] = {
1655        { PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) },
1656        {}
1657};
1658
1659/*
1660 * For each device we allocate a pci_config_map that indicates the
1661 * capability occupying each dword and thus the struct perm_bits we
1662 * use for read and write.  We also allocate a virtualized config
1663 * space which tracks reads and writes to bits that we emulate for
1664 * the user.  Initial values filled from device.
1665 *
1666 * Using shared struct perm_bits between all vfio-pci devices saves
1667 * us from allocating cfg_size buffers for virt and write for every
1668 * device.  We could remove vconfig and allocate individual buffers
1669 * for each area requiring emulated bits, but the array of pointers
1670 * would be comparable in size (at least for standard config space).
1671 */
1672int vfio_config_init(struct vfio_pci_device *vdev)
1673{
1674        struct pci_dev *pdev = vdev->pdev;
1675        u8 *map, *vconfig;
1676        int ret;
1677
1678        /*
1679         * Config space, caps and ecaps are all dword aligned, so we could
1680         * use one byte per dword to record the type.  However, there are
1681         * no requiremenst on the length of a capability, so the gap between
1682         * capabilities needs byte granularity.
1683         */
1684        map = kmalloc(pdev->cfg_size, GFP_KERNEL);
1685        if (!map)
1686                return -ENOMEM;
1687
1688        vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
1689        if (!vconfig) {
1690                kfree(map);
1691                return -ENOMEM;
1692        }
1693
1694        vdev->pci_config_map = map;
1695        vdev->vconfig = vconfig;
1696
1697        memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1698        memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1699               pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1700
1701        ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1702        if (ret)
1703                goto out;
1704
1705        vdev->bardirty = true;
1706
1707        /*
1708         * XXX can we just pci_load_saved_state/pci_restore_state?
1709         * may need to rebuild vconfig after that
1710         */
1711
1712        /* For restore after reset */
1713        vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1714        vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1715        vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1716        vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1717        vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1718        vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1719        vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1720
1721        if (pdev->is_virtfn) {
1722                *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1723                *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1724
1725                /*
1726                 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register
1727                 * does not apply to VFs and VFs must implement this register
1728                 * as read-only with value zero.  Userspace is not readily able
1729                 * to identify whether a device is a VF and thus that the pin
1730                 * definition on the device is bogus should it violate this
1731                 * requirement.  We already virtualize the pin register for
1732                 * other purposes, so we simply need to replace the bogus value
1733                 * and consider VFs when we determine INTx IRQ count.
1734                 */
1735                if (vconfig[PCI_INTERRUPT_PIN] &&
1736                    !pci_match_id(known_bogus_vf_intx_pin, pdev))
1737                        pci_warn(pdev,
1738                                 "Hardware bug: VF reports bogus INTx pin %d\n",
1739                                 vconfig[PCI_INTERRUPT_PIN]);
1740
1741                vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */
1742        }
1743        if (pdev->no_command_memory) {
1744                /*
1745                 * VFs and devices that set pdev->no_command_memory do not
1746                 * implement the memory enable bit of the COMMAND register
1747                 * therefore we'll not have it set in our initial copy of
1748                 * config space after pci_enable_device().  For consistency
1749                 * with PFs, set the virtual enable bit here.
1750                 */
1751                *(__le16 *)&vconfig[PCI_COMMAND] |=
1752                                        cpu_to_le16(PCI_COMMAND_MEMORY);
1753        }
1754
1755        if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx)
1756                vconfig[PCI_INTERRUPT_PIN] = 0;
1757
1758        ret = vfio_cap_init(vdev);
1759        if (ret)
1760                goto out;
1761
1762        ret = vfio_ecap_init(vdev);
1763        if (ret)
1764                goto out;
1765
1766        return 0;
1767
1768out:
1769        kfree(map);
1770        vdev->pci_config_map = NULL;
1771        kfree(vconfig);
1772        vdev->vconfig = NULL;
1773        return pcibios_err_to_errno(ret);
1774}
1775
1776void vfio_config_free(struct vfio_pci_device *vdev)
1777{
1778        kfree(vdev->vconfig);
1779        vdev->vconfig = NULL;
1780        kfree(vdev->pci_config_map);
1781        vdev->pci_config_map = NULL;
1782        if (vdev->msi_perm) {
1783                free_perm_bits(vdev->msi_perm);
1784                kfree(vdev->msi_perm);
1785                vdev->msi_perm = NULL;
1786        }
1787}
1788
1789/*
1790 * Find the remaining number of bytes in a dword that match the given
1791 * position.  Stop at either the end of the capability or the dword boundary.
1792 */
1793static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev,
1794                                           loff_t pos)
1795{
1796        u8 cap = vdev->pci_config_map[pos];
1797        size_t i;
1798
1799        for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1800                /* nop */;
1801
1802        return i;
1803}
1804
1805static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
1806                                 size_t count, loff_t *ppos, bool iswrite)
1807{
1808        struct pci_dev *pdev = vdev->pdev;
1809        struct perm_bits *perm;
1810        __le32 val = 0;
1811        int cap_start = 0, offset;
1812        u8 cap_id;
1813        ssize_t ret;
1814
1815        if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1816            *ppos + count > pdev->cfg_size)
1817                return -EFAULT;
1818
1819        /*
1820         * Chop accesses into aligned chunks containing no more than a
1821         * single capability.  Caller increments to the next chunk.
1822         */
1823        count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1824        if (count >= 4 && !(*ppos % 4))
1825                count = 4;
1826        else if (count >= 2 && !(*ppos % 2))
1827                count = 2;
1828        else
1829                count = 1;
1830
1831        ret = count;
1832
1833        cap_id = vdev->pci_config_map[*ppos];
1834
1835        if (cap_id == PCI_CAP_ID_INVALID) {
1836                perm = &unassigned_perms;
1837                cap_start = *ppos;
1838        } else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
1839                perm = &virt_perms;
1840                cap_start = *ppos;
1841        } else {
1842                if (*ppos >= PCI_CFG_SPACE_SIZE) {
1843                        WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1844
1845                        perm = &ecap_perms[cap_id];
1846                        cap_start = vfio_find_cap_start(vdev, *ppos);
1847                } else {
1848                        WARN_ON(cap_id > PCI_CAP_ID_MAX);
1849
1850                        perm = &cap_perms[cap_id];
1851
1852                        if (cap_id == PCI_CAP_ID_MSI)
1853                                perm = vdev->msi_perm;
1854
1855                        if (cap_id > PCI_CAP_ID_BASIC)
1856                                cap_start = vfio_find_cap_start(vdev, *ppos);
1857                }
1858        }
1859
1860        WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1861        WARN_ON(cap_start > *ppos);
1862
1863        offset = *ppos - cap_start;
1864
1865        if (iswrite) {
1866                if (!perm->writefn)
1867                        return ret;
1868
1869                if (copy_from_user(&val, buf, count))
1870                        return -EFAULT;
1871
1872                ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1873        } else {
1874                if (perm->readfn) {
1875                        ret = perm->readfn(vdev, *ppos, count,
1876                                           perm, offset, &val);
1877                        if (ret < 0)
1878                                return ret;
1879                }
1880
1881                if (copy_to_user(buf, &val, count))
1882                        return -EFAULT;
1883        }
1884
1885        return ret;
1886}
1887
1888ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
1889                           size_t count, loff_t *ppos, bool iswrite)
1890{
1891        size_t done = 0;
1892        int ret = 0;
1893        loff_t pos = *ppos;
1894
1895        pos &= VFIO_PCI_OFFSET_MASK;
1896
1897        while (count) {
1898                ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1899                if (ret < 0)
1900                        return ret;
1901
1902                count -= ret;
1903                done += ret;
1904                buf += ret;
1905                pos += ret;
1906        }
1907
1908        *ppos += done;
1909
1910        return done;
1911}
1912