linux/fs/btrfs/ctree.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/sched.h>
   7#include <linux/slab.h>
   8#include <linux/rbtree.h>
   9#include <linux/mm.h>
  10#include "ctree.h"
  11#include "disk-io.h"
  12#include "transaction.h"
  13#include "print-tree.h"
  14#include "locking.h"
  15#include "volumes.h"
  16#include "qgroup.h"
  17#include "tree-mod-log.h"
  18
  19static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  20                      *root, struct btrfs_path *path, int level);
  21static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  22                      const struct btrfs_key *ins_key, struct btrfs_path *path,
  23                      int data_size, int extend);
  24static int push_node_left(struct btrfs_trans_handle *trans,
  25                          struct extent_buffer *dst,
  26                          struct extent_buffer *src, int empty);
  27static int balance_node_right(struct btrfs_trans_handle *trans,
  28                              struct extent_buffer *dst_buf,
  29                              struct extent_buffer *src_buf);
  30static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  31                    int level, int slot);
  32
  33static const struct btrfs_csums {
  34        u16             size;
  35        const char      name[10];
  36        const char      driver[12];
  37} btrfs_csums[] = {
  38        [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
  39        [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
  40        [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
  41        [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
  42                                     .driver = "blake2b-256" },
  43};
  44
  45int btrfs_super_csum_size(const struct btrfs_super_block *s)
  46{
  47        u16 t = btrfs_super_csum_type(s);
  48        /*
  49         * csum type is validated at mount time
  50         */
  51        return btrfs_csums[t].size;
  52}
  53
  54const char *btrfs_super_csum_name(u16 csum_type)
  55{
  56        /* csum type is validated at mount time */
  57        return btrfs_csums[csum_type].name;
  58}
  59
  60/*
  61 * Return driver name if defined, otherwise the name that's also a valid driver
  62 * name
  63 */
  64const char *btrfs_super_csum_driver(u16 csum_type)
  65{
  66        /* csum type is validated at mount time */
  67        return btrfs_csums[csum_type].driver[0] ?
  68                btrfs_csums[csum_type].driver :
  69                btrfs_csums[csum_type].name;
  70}
  71
  72size_t __attribute_const__ btrfs_get_num_csums(void)
  73{
  74        return ARRAY_SIZE(btrfs_csums);
  75}
  76
  77struct btrfs_path *btrfs_alloc_path(void)
  78{
  79        return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  80}
  81
  82/* this also releases the path */
  83void btrfs_free_path(struct btrfs_path *p)
  84{
  85        if (!p)
  86                return;
  87        btrfs_release_path(p);
  88        kmem_cache_free(btrfs_path_cachep, p);
  89}
  90
  91/*
  92 * path release drops references on the extent buffers in the path
  93 * and it drops any locks held by this path
  94 *
  95 * It is safe to call this on paths that no locks or extent buffers held.
  96 */
  97noinline void btrfs_release_path(struct btrfs_path *p)
  98{
  99        int i;
 100
 101        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 102                p->slots[i] = 0;
 103                if (!p->nodes[i])
 104                        continue;
 105                if (p->locks[i]) {
 106                        btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 107                        p->locks[i] = 0;
 108                }
 109                free_extent_buffer(p->nodes[i]);
 110                p->nodes[i] = NULL;
 111        }
 112}
 113
 114/*
 115 * safely gets a reference on the root node of a tree.  A lock
 116 * is not taken, so a concurrent writer may put a different node
 117 * at the root of the tree.  See btrfs_lock_root_node for the
 118 * looping required.
 119 *
 120 * The extent buffer returned by this has a reference taken, so
 121 * it won't disappear.  It may stop being the root of the tree
 122 * at any time because there are no locks held.
 123 */
 124struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 125{
 126        struct extent_buffer *eb;
 127
 128        while (1) {
 129                rcu_read_lock();
 130                eb = rcu_dereference(root->node);
 131
 132                /*
 133                 * RCU really hurts here, we could free up the root node because
 134                 * it was COWed but we may not get the new root node yet so do
 135                 * the inc_not_zero dance and if it doesn't work then
 136                 * synchronize_rcu and try again.
 137                 */
 138                if (atomic_inc_not_zero(&eb->refs)) {
 139                        rcu_read_unlock();
 140                        break;
 141                }
 142                rcu_read_unlock();
 143                synchronize_rcu();
 144        }
 145        return eb;
 146}
 147
 148/*
 149 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
 150 * just get put onto a simple dirty list.  Transaction walks this list to make
 151 * sure they get properly updated on disk.
 152 */
 153static void add_root_to_dirty_list(struct btrfs_root *root)
 154{
 155        struct btrfs_fs_info *fs_info = root->fs_info;
 156
 157        if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 158            !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 159                return;
 160
 161        spin_lock(&fs_info->trans_lock);
 162        if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 163                /* Want the extent tree to be the last on the list */
 164                if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
 165                        list_move_tail(&root->dirty_list,
 166                                       &fs_info->dirty_cowonly_roots);
 167                else
 168                        list_move(&root->dirty_list,
 169                                  &fs_info->dirty_cowonly_roots);
 170        }
 171        spin_unlock(&fs_info->trans_lock);
 172}
 173
 174/*
 175 * used by snapshot creation to make a copy of a root for a tree with
 176 * a given objectid.  The buffer with the new root node is returned in
 177 * cow_ret, and this func returns zero on success or a negative error code.
 178 */
 179int btrfs_copy_root(struct btrfs_trans_handle *trans,
 180                      struct btrfs_root *root,
 181                      struct extent_buffer *buf,
 182                      struct extent_buffer **cow_ret, u64 new_root_objectid)
 183{
 184        struct btrfs_fs_info *fs_info = root->fs_info;
 185        struct extent_buffer *cow;
 186        int ret = 0;
 187        int level;
 188        struct btrfs_disk_key disk_key;
 189
 190        WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 191                trans->transid != fs_info->running_transaction->transid);
 192        WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 193                trans->transid != root->last_trans);
 194
 195        level = btrfs_header_level(buf);
 196        if (level == 0)
 197                btrfs_item_key(buf, &disk_key, 0);
 198        else
 199                btrfs_node_key(buf, &disk_key, 0);
 200
 201        cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 202                                     &disk_key, level, buf->start, 0,
 203                                     BTRFS_NESTING_NEW_ROOT);
 204        if (IS_ERR(cow))
 205                return PTR_ERR(cow);
 206
 207        copy_extent_buffer_full(cow, buf);
 208        btrfs_set_header_bytenr(cow, cow->start);
 209        btrfs_set_header_generation(cow, trans->transid);
 210        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 211        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 212                                     BTRFS_HEADER_FLAG_RELOC);
 213        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 214                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 215        else
 216                btrfs_set_header_owner(cow, new_root_objectid);
 217
 218        write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 219
 220        WARN_ON(btrfs_header_generation(buf) > trans->transid);
 221        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 222                ret = btrfs_inc_ref(trans, root, cow, 1);
 223        else
 224                ret = btrfs_inc_ref(trans, root, cow, 0);
 225        if (ret) {
 226                btrfs_tree_unlock(cow);
 227                free_extent_buffer(cow);
 228                btrfs_abort_transaction(trans, ret);
 229                return ret;
 230        }
 231
 232        btrfs_mark_buffer_dirty(cow);
 233        *cow_ret = cow;
 234        return 0;
 235}
 236
 237/*
 238 * check if the tree block can be shared by multiple trees
 239 */
 240int btrfs_block_can_be_shared(struct btrfs_root *root,
 241                              struct extent_buffer *buf)
 242{
 243        /*
 244         * Tree blocks not in shareable trees and tree roots are never shared.
 245         * If a block was allocated after the last snapshot and the block was
 246         * not allocated by tree relocation, we know the block is not shared.
 247         */
 248        if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 249            buf != root->node && buf != root->commit_root &&
 250            (btrfs_header_generation(buf) <=
 251             btrfs_root_last_snapshot(&root->root_item) ||
 252             btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 253                return 1;
 254
 255        return 0;
 256}
 257
 258static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 259                                       struct btrfs_root *root,
 260                                       struct extent_buffer *buf,
 261                                       struct extent_buffer *cow,
 262                                       int *last_ref)
 263{
 264        struct btrfs_fs_info *fs_info = root->fs_info;
 265        u64 refs;
 266        u64 owner;
 267        u64 flags;
 268        u64 new_flags = 0;
 269        int ret;
 270
 271        /*
 272         * Backrefs update rules:
 273         *
 274         * Always use full backrefs for extent pointers in tree block
 275         * allocated by tree relocation.
 276         *
 277         * If a shared tree block is no longer referenced by its owner
 278         * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 279         * use full backrefs for extent pointers in tree block.
 280         *
 281         * If a tree block is been relocating
 282         * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
 283         * use full backrefs for extent pointers in tree block.
 284         * The reason for this is some operations (such as drop tree)
 285         * are only allowed for blocks use full backrefs.
 286         */
 287
 288        if (btrfs_block_can_be_shared(root, buf)) {
 289                ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
 290                                               btrfs_header_level(buf), 1,
 291                                               &refs, &flags);
 292                if (ret)
 293                        return ret;
 294                if (refs == 0) {
 295                        ret = -EROFS;
 296                        btrfs_handle_fs_error(fs_info, ret, NULL);
 297                        return ret;
 298                }
 299        } else {
 300                refs = 1;
 301                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 302                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 303                        flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
 304                else
 305                        flags = 0;
 306        }
 307
 308        owner = btrfs_header_owner(buf);
 309        BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
 310               !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
 311
 312        if (refs > 1) {
 313                if ((owner == root->root_key.objectid ||
 314                     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
 315                    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
 316                        ret = btrfs_inc_ref(trans, root, buf, 1);
 317                        if (ret)
 318                                return ret;
 319
 320                        if (root->root_key.objectid ==
 321                            BTRFS_TREE_RELOC_OBJECTID) {
 322                                ret = btrfs_dec_ref(trans, root, buf, 0);
 323                                if (ret)
 324                                        return ret;
 325                                ret = btrfs_inc_ref(trans, root, cow, 1);
 326                                if (ret)
 327                                        return ret;
 328                        }
 329                        new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
 330                } else {
 331
 332                        if (root->root_key.objectid ==
 333                            BTRFS_TREE_RELOC_OBJECTID)
 334                                ret = btrfs_inc_ref(trans, root, cow, 1);
 335                        else
 336                                ret = btrfs_inc_ref(trans, root, cow, 0);
 337                        if (ret)
 338                                return ret;
 339                }
 340                if (new_flags != 0) {
 341                        int level = btrfs_header_level(buf);
 342
 343                        ret = btrfs_set_disk_extent_flags(trans, buf,
 344                                                          new_flags, level, 0);
 345                        if (ret)
 346                                return ret;
 347                }
 348        } else {
 349                if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
 350                        if (root->root_key.objectid ==
 351                            BTRFS_TREE_RELOC_OBJECTID)
 352                                ret = btrfs_inc_ref(trans, root, cow, 1);
 353                        else
 354                                ret = btrfs_inc_ref(trans, root, cow, 0);
 355                        if (ret)
 356                                return ret;
 357                        ret = btrfs_dec_ref(trans, root, buf, 1);
 358                        if (ret)
 359                                return ret;
 360                }
 361                btrfs_clean_tree_block(buf);
 362                *last_ref = 1;
 363        }
 364        return 0;
 365}
 366
 367static struct extent_buffer *alloc_tree_block_no_bg_flush(
 368                                          struct btrfs_trans_handle *trans,
 369                                          struct btrfs_root *root,
 370                                          u64 parent_start,
 371                                          const struct btrfs_disk_key *disk_key,
 372                                          int level,
 373                                          u64 hint,
 374                                          u64 empty_size,
 375                                          enum btrfs_lock_nesting nest)
 376{
 377        struct btrfs_fs_info *fs_info = root->fs_info;
 378        struct extent_buffer *ret;
 379
 380        /*
 381         * If we are COWing a node/leaf from the extent, chunk, device or free
 382         * space trees, make sure that we do not finish block group creation of
 383         * pending block groups. We do this to avoid a deadlock.
 384         * COWing can result in allocation of a new chunk, and flushing pending
 385         * block groups (btrfs_create_pending_block_groups()) can be triggered
 386         * when finishing allocation of a new chunk. Creation of a pending block
 387         * group modifies the extent, chunk, device and free space trees,
 388         * therefore we could deadlock with ourselves since we are holding a
 389         * lock on an extent buffer that btrfs_create_pending_block_groups() may
 390         * try to COW later.
 391         * For similar reasons, we also need to delay flushing pending block
 392         * groups when splitting a leaf or node, from one of those trees, since
 393         * we are holding a write lock on it and its parent or when inserting a
 394         * new root node for one of those trees.
 395         */
 396        if (root == fs_info->extent_root ||
 397            root == fs_info->chunk_root ||
 398            root == fs_info->dev_root ||
 399            root == fs_info->free_space_root)
 400                trans->can_flush_pending_bgs = false;
 401
 402        ret = btrfs_alloc_tree_block(trans, root, parent_start,
 403                                     root->root_key.objectid, disk_key, level,
 404                                     hint, empty_size, nest);
 405        trans->can_flush_pending_bgs = true;
 406
 407        return ret;
 408}
 409
 410/*
 411 * does the dirty work in cow of a single block.  The parent block (if
 412 * supplied) is updated to point to the new cow copy.  The new buffer is marked
 413 * dirty and returned locked.  If you modify the block it needs to be marked
 414 * dirty again.
 415 *
 416 * search_start -- an allocation hint for the new block
 417 *
 418 * empty_size -- a hint that you plan on doing more cow.  This is the size in
 419 * bytes the allocator should try to find free next to the block it returns.
 420 * This is just a hint and may be ignored by the allocator.
 421 */
 422static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
 423                             struct btrfs_root *root,
 424                             struct extent_buffer *buf,
 425                             struct extent_buffer *parent, int parent_slot,
 426                             struct extent_buffer **cow_ret,
 427                             u64 search_start, u64 empty_size,
 428                             enum btrfs_lock_nesting nest)
 429{
 430        struct btrfs_fs_info *fs_info = root->fs_info;
 431        struct btrfs_disk_key disk_key;
 432        struct extent_buffer *cow;
 433        int level, ret;
 434        int last_ref = 0;
 435        int unlock_orig = 0;
 436        u64 parent_start = 0;
 437
 438        if (*cow_ret == buf)
 439                unlock_orig = 1;
 440
 441        btrfs_assert_tree_locked(buf);
 442
 443        WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 444                trans->transid != fs_info->running_transaction->transid);
 445        WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
 446                trans->transid != root->last_trans);
 447
 448        level = btrfs_header_level(buf);
 449
 450        if (level == 0)
 451                btrfs_item_key(buf, &disk_key, 0);
 452        else
 453                btrfs_node_key(buf, &disk_key, 0);
 454
 455        if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
 456                parent_start = parent->start;
 457
 458        cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
 459                                           level, search_start, empty_size, nest);
 460        if (IS_ERR(cow))
 461                return PTR_ERR(cow);
 462
 463        /* cow is set to blocking by btrfs_init_new_buffer */
 464
 465        copy_extent_buffer_full(cow, buf);
 466        btrfs_set_header_bytenr(cow, cow->start);
 467        btrfs_set_header_generation(cow, trans->transid);
 468        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 469        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 470                                     BTRFS_HEADER_FLAG_RELOC);
 471        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
 472                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 473        else
 474                btrfs_set_header_owner(cow, root->root_key.objectid);
 475
 476        write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
 477
 478        ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
 479        if (ret) {
 480                btrfs_tree_unlock(cow);
 481                free_extent_buffer(cow);
 482                btrfs_abort_transaction(trans, ret);
 483                return ret;
 484        }
 485
 486        if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
 487                ret = btrfs_reloc_cow_block(trans, root, buf, cow);
 488                if (ret) {
 489                        btrfs_tree_unlock(cow);
 490                        free_extent_buffer(cow);
 491                        btrfs_abort_transaction(trans, ret);
 492                        return ret;
 493                }
 494        }
 495
 496        if (buf == root->node) {
 497                WARN_ON(parent && parent != buf);
 498                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
 499                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 500                        parent_start = buf->start;
 501
 502                atomic_inc(&cow->refs);
 503                ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
 504                BUG_ON(ret < 0);
 505                rcu_assign_pointer(root->node, cow);
 506
 507                btrfs_free_tree_block(trans, root, buf, parent_start,
 508                                      last_ref);
 509                free_extent_buffer(buf);
 510                add_root_to_dirty_list(root);
 511        } else {
 512                WARN_ON(trans->transid != btrfs_header_generation(parent));
 513                btrfs_tree_mod_log_insert_key(parent, parent_slot,
 514                                              BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
 515                btrfs_set_node_blockptr(parent, parent_slot,
 516                                        cow->start);
 517                btrfs_set_node_ptr_generation(parent, parent_slot,
 518                                              trans->transid);
 519                btrfs_mark_buffer_dirty(parent);
 520                if (last_ref) {
 521                        ret = btrfs_tree_mod_log_free_eb(buf);
 522                        if (ret) {
 523                                btrfs_tree_unlock(cow);
 524                                free_extent_buffer(cow);
 525                                btrfs_abort_transaction(trans, ret);
 526                                return ret;
 527                        }
 528                }
 529                btrfs_free_tree_block(trans, root, buf, parent_start,
 530                                      last_ref);
 531        }
 532        if (unlock_orig)
 533                btrfs_tree_unlock(buf);
 534        free_extent_buffer_stale(buf);
 535        btrfs_mark_buffer_dirty(cow);
 536        *cow_ret = cow;
 537        return 0;
 538}
 539
 540static inline int should_cow_block(struct btrfs_trans_handle *trans,
 541                                   struct btrfs_root *root,
 542                                   struct extent_buffer *buf)
 543{
 544        if (btrfs_is_testing(root->fs_info))
 545                return 0;
 546
 547        /* Ensure we can see the FORCE_COW bit */
 548        smp_mb__before_atomic();
 549
 550        /*
 551         * We do not need to cow a block if
 552         * 1) this block is not created or changed in this transaction;
 553         * 2) this block does not belong to TREE_RELOC tree;
 554         * 3) the root is not forced COW.
 555         *
 556         * What is forced COW:
 557         *    when we create snapshot during committing the transaction,
 558         *    after we've finished copying src root, we must COW the shared
 559         *    block to ensure the metadata consistency.
 560         */
 561        if (btrfs_header_generation(buf) == trans->transid &&
 562            !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
 563            !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
 564              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
 565            !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
 566                return 0;
 567        return 1;
 568}
 569
 570/*
 571 * cows a single block, see __btrfs_cow_block for the real work.
 572 * This version of it has extra checks so that a block isn't COWed more than
 573 * once per transaction, as long as it hasn't been written yet
 574 */
 575noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
 576                    struct btrfs_root *root, struct extent_buffer *buf,
 577                    struct extent_buffer *parent, int parent_slot,
 578                    struct extent_buffer **cow_ret,
 579                    enum btrfs_lock_nesting nest)
 580{
 581        struct btrfs_fs_info *fs_info = root->fs_info;
 582        u64 search_start;
 583        int ret;
 584
 585        if (test_bit(BTRFS_ROOT_DELETING, &root->state))
 586                btrfs_err(fs_info,
 587                        "COW'ing blocks on a fs root that's being dropped");
 588
 589        if (trans->transaction != fs_info->running_transaction)
 590                WARN(1, KERN_CRIT "trans %llu running %llu\n",
 591                       trans->transid,
 592                       fs_info->running_transaction->transid);
 593
 594        if (trans->transid != fs_info->generation)
 595                WARN(1, KERN_CRIT "trans %llu running %llu\n",
 596                       trans->transid, fs_info->generation);
 597
 598        if (!should_cow_block(trans, root, buf)) {
 599                trans->dirty = true;
 600                *cow_ret = buf;
 601                return 0;
 602        }
 603
 604        search_start = buf->start & ~((u64)SZ_1G - 1);
 605
 606        /*
 607         * Before CoWing this block for later modification, check if it's
 608         * the subtree root and do the delayed subtree trace if needed.
 609         *
 610         * Also We don't care about the error, as it's handled internally.
 611         */
 612        btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
 613        ret = __btrfs_cow_block(trans, root, buf, parent,
 614                                 parent_slot, cow_ret, search_start, 0, nest);
 615
 616        trace_btrfs_cow_block(root, buf, *cow_ret);
 617
 618        return ret;
 619}
 620ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
 621
 622/*
 623 * helper function for defrag to decide if two blocks pointed to by a
 624 * node are actually close by
 625 */
 626static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
 627{
 628        if (blocknr < other && other - (blocknr + blocksize) < 32768)
 629                return 1;
 630        if (blocknr > other && blocknr - (other + blocksize) < 32768)
 631                return 1;
 632        return 0;
 633}
 634
 635#ifdef __LITTLE_ENDIAN
 636
 637/*
 638 * Compare two keys, on little-endian the disk order is same as CPU order and
 639 * we can avoid the conversion.
 640 */
 641static int comp_keys(const struct btrfs_disk_key *disk_key,
 642                     const struct btrfs_key *k2)
 643{
 644        const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
 645
 646        return btrfs_comp_cpu_keys(k1, k2);
 647}
 648
 649#else
 650
 651/*
 652 * compare two keys in a memcmp fashion
 653 */
 654static int comp_keys(const struct btrfs_disk_key *disk,
 655                     const struct btrfs_key *k2)
 656{
 657        struct btrfs_key k1;
 658
 659        btrfs_disk_key_to_cpu(&k1, disk);
 660
 661        return btrfs_comp_cpu_keys(&k1, k2);
 662}
 663#endif
 664
 665/*
 666 * same as comp_keys only with two btrfs_key's
 667 */
 668int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
 669{
 670        if (k1->objectid > k2->objectid)
 671                return 1;
 672        if (k1->objectid < k2->objectid)
 673                return -1;
 674        if (k1->type > k2->type)
 675                return 1;
 676        if (k1->type < k2->type)
 677                return -1;
 678        if (k1->offset > k2->offset)
 679                return 1;
 680        if (k1->offset < k2->offset)
 681                return -1;
 682        return 0;
 683}
 684
 685/*
 686 * this is used by the defrag code to go through all the
 687 * leaves pointed to by a node and reallocate them so that
 688 * disk order is close to key order
 689 */
 690int btrfs_realloc_node(struct btrfs_trans_handle *trans,
 691                       struct btrfs_root *root, struct extent_buffer *parent,
 692                       int start_slot, u64 *last_ret,
 693                       struct btrfs_key *progress)
 694{
 695        struct btrfs_fs_info *fs_info = root->fs_info;
 696        struct extent_buffer *cur;
 697        u64 blocknr;
 698        u64 search_start = *last_ret;
 699        u64 last_block = 0;
 700        u64 other;
 701        u32 parent_nritems;
 702        int end_slot;
 703        int i;
 704        int err = 0;
 705        u32 blocksize;
 706        int progress_passed = 0;
 707        struct btrfs_disk_key disk_key;
 708
 709        WARN_ON(trans->transaction != fs_info->running_transaction);
 710        WARN_ON(trans->transid != fs_info->generation);
 711
 712        parent_nritems = btrfs_header_nritems(parent);
 713        blocksize = fs_info->nodesize;
 714        end_slot = parent_nritems - 1;
 715
 716        if (parent_nritems <= 1)
 717                return 0;
 718
 719        for (i = start_slot; i <= end_slot; i++) {
 720                int close = 1;
 721
 722                btrfs_node_key(parent, &disk_key, i);
 723                if (!progress_passed && comp_keys(&disk_key, progress) < 0)
 724                        continue;
 725
 726                progress_passed = 1;
 727                blocknr = btrfs_node_blockptr(parent, i);
 728                if (last_block == 0)
 729                        last_block = blocknr;
 730
 731                if (i > 0) {
 732                        other = btrfs_node_blockptr(parent, i - 1);
 733                        close = close_blocks(blocknr, other, blocksize);
 734                }
 735                if (!close && i < end_slot) {
 736                        other = btrfs_node_blockptr(parent, i + 1);
 737                        close = close_blocks(blocknr, other, blocksize);
 738                }
 739                if (close) {
 740                        last_block = blocknr;
 741                        continue;
 742                }
 743
 744                cur = btrfs_read_node_slot(parent, i);
 745                if (IS_ERR(cur))
 746                        return PTR_ERR(cur);
 747                if (search_start == 0)
 748                        search_start = last_block;
 749
 750                btrfs_tree_lock(cur);
 751                err = __btrfs_cow_block(trans, root, cur, parent, i,
 752                                        &cur, search_start,
 753                                        min(16 * blocksize,
 754                                            (end_slot - i) * blocksize),
 755                                        BTRFS_NESTING_COW);
 756                if (err) {
 757                        btrfs_tree_unlock(cur);
 758                        free_extent_buffer(cur);
 759                        break;
 760                }
 761                search_start = cur->start;
 762                last_block = cur->start;
 763                *last_ret = search_start;
 764                btrfs_tree_unlock(cur);
 765                free_extent_buffer(cur);
 766        }
 767        return err;
 768}
 769
 770/*
 771 * search for key in the extent_buffer.  The items start at offset p,
 772 * and they are item_size apart.  There are 'max' items in p.
 773 *
 774 * the slot in the array is returned via slot, and it points to
 775 * the place where you would insert key if it is not found in
 776 * the array.
 777 *
 778 * slot may point to max if the key is bigger than all of the keys
 779 */
 780static noinline int generic_bin_search(struct extent_buffer *eb,
 781                                       unsigned long p, int item_size,
 782                                       const struct btrfs_key *key,
 783                                       int max, int *slot)
 784{
 785        int low = 0;
 786        int high = max;
 787        int ret;
 788        const int key_size = sizeof(struct btrfs_disk_key);
 789
 790        if (low > high) {
 791                btrfs_err(eb->fs_info,
 792                 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
 793                          __func__, low, high, eb->start,
 794                          btrfs_header_owner(eb), btrfs_header_level(eb));
 795                return -EINVAL;
 796        }
 797
 798        while (low < high) {
 799                unsigned long oip;
 800                unsigned long offset;
 801                struct btrfs_disk_key *tmp;
 802                struct btrfs_disk_key unaligned;
 803                int mid;
 804
 805                mid = (low + high) / 2;
 806                offset = p + mid * item_size;
 807                oip = offset_in_page(offset);
 808
 809                if (oip + key_size <= PAGE_SIZE) {
 810                        const unsigned long idx = get_eb_page_index(offset);
 811                        char *kaddr = page_address(eb->pages[idx]);
 812
 813                        oip = get_eb_offset_in_page(eb, offset);
 814                        tmp = (struct btrfs_disk_key *)(kaddr + oip);
 815                } else {
 816                        read_extent_buffer(eb, &unaligned, offset, key_size);
 817                        tmp = &unaligned;
 818                }
 819
 820                ret = comp_keys(tmp, key);
 821
 822                if (ret < 0)
 823                        low = mid + 1;
 824                else if (ret > 0)
 825                        high = mid;
 826                else {
 827                        *slot = mid;
 828                        return 0;
 829                }
 830        }
 831        *slot = low;
 832        return 1;
 833}
 834
 835/*
 836 * simple bin_search frontend that does the right thing for
 837 * leaves vs nodes
 838 */
 839int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
 840                     int *slot)
 841{
 842        if (btrfs_header_level(eb) == 0)
 843                return generic_bin_search(eb,
 844                                          offsetof(struct btrfs_leaf, items),
 845                                          sizeof(struct btrfs_item),
 846                                          key, btrfs_header_nritems(eb),
 847                                          slot);
 848        else
 849                return generic_bin_search(eb,
 850                                          offsetof(struct btrfs_node, ptrs),
 851                                          sizeof(struct btrfs_key_ptr),
 852                                          key, btrfs_header_nritems(eb),
 853                                          slot);
 854}
 855
 856static void root_add_used(struct btrfs_root *root, u32 size)
 857{
 858        spin_lock(&root->accounting_lock);
 859        btrfs_set_root_used(&root->root_item,
 860                            btrfs_root_used(&root->root_item) + size);
 861        spin_unlock(&root->accounting_lock);
 862}
 863
 864static void root_sub_used(struct btrfs_root *root, u32 size)
 865{
 866        spin_lock(&root->accounting_lock);
 867        btrfs_set_root_used(&root->root_item,
 868                            btrfs_root_used(&root->root_item) - size);
 869        spin_unlock(&root->accounting_lock);
 870}
 871
 872/* given a node and slot number, this reads the blocks it points to.  The
 873 * extent buffer is returned with a reference taken (but unlocked).
 874 */
 875struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
 876                                           int slot)
 877{
 878        int level = btrfs_header_level(parent);
 879        struct extent_buffer *eb;
 880        struct btrfs_key first_key;
 881
 882        if (slot < 0 || slot >= btrfs_header_nritems(parent))
 883                return ERR_PTR(-ENOENT);
 884
 885        BUG_ON(level == 0);
 886
 887        btrfs_node_key_to_cpu(parent, &first_key, slot);
 888        eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
 889                             btrfs_header_owner(parent),
 890                             btrfs_node_ptr_generation(parent, slot),
 891                             level - 1, &first_key);
 892        if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
 893                free_extent_buffer(eb);
 894                eb = ERR_PTR(-EIO);
 895        }
 896
 897        return eb;
 898}
 899
 900/*
 901 * node level balancing, used to make sure nodes are in proper order for
 902 * item deletion.  We balance from the top down, so we have to make sure
 903 * that a deletion won't leave an node completely empty later on.
 904 */
 905static noinline int balance_level(struct btrfs_trans_handle *trans,
 906                         struct btrfs_root *root,
 907                         struct btrfs_path *path, int level)
 908{
 909        struct btrfs_fs_info *fs_info = root->fs_info;
 910        struct extent_buffer *right = NULL;
 911        struct extent_buffer *mid;
 912        struct extent_buffer *left = NULL;
 913        struct extent_buffer *parent = NULL;
 914        int ret = 0;
 915        int wret;
 916        int pslot;
 917        int orig_slot = path->slots[level];
 918        u64 orig_ptr;
 919
 920        ASSERT(level > 0);
 921
 922        mid = path->nodes[level];
 923
 924        WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
 925        WARN_ON(btrfs_header_generation(mid) != trans->transid);
 926
 927        orig_ptr = btrfs_node_blockptr(mid, orig_slot);
 928
 929        if (level < BTRFS_MAX_LEVEL - 1) {
 930                parent = path->nodes[level + 1];
 931                pslot = path->slots[level + 1];
 932        }
 933
 934        /*
 935         * deal with the case where there is only one pointer in the root
 936         * by promoting the node below to a root
 937         */
 938        if (!parent) {
 939                struct extent_buffer *child;
 940
 941                if (btrfs_header_nritems(mid) != 1)
 942                        return 0;
 943
 944                /* promote the child to a root */
 945                child = btrfs_read_node_slot(mid, 0);
 946                if (IS_ERR(child)) {
 947                        ret = PTR_ERR(child);
 948                        btrfs_handle_fs_error(fs_info, ret, NULL);
 949                        goto enospc;
 950                }
 951
 952                btrfs_tree_lock(child);
 953                ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
 954                                      BTRFS_NESTING_COW);
 955                if (ret) {
 956                        btrfs_tree_unlock(child);
 957                        free_extent_buffer(child);
 958                        goto enospc;
 959                }
 960
 961                ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
 962                BUG_ON(ret < 0);
 963                rcu_assign_pointer(root->node, child);
 964
 965                add_root_to_dirty_list(root);
 966                btrfs_tree_unlock(child);
 967
 968                path->locks[level] = 0;
 969                path->nodes[level] = NULL;
 970                btrfs_clean_tree_block(mid);
 971                btrfs_tree_unlock(mid);
 972                /* once for the path */
 973                free_extent_buffer(mid);
 974
 975                root_sub_used(root, mid->len);
 976                btrfs_free_tree_block(trans, root, mid, 0, 1);
 977                /* once for the root ptr */
 978                free_extent_buffer_stale(mid);
 979                return 0;
 980        }
 981        if (btrfs_header_nritems(mid) >
 982            BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
 983                return 0;
 984
 985        left = btrfs_read_node_slot(parent, pslot - 1);
 986        if (IS_ERR(left))
 987                left = NULL;
 988
 989        if (left) {
 990                __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
 991                wret = btrfs_cow_block(trans, root, left,
 992                                       parent, pslot - 1, &left,
 993                                       BTRFS_NESTING_LEFT_COW);
 994                if (wret) {
 995                        ret = wret;
 996                        goto enospc;
 997                }
 998        }
 999
1000        right = btrfs_read_node_slot(parent, pslot + 1);
1001        if (IS_ERR(right))
1002                right = NULL;
1003
1004        if (right) {
1005                __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1006                wret = btrfs_cow_block(trans, root, right,
1007                                       parent, pslot + 1, &right,
1008                                       BTRFS_NESTING_RIGHT_COW);
1009                if (wret) {
1010                        ret = wret;
1011                        goto enospc;
1012                }
1013        }
1014
1015        /* first, try to make some room in the middle buffer */
1016        if (left) {
1017                orig_slot += btrfs_header_nritems(left);
1018                wret = push_node_left(trans, left, mid, 1);
1019                if (wret < 0)
1020                        ret = wret;
1021        }
1022
1023        /*
1024         * then try to empty the right most buffer into the middle
1025         */
1026        if (right) {
1027                wret = push_node_left(trans, mid, right, 1);
1028                if (wret < 0 && wret != -ENOSPC)
1029                        ret = wret;
1030                if (btrfs_header_nritems(right) == 0) {
1031                        btrfs_clean_tree_block(right);
1032                        btrfs_tree_unlock(right);
1033                        del_ptr(root, path, level + 1, pslot + 1);
1034                        root_sub_used(root, right->len);
1035                        btrfs_free_tree_block(trans, root, right, 0, 1);
1036                        free_extent_buffer_stale(right);
1037                        right = NULL;
1038                } else {
1039                        struct btrfs_disk_key right_key;
1040                        btrfs_node_key(right, &right_key, 0);
1041                        ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1042                                        BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1043                        BUG_ON(ret < 0);
1044                        btrfs_set_node_key(parent, &right_key, pslot + 1);
1045                        btrfs_mark_buffer_dirty(parent);
1046                }
1047        }
1048        if (btrfs_header_nritems(mid) == 1) {
1049                /*
1050                 * we're not allowed to leave a node with one item in the
1051                 * tree during a delete.  A deletion from lower in the tree
1052                 * could try to delete the only pointer in this node.
1053                 * So, pull some keys from the left.
1054                 * There has to be a left pointer at this point because
1055                 * otherwise we would have pulled some pointers from the
1056                 * right
1057                 */
1058                if (!left) {
1059                        ret = -EROFS;
1060                        btrfs_handle_fs_error(fs_info, ret, NULL);
1061                        goto enospc;
1062                }
1063                wret = balance_node_right(trans, mid, left);
1064                if (wret < 0) {
1065                        ret = wret;
1066                        goto enospc;
1067                }
1068                if (wret == 1) {
1069                        wret = push_node_left(trans, left, mid, 1);
1070                        if (wret < 0)
1071                                ret = wret;
1072                }
1073                BUG_ON(wret == 1);
1074        }
1075        if (btrfs_header_nritems(mid) == 0) {
1076                btrfs_clean_tree_block(mid);
1077                btrfs_tree_unlock(mid);
1078                del_ptr(root, path, level + 1, pslot);
1079                root_sub_used(root, mid->len);
1080                btrfs_free_tree_block(trans, root, mid, 0, 1);
1081                free_extent_buffer_stale(mid);
1082                mid = NULL;
1083        } else {
1084                /* update the parent key to reflect our changes */
1085                struct btrfs_disk_key mid_key;
1086                btrfs_node_key(mid, &mid_key, 0);
1087                ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1088                                BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1089                BUG_ON(ret < 0);
1090                btrfs_set_node_key(parent, &mid_key, pslot);
1091                btrfs_mark_buffer_dirty(parent);
1092        }
1093
1094        /* update the path */
1095        if (left) {
1096                if (btrfs_header_nritems(left) > orig_slot) {
1097                        atomic_inc(&left->refs);
1098                        /* left was locked after cow */
1099                        path->nodes[level] = left;
1100                        path->slots[level + 1] -= 1;
1101                        path->slots[level] = orig_slot;
1102                        if (mid) {
1103                                btrfs_tree_unlock(mid);
1104                                free_extent_buffer(mid);
1105                        }
1106                } else {
1107                        orig_slot -= btrfs_header_nritems(left);
1108                        path->slots[level] = orig_slot;
1109                }
1110        }
1111        /* double check we haven't messed things up */
1112        if (orig_ptr !=
1113            btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1114                BUG();
1115enospc:
1116        if (right) {
1117                btrfs_tree_unlock(right);
1118                free_extent_buffer(right);
1119        }
1120        if (left) {
1121                if (path->nodes[level] != left)
1122                        btrfs_tree_unlock(left);
1123                free_extent_buffer(left);
1124        }
1125        return ret;
1126}
1127
1128/* Node balancing for insertion.  Here we only split or push nodes around
1129 * when they are completely full.  This is also done top down, so we
1130 * have to be pessimistic.
1131 */
1132static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1133                                          struct btrfs_root *root,
1134                                          struct btrfs_path *path, int level)
1135{
1136        struct btrfs_fs_info *fs_info = root->fs_info;
1137        struct extent_buffer *right = NULL;
1138        struct extent_buffer *mid;
1139        struct extent_buffer *left = NULL;
1140        struct extent_buffer *parent = NULL;
1141        int ret = 0;
1142        int wret;
1143        int pslot;
1144        int orig_slot = path->slots[level];
1145
1146        if (level == 0)
1147                return 1;
1148
1149        mid = path->nodes[level];
1150        WARN_ON(btrfs_header_generation(mid) != trans->transid);
1151
1152        if (level < BTRFS_MAX_LEVEL - 1) {
1153                parent = path->nodes[level + 1];
1154                pslot = path->slots[level + 1];
1155        }
1156
1157        if (!parent)
1158                return 1;
1159
1160        left = btrfs_read_node_slot(parent, pslot - 1);
1161        if (IS_ERR(left))
1162                left = NULL;
1163
1164        /* first, try to make some room in the middle buffer */
1165        if (left) {
1166                u32 left_nr;
1167
1168                __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1169
1170                left_nr = btrfs_header_nritems(left);
1171                if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1172                        wret = 1;
1173                } else {
1174                        ret = btrfs_cow_block(trans, root, left, parent,
1175                                              pslot - 1, &left,
1176                                              BTRFS_NESTING_LEFT_COW);
1177                        if (ret)
1178                                wret = 1;
1179                        else {
1180                                wret = push_node_left(trans, left, mid, 0);
1181                        }
1182                }
1183                if (wret < 0)
1184                        ret = wret;
1185                if (wret == 0) {
1186                        struct btrfs_disk_key disk_key;
1187                        orig_slot += left_nr;
1188                        btrfs_node_key(mid, &disk_key, 0);
1189                        ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1190                                        BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1191                        BUG_ON(ret < 0);
1192                        btrfs_set_node_key(parent, &disk_key, pslot);
1193                        btrfs_mark_buffer_dirty(parent);
1194                        if (btrfs_header_nritems(left) > orig_slot) {
1195                                path->nodes[level] = left;
1196                                path->slots[level + 1] -= 1;
1197                                path->slots[level] = orig_slot;
1198                                btrfs_tree_unlock(mid);
1199                                free_extent_buffer(mid);
1200                        } else {
1201                                orig_slot -=
1202                                        btrfs_header_nritems(left);
1203                                path->slots[level] = orig_slot;
1204                                btrfs_tree_unlock(left);
1205                                free_extent_buffer(left);
1206                        }
1207                        return 0;
1208                }
1209                btrfs_tree_unlock(left);
1210                free_extent_buffer(left);
1211        }
1212        right = btrfs_read_node_slot(parent, pslot + 1);
1213        if (IS_ERR(right))
1214                right = NULL;
1215
1216        /*
1217         * then try to empty the right most buffer into the middle
1218         */
1219        if (right) {
1220                u32 right_nr;
1221
1222                __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1223
1224                right_nr = btrfs_header_nritems(right);
1225                if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1226                        wret = 1;
1227                } else {
1228                        ret = btrfs_cow_block(trans, root, right,
1229                                              parent, pslot + 1,
1230                                              &right, BTRFS_NESTING_RIGHT_COW);
1231                        if (ret)
1232                                wret = 1;
1233                        else {
1234                                wret = balance_node_right(trans, right, mid);
1235                        }
1236                }
1237                if (wret < 0)
1238                        ret = wret;
1239                if (wret == 0) {
1240                        struct btrfs_disk_key disk_key;
1241
1242                        btrfs_node_key(right, &disk_key, 0);
1243                        ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1244                                        BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1245                        BUG_ON(ret < 0);
1246                        btrfs_set_node_key(parent, &disk_key, pslot + 1);
1247                        btrfs_mark_buffer_dirty(parent);
1248
1249                        if (btrfs_header_nritems(mid) <= orig_slot) {
1250                                path->nodes[level] = right;
1251                                path->slots[level + 1] += 1;
1252                                path->slots[level] = orig_slot -
1253                                        btrfs_header_nritems(mid);
1254                                btrfs_tree_unlock(mid);
1255                                free_extent_buffer(mid);
1256                        } else {
1257                                btrfs_tree_unlock(right);
1258                                free_extent_buffer(right);
1259                        }
1260                        return 0;
1261                }
1262                btrfs_tree_unlock(right);
1263                free_extent_buffer(right);
1264        }
1265        return 1;
1266}
1267
1268/*
1269 * readahead one full node of leaves, finding things that are close
1270 * to the block in 'slot', and triggering ra on them.
1271 */
1272static void reada_for_search(struct btrfs_fs_info *fs_info,
1273                             struct btrfs_path *path,
1274                             int level, int slot, u64 objectid)
1275{
1276        struct extent_buffer *node;
1277        struct btrfs_disk_key disk_key;
1278        u32 nritems;
1279        u64 search;
1280        u64 target;
1281        u64 nread = 0;
1282        u64 nread_max;
1283        struct extent_buffer *eb;
1284        u32 nr;
1285        u32 blocksize;
1286        u32 nscan = 0;
1287
1288        if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1289                return;
1290
1291        if (!path->nodes[level])
1292                return;
1293
1294        node = path->nodes[level];
1295
1296        /*
1297         * Since the time between visiting leaves is much shorter than the time
1298         * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1299         * much IO at once (possibly random).
1300         */
1301        if (path->reada == READA_FORWARD_ALWAYS) {
1302                if (level > 1)
1303                        nread_max = node->fs_info->nodesize;
1304                else
1305                        nread_max = SZ_128K;
1306        } else {
1307                nread_max = SZ_64K;
1308        }
1309
1310        search = btrfs_node_blockptr(node, slot);
1311        blocksize = fs_info->nodesize;
1312        eb = find_extent_buffer(fs_info, search);
1313        if (eb) {
1314                free_extent_buffer(eb);
1315                return;
1316        }
1317
1318        target = search;
1319
1320        nritems = btrfs_header_nritems(node);
1321        nr = slot;
1322
1323        while (1) {
1324                if (path->reada == READA_BACK) {
1325                        if (nr == 0)
1326                                break;
1327                        nr--;
1328                } else if (path->reada == READA_FORWARD ||
1329                           path->reada == READA_FORWARD_ALWAYS) {
1330                        nr++;
1331                        if (nr >= nritems)
1332                                break;
1333                }
1334                if (path->reada == READA_BACK && objectid) {
1335                        btrfs_node_key(node, &disk_key, nr);
1336                        if (btrfs_disk_key_objectid(&disk_key) != objectid)
1337                                break;
1338                }
1339                search = btrfs_node_blockptr(node, nr);
1340                if (path->reada == READA_FORWARD_ALWAYS ||
1341                    (search <= target && target - search <= 65536) ||
1342                    (search > target && search - target <= 65536)) {
1343                        btrfs_readahead_node_child(node, nr);
1344                        nread += blocksize;
1345                }
1346                nscan++;
1347                if (nread > nread_max || nscan > 32)
1348                        break;
1349        }
1350}
1351
1352static noinline void reada_for_balance(struct btrfs_path *path, int level)
1353{
1354        struct extent_buffer *parent;
1355        int slot;
1356        int nritems;
1357
1358        parent = path->nodes[level + 1];
1359        if (!parent)
1360                return;
1361
1362        nritems = btrfs_header_nritems(parent);
1363        slot = path->slots[level + 1];
1364
1365        if (slot > 0)
1366                btrfs_readahead_node_child(parent, slot - 1);
1367        if (slot + 1 < nritems)
1368                btrfs_readahead_node_child(parent, slot + 1);
1369}
1370
1371
1372/*
1373 * when we walk down the tree, it is usually safe to unlock the higher layers
1374 * in the tree.  The exceptions are when our path goes through slot 0, because
1375 * operations on the tree might require changing key pointers higher up in the
1376 * tree.
1377 *
1378 * callers might also have set path->keep_locks, which tells this code to keep
1379 * the lock if the path points to the last slot in the block.  This is part of
1380 * walking through the tree, and selecting the next slot in the higher block.
1381 *
1382 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1383 * if lowest_unlock is 1, level 0 won't be unlocked
1384 */
1385static noinline void unlock_up(struct btrfs_path *path, int level,
1386                               int lowest_unlock, int min_write_lock_level,
1387                               int *write_lock_level)
1388{
1389        int i;
1390        int skip_level = level;
1391        int no_skips = 0;
1392        struct extent_buffer *t;
1393
1394        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1395                if (!path->nodes[i])
1396                        break;
1397                if (!path->locks[i])
1398                        break;
1399                if (!no_skips && path->slots[i] == 0) {
1400                        skip_level = i + 1;
1401                        continue;
1402                }
1403                if (!no_skips && path->keep_locks) {
1404                        u32 nritems;
1405                        t = path->nodes[i];
1406                        nritems = btrfs_header_nritems(t);
1407                        if (nritems < 1 || path->slots[i] >= nritems - 1) {
1408                                skip_level = i + 1;
1409                                continue;
1410                        }
1411                }
1412                if (skip_level < i && i >= lowest_unlock)
1413                        no_skips = 1;
1414
1415                t = path->nodes[i];
1416                if (i >= lowest_unlock && i > skip_level) {
1417                        btrfs_tree_unlock_rw(t, path->locks[i]);
1418                        path->locks[i] = 0;
1419                        if (write_lock_level &&
1420                            i > min_write_lock_level &&
1421                            i <= *write_lock_level) {
1422                                *write_lock_level = i - 1;
1423                        }
1424                }
1425        }
1426}
1427
1428/*
1429 * helper function for btrfs_search_slot.  The goal is to find a block
1430 * in cache without setting the path to blocking.  If we find the block
1431 * we return zero and the path is unchanged.
1432 *
1433 * If we can't find the block, we set the path blocking and do some
1434 * reada.  -EAGAIN is returned and the search must be repeated.
1435 */
1436static int
1437read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1438                      struct extent_buffer **eb_ret, int level, int slot,
1439                      const struct btrfs_key *key)
1440{
1441        struct btrfs_fs_info *fs_info = root->fs_info;
1442        u64 blocknr;
1443        u64 gen;
1444        struct extent_buffer *tmp;
1445        struct btrfs_key first_key;
1446        int ret;
1447        int parent_level;
1448
1449        blocknr = btrfs_node_blockptr(*eb_ret, slot);
1450        gen = btrfs_node_ptr_generation(*eb_ret, slot);
1451        parent_level = btrfs_header_level(*eb_ret);
1452        btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
1453
1454        tmp = find_extent_buffer(fs_info, blocknr);
1455        if (tmp) {
1456                if (p->reada == READA_FORWARD_ALWAYS)
1457                        reada_for_search(fs_info, p, level, slot, key->objectid);
1458
1459                /* first we do an atomic uptodate check */
1460                if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1461                        /*
1462                         * Do extra check for first_key, eb can be stale due to
1463                         * being cached, read from scrub, or have multiple
1464                         * parents (shared tree blocks).
1465                         */
1466                        if (btrfs_verify_level_key(tmp,
1467                                        parent_level - 1, &first_key, gen)) {
1468                                free_extent_buffer(tmp);
1469                                return -EUCLEAN;
1470                        }
1471                        *eb_ret = tmp;
1472                        return 0;
1473                }
1474
1475                /* now we're allowed to do a blocking uptodate check */
1476                ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
1477                if (!ret) {
1478                        *eb_ret = tmp;
1479                        return 0;
1480                }
1481                free_extent_buffer(tmp);
1482                btrfs_release_path(p);
1483                return -EIO;
1484        }
1485
1486        /*
1487         * reduce lock contention at high levels
1488         * of the btree by dropping locks before
1489         * we read.  Don't release the lock on the current
1490         * level because we need to walk this node to figure
1491         * out which blocks to read.
1492         */
1493        btrfs_unlock_up_safe(p, level + 1);
1494
1495        if (p->reada != READA_NONE)
1496                reada_for_search(fs_info, p, level, slot, key->objectid);
1497
1498        ret = -EAGAIN;
1499        tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
1500                              gen, parent_level - 1, &first_key);
1501        if (!IS_ERR(tmp)) {
1502                /*
1503                 * If the read above didn't mark this buffer up to date,
1504                 * it will never end up being up to date.  Set ret to EIO now
1505                 * and give up so that our caller doesn't loop forever
1506                 * on our EAGAINs.
1507                 */
1508                if (!extent_buffer_uptodate(tmp))
1509                        ret = -EIO;
1510                free_extent_buffer(tmp);
1511        } else {
1512                ret = PTR_ERR(tmp);
1513        }
1514
1515        btrfs_release_path(p);
1516        return ret;
1517}
1518
1519/*
1520 * helper function for btrfs_search_slot.  This does all of the checks
1521 * for node-level blocks and does any balancing required based on
1522 * the ins_len.
1523 *
1524 * If no extra work was required, zero is returned.  If we had to
1525 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1526 * start over
1527 */
1528static int
1529setup_nodes_for_search(struct btrfs_trans_handle *trans,
1530                       struct btrfs_root *root, struct btrfs_path *p,
1531                       struct extent_buffer *b, int level, int ins_len,
1532                       int *write_lock_level)
1533{
1534        struct btrfs_fs_info *fs_info = root->fs_info;
1535        int ret = 0;
1536
1537        if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1538            BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1539
1540                if (*write_lock_level < level + 1) {
1541                        *write_lock_level = level + 1;
1542                        btrfs_release_path(p);
1543                        return -EAGAIN;
1544                }
1545
1546                reada_for_balance(p, level);
1547                ret = split_node(trans, root, p, level);
1548
1549                b = p->nodes[level];
1550        } else if (ins_len < 0 && btrfs_header_nritems(b) <
1551                   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1552
1553                if (*write_lock_level < level + 1) {
1554                        *write_lock_level = level + 1;
1555                        btrfs_release_path(p);
1556                        return -EAGAIN;
1557                }
1558
1559                reada_for_balance(p, level);
1560                ret = balance_level(trans, root, p, level);
1561                if (ret)
1562                        return ret;
1563
1564                b = p->nodes[level];
1565                if (!b) {
1566                        btrfs_release_path(p);
1567                        return -EAGAIN;
1568                }
1569                BUG_ON(btrfs_header_nritems(b) == 1);
1570        }
1571        return ret;
1572}
1573
1574int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1575                u64 iobjectid, u64 ioff, u8 key_type,
1576                struct btrfs_key *found_key)
1577{
1578        int ret;
1579        struct btrfs_key key;
1580        struct extent_buffer *eb;
1581
1582        ASSERT(path);
1583        ASSERT(found_key);
1584
1585        key.type = key_type;
1586        key.objectid = iobjectid;
1587        key.offset = ioff;
1588
1589        ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1590        if (ret < 0)
1591                return ret;
1592
1593        eb = path->nodes[0];
1594        if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1595                ret = btrfs_next_leaf(fs_root, path);
1596                if (ret)
1597                        return ret;
1598                eb = path->nodes[0];
1599        }
1600
1601        btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1602        if (found_key->type != key.type ||
1603                        found_key->objectid != key.objectid)
1604                return 1;
1605
1606        return 0;
1607}
1608
1609static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1610                                                        struct btrfs_path *p,
1611                                                        int write_lock_level)
1612{
1613        struct btrfs_fs_info *fs_info = root->fs_info;
1614        struct extent_buffer *b;
1615        int root_lock;
1616        int level = 0;
1617
1618        /* We try very hard to do read locks on the root */
1619        root_lock = BTRFS_READ_LOCK;
1620
1621        if (p->search_commit_root) {
1622                /*
1623                 * The commit roots are read only so we always do read locks,
1624                 * and we always must hold the commit_root_sem when doing
1625                 * searches on them, the only exception is send where we don't
1626                 * want to block transaction commits for a long time, so
1627                 * we need to clone the commit root in order to avoid races
1628                 * with transaction commits that create a snapshot of one of
1629                 * the roots used by a send operation.
1630                 */
1631                if (p->need_commit_sem) {
1632                        down_read(&fs_info->commit_root_sem);
1633                        b = btrfs_clone_extent_buffer(root->commit_root);
1634                        up_read(&fs_info->commit_root_sem);
1635                        if (!b)
1636                                return ERR_PTR(-ENOMEM);
1637
1638                } else {
1639                        b = root->commit_root;
1640                        atomic_inc(&b->refs);
1641                }
1642                level = btrfs_header_level(b);
1643                /*
1644                 * Ensure that all callers have set skip_locking when
1645                 * p->search_commit_root = 1.
1646                 */
1647                ASSERT(p->skip_locking == 1);
1648
1649                goto out;
1650        }
1651
1652        if (p->skip_locking) {
1653                b = btrfs_root_node(root);
1654                level = btrfs_header_level(b);
1655                goto out;
1656        }
1657
1658        /*
1659         * If the level is set to maximum, we can skip trying to get the read
1660         * lock.
1661         */
1662        if (write_lock_level < BTRFS_MAX_LEVEL) {
1663                /*
1664                 * We don't know the level of the root node until we actually
1665                 * have it read locked
1666                 */
1667                b = btrfs_read_lock_root_node(root);
1668                level = btrfs_header_level(b);
1669                if (level > write_lock_level)
1670                        goto out;
1671
1672                /* Whoops, must trade for write lock */
1673                btrfs_tree_read_unlock(b);
1674                free_extent_buffer(b);
1675        }
1676
1677        b = btrfs_lock_root_node(root);
1678        root_lock = BTRFS_WRITE_LOCK;
1679
1680        /* The level might have changed, check again */
1681        level = btrfs_header_level(b);
1682
1683out:
1684        p->nodes[level] = b;
1685        if (!p->skip_locking)
1686                p->locks[level] = root_lock;
1687        /*
1688         * Callers are responsible for dropping b's references.
1689         */
1690        return b;
1691}
1692
1693
1694/*
1695 * btrfs_search_slot - look for a key in a tree and perform necessary
1696 * modifications to preserve tree invariants.
1697 *
1698 * @trans:      Handle of transaction, used when modifying the tree
1699 * @p:          Holds all btree nodes along the search path
1700 * @root:       The root node of the tree
1701 * @key:        The key we are looking for
1702 * @ins_len:    Indicates purpose of search:
1703 *              >0  for inserts it's size of item inserted (*)
1704 *              <0  for deletions
1705 *               0  for plain searches, not modifying the tree
1706 *
1707 *              (*) If size of item inserted doesn't include
1708 *              sizeof(struct btrfs_item), then p->search_for_extension must
1709 *              be set.
1710 * @cow:        boolean should CoW operations be performed. Must always be 1
1711 *              when modifying the tree.
1712 *
1713 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1714 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1715 *
1716 * If @key is found, 0 is returned and you can find the item in the leaf level
1717 * of the path (level 0)
1718 *
1719 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1720 * points to the slot where it should be inserted
1721 *
1722 * If an error is encountered while searching the tree a negative error number
1723 * is returned
1724 */
1725int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1726                      const struct btrfs_key *key, struct btrfs_path *p,
1727                      int ins_len, int cow)
1728{
1729        struct extent_buffer *b;
1730        int slot;
1731        int ret;
1732        int err;
1733        int level;
1734        int lowest_unlock = 1;
1735        /* everything at write_lock_level or lower must be write locked */
1736        int write_lock_level = 0;
1737        u8 lowest_level = 0;
1738        int min_write_lock_level;
1739        int prev_cmp;
1740
1741        lowest_level = p->lowest_level;
1742        WARN_ON(lowest_level && ins_len > 0);
1743        WARN_ON(p->nodes[0] != NULL);
1744        BUG_ON(!cow && ins_len);
1745
1746        if (ins_len < 0) {
1747                lowest_unlock = 2;
1748
1749                /* when we are removing items, we might have to go up to level
1750                 * two as we update tree pointers  Make sure we keep write
1751                 * for those levels as well
1752                 */
1753                write_lock_level = 2;
1754        } else if (ins_len > 0) {
1755                /*
1756                 * for inserting items, make sure we have a write lock on
1757                 * level 1 so we can update keys
1758                 */
1759                write_lock_level = 1;
1760        }
1761
1762        if (!cow)
1763                write_lock_level = -1;
1764
1765        if (cow && (p->keep_locks || p->lowest_level))
1766                write_lock_level = BTRFS_MAX_LEVEL;
1767
1768        min_write_lock_level = write_lock_level;
1769
1770again:
1771        prev_cmp = -1;
1772        b = btrfs_search_slot_get_root(root, p, write_lock_level);
1773        if (IS_ERR(b)) {
1774                ret = PTR_ERR(b);
1775                goto done;
1776        }
1777
1778        while (b) {
1779                int dec = 0;
1780
1781                level = btrfs_header_level(b);
1782
1783                if (cow) {
1784                        bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
1785
1786                        /*
1787                         * if we don't really need to cow this block
1788                         * then we don't want to set the path blocking,
1789                         * so we test it here
1790                         */
1791                        if (!should_cow_block(trans, root, b)) {
1792                                trans->dirty = true;
1793                                goto cow_done;
1794                        }
1795
1796                        /*
1797                         * must have write locks on this node and the
1798                         * parent
1799                         */
1800                        if (level > write_lock_level ||
1801                            (level + 1 > write_lock_level &&
1802                            level + 1 < BTRFS_MAX_LEVEL &&
1803                            p->nodes[level + 1])) {
1804                                write_lock_level = level + 1;
1805                                btrfs_release_path(p);
1806                                goto again;
1807                        }
1808
1809                        if (last_level)
1810                                err = btrfs_cow_block(trans, root, b, NULL, 0,
1811                                                      &b,
1812                                                      BTRFS_NESTING_COW);
1813                        else
1814                                err = btrfs_cow_block(trans, root, b,
1815                                                      p->nodes[level + 1],
1816                                                      p->slots[level + 1], &b,
1817                                                      BTRFS_NESTING_COW);
1818                        if (err) {
1819                                ret = err;
1820                                goto done;
1821                        }
1822                }
1823cow_done:
1824                p->nodes[level] = b;
1825                /*
1826                 * Leave path with blocking locks to avoid massive
1827                 * lock context switch, this is made on purpose.
1828                 */
1829
1830                /*
1831                 * we have a lock on b and as long as we aren't changing
1832                 * the tree, there is no way to for the items in b to change.
1833                 * It is safe to drop the lock on our parent before we
1834                 * go through the expensive btree search on b.
1835                 *
1836                 * If we're inserting or deleting (ins_len != 0), then we might
1837                 * be changing slot zero, which may require changing the parent.
1838                 * So, we can't drop the lock until after we know which slot
1839                 * we're operating on.
1840                 */
1841                if (!ins_len && !p->keep_locks) {
1842                        int u = level + 1;
1843
1844                        if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
1845                                btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
1846                                p->locks[u] = 0;
1847                        }
1848                }
1849
1850                /*
1851                 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
1852                 * we can safely assume the target key will always be in slot 0
1853                 * on lower levels due to the invariants BTRFS' btree provides,
1854                 * namely that a btrfs_key_ptr entry always points to the
1855                 * lowest key in the child node, thus we can skip searching
1856                 * lower levels
1857                 */
1858                if (prev_cmp == 0) {
1859                        slot = 0;
1860                        ret = 0;
1861                } else {
1862                        ret = btrfs_bin_search(b, key, &slot);
1863                        prev_cmp = ret;
1864                        if (ret < 0)
1865                                goto done;
1866                }
1867
1868                if (level == 0) {
1869                        p->slots[level] = slot;
1870                        /*
1871                         * Item key already exists. In this case, if we are
1872                         * allowed to insert the item (for example, in dir_item
1873                         * case, item key collision is allowed), it will be
1874                         * merged with the original item. Only the item size
1875                         * grows, no new btrfs item will be added. If
1876                         * search_for_extension is not set, ins_len already
1877                         * accounts the size btrfs_item, deduct it here so leaf
1878                         * space check will be correct.
1879                         */
1880                        if (ret == 0 && ins_len > 0 && !p->search_for_extension) {
1881                                ASSERT(ins_len >= sizeof(struct btrfs_item));
1882                                ins_len -= sizeof(struct btrfs_item);
1883                        }
1884                        if (ins_len > 0 &&
1885                            btrfs_leaf_free_space(b) < ins_len) {
1886                                if (write_lock_level < 1) {
1887                                        write_lock_level = 1;
1888                                        btrfs_release_path(p);
1889                                        goto again;
1890                                }
1891
1892                                err = split_leaf(trans, root, key,
1893                                                 p, ins_len, ret == 0);
1894
1895                                BUG_ON(err > 0);
1896                                if (err) {
1897                                        ret = err;
1898                                        goto done;
1899                                }
1900                        }
1901                        if (!p->search_for_split)
1902                                unlock_up(p, level, lowest_unlock,
1903                                          min_write_lock_level, NULL);
1904                        goto done;
1905                }
1906                if (ret && slot > 0) {
1907                        dec = 1;
1908                        slot--;
1909                }
1910                p->slots[level] = slot;
1911                err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
1912                                             &write_lock_level);
1913                if (err == -EAGAIN)
1914                        goto again;
1915                if (err) {
1916                        ret = err;
1917                        goto done;
1918                }
1919                b = p->nodes[level];
1920                slot = p->slots[level];
1921
1922                /*
1923                 * Slot 0 is special, if we change the key we have to update
1924                 * the parent pointer which means we must have a write lock on
1925                 * the parent
1926                 */
1927                if (slot == 0 && ins_len && write_lock_level < level + 1) {
1928                        write_lock_level = level + 1;
1929                        btrfs_release_path(p);
1930                        goto again;
1931                }
1932
1933                unlock_up(p, level, lowest_unlock, min_write_lock_level,
1934                          &write_lock_level);
1935
1936                if (level == lowest_level) {
1937                        if (dec)
1938                                p->slots[level]++;
1939                        goto done;
1940                }
1941
1942                err = read_block_for_search(root, p, &b, level, slot, key);
1943                if (err == -EAGAIN)
1944                        goto again;
1945                if (err) {
1946                        ret = err;
1947                        goto done;
1948                }
1949
1950                if (!p->skip_locking) {
1951                        level = btrfs_header_level(b);
1952                        if (level <= write_lock_level) {
1953                                btrfs_tree_lock(b);
1954                                p->locks[level] = BTRFS_WRITE_LOCK;
1955                        } else {
1956                                btrfs_tree_read_lock(b);
1957                                p->locks[level] = BTRFS_READ_LOCK;
1958                        }
1959                        p->nodes[level] = b;
1960                }
1961        }
1962        ret = 1;
1963done:
1964        if (ret < 0 && !p->skip_release_on_error)
1965                btrfs_release_path(p);
1966        return ret;
1967}
1968ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
1969
1970/*
1971 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
1972 * current state of the tree together with the operations recorded in the tree
1973 * modification log to search for the key in a previous version of this tree, as
1974 * denoted by the time_seq parameter.
1975 *
1976 * Naturally, there is no support for insert, delete or cow operations.
1977 *
1978 * The resulting path and return value will be set up as if we called
1979 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
1980 */
1981int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
1982                          struct btrfs_path *p, u64 time_seq)
1983{
1984        struct btrfs_fs_info *fs_info = root->fs_info;
1985        struct extent_buffer *b;
1986        int slot;
1987        int ret;
1988        int err;
1989        int level;
1990        int lowest_unlock = 1;
1991        u8 lowest_level = 0;
1992
1993        lowest_level = p->lowest_level;
1994        WARN_ON(p->nodes[0] != NULL);
1995
1996        if (p->search_commit_root) {
1997                BUG_ON(time_seq);
1998                return btrfs_search_slot(NULL, root, key, p, 0, 0);
1999        }
2000
2001again:
2002        b = btrfs_get_old_root(root, time_seq);
2003        if (!b) {
2004                ret = -EIO;
2005                goto done;
2006        }
2007        level = btrfs_header_level(b);
2008        p->locks[level] = BTRFS_READ_LOCK;
2009
2010        while (b) {
2011                int dec = 0;
2012
2013                level = btrfs_header_level(b);
2014                p->nodes[level] = b;
2015
2016                /*
2017                 * we have a lock on b and as long as we aren't changing
2018                 * the tree, there is no way to for the items in b to change.
2019                 * It is safe to drop the lock on our parent before we
2020                 * go through the expensive btree search on b.
2021                 */
2022                btrfs_unlock_up_safe(p, level + 1);
2023
2024                ret = btrfs_bin_search(b, key, &slot);
2025                if (ret < 0)
2026                        goto done;
2027
2028                if (level == 0) {
2029                        p->slots[level] = slot;
2030                        unlock_up(p, level, lowest_unlock, 0, NULL);
2031                        goto done;
2032                }
2033
2034                if (ret && slot > 0) {
2035                        dec = 1;
2036                        slot--;
2037                }
2038                p->slots[level] = slot;
2039                unlock_up(p, level, lowest_unlock, 0, NULL);
2040
2041                if (level == lowest_level) {
2042                        if (dec)
2043                                p->slots[level]++;
2044                        goto done;
2045                }
2046
2047                err = read_block_for_search(root, p, &b, level, slot, key);
2048                if (err == -EAGAIN)
2049                        goto again;
2050                if (err) {
2051                        ret = err;
2052                        goto done;
2053                }
2054
2055                level = btrfs_header_level(b);
2056                btrfs_tree_read_lock(b);
2057                b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2058                if (!b) {
2059                        ret = -ENOMEM;
2060                        goto done;
2061                }
2062                p->locks[level] = BTRFS_READ_LOCK;
2063                p->nodes[level] = b;
2064        }
2065        ret = 1;
2066done:
2067        if (ret < 0)
2068                btrfs_release_path(p);
2069
2070        return ret;
2071}
2072
2073/*
2074 * helper to use instead of search slot if no exact match is needed but
2075 * instead the next or previous item should be returned.
2076 * When find_higher is true, the next higher item is returned, the next lower
2077 * otherwise.
2078 * When return_any and find_higher are both true, and no higher item is found,
2079 * return the next lower instead.
2080 * When return_any is true and find_higher is false, and no lower item is found,
2081 * return the next higher instead.
2082 * It returns 0 if any item is found, 1 if none is found (tree empty), and
2083 * < 0 on error
2084 */
2085int btrfs_search_slot_for_read(struct btrfs_root *root,
2086                               const struct btrfs_key *key,
2087                               struct btrfs_path *p, int find_higher,
2088                               int return_any)
2089{
2090        int ret;
2091        struct extent_buffer *leaf;
2092
2093again:
2094        ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2095        if (ret <= 0)
2096                return ret;
2097        /*
2098         * a return value of 1 means the path is at the position where the
2099         * item should be inserted. Normally this is the next bigger item,
2100         * but in case the previous item is the last in a leaf, path points
2101         * to the first free slot in the previous leaf, i.e. at an invalid
2102         * item.
2103         */
2104        leaf = p->nodes[0];
2105
2106        if (find_higher) {
2107                if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2108                        ret = btrfs_next_leaf(root, p);
2109                        if (ret <= 0)
2110                                return ret;
2111                        if (!return_any)
2112                                return 1;
2113                        /*
2114                         * no higher item found, return the next
2115                         * lower instead
2116                         */
2117                        return_any = 0;
2118                        find_higher = 0;
2119                        btrfs_release_path(p);
2120                        goto again;
2121                }
2122        } else {
2123                if (p->slots[0] == 0) {
2124                        ret = btrfs_prev_leaf(root, p);
2125                        if (ret < 0)
2126                                return ret;
2127                        if (!ret) {
2128                                leaf = p->nodes[0];
2129                                if (p->slots[0] == btrfs_header_nritems(leaf))
2130                                        p->slots[0]--;
2131                                return 0;
2132                        }
2133                        if (!return_any)
2134                                return 1;
2135                        /*
2136                         * no lower item found, return the next
2137                         * higher instead
2138                         */
2139                        return_any = 0;
2140                        find_higher = 1;
2141                        btrfs_release_path(p);
2142                        goto again;
2143                } else {
2144                        --p->slots[0];
2145                }
2146        }
2147        return 0;
2148}
2149
2150/*
2151 * adjust the pointers going up the tree, starting at level
2152 * making sure the right key of each node is points to 'key'.
2153 * This is used after shifting pointers to the left, so it stops
2154 * fixing up pointers when a given leaf/node is not in slot 0 of the
2155 * higher levels
2156 *
2157 */
2158static void fixup_low_keys(struct btrfs_path *path,
2159                           struct btrfs_disk_key *key, int level)
2160{
2161        int i;
2162        struct extent_buffer *t;
2163        int ret;
2164
2165        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2166                int tslot = path->slots[i];
2167
2168                if (!path->nodes[i])
2169                        break;
2170                t = path->nodes[i];
2171                ret = btrfs_tree_mod_log_insert_key(t, tslot,
2172                                BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC);
2173                BUG_ON(ret < 0);
2174                btrfs_set_node_key(t, key, tslot);
2175                btrfs_mark_buffer_dirty(path->nodes[i]);
2176                if (tslot != 0)
2177                        break;
2178        }
2179}
2180
2181/*
2182 * update item key.
2183 *
2184 * This function isn't completely safe. It's the caller's responsibility
2185 * that the new key won't break the order
2186 */
2187void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2188                             struct btrfs_path *path,
2189                             const struct btrfs_key *new_key)
2190{
2191        struct btrfs_disk_key disk_key;
2192        struct extent_buffer *eb;
2193        int slot;
2194
2195        eb = path->nodes[0];
2196        slot = path->slots[0];
2197        if (slot > 0) {
2198                btrfs_item_key(eb, &disk_key, slot - 1);
2199                if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2200                        btrfs_crit(fs_info,
2201                "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2202                                   slot, btrfs_disk_key_objectid(&disk_key),
2203                                   btrfs_disk_key_type(&disk_key),
2204                                   btrfs_disk_key_offset(&disk_key),
2205                                   new_key->objectid, new_key->type,
2206                                   new_key->offset);
2207                        btrfs_print_leaf(eb);
2208                        BUG();
2209                }
2210        }
2211        if (slot < btrfs_header_nritems(eb) - 1) {
2212                btrfs_item_key(eb, &disk_key, slot + 1);
2213                if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2214                        btrfs_crit(fs_info,
2215                "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2216                                   slot, btrfs_disk_key_objectid(&disk_key),
2217                                   btrfs_disk_key_type(&disk_key),
2218                                   btrfs_disk_key_offset(&disk_key),
2219                                   new_key->objectid, new_key->type,
2220                                   new_key->offset);
2221                        btrfs_print_leaf(eb);
2222                        BUG();
2223                }
2224        }
2225
2226        btrfs_cpu_key_to_disk(&disk_key, new_key);
2227        btrfs_set_item_key(eb, &disk_key, slot);
2228        btrfs_mark_buffer_dirty(eb);
2229        if (slot == 0)
2230                fixup_low_keys(path, &disk_key, 1);
2231}
2232
2233/*
2234 * Check key order of two sibling extent buffers.
2235 *
2236 * Return true if something is wrong.
2237 * Return false if everything is fine.
2238 *
2239 * Tree-checker only works inside one tree block, thus the following
2240 * corruption can not be detected by tree-checker:
2241 *
2242 * Leaf @left                   | Leaf @right
2243 * --------------------------------------------------------------
2244 * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2245 *
2246 * Key f6 in leaf @left itself is valid, but not valid when the next
2247 * key in leaf @right is 7.
2248 * This can only be checked at tree block merge time.
2249 * And since tree checker has ensured all key order in each tree block
2250 * is correct, we only need to bother the last key of @left and the first
2251 * key of @right.
2252 */
2253static bool check_sibling_keys(struct extent_buffer *left,
2254                               struct extent_buffer *right)
2255{
2256        struct btrfs_key left_last;
2257        struct btrfs_key right_first;
2258        int level = btrfs_header_level(left);
2259        int nr_left = btrfs_header_nritems(left);
2260        int nr_right = btrfs_header_nritems(right);
2261
2262        /* No key to check in one of the tree blocks */
2263        if (!nr_left || !nr_right)
2264                return false;
2265
2266        if (level) {
2267                btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2268                btrfs_node_key_to_cpu(right, &right_first, 0);
2269        } else {
2270                btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2271                btrfs_item_key_to_cpu(right, &right_first, 0);
2272        }
2273
2274        if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2275                btrfs_crit(left->fs_info,
2276"bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2277                           left_last.objectid, left_last.type,
2278                           left_last.offset, right_first.objectid,
2279                           right_first.type, right_first.offset);
2280                return true;
2281        }
2282        return false;
2283}
2284
2285/*
2286 * try to push data from one node into the next node left in the
2287 * tree.
2288 *
2289 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2290 * error, and > 0 if there was no room in the left hand block.
2291 */
2292static int push_node_left(struct btrfs_trans_handle *trans,
2293                          struct extent_buffer *dst,
2294                          struct extent_buffer *src, int empty)
2295{
2296        struct btrfs_fs_info *fs_info = trans->fs_info;
2297        int push_items = 0;
2298        int src_nritems;
2299        int dst_nritems;
2300        int ret = 0;
2301
2302        src_nritems = btrfs_header_nritems(src);
2303        dst_nritems = btrfs_header_nritems(dst);
2304        push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2305        WARN_ON(btrfs_header_generation(src) != trans->transid);
2306        WARN_ON(btrfs_header_generation(dst) != trans->transid);
2307
2308        if (!empty && src_nritems <= 8)
2309                return 1;
2310
2311        if (push_items <= 0)
2312                return 1;
2313
2314        if (empty) {
2315                push_items = min(src_nritems, push_items);
2316                if (push_items < src_nritems) {
2317                        /* leave at least 8 pointers in the node if
2318                         * we aren't going to empty it
2319                         */
2320                        if (src_nritems - push_items < 8) {
2321                                if (push_items <= 8)
2322                                        return 1;
2323                                push_items -= 8;
2324                        }
2325                }
2326        } else
2327                push_items = min(src_nritems - 8, push_items);
2328
2329        /* dst is the left eb, src is the middle eb */
2330        if (check_sibling_keys(dst, src)) {
2331                ret = -EUCLEAN;
2332                btrfs_abort_transaction(trans, ret);
2333                return ret;
2334        }
2335        ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2336        if (ret) {
2337                btrfs_abort_transaction(trans, ret);
2338                return ret;
2339        }
2340        copy_extent_buffer(dst, src,
2341                           btrfs_node_key_ptr_offset(dst_nritems),
2342                           btrfs_node_key_ptr_offset(0),
2343                           push_items * sizeof(struct btrfs_key_ptr));
2344
2345        if (push_items < src_nritems) {
2346                /*
2347                 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2348                 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2349                 */
2350                memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2351                                      btrfs_node_key_ptr_offset(push_items),
2352                                      (src_nritems - push_items) *
2353                                      sizeof(struct btrfs_key_ptr));
2354        }
2355        btrfs_set_header_nritems(src, src_nritems - push_items);
2356        btrfs_set_header_nritems(dst, dst_nritems + push_items);
2357        btrfs_mark_buffer_dirty(src);
2358        btrfs_mark_buffer_dirty(dst);
2359
2360        return ret;
2361}
2362
2363/*
2364 * try to push data from one node into the next node right in the
2365 * tree.
2366 *
2367 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2368 * error, and > 0 if there was no room in the right hand block.
2369 *
2370 * this will  only push up to 1/2 the contents of the left node over
2371 */
2372static int balance_node_right(struct btrfs_trans_handle *trans,
2373                              struct extent_buffer *dst,
2374                              struct extent_buffer *src)
2375{
2376        struct btrfs_fs_info *fs_info = trans->fs_info;
2377        int push_items = 0;
2378        int max_push;
2379        int src_nritems;
2380        int dst_nritems;
2381        int ret = 0;
2382
2383        WARN_ON(btrfs_header_generation(src) != trans->transid);
2384        WARN_ON(btrfs_header_generation(dst) != trans->transid);
2385
2386        src_nritems = btrfs_header_nritems(src);
2387        dst_nritems = btrfs_header_nritems(dst);
2388        push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2389        if (push_items <= 0)
2390                return 1;
2391
2392        if (src_nritems < 4)
2393                return 1;
2394
2395        max_push = src_nritems / 2 + 1;
2396        /* don't try to empty the node */
2397        if (max_push >= src_nritems)
2398                return 1;
2399
2400        if (max_push < push_items)
2401                push_items = max_push;
2402
2403        /* dst is the right eb, src is the middle eb */
2404        if (check_sibling_keys(src, dst)) {
2405                ret = -EUCLEAN;
2406                btrfs_abort_transaction(trans, ret);
2407                return ret;
2408        }
2409        ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2410        BUG_ON(ret < 0);
2411        memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2412                                      btrfs_node_key_ptr_offset(0),
2413                                      (dst_nritems) *
2414                                      sizeof(struct btrfs_key_ptr));
2415
2416        ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2417                                         push_items);
2418        if (ret) {
2419                btrfs_abort_transaction(trans, ret);
2420                return ret;
2421        }
2422        copy_extent_buffer(dst, src,
2423                           btrfs_node_key_ptr_offset(0),
2424                           btrfs_node_key_ptr_offset(src_nritems - push_items),
2425                           push_items * sizeof(struct btrfs_key_ptr));
2426
2427        btrfs_set_header_nritems(src, src_nritems - push_items);
2428        btrfs_set_header_nritems(dst, dst_nritems + push_items);
2429
2430        btrfs_mark_buffer_dirty(src);
2431        btrfs_mark_buffer_dirty(dst);
2432
2433        return ret;
2434}
2435
2436/*
2437 * helper function to insert a new root level in the tree.
2438 * A new node is allocated, and a single item is inserted to
2439 * point to the existing root
2440 *
2441 * returns zero on success or < 0 on failure.
2442 */
2443static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2444                           struct btrfs_root *root,
2445                           struct btrfs_path *path, int level)
2446{
2447        struct btrfs_fs_info *fs_info = root->fs_info;
2448        u64 lower_gen;
2449        struct extent_buffer *lower;
2450        struct extent_buffer *c;
2451        struct extent_buffer *old;
2452        struct btrfs_disk_key lower_key;
2453        int ret;
2454
2455        BUG_ON(path->nodes[level]);
2456        BUG_ON(path->nodes[level-1] != root->node);
2457
2458        lower = path->nodes[level-1];
2459        if (level == 1)
2460                btrfs_item_key(lower, &lower_key, 0);
2461        else
2462                btrfs_node_key(lower, &lower_key, 0);
2463
2464        c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
2465                                         root->node->start, 0,
2466                                         BTRFS_NESTING_NEW_ROOT);
2467        if (IS_ERR(c))
2468                return PTR_ERR(c);
2469
2470        root_add_used(root, fs_info->nodesize);
2471
2472        btrfs_set_header_nritems(c, 1);
2473        btrfs_set_node_key(c, &lower_key, 0);
2474        btrfs_set_node_blockptr(c, 0, lower->start);
2475        lower_gen = btrfs_header_generation(lower);
2476        WARN_ON(lower_gen != trans->transid);
2477
2478        btrfs_set_node_ptr_generation(c, 0, lower_gen);
2479
2480        btrfs_mark_buffer_dirty(c);
2481
2482        old = root->node;
2483        ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2484        BUG_ON(ret < 0);
2485        rcu_assign_pointer(root->node, c);
2486
2487        /* the super has an extra ref to root->node */
2488        free_extent_buffer(old);
2489
2490        add_root_to_dirty_list(root);
2491        atomic_inc(&c->refs);
2492        path->nodes[level] = c;
2493        path->locks[level] = BTRFS_WRITE_LOCK;
2494        path->slots[level] = 0;
2495        return 0;
2496}
2497
2498/*
2499 * worker function to insert a single pointer in a node.
2500 * the node should have enough room for the pointer already
2501 *
2502 * slot and level indicate where you want the key to go, and
2503 * blocknr is the block the key points to.
2504 */
2505static void insert_ptr(struct btrfs_trans_handle *trans,
2506                       struct btrfs_path *path,
2507                       struct btrfs_disk_key *key, u64 bytenr,
2508                       int slot, int level)
2509{
2510        struct extent_buffer *lower;
2511        int nritems;
2512        int ret;
2513
2514        BUG_ON(!path->nodes[level]);
2515        btrfs_assert_tree_locked(path->nodes[level]);
2516        lower = path->nodes[level];
2517        nritems = btrfs_header_nritems(lower);
2518        BUG_ON(slot > nritems);
2519        BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2520        if (slot != nritems) {
2521                if (level) {
2522                        ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2523                                        slot, nritems - slot);
2524                        BUG_ON(ret < 0);
2525                }
2526                memmove_extent_buffer(lower,
2527                              btrfs_node_key_ptr_offset(slot + 1),
2528                              btrfs_node_key_ptr_offset(slot),
2529                              (nritems - slot) * sizeof(struct btrfs_key_ptr));
2530        }
2531        if (level) {
2532                ret = btrfs_tree_mod_log_insert_key(lower, slot,
2533                                            BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
2534                BUG_ON(ret < 0);
2535        }
2536        btrfs_set_node_key(lower, key, slot);
2537        btrfs_set_node_blockptr(lower, slot, bytenr);
2538        WARN_ON(trans->transid == 0);
2539        btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2540        btrfs_set_header_nritems(lower, nritems + 1);
2541        btrfs_mark_buffer_dirty(lower);
2542}
2543
2544/*
2545 * split the node at the specified level in path in two.
2546 * The path is corrected to point to the appropriate node after the split
2547 *
2548 * Before splitting this tries to make some room in the node by pushing
2549 * left and right, if either one works, it returns right away.
2550 *
2551 * returns 0 on success and < 0 on failure
2552 */
2553static noinline int split_node(struct btrfs_trans_handle *trans,
2554                               struct btrfs_root *root,
2555                               struct btrfs_path *path, int level)
2556{
2557        struct btrfs_fs_info *fs_info = root->fs_info;
2558        struct extent_buffer *c;
2559        struct extent_buffer *split;
2560        struct btrfs_disk_key disk_key;
2561        int mid;
2562        int ret;
2563        u32 c_nritems;
2564
2565        c = path->nodes[level];
2566        WARN_ON(btrfs_header_generation(c) != trans->transid);
2567        if (c == root->node) {
2568                /*
2569                 * trying to split the root, lets make a new one
2570                 *
2571                 * tree mod log: We don't log_removal old root in
2572                 * insert_new_root, because that root buffer will be kept as a
2573                 * normal node. We are going to log removal of half of the
2574                 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2575                 * holding a tree lock on the buffer, which is why we cannot
2576                 * race with other tree_mod_log users.
2577                 */
2578                ret = insert_new_root(trans, root, path, level + 1);
2579                if (ret)
2580                        return ret;
2581        } else {
2582                ret = push_nodes_for_insert(trans, root, path, level);
2583                c = path->nodes[level];
2584                if (!ret && btrfs_header_nritems(c) <
2585                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2586                        return 0;
2587                if (ret < 0)
2588                        return ret;
2589        }
2590
2591        c_nritems = btrfs_header_nritems(c);
2592        mid = (c_nritems + 1) / 2;
2593        btrfs_node_key(c, &disk_key, mid);
2594
2595        split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
2596                                             c->start, 0, BTRFS_NESTING_SPLIT);
2597        if (IS_ERR(split))
2598                return PTR_ERR(split);
2599
2600        root_add_used(root, fs_info->nodesize);
2601        ASSERT(btrfs_header_level(c) == level);
2602
2603        ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2604        if (ret) {
2605                btrfs_abort_transaction(trans, ret);
2606                return ret;
2607        }
2608        copy_extent_buffer(split, c,
2609                           btrfs_node_key_ptr_offset(0),
2610                           btrfs_node_key_ptr_offset(mid),
2611                           (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2612        btrfs_set_header_nritems(split, c_nritems - mid);
2613        btrfs_set_header_nritems(c, mid);
2614
2615        btrfs_mark_buffer_dirty(c);
2616        btrfs_mark_buffer_dirty(split);
2617
2618        insert_ptr(trans, path, &disk_key, split->start,
2619                   path->slots[level + 1] + 1, level + 1);
2620
2621        if (path->slots[level] >= mid) {
2622                path->slots[level] -= mid;
2623                btrfs_tree_unlock(c);
2624                free_extent_buffer(c);
2625                path->nodes[level] = split;
2626                path->slots[level + 1] += 1;
2627        } else {
2628                btrfs_tree_unlock(split);
2629                free_extent_buffer(split);
2630        }
2631        return 0;
2632}
2633
2634/*
2635 * how many bytes are required to store the items in a leaf.  start
2636 * and nr indicate which items in the leaf to check.  This totals up the
2637 * space used both by the item structs and the item data
2638 */
2639static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2640{
2641        struct btrfs_item *start_item;
2642        struct btrfs_item *end_item;
2643        int data_len;
2644        int nritems = btrfs_header_nritems(l);
2645        int end = min(nritems, start + nr) - 1;
2646
2647        if (!nr)
2648                return 0;
2649        start_item = btrfs_item_nr(start);
2650        end_item = btrfs_item_nr(end);
2651        data_len = btrfs_item_offset(l, start_item) +
2652                   btrfs_item_size(l, start_item);
2653        data_len = data_len - btrfs_item_offset(l, end_item);
2654        data_len += sizeof(struct btrfs_item) * nr;
2655        WARN_ON(data_len < 0);
2656        return data_len;
2657}
2658
2659/*
2660 * The space between the end of the leaf items and
2661 * the start of the leaf data.  IOW, how much room
2662 * the leaf has left for both items and data
2663 */
2664noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
2665{
2666        struct btrfs_fs_info *fs_info = leaf->fs_info;
2667        int nritems = btrfs_header_nritems(leaf);
2668        int ret;
2669
2670        ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
2671        if (ret < 0) {
2672                btrfs_crit(fs_info,
2673                           "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
2674                           ret,
2675                           (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
2676                           leaf_space_used(leaf, 0, nritems), nritems);
2677        }
2678        return ret;
2679}
2680
2681/*
2682 * min slot controls the lowest index we're willing to push to the
2683 * right.  We'll push up to and including min_slot, but no lower
2684 */
2685static noinline int __push_leaf_right(struct btrfs_path *path,
2686                                      int data_size, int empty,
2687                                      struct extent_buffer *right,
2688                                      int free_space, u32 left_nritems,
2689                                      u32 min_slot)
2690{
2691        struct btrfs_fs_info *fs_info = right->fs_info;
2692        struct extent_buffer *left = path->nodes[0];
2693        struct extent_buffer *upper = path->nodes[1];
2694        struct btrfs_map_token token;
2695        struct btrfs_disk_key disk_key;
2696        int slot;
2697        u32 i;
2698        int push_space = 0;
2699        int push_items = 0;
2700        struct btrfs_item *item;
2701        u32 nr;
2702        u32 right_nritems;
2703        u32 data_end;
2704        u32 this_item_size;
2705
2706        if (empty)
2707                nr = 0;
2708        else
2709                nr = max_t(u32, 1, min_slot);
2710
2711        if (path->slots[0] >= left_nritems)
2712                push_space += data_size;
2713
2714        slot = path->slots[1];
2715        i = left_nritems - 1;
2716        while (i >= nr) {
2717                item = btrfs_item_nr(i);
2718
2719                if (!empty && push_items > 0) {
2720                        if (path->slots[0] > i)
2721                                break;
2722                        if (path->slots[0] == i) {
2723                                int space = btrfs_leaf_free_space(left);
2724
2725                                if (space + push_space * 2 > free_space)
2726                                        break;
2727                        }
2728                }
2729
2730                if (path->slots[0] == i)
2731                        push_space += data_size;
2732
2733                this_item_size = btrfs_item_size(left, item);
2734                if (this_item_size + sizeof(*item) + push_space > free_space)
2735                        break;
2736
2737                push_items++;
2738                push_space += this_item_size + sizeof(*item);
2739                if (i == 0)
2740                        break;
2741                i--;
2742        }
2743
2744        if (push_items == 0)
2745                goto out_unlock;
2746
2747        WARN_ON(!empty && push_items == left_nritems);
2748
2749        /* push left to right */
2750        right_nritems = btrfs_header_nritems(right);
2751
2752        push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2753        push_space -= leaf_data_end(left);
2754
2755        /* make room in the right data area */
2756        data_end = leaf_data_end(right);
2757        memmove_extent_buffer(right,
2758                              BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
2759                              BTRFS_LEAF_DATA_OFFSET + data_end,
2760                              BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
2761
2762        /* copy from the left data area */
2763        copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
2764                     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2765                     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
2766                     push_space);
2767
2768        memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2769                              btrfs_item_nr_offset(0),
2770                              right_nritems * sizeof(struct btrfs_item));
2771
2772        /* copy the items from left to right */
2773        copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2774                   btrfs_item_nr_offset(left_nritems - push_items),
2775                   push_items * sizeof(struct btrfs_item));
2776
2777        /* update the item pointers */
2778        btrfs_init_map_token(&token, right);
2779        right_nritems += push_items;
2780        btrfs_set_header_nritems(right, right_nritems);
2781        push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
2782        for (i = 0; i < right_nritems; i++) {
2783                item = btrfs_item_nr(i);
2784                push_space -= btrfs_token_item_size(&token, item);
2785                btrfs_set_token_item_offset(&token, item, push_space);
2786        }
2787
2788        left_nritems -= push_items;
2789        btrfs_set_header_nritems(left, left_nritems);
2790
2791        if (left_nritems)
2792                btrfs_mark_buffer_dirty(left);
2793        else
2794                btrfs_clean_tree_block(left);
2795
2796        btrfs_mark_buffer_dirty(right);
2797
2798        btrfs_item_key(right, &disk_key, 0);
2799        btrfs_set_node_key(upper, &disk_key, slot + 1);
2800        btrfs_mark_buffer_dirty(upper);
2801
2802        /* then fixup the leaf pointer in the path */
2803        if (path->slots[0] >= left_nritems) {
2804                path->slots[0] -= left_nritems;
2805                if (btrfs_header_nritems(path->nodes[0]) == 0)
2806                        btrfs_clean_tree_block(path->nodes[0]);
2807                btrfs_tree_unlock(path->nodes[0]);
2808                free_extent_buffer(path->nodes[0]);
2809                path->nodes[0] = right;
2810                path->slots[1] += 1;
2811        } else {
2812                btrfs_tree_unlock(right);
2813                free_extent_buffer(right);
2814        }
2815        return 0;
2816
2817out_unlock:
2818        btrfs_tree_unlock(right);
2819        free_extent_buffer(right);
2820        return 1;
2821}
2822
2823/*
2824 * push some data in the path leaf to the right, trying to free up at
2825 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2826 *
2827 * returns 1 if the push failed because the other node didn't have enough
2828 * room, 0 if everything worked out and < 0 if there were major errors.
2829 *
2830 * this will push starting from min_slot to the end of the leaf.  It won't
2831 * push any slot lower than min_slot
2832 */
2833static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2834                           *root, struct btrfs_path *path,
2835                           int min_data_size, int data_size,
2836                           int empty, u32 min_slot)
2837{
2838        struct extent_buffer *left = path->nodes[0];
2839        struct extent_buffer *right;
2840        struct extent_buffer *upper;
2841        int slot;
2842        int free_space;
2843        u32 left_nritems;
2844        int ret;
2845
2846        if (!path->nodes[1])
2847                return 1;
2848
2849        slot = path->slots[1];
2850        upper = path->nodes[1];
2851        if (slot >= btrfs_header_nritems(upper) - 1)
2852                return 1;
2853
2854        btrfs_assert_tree_locked(path->nodes[1]);
2855
2856        right = btrfs_read_node_slot(upper, slot + 1);
2857        /*
2858         * slot + 1 is not valid or we fail to read the right node,
2859         * no big deal, just return.
2860         */
2861        if (IS_ERR(right))
2862                return 1;
2863
2864        __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2865
2866        free_space = btrfs_leaf_free_space(right);
2867        if (free_space < data_size)
2868                goto out_unlock;
2869
2870        /* cow and double check */
2871        ret = btrfs_cow_block(trans, root, right, upper,
2872                              slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
2873        if (ret)
2874                goto out_unlock;
2875
2876        free_space = btrfs_leaf_free_space(right);
2877        if (free_space < data_size)
2878                goto out_unlock;
2879
2880        left_nritems = btrfs_header_nritems(left);
2881        if (left_nritems == 0)
2882                goto out_unlock;
2883
2884        if (check_sibling_keys(left, right)) {
2885                ret = -EUCLEAN;
2886                btrfs_tree_unlock(right);
2887                free_extent_buffer(right);
2888                return ret;
2889        }
2890        if (path->slots[0] == left_nritems && !empty) {
2891                /* Key greater than all keys in the leaf, right neighbor has
2892                 * enough room for it and we're not emptying our leaf to delete
2893                 * it, therefore use right neighbor to insert the new item and
2894                 * no need to touch/dirty our left leaf. */
2895                btrfs_tree_unlock(left);
2896                free_extent_buffer(left);
2897                path->nodes[0] = right;
2898                path->slots[0] = 0;
2899                path->slots[1]++;
2900                return 0;
2901        }
2902
2903        return __push_leaf_right(path, min_data_size, empty,
2904                                right, free_space, left_nritems, min_slot);
2905out_unlock:
2906        btrfs_tree_unlock(right);
2907        free_extent_buffer(right);
2908        return 1;
2909}
2910
2911/*
2912 * push some data in the path leaf to the left, trying to free up at
2913 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2914 *
2915 * max_slot can put a limit on how far into the leaf we'll push items.  The
2916 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2917 * items
2918 */
2919static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
2920                                     int empty, struct extent_buffer *left,
2921                                     int free_space, u32 right_nritems,
2922                                     u32 max_slot)
2923{
2924        struct btrfs_fs_info *fs_info = left->fs_info;
2925        struct btrfs_disk_key disk_key;
2926        struct extent_buffer *right = path->nodes[0];
2927        int i;
2928        int push_space = 0;
2929        int push_items = 0;
2930        struct btrfs_item *item;
2931        u32 old_left_nritems;
2932        u32 nr;
2933        int ret = 0;
2934        u32 this_item_size;
2935        u32 old_left_item_size;
2936        struct btrfs_map_token token;
2937
2938        if (empty)
2939                nr = min(right_nritems, max_slot);
2940        else
2941                nr = min(right_nritems - 1, max_slot);
2942
2943        for (i = 0; i < nr; i++) {
2944                item = btrfs_item_nr(i);
2945
2946                if (!empty && push_items > 0) {
2947                        if (path->slots[0] < i)
2948                                break;
2949                        if (path->slots[0] == i) {
2950                                int space = btrfs_leaf_free_space(right);
2951
2952                                if (space + push_space * 2 > free_space)
2953                                        break;
2954                        }
2955                }
2956
2957                if (path->slots[0] == i)
2958                        push_space += data_size;
2959
2960                this_item_size = btrfs_item_size(right, item);
2961                if (this_item_size + sizeof(*item) + push_space > free_space)
2962                        break;
2963
2964                push_items++;
2965                push_space += this_item_size + sizeof(*item);
2966        }
2967
2968        if (push_items == 0) {
2969                ret = 1;
2970                goto out;
2971        }
2972        WARN_ON(!empty && push_items == btrfs_header_nritems(right));
2973
2974        /* push data from right to left */
2975        copy_extent_buffer(left, right,
2976                           btrfs_item_nr_offset(btrfs_header_nritems(left)),
2977                           btrfs_item_nr_offset(0),
2978                           push_items * sizeof(struct btrfs_item));
2979
2980        push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
2981                     btrfs_item_offset_nr(right, push_items - 1);
2982
2983        copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
2984                     leaf_data_end(left) - push_space,
2985                     BTRFS_LEAF_DATA_OFFSET +
2986                     btrfs_item_offset_nr(right, push_items - 1),
2987                     push_space);
2988        old_left_nritems = btrfs_header_nritems(left);
2989        BUG_ON(old_left_nritems <= 0);
2990
2991        btrfs_init_map_token(&token, left);
2992        old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2993        for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2994                u32 ioff;
2995
2996                item = btrfs_item_nr(i);
2997
2998                ioff = btrfs_token_item_offset(&token, item);
2999                btrfs_set_token_item_offset(&token, item,
3000                      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3001        }
3002        btrfs_set_header_nritems(left, old_left_nritems + push_items);
3003
3004        /* fixup right node */
3005        if (push_items > right_nritems)
3006                WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3007                       right_nritems);
3008
3009        if (push_items < right_nritems) {
3010                push_space = btrfs_item_offset_nr(right, push_items - 1) -
3011                                                  leaf_data_end(right);
3012                memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3013                                      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3014                                      BTRFS_LEAF_DATA_OFFSET +
3015                                      leaf_data_end(right), push_space);
3016
3017                memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3018                              btrfs_item_nr_offset(push_items),
3019                             (btrfs_header_nritems(right) - push_items) *
3020                             sizeof(struct btrfs_item));
3021        }
3022
3023        btrfs_init_map_token(&token, right);
3024        right_nritems -= push_items;
3025        btrfs_set_header_nritems(right, right_nritems);
3026        push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3027        for (i = 0; i < right_nritems; i++) {
3028                item = btrfs_item_nr(i);
3029
3030                push_space = push_space - btrfs_token_item_size(&token, item);
3031                btrfs_set_token_item_offset(&token, item, push_space);
3032        }
3033
3034        btrfs_mark_buffer_dirty(left);
3035        if (right_nritems)
3036                btrfs_mark_buffer_dirty(right);
3037        else
3038                btrfs_clean_tree_block(right);
3039
3040        btrfs_item_key(right, &disk_key, 0);
3041        fixup_low_keys(path, &disk_key, 1);
3042
3043        /* then fixup the leaf pointer in the path */
3044        if (path->slots[0] < push_items) {
3045                path->slots[0] += old_left_nritems;
3046                btrfs_tree_unlock(path->nodes[0]);
3047                free_extent_buffer(path->nodes[0]);
3048                path->nodes[0] = left;
3049                path->slots[1] -= 1;
3050        } else {
3051                btrfs_tree_unlock(left);
3052                free_extent_buffer(left);
3053                path->slots[0] -= push_items;
3054        }
3055        BUG_ON(path->slots[0] < 0);
3056        return ret;
3057out:
3058        btrfs_tree_unlock(left);
3059        free_extent_buffer(left);
3060        return ret;
3061}
3062
3063/*
3064 * push some data in the path leaf to the left, trying to free up at
3065 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3066 *
3067 * max_slot can put a limit on how far into the leaf we'll push items.  The
3068 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3069 * items
3070 */
3071static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3072                          *root, struct btrfs_path *path, int min_data_size,
3073                          int data_size, int empty, u32 max_slot)
3074{
3075        struct extent_buffer *right = path->nodes[0];
3076        struct extent_buffer *left;
3077        int slot;
3078        int free_space;
3079        u32 right_nritems;
3080        int ret = 0;
3081
3082        slot = path->slots[1];
3083        if (slot == 0)
3084                return 1;
3085        if (!path->nodes[1])
3086                return 1;
3087
3088        right_nritems = btrfs_header_nritems(right);
3089        if (right_nritems == 0)
3090                return 1;
3091
3092        btrfs_assert_tree_locked(path->nodes[1]);
3093
3094        left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3095        /*
3096         * slot - 1 is not valid or we fail to read the left node,
3097         * no big deal, just return.
3098         */
3099        if (IS_ERR(left))
3100                return 1;
3101
3102        __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3103
3104        free_space = btrfs_leaf_free_space(left);
3105        if (free_space < data_size) {
3106                ret = 1;
3107                goto out;
3108        }
3109
3110        /* cow and double check */
3111        ret = btrfs_cow_block(trans, root, left,
3112                              path->nodes[1], slot - 1, &left,
3113                              BTRFS_NESTING_LEFT_COW);
3114        if (ret) {
3115                /* we hit -ENOSPC, but it isn't fatal here */
3116                if (ret == -ENOSPC)
3117                        ret = 1;
3118                goto out;
3119        }
3120
3121        free_space = btrfs_leaf_free_space(left);
3122        if (free_space < data_size) {
3123                ret = 1;
3124                goto out;
3125        }
3126
3127        if (check_sibling_keys(left, right)) {
3128                ret = -EUCLEAN;
3129                goto out;
3130        }
3131        return __push_leaf_left(path, min_data_size,
3132                               empty, left, free_space, right_nritems,
3133                               max_slot);
3134out:
3135        btrfs_tree_unlock(left);
3136        free_extent_buffer(left);
3137        return ret;
3138}
3139
3140/*
3141 * split the path's leaf in two, making sure there is at least data_size
3142 * available for the resulting leaf level of the path.
3143 */
3144static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3145                                    struct btrfs_path *path,
3146                                    struct extent_buffer *l,
3147                                    struct extent_buffer *right,
3148                                    int slot, int mid, int nritems)
3149{
3150        struct btrfs_fs_info *fs_info = trans->fs_info;
3151        int data_copy_size;
3152        int rt_data_off;
3153        int i;
3154        struct btrfs_disk_key disk_key;
3155        struct btrfs_map_token token;
3156
3157        nritems = nritems - mid;
3158        btrfs_set_header_nritems(right, nritems);
3159        data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
3160
3161        copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3162                           btrfs_item_nr_offset(mid),
3163                           nritems * sizeof(struct btrfs_item));
3164
3165        copy_extent_buffer(right, l,
3166                     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
3167                     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
3168                     leaf_data_end(l), data_copy_size);
3169
3170        rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
3171
3172        btrfs_init_map_token(&token, right);
3173        for (i = 0; i < nritems; i++) {
3174                struct btrfs_item *item = btrfs_item_nr(i);
3175                u32 ioff;
3176
3177                ioff = btrfs_token_item_offset(&token, item);
3178                btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
3179        }
3180
3181        btrfs_set_header_nritems(l, mid);
3182        btrfs_item_key(right, &disk_key, 0);
3183        insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3184
3185        btrfs_mark_buffer_dirty(right);
3186        btrfs_mark_buffer_dirty(l);
3187        BUG_ON(path->slots[0] != slot);
3188
3189        if (mid <= slot) {
3190                btrfs_tree_unlock(path->nodes[0]);
3191                free_extent_buffer(path->nodes[0]);
3192                path->nodes[0] = right;
3193                path->slots[0] -= mid;
3194                path->slots[1] += 1;
3195        } else {
3196                btrfs_tree_unlock(right);
3197                free_extent_buffer(right);
3198        }
3199
3200        BUG_ON(path->slots[0] < 0);
3201}
3202
3203/*
3204 * double splits happen when we need to insert a big item in the middle
3205 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3206 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3207 *          A                 B                 C
3208 *
3209 * We avoid this by trying to push the items on either side of our target
3210 * into the adjacent leaves.  If all goes well we can avoid the double split
3211 * completely.
3212 */
3213static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3214                                          struct btrfs_root *root,
3215                                          struct btrfs_path *path,
3216                                          int data_size)
3217{
3218        int ret;
3219        int progress = 0;
3220        int slot;
3221        u32 nritems;
3222        int space_needed = data_size;
3223
3224        slot = path->slots[0];
3225        if (slot < btrfs_header_nritems(path->nodes[0]))
3226                space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3227
3228        /*
3229         * try to push all the items after our slot into the
3230         * right leaf
3231         */
3232        ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3233        if (ret < 0)
3234                return ret;
3235
3236        if (ret == 0)
3237                progress++;
3238
3239        nritems = btrfs_header_nritems(path->nodes[0]);
3240        /*
3241         * our goal is to get our slot at the start or end of a leaf.  If
3242         * we've done so we're done
3243         */
3244        if (path->slots[0] == 0 || path->slots[0] == nritems)
3245                return 0;
3246
3247        if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3248                return 0;
3249
3250        /* try to push all the items before our slot into the next leaf */
3251        slot = path->slots[0];
3252        space_needed = data_size;
3253        if (slot > 0)
3254                space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3255        ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3256        if (ret < 0)
3257                return ret;
3258
3259        if (ret == 0)
3260                progress++;
3261
3262        if (progress)
3263                return 0;
3264        return 1;
3265}
3266
3267/*
3268 * split the path's leaf in two, making sure there is at least data_size
3269 * available for the resulting leaf level of the path.
3270 *
3271 * returns 0 if all went well and < 0 on failure.
3272 */
3273static noinline int split_leaf(struct btrfs_trans_handle *trans,
3274                               struct btrfs_root *root,
3275                               const struct btrfs_key *ins_key,
3276                               struct btrfs_path *path, int data_size,
3277                               int extend)
3278{
3279        struct btrfs_disk_key disk_key;
3280        struct extent_buffer *l;
3281        u32 nritems;
3282        int mid;
3283        int slot;
3284        struct extent_buffer *right;
3285        struct btrfs_fs_info *fs_info = root->fs_info;
3286        int ret = 0;
3287        int wret;
3288        int split;
3289        int num_doubles = 0;
3290        int tried_avoid_double = 0;
3291
3292        l = path->nodes[0];
3293        slot = path->slots[0];
3294        if (extend && data_size + btrfs_item_size_nr(l, slot) +
3295            sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3296                return -EOVERFLOW;
3297
3298        /* first try to make some room by pushing left and right */
3299        if (data_size && path->nodes[1]) {
3300                int space_needed = data_size;
3301
3302                if (slot < btrfs_header_nritems(l))
3303                        space_needed -= btrfs_leaf_free_space(l);
3304
3305                wret = push_leaf_right(trans, root, path, space_needed,
3306                                       space_needed, 0, 0);
3307                if (wret < 0)
3308                        return wret;
3309                if (wret) {
3310                        space_needed = data_size;
3311                        if (slot > 0)
3312                                space_needed -= btrfs_leaf_free_space(l);
3313                        wret = push_leaf_left(trans, root, path, space_needed,
3314                                              space_needed, 0, (u32)-1);
3315                        if (wret < 0)
3316                                return wret;
3317                }
3318                l = path->nodes[0];
3319
3320                /* did the pushes work? */
3321                if (btrfs_leaf_free_space(l) >= data_size)
3322                        return 0;
3323        }
3324
3325        if (!path->nodes[1]) {
3326                ret = insert_new_root(trans, root, path, 1);
3327                if (ret)
3328                        return ret;
3329        }
3330again:
3331        split = 1;
3332        l = path->nodes[0];
3333        slot = path->slots[0];
3334        nritems = btrfs_header_nritems(l);
3335        mid = (nritems + 1) / 2;
3336
3337        if (mid <= slot) {
3338                if (nritems == 1 ||
3339                    leaf_space_used(l, mid, nritems - mid) + data_size >
3340                        BTRFS_LEAF_DATA_SIZE(fs_info)) {
3341                        if (slot >= nritems) {
3342                                split = 0;
3343                        } else {
3344                                mid = slot;
3345                                if (mid != nritems &&
3346                                    leaf_space_used(l, mid, nritems - mid) +
3347                                    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3348                                        if (data_size && !tried_avoid_double)
3349                                                goto push_for_double;
3350                                        split = 2;
3351                                }
3352                        }
3353                }
3354        } else {
3355                if (leaf_space_used(l, 0, mid) + data_size >
3356                        BTRFS_LEAF_DATA_SIZE(fs_info)) {
3357                        if (!extend && data_size && slot == 0) {
3358                                split = 0;
3359                        } else if ((extend || !data_size) && slot == 0) {
3360                                mid = 1;
3361                        } else {
3362                                mid = slot;
3363                                if (mid != nritems &&
3364                                    leaf_space_used(l, mid, nritems - mid) +
3365                                    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3366                                        if (data_size && !tried_avoid_double)
3367                                                goto push_for_double;
3368                                        split = 2;
3369                                }
3370                        }
3371                }
3372        }
3373
3374        if (split == 0)
3375                btrfs_cpu_key_to_disk(&disk_key, ins_key);
3376        else
3377                btrfs_item_key(l, &disk_key, mid);
3378
3379        /*
3380         * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3381         * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3382         * subclasses, which is 8 at the time of this patch, and we've maxed it
3383         * out.  In the future we could add a
3384         * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3385         * use BTRFS_NESTING_NEW_ROOT.
3386         */
3387        right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
3388                                             l->start, 0, num_doubles ?
3389                                             BTRFS_NESTING_NEW_ROOT :
3390                                             BTRFS_NESTING_SPLIT);
3391        if (IS_ERR(right))
3392                return PTR_ERR(right);
3393
3394        root_add_used(root, fs_info->nodesize);
3395
3396        if (split == 0) {
3397                if (mid <= slot) {
3398                        btrfs_set_header_nritems(right, 0);
3399                        insert_ptr(trans, path, &disk_key,
3400                                   right->start, path->slots[1] + 1, 1);
3401                        btrfs_tree_unlock(path->nodes[0]);
3402                        free_extent_buffer(path->nodes[0]);
3403                        path->nodes[0] = right;
3404                        path->slots[0] = 0;
3405                        path->slots[1] += 1;
3406                } else {
3407                        btrfs_set_header_nritems(right, 0);
3408                        insert_ptr(trans, path, &disk_key,
3409                                   right->start, path->slots[1], 1);
3410                        btrfs_tree_unlock(path->nodes[0]);
3411                        free_extent_buffer(path->nodes[0]);
3412                        path->nodes[0] = right;
3413                        path->slots[0] = 0;
3414                        if (path->slots[1] == 0)
3415                                fixup_low_keys(path, &disk_key, 1);
3416                }
3417                /*
3418                 * We create a new leaf 'right' for the required ins_len and
3419                 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3420                 * the content of ins_len to 'right'.
3421                 */
3422                return ret;
3423        }
3424
3425        copy_for_split(trans, path, l, right, slot, mid, nritems);
3426
3427        if (split == 2) {
3428                BUG_ON(num_doubles != 0);
3429                num_doubles++;
3430                goto again;
3431        }
3432
3433        return 0;
3434
3435push_for_double:
3436        push_for_double_split(trans, root, path, data_size);
3437        tried_avoid_double = 1;
3438        if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3439                return 0;
3440        goto again;
3441}
3442
3443static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3444                                         struct btrfs_root *root,
3445                                         struct btrfs_path *path, int ins_len)
3446{
3447        struct btrfs_key key;
3448        struct extent_buffer *leaf;
3449        struct btrfs_file_extent_item *fi;
3450        u64 extent_len = 0;
3451        u32 item_size;
3452        int ret;
3453
3454        leaf = path->nodes[0];
3455        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3456
3457        BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3458               key.type != BTRFS_EXTENT_CSUM_KEY);
3459
3460        if (btrfs_leaf_free_space(leaf) >= ins_len)
3461                return 0;
3462
3463        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3464        if (key.type == BTRFS_EXTENT_DATA_KEY) {
3465                fi = btrfs_item_ptr(leaf, path->slots[0],
3466                                    struct btrfs_file_extent_item);
3467                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3468        }
3469        btrfs_release_path(path);
3470
3471        path->keep_locks = 1;
3472        path->search_for_split = 1;
3473        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3474        path->search_for_split = 0;
3475        if (ret > 0)
3476                ret = -EAGAIN;
3477        if (ret < 0)
3478                goto err;
3479
3480        ret = -EAGAIN;
3481        leaf = path->nodes[0];
3482        /* if our item isn't there, return now */
3483        if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3484                goto err;
3485
3486        /* the leaf has  changed, it now has room.  return now */
3487        if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3488                goto err;
3489
3490        if (key.type == BTRFS_EXTENT_DATA_KEY) {
3491                fi = btrfs_item_ptr(leaf, path->slots[0],
3492                                    struct btrfs_file_extent_item);
3493                if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3494                        goto err;
3495        }
3496
3497        ret = split_leaf(trans, root, &key, path, ins_len, 1);
3498        if (ret)
3499                goto err;
3500
3501        path->keep_locks = 0;
3502        btrfs_unlock_up_safe(path, 1);
3503        return 0;
3504err:
3505        path->keep_locks = 0;
3506        return ret;
3507}
3508
3509static noinline int split_item(struct btrfs_path *path,
3510                               const struct btrfs_key *new_key,
3511                               unsigned long split_offset)
3512{
3513        struct extent_buffer *leaf;
3514        struct btrfs_item *item;
3515        struct btrfs_item *new_item;
3516        int slot;
3517        char *buf;
3518        u32 nritems;
3519        u32 item_size;
3520        u32 orig_offset;
3521        struct btrfs_disk_key disk_key;
3522
3523        leaf = path->nodes[0];
3524        BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3525
3526        item = btrfs_item_nr(path->slots[0]);
3527        orig_offset = btrfs_item_offset(leaf, item);
3528        item_size = btrfs_item_size(leaf, item);
3529
3530        buf = kmalloc(item_size, GFP_NOFS);
3531        if (!buf)
3532                return -ENOMEM;
3533
3534        read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3535                            path->slots[0]), item_size);
3536
3537        slot = path->slots[0] + 1;
3538        nritems = btrfs_header_nritems(leaf);
3539        if (slot != nritems) {
3540                /* shift the items */
3541                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3542                                btrfs_item_nr_offset(slot),
3543                                (nritems - slot) * sizeof(struct btrfs_item));
3544        }
3545
3546        btrfs_cpu_key_to_disk(&disk_key, new_key);
3547        btrfs_set_item_key(leaf, &disk_key, slot);
3548
3549        new_item = btrfs_item_nr(slot);
3550
3551        btrfs_set_item_offset(leaf, new_item, orig_offset);
3552        btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3553
3554        btrfs_set_item_offset(leaf, item,
3555                              orig_offset + item_size - split_offset);
3556        btrfs_set_item_size(leaf, item, split_offset);
3557
3558        btrfs_set_header_nritems(leaf, nritems + 1);
3559
3560        /* write the data for the start of the original item */
3561        write_extent_buffer(leaf, buf,
3562                            btrfs_item_ptr_offset(leaf, path->slots[0]),
3563                            split_offset);
3564
3565        /* write the data for the new item */
3566        write_extent_buffer(leaf, buf + split_offset,
3567                            btrfs_item_ptr_offset(leaf, slot),
3568                            item_size - split_offset);
3569        btrfs_mark_buffer_dirty(leaf);
3570
3571        BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3572        kfree(buf);
3573        return 0;
3574}
3575
3576/*
3577 * This function splits a single item into two items,
3578 * giving 'new_key' to the new item and splitting the
3579 * old one at split_offset (from the start of the item).
3580 *
3581 * The path may be released by this operation.  After
3582 * the split, the path is pointing to the old item.  The
3583 * new item is going to be in the same node as the old one.
3584 *
3585 * Note, the item being split must be smaller enough to live alone on
3586 * a tree block with room for one extra struct btrfs_item
3587 *
3588 * This allows us to split the item in place, keeping a lock on the
3589 * leaf the entire time.
3590 */
3591int btrfs_split_item(struct btrfs_trans_handle *trans,
3592                     struct btrfs_root *root,
3593                     struct btrfs_path *path,
3594                     const struct btrfs_key *new_key,
3595                     unsigned long split_offset)
3596{
3597        int ret;
3598        ret = setup_leaf_for_split(trans, root, path,
3599                                   sizeof(struct btrfs_item));
3600        if (ret)
3601                return ret;
3602
3603        ret = split_item(path, new_key, split_offset);
3604        return ret;
3605}
3606
3607/*
3608 * This function duplicate a item, giving 'new_key' to the new item.
3609 * It guarantees both items live in the same tree leaf and the new item
3610 * is contiguous with the original item.
3611 *
3612 * This allows us to split file extent in place, keeping a lock on the
3613 * leaf the entire time.
3614 */
3615int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3616                         struct btrfs_root *root,
3617                         struct btrfs_path *path,
3618                         const struct btrfs_key *new_key)
3619{
3620        struct extent_buffer *leaf;
3621        int ret;
3622        u32 item_size;
3623
3624        leaf = path->nodes[0];
3625        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3626        ret = setup_leaf_for_split(trans, root, path,
3627                                   item_size + sizeof(struct btrfs_item));
3628        if (ret)
3629                return ret;
3630
3631        path->slots[0]++;
3632        setup_items_for_insert(root, path, new_key, &item_size, 1);
3633        leaf = path->nodes[0];
3634        memcpy_extent_buffer(leaf,
3635                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3636                             btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3637                             item_size);
3638        return 0;
3639}
3640
3641/*
3642 * make the item pointed to by the path smaller.  new_size indicates
3643 * how small to make it, and from_end tells us if we just chop bytes
3644 * off the end of the item or if we shift the item to chop bytes off
3645 * the front.
3646 */
3647void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3648{
3649        int slot;
3650        struct extent_buffer *leaf;
3651        struct btrfs_item *item;
3652        u32 nritems;
3653        unsigned int data_end;
3654        unsigned int old_data_start;
3655        unsigned int old_size;
3656        unsigned int size_diff;
3657        int i;
3658        struct btrfs_map_token token;
3659
3660        leaf = path->nodes[0];
3661        slot = path->slots[0];
3662
3663        old_size = btrfs_item_size_nr(leaf, slot);
3664        if (old_size == new_size)
3665                return;
3666
3667        nritems = btrfs_header_nritems(leaf);
3668        data_end = leaf_data_end(leaf);
3669
3670        old_data_start = btrfs_item_offset_nr(leaf, slot);
3671
3672        size_diff = old_size - new_size;
3673
3674        BUG_ON(slot < 0);
3675        BUG_ON(slot >= nritems);
3676
3677        /*
3678         * item0..itemN ... dataN.offset..dataN.size .. data0.size
3679         */
3680        /* first correct the data pointers */
3681        btrfs_init_map_token(&token, leaf);
3682        for (i = slot; i < nritems; i++) {
3683                u32 ioff;
3684                item = btrfs_item_nr(i);
3685
3686                ioff = btrfs_token_item_offset(&token, item);
3687                btrfs_set_token_item_offset(&token, item, ioff + size_diff);
3688        }
3689
3690        /* shift the data */
3691        if (from_end) {
3692                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3693                              data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3694                              data_end, old_data_start + new_size - data_end);
3695        } else {
3696                struct btrfs_disk_key disk_key;
3697                u64 offset;
3698
3699                btrfs_item_key(leaf, &disk_key, slot);
3700
3701                if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3702                        unsigned long ptr;
3703                        struct btrfs_file_extent_item *fi;
3704
3705                        fi = btrfs_item_ptr(leaf, slot,
3706                                            struct btrfs_file_extent_item);
3707                        fi = (struct btrfs_file_extent_item *)(
3708                             (unsigned long)fi - size_diff);
3709
3710                        if (btrfs_file_extent_type(leaf, fi) ==
3711                            BTRFS_FILE_EXTENT_INLINE) {
3712                                ptr = btrfs_item_ptr_offset(leaf, slot);
3713                                memmove_extent_buffer(leaf, ptr,
3714                                      (unsigned long)fi,
3715                                      BTRFS_FILE_EXTENT_INLINE_DATA_START);
3716                        }
3717                }
3718
3719                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3720                              data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3721                              data_end, old_data_start - data_end);
3722
3723                offset = btrfs_disk_key_offset(&disk_key);
3724                btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3725                btrfs_set_item_key(leaf, &disk_key, slot);
3726                if (slot == 0)
3727                        fixup_low_keys(path, &disk_key, 1);
3728        }
3729
3730        item = btrfs_item_nr(slot);
3731        btrfs_set_item_size(leaf, item, new_size);
3732        btrfs_mark_buffer_dirty(leaf);
3733
3734        if (btrfs_leaf_free_space(leaf) < 0) {
3735                btrfs_print_leaf(leaf);
3736                BUG();
3737        }
3738}
3739
3740/*
3741 * make the item pointed to by the path bigger, data_size is the added size.
3742 */
3743void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
3744{
3745        int slot;
3746        struct extent_buffer *leaf;
3747        struct btrfs_item *item;
3748        u32 nritems;
3749        unsigned int data_end;
3750        unsigned int old_data;
3751        unsigned int old_size;
3752        int i;
3753        struct btrfs_map_token token;
3754
3755        leaf = path->nodes[0];
3756
3757        nritems = btrfs_header_nritems(leaf);
3758        data_end = leaf_data_end(leaf);
3759
3760        if (btrfs_leaf_free_space(leaf) < data_size) {
3761                btrfs_print_leaf(leaf);
3762                BUG();
3763        }
3764        slot = path->slots[0];
3765        old_data = btrfs_item_end_nr(leaf, slot);
3766
3767        BUG_ON(slot < 0);
3768        if (slot >= nritems) {
3769                btrfs_print_leaf(leaf);
3770                btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
3771                           slot, nritems);
3772                BUG();
3773        }
3774
3775        /*
3776         * item0..itemN ... dataN.offset..dataN.size .. data0.size
3777         */
3778        /* first correct the data pointers */
3779        btrfs_init_map_token(&token, leaf);
3780        for (i = slot; i < nritems; i++) {
3781                u32 ioff;
3782                item = btrfs_item_nr(i);
3783
3784                ioff = btrfs_token_item_offset(&token, item);
3785                btrfs_set_token_item_offset(&token, item, ioff - data_size);
3786        }
3787
3788        /* shift the data */
3789        memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3790                      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
3791                      data_end, old_data - data_end);
3792
3793        data_end = old_data;
3794        old_size = btrfs_item_size_nr(leaf, slot);
3795        item = btrfs_item_nr(slot);
3796        btrfs_set_item_size(leaf, item, old_size + data_size);
3797        btrfs_mark_buffer_dirty(leaf);
3798
3799        if (btrfs_leaf_free_space(leaf) < 0) {
3800                btrfs_print_leaf(leaf);
3801                BUG();
3802        }
3803}
3804
3805/**
3806 * setup_items_for_insert - Helper called before inserting one or more items
3807 * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
3808 * in a function that doesn't call btrfs_search_slot
3809 *
3810 * @root:       root we are inserting items to
3811 * @path:       points to the leaf/slot where we are going to insert new items
3812 * @cpu_key:    array of keys for items to be inserted
3813 * @data_size:  size of the body of each item we are going to insert
3814 * @nr:         size of @cpu_key/@data_size arrays
3815 */
3816void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3817                            const struct btrfs_key *cpu_key, u32 *data_size,
3818                            int nr)
3819{
3820        struct btrfs_fs_info *fs_info = root->fs_info;
3821        struct btrfs_item *item;
3822        int i;
3823        u32 nritems;
3824        unsigned int data_end;
3825        struct btrfs_disk_key disk_key;
3826        struct extent_buffer *leaf;
3827        int slot;
3828        struct btrfs_map_token token;
3829        u32 total_size;
3830        u32 total_data = 0;
3831
3832        for (i = 0; i < nr; i++)
3833                total_data += data_size[i];
3834        total_size = total_data + (nr * sizeof(struct btrfs_item));
3835
3836        if (path->slots[0] == 0) {
3837                btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3838                fixup_low_keys(path, &disk_key, 1);
3839        }
3840        btrfs_unlock_up_safe(path, 1);
3841
3842        leaf = path->nodes[0];
3843        slot = path->slots[0];
3844
3845        nritems = btrfs_header_nritems(leaf);
3846        data_end = leaf_data_end(leaf);
3847
3848        if (btrfs_leaf_free_space(leaf) < total_size) {
3849                btrfs_print_leaf(leaf);
3850                btrfs_crit(fs_info, "not enough freespace need %u have %d",
3851                           total_size, btrfs_leaf_free_space(leaf));
3852                BUG();
3853        }
3854
3855        btrfs_init_map_token(&token, leaf);
3856        if (slot != nritems) {
3857                unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3858
3859                if (old_data < data_end) {
3860                        btrfs_print_leaf(leaf);
3861                        btrfs_crit(fs_info,
3862                "item at slot %d with data offset %u beyond data end of leaf %u",
3863                                   slot, old_data, data_end);
3864                        BUG();
3865                }
3866                /*
3867                 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3868                 */
3869                /* first correct the data pointers */
3870                for (i = slot; i < nritems; i++) {
3871                        u32 ioff;
3872
3873                        item = btrfs_item_nr(i);
3874                        ioff = btrfs_token_item_offset(&token, item);
3875                        btrfs_set_token_item_offset(&token, item,
3876                                                    ioff - total_data);
3877                }
3878                /* shift the items */
3879                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3880                              btrfs_item_nr_offset(slot),
3881                              (nritems - slot) * sizeof(struct btrfs_item));
3882
3883                /* shift the data */
3884                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3885                              data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
3886                              data_end, old_data - data_end);
3887                data_end = old_data;
3888        }
3889
3890        /* setup the item for the new data */
3891        for (i = 0; i < nr; i++) {
3892                btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3893                btrfs_set_item_key(leaf, &disk_key, slot + i);
3894                item = btrfs_item_nr(slot + i);
3895                data_end -= data_size[i];
3896                btrfs_set_token_item_offset(&token, item, data_end);
3897                btrfs_set_token_item_size(&token, item, data_size[i]);
3898        }
3899
3900        btrfs_set_header_nritems(leaf, nritems + nr);
3901        btrfs_mark_buffer_dirty(leaf);
3902
3903        if (btrfs_leaf_free_space(leaf) < 0) {
3904                btrfs_print_leaf(leaf);
3905                BUG();
3906        }
3907}
3908
3909/*
3910 * Given a key and some data, insert items into the tree.
3911 * This does all the path init required, making room in the tree if needed.
3912 */
3913int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3914                            struct btrfs_root *root,
3915                            struct btrfs_path *path,
3916                            const struct btrfs_key *cpu_key, u32 *data_size,
3917                            int nr)
3918{
3919        int ret = 0;
3920        int slot;
3921        int i;
3922        u32 total_size = 0;
3923        u32 total_data = 0;
3924
3925        for (i = 0; i < nr; i++)
3926                total_data += data_size[i];
3927
3928        total_size = total_data + (nr * sizeof(struct btrfs_item));
3929        ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3930        if (ret == 0)
3931                return -EEXIST;
3932        if (ret < 0)
3933                return ret;
3934
3935        slot = path->slots[0];
3936        BUG_ON(slot < 0);
3937
3938        setup_items_for_insert(root, path, cpu_key, data_size, nr);
3939        return 0;
3940}
3941
3942/*
3943 * Given a key and some data, insert an item into the tree.
3944 * This does all the path init required, making room in the tree if needed.
3945 */
3946int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3947                      const struct btrfs_key *cpu_key, void *data,
3948                      u32 data_size)
3949{
3950        int ret = 0;
3951        struct btrfs_path *path;
3952        struct extent_buffer *leaf;
3953        unsigned long ptr;
3954
3955        path = btrfs_alloc_path();
3956        if (!path)
3957                return -ENOMEM;
3958        ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3959        if (!ret) {
3960                leaf = path->nodes[0];
3961                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3962                write_extent_buffer(leaf, data, ptr, data_size);
3963                btrfs_mark_buffer_dirty(leaf);
3964        }
3965        btrfs_free_path(path);
3966        return ret;
3967}
3968
3969/*
3970 * delete the pointer from a given node.
3971 *
3972 * the tree should have been previously balanced so the deletion does not
3973 * empty a node.
3974 */
3975static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
3976                    int level, int slot)
3977{
3978        struct extent_buffer *parent = path->nodes[level];
3979        u32 nritems;
3980        int ret;
3981
3982        nritems = btrfs_header_nritems(parent);
3983        if (slot != nritems - 1) {
3984                if (level) {
3985                        ret = btrfs_tree_mod_log_insert_move(parent, slot,
3986                                        slot + 1, nritems - slot - 1);
3987                        BUG_ON(ret < 0);
3988                }
3989                memmove_extent_buffer(parent,
3990                              btrfs_node_key_ptr_offset(slot),
3991                              btrfs_node_key_ptr_offset(slot + 1),
3992                              sizeof(struct btrfs_key_ptr) *
3993                              (nritems - slot - 1));
3994        } else if (level) {
3995                ret = btrfs_tree_mod_log_insert_key(parent, slot,
3996                                BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
3997                BUG_ON(ret < 0);
3998        }
3999
4000        nritems--;
4001        btrfs_set_header_nritems(parent, nritems);
4002        if (nritems == 0 && parent == root->node) {
4003                BUG_ON(btrfs_header_level(root->node) != 1);
4004                /* just turn the root into a leaf and break */
4005                btrfs_set_header_level(root->node, 0);
4006        } else if (slot == 0) {
4007                struct btrfs_disk_key disk_key;
4008
4009                btrfs_node_key(parent, &disk_key, 0);
4010                fixup_low_keys(path, &disk_key, level + 1);
4011        }
4012        btrfs_mark_buffer_dirty(parent);
4013}
4014
4015/*
4016 * a helper function to delete the leaf pointed to by path->slots[1] and
4017 * path->nodes[1].
4018 *
4019 * This deletes the pointer in path->nodes[1] and frees the leaf
4020 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4021 *
4022 * The path must have already been setup for deleting the leaf, including
4023 * all the proper balancing.  path->nodes[1] must be locked.
4024 */
4025static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4026                                    struct btrfs_root *root,
4027                                    struct btrfs_path *path,
4028                                    struct extent_buffer *leaf)
4029{
4030        WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4031        del_ptr(root, path, 1, path->slots[1]);
4032
4033        /*
4034         * btrfs_free_extent is expensive, we want to make sure we
4035         * aren't holding any locks when we call it
4036         */
4037        btrfs_unlock_up_safe(path, 0);
4038
4039        root_sub_used(root, leaf->len);
4040
4041        atomic_inc(&leaf->refs);
4042        btrfs_free_tree_block(trans, root, leaf, 0, 1);
4043        free_extent_buffer_stale(leaf);
4044}
4045/*
4046 * delete the item at the leaf level in path.  If that empties
4047 * the leaf, remove it from the tree
4048 */
4049int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4050                    struct btrfs_path *path, int slot, int nr)
4051{
4052        struct btrfs_fs_info *fs_info = root->fs_info;
4053        struct extent_buffer *leaf;
4054        struct btrfs_item *item;
4055        u32 last_off;
4056        u32 dsize = 0;
4057        int ret = 0;
4058        int wret;
4059        int i;
4060        u32 nritems;
4061
4062        leaf = path->nodes[0];
4063        last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4064
4065        for (i = 0; i < nr; i++)
4066                dsize += btrfs_item_size_nr(leaf, slot + i);
4067
4068        nritems = btrfs_header_nritems(leaf);
4069
4070        if (slot + nr != nritems) {
4071                int data_end = leaf_data_end(leaf);
4072                struct btrfs_map_token token;
4073
4074                memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4075                              data_end + dsize,
4076                              BTRFS_LEAF_DATA_OFFSET + data_end,
4077                              last_off - data_end);
4078
4079                btrfs_init_map_token(&token, leaf);
4080                for (i = slot + nr; i < nritems; i++) {
4081                        u32 ioff;
4082
4083                        item = btrfs_item_nr(i);
4084                        ioff = btrfs_token_item_offset(&token, item);
4085                        btrfs_set_token_item_offset(&token, item, ioff + dsize);
4086                }
4087
4088                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4089                              btrfs_item_nr_offset(slot + nr),
4090                              sizeof(struct btrfs_item) *
4091                              (nritems - slot - nr));
4092        }
4093        btrfs_set_header_nritems(leaf, nritems - nr);
4094        nritems -= nr;
4095
4096        /* delete the leaf if we've emptied it */
4097        if (nritems == 0) {
4098                if (leaf == root->node) {
4099                        btrfs_set_header_level(leaf, 0);
4100                } else {
4101                        btrfs_clean_tree_block(leaf);
4102                        btrfs_del_leaf(trans, root, path, leaf);
4103                }
4104        } else {
4105                int used = leaf_space_used(leaf, 0, nritems);
4106                if (slot == 0) {
4107                        struct btrfs_disk_key disk_key;
4108
4109                        btrfs_item_key(leaf, &disk_key, 0);
4110                        fixup_low_keys(path, &disk_key, 1);
4111                }
4112
4113                /* delete the leaf if it is mostly empty */
4114                if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4115                        /* push_leaf_left fixes the path.
4116                         * make sure the path still points to our leaf
4117                         * for possible call to del_ptr below
4118                         */
4119                        slot = path->slots[1];
4120                        atomic_inc(&leaf->refs);
4121
4122                        wret = push_leaf_left(trans, root, path, 1, 1,
4123                                              1, (u32)-1);
4124                        if (wret < 0 && wret != -ENOSPC)
4125                                ret = wret;
4126
4127                        if (path->nodes[0] == leaf &&
4128                            btrfs_header_nritems(leaf)) {
4129                                wret = push_leaf_right(trans, root, path, 1,
4130                                                       1, 1, 0);
4131                                if (wret < 0 && wret != -ENOSPC)
4132                                        ret = wret;
4133                        }
4134
4135                        if (btrfs_header_nritems(leaf) == 0) {
4136                                path->slots[1] = slot;
4137                                btrfs_del_leaf(trans, root, path, leaf);
4138                                free_extent_buffer(leaf);
4139                                ret = 0;
4140                        } else {
4141                                /* if we're still in the path, make sure
4142                                 * we're dirty.  Otherwise, one of the
4143                                 * push_leaf functions must have already
4144                                 * dirtied this buffer
4145                                 */
4146                                if (path->nodes[0] == leaf)
4147                                        btrfs_mark_buffer_dirty(leaf);
4148                                free_extent_buffer(leaf);
4149                        }
4150                } else {
4151                        btrfs_mark_buffer_dirty(leaf);
4152                }
4153        }
4154        return ret;
4155}
4156
4157/*
4158 * search the tree again to find a leaf with lesser keys
4159 * returns 0 if it found something or 1 if there are no lesser leaves.
4160 * returns < 0 on io errors.
4161 *
4162 * This may release the path, and so you may lose any locks held at the
4163 * time you call it.
4164 */
4165int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4166{
4167        struct btrfs_key key;
4168        struct btrfs_disk_key found_key;
4169        int ret;
4170
4171        btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4172
4173        if (key.offset > 0) {
4174                key.offset--;
4175        } else if (key.type > 0) {
4176                key.type--;
4177                key.offset = (u64)-1;
4178        } else if (key.objectid > 0) {
4179                key.objectid--;
4180                key.type = (u8)-1;
4181                key.offset = (u64)-1;
4182        } else {
4183                return 1;
4184        }
4185
4186        btrfs_release_path(path);
4187        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4188        if (ret < 0)
4189                return ret;
4190        btrfs_item_key(path->nodes[0], &found_key, 0);
4191        ret = comp_keys(&found_key, &key);
4192        /*
4193         * We might have had an item with the previous key in the tree right
4194         * before we released our path. And after we released our path, that
4195         * item might have been pushed to the first slot (0) of the leaf we
4196         * were holding due to a tree balance. Alternatively, an item with the
4197         * previous key can exist as the only element of a leaf (big fat item).
4198         * Therefore account for these 2 cases, so that our callers (like
4199         * btrfs_previous_item) don't miss an existing item with a key matching
4200         * the previous key we computed above.
4201         */
4202        if (ret <= 0)
4203                return 0;
4204        return 1;
4205}
4206
4207/*
4208 * A helper function to walk down the tree starting at min_key, and looking
4209 * for nodes or leaves that are have a minimum transaction id.
4210 * This is used by the btree defrag code, and tree logging
4211 *
4212 * This does not cow, but it does stuff the starting key it finds back
4213 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4214 * key and get a writable path.
4215 *
4216 * This honors path->lowest_level to prevent descent past a given level
4217 * of the tree.
4218 *
4219 * min_trans indicates the oldest transaction that you are interested
4220 * in walking through.  Any nodes or leaves older than min_trans are
4221 * skipped over (without reading them).
4222 *
4223 * returns zero if something useful was found, < 0 on error and 1 if there
4224 * was nothing in the tree that matched the search criteria.
4225 */
4226int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4227                         struct btrfs_path *path,
4228                         u64 min_trans)
4229{
4230        struct extent_buffer *cur;
4231        struct btrfs_key found_key;
4232        int slot;
4233        int sret;
4234        u32 nritems;
4235        int level;
4236        int ret = 1;
4237        int keep_locks = path->keep_locks;
4238
4239        path->keep_locks = 1;
4240again:
4241        cur = btrfs_read_lock_root_node(root);
4242        level = btrfs_header_level(cur);
4243        WARN_ON(path->nodes[level]);
4244        path->nodes[level] = cur;
4245        path->locks[level] = BTRFS_READ_LOCK;
4246
4247        if (btrfs_header_generation(cur) < min_trans) {
4248                ret = 1;
4249                goto out;
4250        }
4251        while (1) {
4252                nritems = btrfs_header_nritems(cur);
4253                level = btrfs_header_level(cur);
4254                sret = btrfs_bin_search(cur, min_key, &slot);
4255                if (sret < 0) {
4256                        ret = sret;
4257                        goto out;
4258                }
4259
4260                /* at the lowest level, we're done, setup the path and exit */
4261                if (level == path->lowest_level) {
4262                        if (slot >= nritems)
4263                                goto find_next_key;
4264                        ret = 0;
4265                        path->slots[level] = slot;
4266                        btrfs_item_key_to_cpu(cur, &found_key, slot);
4267                        goto out;
4268                }
4269                if (sret && slot > 0)
4270                        slot--;
4271                /*
4272                 * check this node pointer against the min_trans parameters.
4273                 * If it is too old, skip to the next one.
4274                 */
4275                while (slot < nritems) {
4276                        u64 gen;
4277
4278                        gen = btrfs_node_ptr_generation(cur, slot);
4279                        if (gen < min_trans) {
4280                                slot++;
4281                                continue;
4282                        }
4283                        break;
4284                }
4285find_next_key:
4286                /*
4287                 * we didn't find a candidate key in this node, walk forward
4288                 * and find another one
4289                 */
4290                if (slot >= nritems) {
4291                        path->slots[level] = slot;
4292                        sret = btrfs_find_next_key(root, path, min_key, level,
4293                                                  min_trans);
4294                        if (sret == 0) {
4295                                btrfs_release_path(path);
4296                                goto again;
4297                        } else {
4298                                goto out;
4299                        }
4300                }
4301                /* save our key for returning back */
4302                btrfs_node_key_to_cpu(cur, &found_key, slot);
4303                path->slots[level] = slot;
4304                if (level == path->lowest_level) {
4305                        ret = 0;
4306                        goto out;
4307                }
4308                cur = btrfs_read_node_slot(cur, slot);
4309                if (IS_ERR(cur)) {
4310                        ret = PTR_ERR(cur);
4311                        goto out;
4312                }
4313
4314                btrfs_tree_read_lock(cur);
4315
4316                path->locks[level - 1] = BTRFS_READ_LOCK;
4317                path->nodes[level - 1] = cur;
4318                unlock_up(path, level, 1, 0, NULL);
4319        }
4320out:
4321        path->keep_locks = keep_locks;
4322        if (ret == 0) {
4323                btrfs_unlock_up_safe(path, path->lowest_level + 1);
4324                memcpy(min_key, &found_key, sizeof(found_key));
4325        }
4326        return ret;
4327}
4328
4329/*
4330 * this is similar to btrfs_next_leaf, but does not try to preserve
4331 * and fixup the path.  It looks for and returns the next key in the
4332 * tree based on the current path and the min_trans parameters.
4333 *
4334 * 0 is returned if another key is found, < 0 if there are any errors
4335 * and 1 is returned if there are no higher keys in the tree
4336 *
4337 * path->keep_locks should be set to 1 on the search made before
4338 * calling this function.
4339 */
4340int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4341                        struct btrfs_key *key, int level, u64 min_trans)
4342{
4343        int slot;
4344        struct extent_buffer *c;
4345
4346        WARN_ON(!path->keep_locks && !path->skip_locking);
4347        while (level < BTRFS_MAX_LEVEL) {
4348                if (!path->nodes[level])
4349                        return 1;
4350
4351                slot = path->slots[level] + 1;
4352                c = path->nodes[level];
4353next:
4354                if (slot >= btrfs_header_nritems(c)) {
4355                        int ret;
4356                        int orig_lowest;
4357                        struct btrfs_key cur_key;
4358                        if (level + 1 >= BTRFS_MAX_LEVEL ||
4359                            !path->nodes[level + 1])
4360                                return 1;
4361
4362                        if (path->locks[level + 1] || path->skip_locking) {
4363                                level++;
4364                                continue;
4365                        }
4366
4367                        slot = btrfs_header_nritems(c) - 1;
4368                        if (level == 0)
4369                                btrfs_item_key_to_cpu(c, &cur_key, slot);
4370                        else
4371                                btrfs_node_key_to_cpu(c, &cur_key, slot);
4372
4373                        orig_lowest = path->lowest_level;
4374                        btrfs_release_path(path);
4375                        path->lowest_level = level;
4376                        ret = btrfs_search_slot(NULL, root, &cur_key, path,
4377                                                0, 0);
4378                        path->lowest_level = orig_lowest;
4379                        if (ret < 0)
4380                                return ret;
4381
4382                        c = path->nodes[level];
4383                        slot = path->slots[level];
4384                        if (ret == 0)
4385                                slot++;
4386                        goto next;
4387                }
4388
4389                if (level == 0)
4390                        btrfs_item_key_to_cpu(c, key, slot);
4391                else {
4392                        u64 gen = btrfs_node_ptr_generation(c, slot);
4393
4394                        if (gen < min_trans) {
4395                                slot++;
4396                                goto next;
4397                        }
4398                        btrfs_node_key_to_cpu(c, key, slot);
4399                }
4400                return 0;
4401        }
4402        return 1;
4403}
4404
4405/*
4406 * search the tree again to find a leaf with greater keys
4407 * returns 0 if it found something or 1 if there are no greater leaves.
4408 * returns < 0 on io errors.
4409 */
4410int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4411{
4412        return btrfs_next_old_leaf(root, path, 0);
4413}
4414
4415int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4416                        u64 time_seq)
4417{
4418        int slot;
4419        int level;
4420        struct extent_buffer *c;
4421        struct extent_buffer *next;
4422        struct btrfs_key key;
4423        u32 nritems;
4424        int ret;
4425        int i;
4426
4427        nritems = btrfs_header_nritems(path->nodes[0]);
4428        if (nritems == 0)
4429                return 1;
4430
4431        btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4432again:
4433        level = 1;
4434        next = NULL;
4435        btrfs_release_path(path);
4436
4437        path->keep_locks = 1;
4438
4439        if (time_seq)
4440                ret = btrfs_search_old_slot(root, &key, path, time_seq);
4441        else
4442                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4443        path->keep_locks = 0;
4444
4445        if (ret < 0)
4446                return ret;
4447
4448        nritems = btrfs_header_nritems(path->nodes[0]);
4449        /*
4450         * by releasing the path above we dropped all our locks.  A balance
4451         * could have added more items next to the key that used to be
4452         * at the very end of the block.  So, check again here and
4453         * advance the path if there are now more items available.
4454         */
4455        if (nritems > 0 && path->slots[0] < nritems - 1) {
4456                if (ret == 0)
4457                        path->slots[0]++;
4458                ret = 0;
4459                goto done;
4460        }
4461        /*
4462         * So the above check misses one case:
4463         * - after releasing the path above, someone has removed the item that
4464         *   used to be at the very end of the block, and balance between leafs
4465         *   gets another one with bigger key.offset to replace it.
4466         *
4467         * This one should be returned as well, or we can get leaf corruption
4468         * later(esp. in __btrfs_drop_extents()).
4469         *
4470         * And a bit more explanation about this check,
4471         * with ret > 0, the key isn't found, the path points to the slot
4472         * where it should be inserted, so the path->slots[0] item must be the
4473         * bigger one.
4474         */
4475        if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4476                ret = 0;
4477                goto done;
4478        }
4479
4480        while (level < BTRFS_MAX_LEVEL) {
4481                if (!path->nodes[level]) {
4482                        ret = 1;
4483                        goto done;
4484                }
4485
4486                slot = path->slots[level] + 1;
4487                c = path->nodes[level];
4488                if (slot >= btrfs_header_nritems(c)) {
4489                        level++;
4490                        if (level == BTRFS_MAX_LEVEL) {
4491                                ret = 1;
4492                                goto done;
4493                        }
4494                        continue;
4495                }
4496
4497
4498                /*
4499                 * Our current level is where we're going to start from, and to
4500                 * make sure lockdep doesn't complain we need to drop our locks
4501                 * and nodes from 0 to our current level.
4502                 */
4503                for (i = 0; i < level; i++) {
4504                        if (path->locks[level]) {
4505                                btrfs_tree_read_unlock(path->nodes[i]);
4506                                path->locks[i] = 0;
4507                        }
4508                        free_extent_buffer(path->nodes[i]);
4509                        path->nodes[i] = NULL;
4510                }
4511
4512                next = c;
4513                ret = read_block_for_search(root, path, &next, level,
4514                                            slot, &key);
4515                if (ret == -EAGAIN)
4516                        goto again;
4517
4518                if (ret < 0) {
4519                        btrfs_release_path(path);
4520                        goto done;
4521                }
4522
4523                if (!path->skip_locking) {
4524                        ret = btrfs_try_tree_read_lock(next);
4525                        if (!ret && time_seq) {
4526                                /*
4527                                 * If we don't get the lock, we may be racing
4528                                 * with push_leaf_left, holding that lock while
4529                                 * itself waiting for the leaf we've currently
4530                                 * locked. To solve this situation, we give up
4531                                 * on our lock and cycle.
4532                                 */
4533                                free_extent_buffer(next);
4534                                btrfs_release_path(path);
4535                                cond_resched();
4536                                goto again;
4537                        }
4538                        if (!ret)
4539                                btrfs_tree_read_lock(next);
4540                }
4541                break;
4542        }
4543        path->slots[level] = slot;
4544        while (1) {
4545                level--;
4546                path->nodes[level] = next;
4547                path->slots[level] = 0;
4548                if (!path->skip_locking)
4549                        path->locks[level] = BTRFS_READ_LOCK;
4550                if (!level)
4551                        break;
4552
4553                ret = read_block_for_search(root, path, &next, level,
4554                                            0, &key);
4555                if (ret == -EAGAIN)
4556                        goto again;
4557
4558                if (ret < 0) {
4559                        btrfs_release_path(path);
4560                        goto done;
4561                }
4562
4563                if (!path->skip_locking)
4564                        btrfs_tree_read_lock(next);
4565        }
4566        ret = 0;
4567done:
4568        unlock_up(path, 0, 1, 0, NULL);
4569
4570        return ret;
4571}
4572
4573/*
4574 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4575 * searching until it gets past min_objectid or finds an item of 'type'
4576 *
4577 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4578 */
4579int btrfs_previous_item(struct btrfs_root *root,
4580                        struct btrfs_path *path, u64 min_objectid,
4581                        int type)
4582{
4583        struct btrfs_key found_key;
4584        struct extent_buffer *leaf;
4585        u32 nritems;
4586        int ret;
4587
4588        while (1) {
4589                if (path->slots[0] == 0) {
4590                        ret = btrfs_prev_leaf(root, path);
4591                        if (ret != 0)
4592                                return ret;
4593                } else {
4594                        path->slots[0]--;
4595                }
4596                leaf = path->nodes[0];
4597                nritems = btrfs_header_nritems(leaf);
4598                if (nritems == 0)
4599                        return 1;
4600                if (path->slots[0] == nritems)
4601                        path->slots[0]--;
4602
4603                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4604                if (found_key.objectid < min_objectid)
4605                        break;
4606                if (found_key.type == type)
4607                        return 0;
4608                if (found_key.objectid == min_objectid &&
4609                    found_key.type < type)
4610                        break;
4611        }
4612        return 1;
4613}
4614
4615/*
4616 * search in extent tree to find a previous Metadata/Data extent item with
4617 * min objecitd.
4618 *
4619 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4620 */
4621int btrfs_previous_extent_item(struct btrfs_root *root,
4622                        struct btrfs_path *path, u64 min_objectid)
4623{
4624        struct btrfs_key found_key;
4625        struct extent_buffer *leaf;
4626        u32 nritems;
4627        int ret;
4628
4629        while (1) {
4630                if (path->slots[0] == 0) {
4631                        ret = btrfs_prev_leaf(root, path);
4632                        if (ret != 0)
4633                                return ret;
4634                } else {
4635                        path->slots[0]--;
4636                }
4637                leaf = path->nodes[0];
4638                nritems = btrfs_header_nritems(leaf);
4639                if (nritems == 0)
4640                        return 1;
4641                if (path->slots[0] == nritems)
4642                        path->slots[0]--;
4643
4644                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4645                if (found_key.objectid < min_objectid)
4646                        break;
4647                if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
4648                    found_key.type == BTRFS_METADATA_ITEM_KEY)
4649                        return 0;
4650                if (found_key.objectid == min_objectid &&
4651                    found_key.type < BTRFS_EXTENT_ITEM_KEY)
4652                        break;
4653        }
4654        return 1;
4655}
4656