linux/fs/btrfs/ioctl.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/fsnotify.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/time.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
  17#include <linux/namei.h>
  18#include <linux/writeback.h>
  19#include <linux/compat.h>
  20#include <linux/security.h>
  21#include <linux/xattr.h>
  22#include <linux/mm.h>
  23#include <linux/slab.h>
  24#include <linux/blkdev.h>
  25#include <linux/uuid.h>
  26#include <linux/btrfs.h>
  27#include <linux/uaccess.h>
  28#include <linux/iversion.h>
  29#include <linux/fileattr.h>
  30#include "ctree.h"
  31#include "disk-io.h"
  32#include "export.h"
  33#include "transaction.h"
  34#include "btrfs_inode.h"
  35#include "print-tree.h"
  36#include "volumes.h"
  37#include "locking.h"
  38#include "backref.h"
  39#include "rcu-string.h"
  40#include "send.h"
  41#include "dev-replace.h"
  42#include "props.h"
  43#include "sysfs.h"
  44#include "qgroup.h"
  45#include "tree-log.h"
  46#include "compression.h"
  47#include "space-info.h"
  48#include "delalloc-space.h"
  49#include "block-group.h"
  50
  51#ifdef CONFIG_64BIT
  52/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
  53 * structures are incorrect, as the timespec structure from userspace
  54 * is 4 bytes too small. We define these alternatives here to teach
  55 * the kernel about the 32-bit struct packing.
  56 */
  57struct btrfs_ioctl_timespec_32 {
  58        __u64 sec;
  59        __u32 nsec;
  60} __attribute__ ((__packed__));
  61
  62struct btrfs_ioctl_received_subvol_args_32 {
  63        char    uuid[BTRFS_UUID_SIZE];  /* in */
  64        __u64   stransid;               /* in */
  65        __u64   rtransid;               /* out */
  66        struct btrfs_ioctl_timespec_32 stime; /* in */
  67        struct btrfs_ioctl_timespec_32 rtime; /* out */
  68        __u64   flags;                  /* in */
  69        __u64   reserved[16];           /* in */
  70} __attribute__ ((__packed__));
  71
  72#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
  73                                struct btrfs_ioctl_received_subvol_args_32)
  74#endif
  75
  76#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
  77struct btrfs_ioctl_send_args_32 {
  78        __s64 send_fd;                  /* in */
  79        __u64 clone_sources_count;      /* in */
  80        compat_uptr_t clone_sources;    /* in */
  81        __u64 parent_root;              /* in */
  82        __u64 flags;                    /* in */
  83        __u64 reserved[4];              /* in */
  84} __attribute__ ((__packed__));
  85
  86#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
  87                               struct btrfs_ioctl_send_args_32)
  88#endif
  89
  90/* Mask out flags that are inappropriate for the given type of inode. */
  91static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
  92                unsigned int flags)
  93{
  94        if (S_ISDIR(inode->i_mode))
  95                return flags;
  96        else if (S_ISREG(inode->i_mode))
  97                return flags & ~FS_DIRSYNC_FL;
  98        else
  99                return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
 100}
 101
 102/*
 103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
 104 * ioctl.
 105 */
 106static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
 107{
 108        unsigned int iflags = 0;
 109
 110        if (flags & BTRFS_INODE_SYNC)
 111                iflags |= FS_SYNC_FL;
 112        if (flags & BTRFS_INODE_IMMUTABLE)
 113                iflags |= FS_IMMUTABLE_FL;
 114        if (flags & BTRFS_INODE_APPEND)
 115                iflags |= FS_APPEND_FL;
 116        if (flags & BTRFS_INODE_NODUMP)
 117                iflags |= FS_NODUMP_FL;
 118        if (flags & BTRFS_INODE_NOATIME)
 119                iflags |= FS_NOATIME_FL;
 120        if (flags & BTRFS_INODE_DIRSYNC)
 121                iflags |= FS_DIRSYNC_FL;
 122        if (flags & BTRFS_INODE_NODATACOW)
 123                iflags |= FS_NOCOW_FL;
 124
 125        if (flags & BTRFS_INODE_NOCOMPRESS)
 126                iflags |= FS_NOCOMP_FL;
 127        else if (flags & BTRFS_INODE_COMPRESS)
 128                iflags |= FS_COMPR_FL;
 129
 130        return iflags;
 131}
 132
 133/*
 134 * Update inode->i_flags based on the btrfs internal flags.
 135 */
 136void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
 137{
 138        struct btrfs_inode *binode = BTRFS_I(inode);
 139        unsigned int new_fl = 0;
 140
 141        if (binode->flags & BTRFS_INODE_SYNC)
 142                new_fl |= S_SYNC;
 143        if (binode->flags & BTRFS_INODE_IMMUTABLE)
 144                new_fl |= S_IMMUTABLE;
 145        if (binode->flags & BTRFS_INODE_APPEND)
 146                new_fl |= S_APPEND;
 147        if (binode->flags & BTRFS_INODE_NOATIME)
 148                new_fl |= S_NOATIME;
 149        if (binode->flags & BTRFS_INODE_DIRSYNC)
 150                new_fl |= S_DIRSYNC;
 151
 152        set_mask_bits(&inode->i_flags,
 153                      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
 154                      new_fl);
 155}
 156
 157/*
 158 * Check if @flags are a supported and valid set of FS_*_FL flags and that
 159 * the old and new flags are not conflicting
 160 */
 161static int check_fsflags(unsigned int old_flags, unsigned int flags)
 162{
 163        if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
 164                      FS_NOATIME_FL | FS_NODUMP_FL | \
 165                      FS_SYNC_FL | FS_DIRSYNC_FL | \
 166                      FS_NOCOMP_FL | FS_COMPR_FL |
 167                      FS_NOCOW_FL))
 168                return -EOPNOTSUPP;
 169
 170        /* COMPR and NOCOMP on new/old are valid */
 171        if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
 172                return -EINVAL;
 173
 174        if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
 175                return -EINVAL;
 176
 177        /* NOCOW and compression options are mutually exclusive */
 178        if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 179                return -EINVAL;
 180        if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 181                return -EINVAL;
 182
 183        return 0;
 184}
 185
 186static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
 187                                    unsigned int flags)
 188{
 189        if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
 190                return -EPERM;
 191
 192        return 0;
 193}
 194
 195/*
 196 * Set flags/xflags from the internal inode flags. The remaining items of
 197 * fsxattr are zeroed.
 198 */
 199int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
 200{
 201        struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
 202
 203        fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode->flags));
 204        return 0;
 205}
 206
 207int btrfs_fileattr_set(struct user_namespace *mnt_userns,
 208                       struct dentry *dentry, struct fileattr *fa)
 209{
 210        struct inode *inode = d_inode(dentry);
 211        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 212        struct btrfs_inode *binode = BTRFS_I(inode);
 213        struct btrfs_root *root = binode->root;
 214        struct btrfs_trans_handle *trans;
 215        unsigned int fsflags, old_fsflags;
 216        int ret;
 217        const char *comp = NULL;
 218        u32 binode_flags;
 219
 220        if (btrfs_root_readonly(root))
 221                return -EROFS;
 222
 223        if (fileattr_has_fsx(fa))
 224                return -EOPNOTSUPP;
 225
 226        fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
 227        old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
 228        ret = check_fsflags(old_fsflags, fsflags);
 229        if (ret)
 230                return ret;
 231
 232        ret = check_fsflags_compatible(fs_info, fsflags);
 233        if (ret)
 234                return ret;
 235
 236        binode_flags = binode->flags;
 237        if (fsflags & FS_SYNC_FL)
 238                binode_flags |= BTRFS_INODE_SYNC;
 239        else
 240                binode_flags &= ~BTRFS_INODE_SYNC;
 241        if (fsflags & FS_IMMUTABLE_FL)
 242                binode_flags |= BTRFS_INODE_IMMUTABLE;
 243        else
 244                binode_flags &= ~BTRFS_INODE_IMMUTABLE;
 245        if (fsflags & FS_APPEND_FL)
 246                binode_flags |= BTRFS_INODE_APPEND;
 247        else
 248                binode_flags &= ~BTRFS_INODE_APPEND;
 249        if (fsflags & FS_NODUMP_FL)
 250                binode_flags |= BTRFS_INODE_NODUMP;
 251        else
 252                binode_flags &= ~BTRFS_INODE_NODUMP;
 253        if (fsflags & FS_NOATIME_FL)
 254                binode_flags |= BTRFS_INODE_NOATIME;
 255        else
 256                binode_flags &= ~BTRFS_INODE_NOATIME;
 257
 258        /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
 259        if (!fa->flags_valid) {
 260                /* 1 item for the inode */
 261                trans = btrfs_start_transaction(root, 1);
 262                if (IS_ERR(trans))
 263                        return PTR_ERR(trans);
 264                goto update_flags;
 265        }
 266
 267        if (fsflags & FS_DIRSYNC_FL)
 268                binode_flags |= BTRFS_INODE_DIRSYNC;
 269        else
 270                binode_flags &= ~BTRFS_INODE_DIRSYNC;
 271        if (fsflags & FS_NOCOW_FL) {
 272                if (S_ISREG(inode->i_mode)) {
 273                        /*
 274                         * It's safe to turn csums off here, no extents exist.
 275                         * Otherwise we want the flag to reflect the real COW
 276                         * status of the file and will not set it.
 277                         */
 278                        if (inode->i_size == 0)
 279                                binode_flags |= BTRFS_INODE_NODATACOW |
 280                                                BTRFS_INODE_NODATASUM;
 281                } else {
 282                        binode_flags |= BTRFS_INODE_NODATACOW;
 283                }
 284        } else {
 285                /*
 286                 * Revert back under same assumptions as above
 287                 */
 288                if (S_ISREG(inode->i_mode)) {
 289                        if (inode->i_size == 0)
 290                                binode_flags &= ~(BTRFS_INODE_NODATACOW |
 291                                                  BTRFS_INODE_NODATASUM);
 292                } else {
 293                        binode_flags &= ~BTRFS_INODE_NODATACOW;
 294                }
 295        }
 296
 297        /*
 298         * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
 299         * flag may be changed automatically if compression code won't make
 300         * things smaller.
 301         */
 302        if (fsflags & FS_NOCOMP_FL) {
 303                binode_flags &= ~BTRFS_INODE_COMPRESS;
 304                binode_flags |= BTRFS_INODE_NOCOMPRESS;
 305        } else if (fsflags & FS_COMPR_FL) {
 306
 307                if (IS_SWAPFILE(inode))
 308                        return -ETXTBSY;
 309
 310                binode_flags |= BTRFS_INODE_COMPRESS;
 311                binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
 312
 313                comp = btrfs_compress_type2str(fs_info->compress_type);
 314                if (!comp || comp[0] == 0)
 315                        comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
 316        } else {
 317                binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
 318        }
 319
 320        /*
 321         * 1 for inode item
 322         * 2 for properties
 323         */
 324        trans = btrfs_start_transaction(root, 3);
 325        if (IS_ERR(trans))
 326                return PTR_ERR(trans);
 327
 328        if (comp) {
 329                ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
 330                                     strlen(comp), 0);
 331                if (ret) {
 332                        btrfs_abort_transaction(trans, ret);
 333                        goto out_end_trans;
 334                }
 335        } else {
 336                ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
 337                                     0, 0);
 338                if (ret && ret != -ENODATA) {
 339                        btrfs_abort_transaction(trans, ret);
 340                        goto out_end_trans;
 341                }
 342        }
 343
 344update_flags:
 345        binode->flags = binode_flags;
 346        btrfs_sync_inode_flags_to_i_flags(inode);
 347        inode_inc_iversion(inode);
 348        inode->i_ctime = current_time(inode);
 349        ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 350
 351 out_end_trans:
 352        btrfs_end_transaction(trans);
 353        return ret;
 354}
 355
 356bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
 357                        enum btrfs_exclusive_operation type)
 358{
 359        return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type);
 360}
 361
 362void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
 363{
 364        WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
 365        sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
 366}
 367
 368static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
 369{
 370        struct inode *inode = file_inode(file);
 371
 372        return put_user(inode->i_generation, arg);
 373}
 374
 375static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
 376                                        void __user *arg)
 377{
 378        struct btrfs_device *device;
 379        struct request_queue *q;
 380        struct fstrim_range range;
 381        u64 minlen = ULLONG_MAX;
 382        u64 num_devices = 0;
 383        int ret;
 384
 385        if (!capable(CAP_SYS_ADMIN))
 386                return -EPERM;
 387
 388        /*
 389         * btrfs_trim_block_group() depends on space cache, which is not
 390         * available in zoned filesystem. So, disallow fitrim on a zoned
 391         * filesystem for now.
 392         */
 393        if (btrfs_is_zoned(fs_info))
 394                return -EOPNOTSUPP;
 395
 396        /*
 397         * If the fs is mounted with nologreplay, which requires it to be
 398         * mounted in RO mode as well, we can not allow discard on free space
 399         * inside block groups, because log trees refer to extents that are not
 400         * pinned in a block group's free space cache (pinning the extents is
 401         * precisely the first phase of replaying a log tree).
 402         */
 403        if (btrfs_test_opt(fs_info, NOLOGREPLAY))
 404                return -EROFS;
 405
 406        rcu_read_lock();
 407        list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
 408                                dev_list) {
 409                if (!device->bdev)
 410                        continue;
 411                q = bdev_get_queue(device->bdev);
 412                if (blk_queue_discard(q)) {
 413                        num_devices++;
 414                        minlen = min_t(u64, q->limits.discard_granularity,
 415                                     minlen);
 416                }
 417        }
 418        rcu_read_unlock();
 419
 420        if (!num_devices)
 421                return -EOPNOTSUPP;
 422        if (copy_from_user(&range, arg, sizeof(range)))
 423                return -EFAULT;
 424
 425        /*
 426         * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
 427         * block group is in the logical address space, which can be any
 428         * sectorsize aligned bytenr in  the range [0, U64_MAX].
 429         */
 430        if (range.len < fs_info->sb->s_blocksize)
 431                return -EINVAL;
 432
 433        range.minlen = max(range.minlen, minlen);
 434        ret = btrfs_trim_fs(fs_info, &range);
 435        if (ret < 0)
 436                return ret;
 437
 438        if (copy_to_user(arg, &range, sizeof(range)))
 439                return -EFAULT;
 440
 441        return 0;
 442}
 443
 444int __pure btrfs_is_empty_uuid(u8 *uuid)
 445{
 446        int i;
 447
 448        for (i = 0; i < BTRFS_UUID_SIZE; i++) {
 449                if (uuid[i])
 450                        return 0;
 451        }
 452        return 1;
 453}
 454
 455static noinline int create_subvol(struct inode *dir,
 456                                  struct dentry *dentry,
 457                                  const char *name, int namelen,
 458                                  struct btrfs_qgroup_inherit *inherit)
 459{
 460        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 461        struct btrfs_trans_handle *trans;
 462        struct btrfs_key key;
 463        struct btrfs_root_item *root_item;
 464        struct btrfs_inode_item *inode_item;
 465        struct extent_buffer *leaf;
 466        struct btrfs_root *root = BTRFS_I(dir)->root;
 467        struct btrfs_root *new_root;
 468        struct btrfs_block_rsv block_rsv;
 469        struct timespec64 cur_time = current_time(dir);
 470        struct inode *inode;
 471        int ret;
 472        int err;
 473        dev_t anon_dev = 0;
 474        u64 objectid;
 475        u64 index = 0;
 476
 477        root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
 478        if (!root_item)
 479                return -ENOMEM;
 480
 481        ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
 482        if (ret)
 483                goto fail_free;
 484
 485        ret = get_anon_bdev(&anon_dev);
 486        if (ret < 0)
 487                goto fail_free;
 488
 489        /*
 490         * Don't create subvolume whose level is not zero. Or qgroup will be
 491         * screwed up since it assumes subvolume qgroup's level to be 0.
 492         */
 493        if (btrfs_qgroup_level(objectid)) {
 494                ret = -ENOSPC;
 495                goto fail_free;
 496        }
 497
 498        btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
 499        /*
 500         * The same as the snapshot creation, please see the comment
 501         * of create_snapshot().
 502         */
 503        ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
 504        if (ret)
 505                goto fail_free;
 506
 507        trans = btrfs_start_transaction(root, 0);
 508        if (IS_ERR(trans)) {
 509                ret = PTR_ERR(trans);
 510                btrfs_subvolume_release_metadata(root, &block_rsv);
 511                goto fail_free;
 512        }
 513        trans->block_rsv = &block_rsv;
 514        trans->bytes_reserved = block_rsv.size;
 515
 516        ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
 517        if (ret)
 518                goto fail;
 519
 520        leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
 521                                      BTRFS_NESTING_NORMAL);
 522        if (IS_ERR(leaf)) {
 523                ret = PTR_ERR(leaf);
 524                goto fail;
 525        }
 526
 527        btrfs_mark_buffer_dirty(leaf);
 528
 529        inode_item = &root_item->inode;
 530        btrfs_set_stack_inode_generation(inode_item, 1);
 531        btrfs_set_stack_inode_size(inode_item, 3);
 532        btrfs_set_stack_inode_nlink(inode_item, 1);
 533        btrfs_set_stack_inode_nbytes(inode_item,
 534                                     fs_info->nodesize);
 535        btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
 536
 537        btrfs_set_root_flags(root_item, 0);
 538        btrfs_set_root_limit(root_item, 0);
 539        btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
 540
 541        btrfs_set_root_bytenr(root_item, leaf->start);
 542        btrfs_set_root_generation(root_item, trans->transid);
 543        btrfs_set_root_level(root_item, 0);
 544        btrfs_set_root_refs(root_item, 1);
 545        btrfs_set_root_used(root_item, leaf->len);
 546        btrfs_set_root_last_snapshot(root_item, 0);
 547
 548        btrfs_set_root_generation_v2(root_item,
 549                        btrfs_root_generation(root_item));
 550        generate_random_guid(root_item->uuid);
 551        btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
 552        btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
 553        root_item->ctime = root_item->otime;
 554        btrfs_set_root_ctransid(root_item, trans->transid);
 555        btrfs_set_root_otransid(root_item, trans->transid);
 556
 557        btrfs_tree_unlock(leaf);
 558
 559        btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
 560
 561        key.objectid = objectid;
 562        key.offset = 0;
 563        key.type = BTRFS_ROOT_ITEM_KEY;
 564        ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
 565                                root_item);
 566        if (ret) {
 567                /*
 568                 * Since we don't abort the transaction in this case, free the
 569                 * tree block so that we don't leak space and leave the
 570                 * filesystem in an inconsistent state (an extent item in the
 571                 * extent tree without backreferences). Also no need to have
 572                 * the tree block locked since it is not in any tree at this
 573                 * point, so no other task can find it and use it.
 574                 */
 575                btrfs_free_tree_block(trans, root, leaf, 0, 1);
 576                free_extent_buffer(leaf);
 577                goto fail;
 578        }
 579
 580        free_extent_buffer(leaf);
 581        leaf = NULL;
 582
 583        key.offset = (u64)-1;
 584        new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
 585        if (IS_ERR(new_root)) {
 586                free_anon_bdev(anon_dev);
 587                ret = PTR_ERR(new_root);
 588                btrfs_abort_transaction(trans, ret);
 589                goto fail;
 590        }
 591        /* Freeing will be done in btrfs_put_root() of new_root */
 592        anon_dev = 0;
 593
 594        ret = btrfs_record_root_in_trans(trans, new_root);
 595        if (ret) {
 596                btrfs_put_root(new_root);
 597                btrfs_abort_transaction(trans, ret);
 598                goto fail;
 599        }
 600
 601        ret = btrfs_create_subvol_root(trans, new_root, root);
 602        btrfs_put_root(new_root);
 603        if (ret) {
 604                /* We potentially lose an unused inode item here */
 605                btrfs_abort_transaction(trans, ret);
 606                goto fail;
 607        }
 608
 609        /*
 610         * insert the directory item
 611         */
 612        ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
 613        if (ret) {
 614                btrfs_abort_transaction(trans, ret);
 615                goto fail;
 616        }
 617
 618        ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
 619                                    BTRFS_FT_DIR, index);
 620        if (ret) {
 621                btrfs_abort_transaction(trans, ret);
 622                goto fail;
 623        }
 624
 625        btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
 626        ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
 627        if (ret) {
 628                btrfs_abort_transaction(trans, ret);
 629                goto fail;
 630        }
 631
 632        ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
 633                                 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
 634        if (ret) {
 635                btrfs_abort_transaction(trans, ret);
 636                goto fail;
 637        }
 638
 639        ret = btrfs_uuid_tree_add(trans, root_item->uuid,
 640                                  BTRFS_UUID_KEY_SUBVOL, objectid);
 641        if (ret)
 642                btrfs_abort_transaction(trans, ret);
 643
 644fail:
 645        kfree(root_item);
 646        trans->block_rsv = NULL;
 647        trans->bytes_reserved = 0;
 648        btrfs_subvolume_release_metadata(root, &block_rsv);
 649
 650        err = btrfs_commit_transaction(trans);
 651        if (err && !ret)
 652                ret = err;
 653
 654        if (!ret) {
 655                inode = btrfs_lookup_dentry(dir, dentry);
 656                if (IS_ERR(inode))
 657                        return PTR_ERR(inode);
 658                d_instantiate(dentry, inode);
 659        }
 660        return ret;
 661
 662fail_free:
 663        if (anon_dev)
 664                free_anon_bdev(anon_dev);
 665        kfree(root_item);
 666        return ret;
 667}
 668
 669static int create_snapshot(struct btrfs_root *root, struct inode *dir,
 670                           struct dentry *dentry, bool readonly,
 671                           struct btrfs_qgroup_inherit *inherit)
 672{
 673        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 674        struct inode *inode;
 675        struct btrfs_pending_snapshot *pending_snapshot;
 676        struct btrfs_trans_handle *trans;
 677        int ret;
 678
 679        if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 680                return -EINVAL;
 681
 682        if (atomic_read(&root->nr_swapfiles)) {
 683                btrfs_warn(fs_info,
 684                           "cannot snapshot subvolume with active swapfile");
 685                return -ETXTBSY;
 686        }
 687
 688        pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
 689        if (!pending_snapshot)
 690                return -ENOMEM;
 691
 692        ret = get_anon_bdev(&pending_snapshot->anon_dev);
 693        if (ret < 0)
 694                goto free_pending;
 695        pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
 696                        GFP_KERNEL);
 697        pending_snapshot->path = btrfs_alloc_path();
 698        if (!pending_snapshot->root_item || !pending_snapshot->path) {
 699                ret = -ENOMEM;
 700                goto free_pending;
 701        }
 702
 703        btrfs_init_block_rsv(&pending_snapshot->block_rsv,
 704                             BTRFS_BLOCK_RSV_TEMP);
 705        /*
 706         * 1 - parent dir inode
 707         * 2 - dir entries
 708         * 1 - root item
 709         * 2 - root ref/backref
 710         * 1 - root of snapshot
 711         * 1 - UUID item
 712         */
 713        ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
 714                                        &pending_snapshot->block_rsv, 8,
 715                                        false);
 716        if (ret)
 717                goto free_pending;
 718
 719        pending_snapshot->dentry = dentry;
 720        pending_snapshot->root = root;
 721        pending_snapshot->readonly = readonly;
 722        pending_snapshot->dir = dir;
 723        pending_snapshot->inherit = inherit;
 724
 725        trans = btrfs_start_transaction(root, 0);
 726        if (IS_ERR(trans)) {
 727                ret = PTR_ERR(trans);
 728                goto fail;
 729        }
 730
 731        spin_lock(&fs_info->trans_lock);
 732        list_add(&pending_snapshot->list,
 733                 &trans->transaction->pending_snapshots);
 734        spin_unlock(&fs_info->trans_lock);
 735
 736        ret = btrfs_commit_transaction(trans);
 737        if (ret)
 738                goto fail;
 739
 740        ret = pending_snapshot->error;
 741        if (ret)
 742                goto fail;
 743
 744        ret = btrfs_orphan_cleanup(pending_snapshot->snap);
 745        if (ret)
 746                goto fail;
 747
 748        inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
 749        if (IS_ERR(inode)) {
 750                ret = PTR_ERR(inode);
 751                goto fail;
 752        }
 753
 754        d_instantiate(dentry, inode);
 755        ret = 0;
 756        pending_snapshot->anon_dev = 0;
 757fail:
 758        /* Prevent double freeing of anon_dev */
 759        if (ret && pending_snapshot->snap)
 760                pending_snapshot->snap->anon_dev = 0;
 761        btrfs_put_root(pending_snapshot->snap);
 762        btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
 763free_pending:
 764        if (pending_snapshot->anon_dev)
 765                free_anon_bdev(pending_snapshot->anon_dev);
 766        kfree(pending_snapshot->root_item);
 767        btrfs_free_path(pending_snapshot->path);
 768        kfree(pending_snapshot);
 769
 770        return ret;
 771}
 772
 773/*  copy of may_delete in fs/namei.c()
 774 *      Check whether we can remove a link victim from directory dir, check
 775 *  whether the type of victim is right.
 776 *  1. We can't do it if dir is read-only (done in permission())
 777 *  2. We should have write and exec permissions on dir
 778 *  3. We can't remove anything from append-only dir
 779 *  4. We can't do anything with immutable dir (done in permission())
 780 *  5. If the sticky bit on dir is set we should either
 781 *      a. be owner of dir, or
 782 *      b. be owner of victim, or
 783 *      c. have CAP_FOWNER capability
 784 *  6. If the victim is append-only or immutable we can't do anything with
 785 *     links pointing to it.
 786 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
 787 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
 788 *  9. We can't remove a root or mountpoint.
 789 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 790 *     nfs_async_unlink().
 791 */
 792
 793static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
 794{
 795        int error;
 796
 797        if (d_really_is_negative(victim))
 798                return -ENOENT;
 799
 800        BUG_ON(d_inode(victim->d_parent) != dir);
 801        audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
 802
 803        error = inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC);
 804        if (error)
 805                return error;
 806        if (IS_APPEND(dir))
 807                return -EPERM;
 808        if (check_sticky(&init_user_ns, dir, d_inode(victim)) ||
 809            IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
 810            IS_SWAPFILE(d_inode(victim)))
 811                return -EPERM;
 812        if (isdir) {
 813                if (!d_is_dir(victim))
 814                        return -ENOTDIR;
 815                if (IS_ROOT(victim))
 816                        return -EBUSY;
 817        } else if (d_is_dir(victim))
 818                return -EISDIR;
 819        if (IS_DEADDIR(dir))
 820                return -ENOENT;
 821        if (victim->d_flags & DCACHE_NFSFS_RENAMED)
 822                return -EBUSY;
 823        return 0;
 824}
 825
 826/* copy of may_create in fs/namei.c() */
 827static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
 828{
 829        if (d_really_is_positive(child))
 830                return -EEXIST;
 831        if (IS_DEADDIR(dir))
 832                return -ENOENT;
 833        return inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC);
 834}
 835
 836/*
 837 * Create a new subvolume below @parent.  This is largely modeled after
 838 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
 839 * inside this filesystem so it's quite a bit simpler.
 840 */
 841static noinline int btrfs_mksubvol(const struct path *parent,
 842                                   const char *name, int namelen,
 843                                   struct btrfs_root *snap_src,
 844                                   bool readonly,
 845                                   struct btrfs_qgroup_inherit *inherit)
 846{
 847        struct inode *dir = d_inode(parent->dentry);
 848        struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 849        struct dentry *dentry;
 850        int error;
 851
 852        error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
 853        if (error == -EINTR)
 854                return error;
 855
 856        dentry = lookup_one_len(name, parent->dentry, namelen);
 857        error = PTR_ERR(dentry);
 858        if (IS_ERR(dentry))
 859                goto out_unlock;
 860
 861        error = btrfs_may_create(dir, dentry);
 862        if (error)
 863                goto out_dput;
 864
 865        /*
 866         * even if this name doesn't exist, we may get hash collisions.
 867         * check for them now when we can safely fail
 868         */
 869        error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
 870                                               dir->i_ino, name,
 871                                               namelen);
 872        if (error)
 873                goto out_dput;
 874
 875        down_read(&fs_info->subvol_sem);
 876
 877        if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
 878                goto out_up_read;
 879
 880        if (snap_src)
 881                error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
 882        else
 883                error = create_subvol(dir, dentry, name, namelen, inherit);
 884
 885        if (!error)
 886                fsnotify_mkdir(dir, dentry);
 887out_up_read:
 888        up_read(&fs_info->subvol_sem);
 889out_dput:
 890        dput(dentry);
 891out_unlock:
 892        btrfs_inode_unlock(dir, 0);
 893        return error;
 894}
 895
 896static noinline int btrfs_mksnapshot(const struct path *parent,
 897                                   const char *name, int namelen,
 898                                   struct btrfs_root *root,
 899                                   bool readonly,
 900                                   struct btrfs_qgroup_inherit *inherit)
 901{
 902        int ret;
 903        bool snapshot_force_cow = false;
 904
 905        /*
 906         * Force new buffered writes to reserve space even when NOCOW is
 907         * possible. This is to avoid later writeback (running dealloc) to
 908         * fallback to COW mode and unexpectedly fail with ENOSPC.
 909         */
 910        btrfs_drew_read_lock(&root->snapshot_lock);
 911
 912        ret = btrfs_start_delalloc_snapshot(root, false);
 913        if (ret)
 914                goto out;
 915
 916        /*
 917         * All previous writes have started writeback in NOCOW mode, so now
 918         * we force future writes to fallback to COW mode during snapshot
 919         * creation.
 920         */
 921        atomic_inc(&root->snapshot_force_cow);
 922        snapshot_force_cow = true;
 923
 924        btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
 925
 926        ret = btrfs_mksubvol(parent, name, namelen,
 927                             root, readonly, inherit);
 928out:
 929        if (snapshot_force_cow)
 930                atomic_dec(&root->snapshot_force_cow);
 931        btrfs_drew_read_unlock(&root->snapshot_lock);
 932        return ret;
 933}
 934
 935/*
 936 * When we're defragging a range, we don't want to kick it off again
 937 * if it is really just waiting for delalloc to send it down.
 938 * If we find a nice big extent or delalloc range for the bytes in the
 939 * file you want to defrag, we return 0 to let you know to skip this
 940 * part of the file
 941 */
 942static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
 943{
 944        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 945        struct extent_map *em = NULL;
 946        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 947        u64 end;
 948
 949        read_lock(&em_tree->lock);
 950        em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
 951        read_unlock(&em_tree->lock);
 952
 953        if (em) {
 954                end = extent_map_end(em);
 955                free_extent_map(em);
 956                if (end - offset > thresh)
 957                        return 0;
 958        }
 959        /* if we already have a nice delalloc here, just stop */
 960        thresh /= 2;
 961        end = count_range_bits(io_tree, &offset, offset + thresh,
 962                               thresh, EXTENT_DELALLOC, 1);
 963        if (end >= thresh)
 964                return 0;
 965        return 1;
 966}
 967
 968/*
 969 * helper function to walk through a file and find extents
 970 * newer than a specific transid, and smaller than thresh.
 971 *
 972 * This is used by the defragging code to find new and small
 973 * extents
 974 */
 975static int find_new_extents(struct btrfs_root *root,
 976                            struct inode *inode, u64 newer_than,
 977                            u64 *off, u32 thresh)
 978{
 979        struct btrfs_path *path;
 980        struct btrfs_key min_key;
 981        struct extent_buffer *leaf;
 982        struct btrfs_file_extent_item *extent;
 983        int type;
 984        int ret;
 985        u64 ino = btrfs_ino(BTRFS_I(inode));
 986
 987        path = btrfs_alloc_path();
 988        if (!path)
 989                return -ENOMEM;
 990
 991        min_key.objectid = ino;
 992        min_key.type = BTRFS_EXTENT_DATA_KEY;
 993        min_key.offset = *off;
 994
 995        while (1) {
 996                ret = btrfs_search_forward(root, &min_key, path, newer_than);
 997                if (ret != 0)
 998                        goto none;
 999process_slot:
1000                if (min_key.objectid != ino)
1001                        goto none;
1002                if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1003                        goto none;
1004
1005                leaf = path->nodes[0];
1006                extent = btrfs_item_ptr(leaf, path->slots[0],
1007                                        struct btrfs_file_extent_item);
1008
1009                type = btrfs_file_extent_type(leaf, extent);
1010                if (type == BTRFS_FILE_EXTENT_REG &&
1011                    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1012                    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1013                        *off = min_key.offset;
1014                        btrfs_free_path(path);
1015                        return 0;
1016                }
1017
1018                path->slots[0]++;
1019                if (path->slots[0] < btrfs_header_nritems(leaf)) {
1020                        btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1021                        goto process_slot;
1022                }
1023
1024                if (min_key.offset == (u64)-1)
1025                        goto none;
1026
1027                min_key.offset++;
1028                btrfs_release_path(path);
1029        }
1030none:
1031        btrfs_free_path(path);
1032        return -ENOENT;
1033}
1034
1035static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1036{
1037        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1038        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1039        struct extent_map *em;
1040        u64 len = PAGE_SIZE;
1041
1042        /*
1043         * hopefully we have this extent in the tree already, try without
1044         * the full extent lock
1045         */
1046        read_lock(&em_tree->lock);
1047        em = lookup_extent_mapping(em_tree, start, len);
1048        read_unlock(&em_tree->lock);
1049
1050        if (!em) {
1051                struct extent_state *cached = NULL;
1052                u64 end = start + len - 1;
1053
1054                /* get the big lock and read metadata off disk */
1055                lock_extent_bits(io_tree, start, end, &cached);
1056                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1057                unlock_extent_cached(io_tree, start, end, &cached);
1058
1059                if (IS_ERR(em))
1060                        return NULL;
1061        }
1062
1063        return em;
1064}
1065
1066static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1067{
1068        struct extent_map *next;
1069        bool ret = true;
1070
1071        /* this is the last extent */
1072        if (em->start + em->len >= i_size_read(inode))
1073                return false;
1074
1075        next = defrag_lookup_extent(inode, em->start + em->len);
1076        if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1077                ret = false;
1078        else if ((em->block_start + em->block_len == next->block_start) &&
1079                 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1080                ret = false;
1081
1082        free_extent_map(next);
1083        return ret;
1084}
1085
1086static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1087                               u64 *last_len, u64 *skip, u64 *defrag_end,
1088                               int compress)
1089{
1090        struct extent_map *em;
1091        int ret = 1;
1092        bool next_mergeable = true;
1093        bool prev_mergeable = true;
1094
1095        /*
1096         * make sure that once we start defragging an extent, we keep on
1097         * defragging it
1098         */
1099        if (start < *defrag_end)
1100                return 1;
1101
1102        *skip = 0;
1103
1104        em = defrag_lookup_extent(inode, start);
1105        if (!em)
1106                return 0;
1107
1108        /* this will cover holes, and inline extents */
1109        if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1110                ret = 0;
1111                goto out;
1112        }
1113
1114        if (!*defrag_end)
1115                prev_mergeable = false;
1116
1117        next_mergeable = defrag_check_next_extent(inode, em);
1118        /*
1119         * we hit a real extent, if it is big or the next extent is not a
1120         * real extent, don't bother defragging it
1121         */
1122        if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1123            (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1124                ret = 0;
1125out:
1126        /*
1127         * last_len ends up being a counter of how many bytes we've defragged.
1128         * every time we choose not to defrag an extent, we reset *last_len
1129         * so that the next tiny extent will force a defrag.
1130         *
1131         * The end result of this is that tiny extents before a single big
1132         * extent will force at least part of that big extent to be defragged.
1133         */
1134        if (ret) {
1135                *defrag_end = extent_map_end(em);
1136        } else {
1137                *last_len = 0;
1138                *skip = extent_map_end(em);
1139                *defrag_end = 0;
1140        }
1141
1142        free_extent_map(em);
1143        return ret;
1144}
1145
1146/*
1147 * it doesn't do much good to defrag one or two pages
1148 * at a time.  This pulls in a nice chunk of pages
1149 * to COW and defrag.
1150 *
1151 * It also makes sure the delalloc code has enough
1152 * dirty data to avoid making new small extents as part
1153 * of the defrag
1154 *
1155 * It's a good idea to start RA on this range
1156 * before calling this.
1157 */
1158static int cluster_pages_for_defrag(struct inode *inode,
1159                                    struct page **pages,
1160                                    unsigned long start_index,
1161                                    unsigned long num_pages)
1162{
1163        unsigned long file_end;
1164        u64 isize = i_size_read(inode);
1165        u64 page_start;
1166        u64 page_end;
1167        u64 page_cnt;
1168        u64 start = (u64)start_index << PAGE_SHIFT;
1169        u64 search_start;
1170        int ret;
1171        int i;
1172        int i_done;
1173        struct btrfs_ordered_extent *ordered;
1174        struct extent_state *cached_state = NULL;
1175        struct extent_io_tree *tree;
1176        struct extent_changeset *data_reserved = NULL;
1177        gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1178
1179        file_end = (isize - 1) >> PAGE_SHIFT;
1180        if (!isize || start_index > file_end)
1181                return 0;
1182
1183        page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1184
1185        ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1186                        start, page_cnt << PAGE_SHIFT);
1187        if (ret)
1188                return ret;
1189        i_done = 0;
1190        tree = &BTRFS_I(inode)->io_tree;
1191
1192        /* step one, lock all the pages */
1193        for (i = 0; i < page_cnt; i++) {
1194                struct page *page;
1195again:
1196                page = find_or_create_page(inode->i_mapping,
1197                                           start_index + i, mask);
1198                if (!page)
1199                        break;
1200
1201                ret = set_page_extent_mapped(page);
1202                if (ret < 0) {
1203                        unlock_page(page);
1204                        put_page(page);
1205                        break;
1206                }
1207
1208                page_start = page_offset(page);
1209                page_end = page_start + PAGE_SIZE - 1;
1210                while (1) {
1211                        lock_extent_bits(tree, page_start, page_end,
1212                                         &cached_state);
1213                        ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1214                                                              page_start);
1215                        unlock_extent_cached(tree, page_start, page_end,
1216                                             &cached_state);
1217                        if (!ordered)
1218                                break;
1219
1220                        unlock_page(page);
1221                        btrfs_start_ordered_extent(ordered, 1);
1222                        btrfs_put_ordered_extent(ordered);
1223                        lock_page(page);
1224                        /*
1225                         * we unlocked the page above, so we need check if
1226                         * it was released or not.
1227                         */
1228                        if (page->mapping != inode->i_mapping) {
1229                                unlock_page(page);
1230                                put_page(page);
1231                                goto again;
1232                        }
1233                }
1234
1235                if (!PageUptodate(page)) {
1236                        btrfs_readpage(NULL, page);
1237                        lock_page(page);
1238                        if (!PageUptodate(page)) {
1239                                unlock_page(page);
1240                                put_page(page);
1241                                ret = -EIO;
1242                                break;
1243                        }
1244                }
1245
1246                if (page->mapping != inode->i_mapping) {
1247                        unlock_page(page);
1248                        put_page(page);
1249                        goto again;
1250                }
1251
1252                pages[i] = page;
1253                i_done++;
1254        }
1255        if (!i_done || ret)
1256                goto out;
1257
1258        if (!(inode->i_sb->s_flags & SB_ACTIVE))
1259                goto out;
1260
1261        /*
1262         * so now we have a nice long stream of locked
1263         * and up to date pages, lets wait on them
1264         */
1265        for (i = 0; i < i_done; i++)
1266                wait_on_page_writeback(pages[i]);
1267
1268        page_start = page_offset(pages[0]);
1269        page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1270
1271        lock_extent_bits(&BTRFS_I(inode)->io_tree,
1272                         page_start, page_end - 1, &cached_state);
1273
1274        /*
1275         * When defragmenting we skip ranges that have holes or inline extents,
1276         * (check should_defrag_range()), to avoid unnecessary IO and wasting
1277         * space. At btrfs_defrag_file(), we check if a range should be defragged
1278         * before locking the inode and then, if it should, we trigger a sync
1279         * page cache readahead - we lock the inode only after that to avoid
1280         * blocking for too long other tasks that possibly want to operate on
1281         * other file ranges. But before we were able to get the inode lock,
1282         * some other task may have punched a hole in the range, or we may have
1283         * now an inline extent, in which case we should not defrag. So check
1284         * for that here, where we have the inode and the range locked, and bail
1285         * out if that happened.
1286         */
1287        search_start = page_start;
1288        while (search_start < page_end) {
1289                struct extent_map *em;
1290
1291                em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start,
1292                                      page_end - search_start);
1293                if (IS_ERR(em)) {
1294                        ret = PTR_ERR(em);
1295                        goto out_unlock_range;
1296                }
1297                if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1298                        free_extent_map(em);
1299                        /* Ok, 0 means we did not defrag anything */
1300                        ret = 0;
1301                        goto out_unlock_range;
1302                }
1303                search_start = extent_map_end(em);
1304                free_extent_map(em);
1305        }
1306
1307        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1308                          page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1309                          EXTENT_DEFRAG, 0, 0, &cached_state);
1310
1311        if (i_done != page_cnt) {
1312                spin_lock(&BTRFS_I(inode)->lock);
1313                btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1314                spin_unlock(&BTRFS_I(inode)->lock);
1315                btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1316                                start, (page_cnt - i_done) << PAGE_SHIFT, true);
1317        }
1318
1319
1320        set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1321                          &cached_state);
1322
1323        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1324                             page_start, page_end - 1, &cached_state);
1325
1326        for (i = 0; i < i_done; i++) {
1327                clear_page_dirty_for_io(pages[i]);
1328                ClearPageChecked(pages[i]);
1329                set_page_dirty(pages[i]);
1330                unlock_page(pages[i]);
1331                put_page(pages[i]);
1332        }
1333        btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1334        extent_changeset_free(data_reserved);
1335        return i_done;
1336
1337out_unlock_range:
1338        unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1339                             page_start, page_end - 1, &cached_state);
1340out:
1341        for (i = 0; i < i_done; i++) {
1342                unlock_page(pages[i]);
1343                put_page(pages[i]);
1344        }
1345        btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1346                        start, page_cnt << PAGE_SHIFT, true);
1347        btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1348        extent_changeset_free(data_reserved);
1349        return ret;
1350
1351}
1352
1353int btrfs_defrag_file(struct inode *inode, struct file *file,
1354                      struct btrfs_ioctl_defrag_range_args *range,
1355                      u64 newer_than, unsigned long max_to_defrag)
1356{
1357        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1358        struct btrfs_root *root = BTRFS_I(inode)->root;
1359        struct file_ra_state *ra = NULL;
1360        unsigned long last_index;
1361        u64 isize = i_size_read(inode);
1362        u64 last_len = 0;
1363        u64 skip = 0;
1364        u64 defrag_end = 0;
1365        u64 newer_off = range->start;
1366        unsigned long i;
1367        unsigned long ra_index = 0;
1368        int ret;
1369        int defrag_count = 0;
1370        int compress_type = BTRFS_COMPRESS_ZLIB;
1371        u32 extent_thresh = range->extent_thresh;
1372        unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1373        unsigned long cluster = max_cluster;
1374        u64 new_align = ~((u64)SZ_128K - 1);
1375        struct page **pages = NULL;
1376        bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1377
1378        if (isize == 0)
1379                return 0;
1380
1381        if (range->start >= isize)
1382                return -EINVAL;
1383
1384        if (do_compress) {
1385                if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1386                        return -EINVAL;
1387                if (range->compress_type)
1388                        compress_type = range->compress_type;
1389        }
1390
1391        if (extent_thresh == 0)
1392                extent_thresh = SZ_256K;
1393
1394        /*
1395         * If we were not given a file, allocate a readahead context. As
1396         * readahead is just an optimization, defrag will work without it so
1397         * we don't error out.
1398         */
1399        if (!file) {
1400                ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1401                if (ra)
1402                        file_ra_state_init(ra, inode->i_mapping);
1403        } else {
1404                ra = &file->f_ra;
1405        }
1406
1407        pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1408        if (!pages) {
1409                ret = -ENOMEM;
1410                goto out_ra;
1411        }
1412
1413        /* find the last page to defrag */
1414        if (range->start + range->len > range->start) {
1415                last_index = min_t(u64, isize - 1,
1416                         range->start + range->len - 1) >> PAGE_SHIFT;
1417        } else {
1418                last_index = (isize - 1) >> PAGE_SHIFT;
1419        }
1420
1421        if (newer_than) {
1422                ret = find_new_extents(root, inode, newer_than,
1423                                       &newer_off, SZ_64K);
1424                if (!ret) {
1425                        range->start = newer_off;
1426                        /*
1427                         * we always align our defrag to help keep
1428                         * the extents in the file evenly spaced
1429                         */
1430                        i = (newer_off & new_align) >> PAGE_SHIFT;
1431                } else
1432                        goto out_ra;
1433        } else {
1434                i = range->start >> PAGE_SHIFT;
1435        }
1436        if (!max_to_defrag)
1437                max_to_defrag = last_index - i + 1;
1438
1439        /*
1440         * make writeback starts from i, so the defrag range can be
1441         * written sequentially.
1442         */
1443        if (i < inode->i_mapping->writeback_index)
1444                inode->i_mapping->writeback_index = i;
1445
1446        while (i <= last_index && defrag_count < max_to_defrag &&
1447               (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1448                /*
1449                 * make sure we stop running if someone unmounts
1450                 * the FS
1451                 */
1452                if (!(inode->i_sb->s_flags & SB_ACTIVE))
1453                        break;
1454
1455                if (btrfs_defrag_cancelled(fs_info)) {
1456                        btrfs_debug(fs_info, "defrag_file cancelled");
1457                        ret = -EAGAIN;
1458                        break;
1459                }
1460
1461                if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1462                                         extent_thresh, &last_len, &skip,
1463                                         &defrag_end, do_compress)){
1464                        unsigned long next;
1465                        /*
1466                         * the should_defrag function tells us how much to skip
1467                         * bump our counter by the suggested amount
1468                         */
1469                        next = DIV_ROUND_UP(skip, PAGE_SIZE);
1470                        i = max(i + 1, next);
1471                        continue;
1472                }
1473
1474                if (!newer_than) {
1475                        cluster = (PAGE_ALIGN(defrag_end) >>
1476                                   PAGE_SHIFT) - i;
1477                        cluster = min(cluster, max_cluster);
1478                } else {
1479                        cluster = max_cluster;
1480                }
1481
1482                if (i + cluster > ra_index) {
1483                        ra_index = max(i, ra_index);
1484                        if (ra)
1485                                page_cache_sync_readahead(inode->i_mapping, ra,
1486                                                file, ra_index, cluster);
1487                        ra_index += cluster;
1488                }
1489
1490                btrfs_inode_lock(inode, 0);
1491                if (IS_SWAPFILE(inode)) {
1492                        ret = -ETXTBSY;
1493                } else {
1494                        if (do_compress)
1495                                BTRFS_I(inode)->defrag_compress = compress_type;
1496                        ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1497                }
1498                if (ret < 0) {
1499                        btrfs_inode_unlock(inode, 0);
1500                        goto out_ra;
1501                }
1502
1503                defrag_count += ret;
1504                balance_dirty_pages_ratelimited(inode->i_mapping);
1505                btrfs_inode_unlock(inode, 0);
1506
1507                if (newer_than) {
1508                        if (newer_off == (u64)-1)
1509                                break;
1510
1511                        if (ret > 0)
1512                                i += ret;
1513
1514                        newer_off = max(newer_off + 1,
1515                                        (u64)i << PAGE_SHIFT);
1516
1517                        ret = find_new_extents(root, inode, newer_than,
1518                                               &newer_off, SZ_64K);
1519                        if (!ret) {
1520                                range->start = newer_off;
1521                                i = (newer_off & new_align) >> PAGE_SHIFT;
1522                        } else {
1523                                break;
1524                        }
1525                } else {
1526                        if (ret > 0) {
1527                                i += ret;
1528                                last_len += ret << PAGE_SHIFT;
1529                        } else {
1530                                i++;
1531                                last_len = 0;
1532                        }
1533                }
1534        }
1535
1536        if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1537                filemap_flush(inode->i_mapping);
1538                if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1539                             &BTRFS_I(inode)->runtime_flags))
1540                        filemap_flush(inode->i_mapping);
1541        }
1542
1543        if (range->compress_type == BTRFS_COMPRESS_LZO) {
1544                btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1545        } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1546                btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1547        }
1548
1549        ret = defrag_count;
1550
1551out_ra:
1552        if (do_compress) {
1553                btrfs_inode_lock(inode, 0);
1554                BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1555                btrfs_inode_unlock(inode, 0);
1556        }
1557        if (!file)
1558                kfree(ra);
1559        kfree(pages);
1560        return ret;
1561}
1562
1563static noinline int btrfs_ioctl_resize(struct file *file,
1564                                        void __user *arg)
1565{
1566        struct inode *inode = file_inode(file);
1567        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1568        u64 new_size;
1569        u64 old_size;
1570        u64 devid = 1;
1571        struct btrfs_root *root = BTRFS_I(inode)->root;
1572        struct btrfs_ioctl_vol_args *vol_args;
1573        struct btrfs_trans_handle *trans;
1574        struct btrfs_device *device = NULL;
1575        char *sizestr;
1576        char *retptr;
1577        char *devstr = NULL;
1578        int ret = 0;
1579        int mod = 0;
1580
1581        if (!capable(CAP_SYS_ADMIN))
1582                return -EPERM;
1583
1584        ret = mnt_want_write_file(file);
1585        if (ret)
1586                return ret;
1587
1588        if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) {
1589                mnt_drop_write_file(file);
1590                return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1591        }
1592
1593        vol_args = memdup_user(arg, sizeof(*vol_args));
1594        if (IS_ERR(vol_args)) {
1595                ret = PTR_ERR(vol_args);
1596                goto out;
1597        }
1598
1599        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1600
1601        sizestr = vol_args->name;
1602        devstr = strchr(sizestr, ':');
1603        if (devstr) {
1604                sizestr = devstr + 1;
1605                *devstr = '\0';
1606                devstr = vol_args->name;
1607                ret = kstrtoull(devstr, 10, &devid);
1608                if (ret)
1609                        goto out_free;
1610                if (!devid) {
1611                        ret = -EINVAL;
1612                        goto out_free;
1613                }
1614                btrfs_info(fs_info, "resizing devid %llu", devid);
1615        }
1616
1617        device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
1618        if (!device) {
1619                btrfs_info(fs_info, "resizer unable to find device %llu",
1620                           devid);
1621                ret = -ENODEV;
1622                goto out_free;
1623        }
1624
1625        if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1626                btrfs_info(fs_info,
1627                           "resizer unable to apply on readonly device %llu",
1628                       devid);
1629                ret = -EPERM;
1630                goto out_free;
1631        }
1632
1633        if (!strcmp(sizestr, "max"))
1634                new_size = device->bdev->bd_inode->i_size;
1635        else {
1636                if (sizestr[0] == '-') {
1637                        mod = -1;
1638                        sizestr++;
1639                } else if (sizestr[0] == '+') {
1640                        mod = 1;
1641                        sizestr++;
1642                }
1643                new_size = memparse(sizestr, &retptr);
1644                if (*retptr != '\0' || new_size == 0) {
1645                        ret = -EINVAL;
1646                        goto out_free;
1647                }
1648        }
1649
1650        if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1651                ret = -EPERM;
1652                goto out_free;
1653        }
1654
1655        old_size = btrfs_device_get_total_bytes(device);
1656
1657        if (mod < 0) {
1658                if (new_size > old_size) {
1659                        ret = -EINVAL;
1660                        goto out_free;
1661                }
1662                new_size = old_size - new_size;
1663        } else if (mod > 0) {
1664                if (new_size > ULLONG_MAX - old_size) {
1665                        ret = -ERANGE;
1666                        goto out_free;
1667                }
1668                new_size = old_size + new_size;
1669        }
1670
1671        if (new_size < SZ_256M) {
1672                ret = -EINVAL;
1673                goto out_free;
1674        }
1675        if (new_size > device->bdev->bd_inode->i_size) {
1676                ret = -EFBIG;
1677                goto out_free;
1678        }
1679
1680        new_size = round_down(new_size, fs_info->sectorsize);
1681
1682        if (new_size > old_size) {
1683                trans = btrfs_start_transaction(root, 0);
1684                if (IS_ERR(trans)) {
1685                        ret = PTR_ERR(trans);
1686                        goto out_free;
1687                }
1688                ret = btrfs_grow_device(trans, device, new_size);
1689                btrfs_commit_transaction(trans);
1690        } else if (new_size < old_size) {
1691                ret = btrfs_shrink_device(device, new_size);
1692        } /* equal, nothing need to do */
1693
1694        if (ret == 0 && new_size != old_size)
1695                btrfs_info_in_rcu(fs_info,
1696                        "resize device %s (devid %llu) from %llu to %llu",
1697                        rcu_str_deref(device->name), device->devid,
1698                        old_size, new_size);
1699out_free:
1700        kfree(vol_args);
1701out:
1702        btrfs_exclop_finish(fs_info);
1703        mnt_drop_write_file(file);
1704        return ret;
1705}
1706
1707static noinline int __btrfs_ioctl_snap_create(struct file *file,
1708                                const char *name, unsigned long fd, int subvol,
1709                                bool readonly,
1710                                struct btrfs_qgroup_inherit *inherit)
1711{
1712        int namelen;
1713        int ret = 0;
1714
1715        if (!S_ISDIR(file_inode(file)->i_mode))
1716                return -ENOTDIR;
1717
1718        ret = mnt_want_write_file(file);
1719        if (ret)
1720                goto out;
1721
1722        namelen = strlen(name);
1723        if (strchr(name, '/')) {
1724                ret = -EINVAL;
1725                goto out_drop_write;
1726        }
1727
1728        if (name[0] == '.' &&
1729           (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1730                ret = -EEXIST;
1731                goto out_drop_write;
1732        }
1733
1734        if (subvol) {
1735                ret = btrfs_mksubvol(&file->f_path, name, namelen,
1736                                     NULL, readonly, inherit);
1737        } else {
1738                struct fd src = fdget(fd);
1739                struct inode *src_inode;
1740                if (!src.file) {
1741                        ret = -EINVAL;
1742                        goto out_drop_write;
1743                }
1744
1745                src_inode = file_inode(src.file);
1746                if (src_inode->i_sb != file_inode(file)->i_sb) {
1747                        btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1748                                   "Snapshot src from another FS");
1749                        ret = -EXDEV;
1750                } else if (!inode_owner_or_capable(&init_user_ns, src_inode)) {
1751                        /*
1752                         * Subvolume creation is not restricted, but snapshots
1753                         * are limited to own subvolumes only
1754                         */
1755                        ret = -EPERM;
1756                } else {
1757                        ret = btrfs_mksnapshot(&file->f_path, name, namelen,
1758                                             BTRFS_I(src_inode)->root,
1759                                             readonly, inherit);
1760                }
1761                fdput(src);
1762        }
1763out_drop_write:
1764        mnt_drop_write_file(file);
1765out:
1766        return ret;
1767}
1768
1769static noinline int btrfs_ioctl_snap_create(struct file *file,
1770                                            void __user *arg, int subvol)
1771{
1772        struct btrfs_ioctl_vol_args *vol_args;
1773        int ret;
1774
1775        if (!S_ISDIR(file_inode(file)->i_mode))
1776                return -ENOTDIR;
1777
1778        vol_args = memdup_user(arg, sizeof(*vol_args));
1779        if (IS_ERR(vol_args))
1780                return PTR_ERR(vol_args);
1781        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1782
1783        ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1784                                        subvol, false, NULL);
1785
1786        kfree(vol_args);
1787        return ret;
1788}
1789
1790static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1791                                               void __user *arg, int subvol)
1792{
1793        struct btrfs_ioctl_vol_args_v2 *vol_args;
1794        int ret;
1795        bool readonly = false;
1796        struct btrfs_qgroup_inherit *inherit = NULL;
1797
1798        if (!S_ISDIR(file_inode(file)->i_mode))
1799                return -ENOTDIR;
1800
1801        vol_args = memdup_user(arg, sizeof(*vol_args));
1802        if (IS_ERR(vol_args))
1803                return PTR_ERR(vol_args);
1804        vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1805
1806        if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1807                ret = -EOPNOTSUPP;
1808                goto free_args;
1809        }
1810
1811        if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1812                readonly = true;
1813        if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1814                u64 nums;
1815
1816                if (vol_args->size < sizeof(*inherit) ||
1817                    vol_args->size > PAGE_SIZE) {
1818                        ret = -EINVAL;
1819                        goto free_args;
1820                }
1821                inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1822                if (IS_ERR(inherit)) {
1823                        ret = PTR_ERR(inherit);
1824                        goto free_args;
1825                }
1826
1827                if (inherit->num_qgroups > PAGE_SIZE ||
1828                    inherit->num_ref_copies > PAGE_SIZE ||
1829                    inherit->num_excl_copies > PAGE_SIZE) {
1830                        ret = -EINVAL;
1831                        goto free_inherit;
1832                }
1833
1834                nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1835                       2 * inherit->num_excl_copies;
1836                if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1837                        ret = -EINVAL;
1838                        goto free_inherit;
1839                }
1840        }
1841
1842        ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1843                                        subvol, readonly, inherit);
1844        if (ret)
1845                goto free_inherit;
1846free_inherit:
1847        kfree(inherit);
1848free_args:
1849        kfree(vol_args);
1850        return ret;
1851}
1852
1853static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1854                                                void __user *arg)
1855{
1856        struct inode *inode = file_inode(file);
1857        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1858        struct btrfs_root *root = BTRFS_I(inode)->root;
1859        int ret = 0;
1860        u64 flags = 0;
1861
1862        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1863                return -EINVAL;
1864
1865        down_read(&fs_info->subvol_sem);
1866        if (btrfs_root_readonly(root))
1867                flags |= BTRFS_SUBVOL_RDONLY;
1868        up_read(&fs_info->subvol_sem);
1869
1870        if (copy_to_user(arg, &flags, sizeof(flags)))
1871                ret = -EFAULT;
1872
1873        return ret;
1874}
1875
1876static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1877                                              void __user *arg)
1878{
1879        struct inode *inode = file_inode(file);
1880        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1881        struct btrfs_root *root = BTRFS_I(inode)->root;
1882        struct btrfs_trans_handle *trans;
1883        u64 root_flags;
1884        u64 flags;
1885        int ret = 0;
1886
1887        if (!inode_owner_or_capable(&init_user_ns, inode))
1888                return -EPERM;
1889
1890        ret = mnt_want_write_file(file);
1891        if (ret)
1892                goto out;
1893
1894        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1895                ret = -EINVAL;
1896                goto out_drop_write;
1897        }
1898
1899        if (copy_from_user(&flags, arg, sizeof(flags))) {
1900                ret = -EFAULT;
1901                goto out_drop_write;
1902        }
1903
1904        if (flags & ~BTRFS_SUBVOL_RDONLY) {
1905                ret = -EOPNOTSUPP;
1906                goto out_drop_write;
1907        }
1908
1909        down_write(&fs_info->subvol_sem);
1910
1911        /* nothing to do */
1912        if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1913                goto out_drop_sem;
1914
1915        root_flags = btrfs_root_flags(&root->root_item);
1916        if (flags & BTRFS_SUBVOL_RDONLY) {
1917                btrfs_set_root_flags(&root->root_item,
1918                                     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1919        } else {
1920                /*
1921                 * Block RO -> RW transition if this subvolume is involved in
1922                 * send
1923                 */
1924                spin_lock(&root->root_item_lock);
1925                if (root->send_in_progress == 0) {
1926                        btrfs_set_root_flags(&root->root_item,
1927                                     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1928                        spin_unlock(&root->root_item_lock);
1929                } else {
1930                        spin_unlock(&root->root_item_lock);
1931                        btrfs_warn(fs_info,
1932                                   "Attempt to set subvolume %llu read-write during send",
1933                                   root->root_key.objectid);
1934                        ret = -EPERM;
1935                        goto out_drop_sem;
1936                }
1937        }
1938
1939        trans = btrfs_start_transaction(root, 1);
1940        if (IS_ERR(trans)) {
1941                ret = PTR_ERR(trans);
1942                goto out_reset;
1943        }
1944
1945        ret = btrfs_update_root(trans, fs_info->tree_root,
1946                                &root->root_key, &root->root_item);
1947        if (ret < 0) {
1948                btrfs_end_transaction(trans);
1949                goto out_reset;
1950        }
1951
1952        ret = btrfs_commit_transaction(trans);
1953
1954out_reset:
1955        if (ret)
1956                btrfs_set_root_flags(&root->root_item, root_flags);
1957out_drop_sem:
1958        up_write(&fs_info->subvol_sem);
1959out_drop_write:
1960        mnt_drop_write_file(file);
1961out:
1962        return ret;
1963}
1964
1965static noinline int key_in_sk(struct btrfs_key *key,
1966                              struct btrfs_ioctl_search_key *sk)
1967{
1968        struct btrfs_key test;
1969        int ret;
1970
1971        test.objectid = sk->min_objectid;
1972        test.type = sk->min_type;
1973        test.offset = sk->min_offset;
1974
1975        ret = btrfs_comp_cpu_keys(key, &test);
1976        if (ret < 0)
1977                return 0;
1978
1979        test.objectid = sk->max_objectid;
1980        test.type = sk->max_type;
1981        test.offset = sk->max_offset;
1982
1983        ret = btrfs_comp_cpu_keys(key, &test);
1984        if (ret > 0)
1985                return 0;
1986        return 1;
1987}
1988
1989static noinline int copy_to_sk(struct btrfs_path *path,
1990                               struct btrfs_key *key,
1991                               struct btrfs_ioctl_search_key *sk,
1992                               size_t *buf_size,
1993                               char __user *ubuf,
1994                               unsigned long *sk_offset,
1995                               int *num_found)
1996{
1997        u64 found_transid;
1998        struct extent_buffer *leaf;
1999        struct btrfs_ioctl_search_header sh;
2000        struct btrfs_key test;
2001        unsigned long item_off;
2002        unsigned long item_len;
2003        int nritems;
2004        int i;
2005        int slot;
2006        int ret = 0;
2007
2008        leaf = path->nodes[0];
2009        slot = path->slots[0];
2010        nritems = btrfs_header_nritems(leaf);
2011
2012        if (btrfs_header_generation(leaf) > sk->max_transid) {
2013                i = nritems;
2014                goto advance_key;
2015        }
2016        found_transid = btrfs_header_generation(leaf);
2017
2018        for (i = slot; i < nritems; i++) {
2019                item_off = btrfs_item_ptr_offset(leaf, i);
2020                item_len = btrfs_item_size_nr(leaf, i);
2021
2022                btrfs_item_key_to_cpu(leaf, key, i);
2023                if (!key_in_sk(key, sk))
2024                        continue;
2025
2026                if (sizeof(sh) + item_len > *buf_size) {
2027                        if (*num_found) {
2028                                ret = 1;
2029                                goto out;
2030                        }
2031
2032                        /*
2033                         * return one empty item back for v1, which does not
2034                         * handle -EOVERFLOW
2035                         */
2036
2037                        *buf_size = sizeof(sh) + item_len;
2038                        item_len = 0;
2039                        ret = -EOVERFLOW;
2040                }
2041
2042                if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2043                        ret = 1;
2044                        goto out;
2045                }
2046
2047                sh.objectid = key->objectid;
2048                sh.offset = key->offset;
2049                sh.type = key->type;
2050                sh.len = item_len;
2051                sh.transid = found_transid;
2052
2053                /*
2054                 * Copy search result header. If we fault then loop again so we
2055                 * can fault in the pages and -EFAULT there if there's a
2056                 * problem. Otherwise we'll fault and then copy the buffer in
2057                 * properly this next time through
2058                 */
2059                if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2060                        ret = 0;
2061                        goto out;
2062                }
2063
2064                *sk_offset += sizeof(sh);
2065
2066                if (item_len) {
2067                        char __user *up = ubuf + *sk_offset;
2068                        /*
2069                         * Copy the item, same behavior as above, but reset the
2070                         * * sk_offset so we copy the full thing again.
2071                         */
2072                        if (read_extent_buffer_to_user_nofault(leaf, up,
2073                                                item_off, item_len)) {
2074                                ret = 0;
2075                                *sk_offset -= sizeof(sh);
2076                                goto out;
2077                        }
2078
2079                        *sk_offset += item_len;
2080                }
2081                (*num_found)++;
2082
2083                if (ret) /* -EOVERFLOW from above */
2084                        goto out;
2085
2086                if (*num_found >= sk->nr_items) {
2087                        ret = 1;
2088                        goto out;
2089                }
2090        }
2091advance_key:
2092        ret = 0;
2093        test.objectid = sk->max_objectid;
2094        test.type = sk->max_type;
2095        test.offset = sk->max_offset;
2096        if (btrfs_comp_cpu_keys(key, &test) >= 0)
2097                ret = 1;
2098        else if (key->offset < (u64)-1)
2099                key->offset++;
2100        else if (key->type < (u8)-1) {
2101                key->offset = 0;
2102                key->type++;
2103        } else if (key->objectid < (u64)-1) {
2104                key->offset = 0;
2105                key->type = 0;
2106                key->objectid++;
2107        } else
2108                ret = 1;
2109out:
2110        /*
2111         *  0: all items from this leaf copied, continue with next
2112         *  1: * more items can be copied, but unused buffer is too small
2113         *     * all items were found
2114         *     Either way, it will stops the loop which iterates to the next
2115         *     leaf
2116         *  -EOVERFLOW: item was to large for buffer
2117         *  -EFAULT: could not copy extent buffer back to userspace
2118         */
2119        return ret;
2120}
2121
2122static noinline int search_ioctl(struct inode *inode,
2123                                 struct btrfs_ioctl_search_key *sk,
2124                                 size_t *buf_size,
2125                                 char __user *ubuf)
2126{
2127        struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2128        struct btrfs_root *root;
2129        struct btrfs_key key;
2130        struct btrfs_path *path;
2131        int ret;
2132        int num_found = 0;
2133        unsigned long sk_offset = 0;
2134
2135        if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2136                *buf_size = sizeof(struct btrfs_ioctl_search_header);
2137                return -EOVERFLOW;
2138        }
2139
2140        path = btrfs_alloc_path();
2141        if (!path)
2142                return -ENOMEM;
2143
2144        if (sk->tree_id == 0) {
2145                /* search the root of the inode that was passed */
2146                root = btrfs_grab_root(BTRFS_I(inode)->root);
2147        } else {
2148                root = btrfs_get_fs_root(info, sk->tree_id, true);
2149                if (IS_ERR(root)) {
2150                        btrfs_free_path(path);
2151                        return PTR_ERR(root);
2152                }
2153        }
2154
2155        key.objectid = sk->min_objectid;
2156        key.type = sk->min_type;
2157        key.offset = sk->min_offset;
2158
2159        while (1) {
2160                ret = fault_in_pages_writeable(ubuf + sk_offset,
2161                                               *buf_size - sk_offset);
2162                if (ret)
2163                        break;
2164
2165                ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2166                if (ret != 0) {
2167                        if (ret > 0)
2168                                ret = 0;
2169                        goto err;
2170                }
2171                ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2172                                 &sk_offset, &num_found);
2173                btrfs_release_path(path);
2174                if (ret)
2175                        break;
2176
2177        }
2178        if (ret > 0)
2179                ret = 0;
2180err:
2181        sk->nr_items = num_found;
2182        btrfs_put_root(root);
2183        btrfs_free_path(path);
2184        return ret;
2185}
2186
2187static noinline int btrfs_ioctl_tree_search(struct file *file,
2188                                           void __user *argp)
2189{
2190        struct btrfs_ioctl_search_args __user *uargs;
2191        struct btrfs_ioctl_search_key sk;
2192        struct inode *inode;
2193        int ret;
2194        size_t buf_size;
2195
2196        if (!capable(CAP_SYS_ADMIN))
2197                return -EPERM;
2198
2199        uargs = (struct btrfs_ioctl_search_args __user *)argp;
2200
2201        if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2202                return -EFAULT;
2203
2204        buf_size = sizeof(uargs->buf);
2205
2206        inode = file_inode(file);
2207        ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2208
2209        /*
2210         * In the origin implementation an overflow is handled by returning a
2211         * search header with a len of zero, so reset ret.
2212         */
2213        if (ret == -EOVERFLOW)
2214                ret = 0;
2215
2216        if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2217                ret = -EFAULT;
2218        return ret;
2219}
2220
2221static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2222                                               void __user *argp)
2223{
2224        struct btrfs_ioctl_search_args_v2 __user *uarg;
2225        struct btrfs_ioctl_search_args_v2 args;
2226        struct inode *inode;
2227        int ret;
2228        size_t buf_size;
2229        const size_t buf_limit = SZ_16M;
2230
2231        if (!capable(CAP_SYS_ADMIN))
2232                return -EPERM;
2233
2234        /* copy search header and buffer size */
2235        uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2236        if (copy_from_user(&args, uarg, sizeof(args)))
2237                return -EFAULT;
2238
2239        buf_size = args.buf_size;
2240
2241        /* limit result size to 16MB */
2242        if (buf_size > buf_limit)
2243                buf_size = buf_limit;
2244
2245        inode = file_inode(file);
2246        ret = search_ioctl(inode, &args.key, &buf_size,
2247                           (char __user *)(&uarg->buf[0]));
2248        if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2249                ret = -EFAULT;
2250        else if (ret == -EOVERFLOW &&
2251                copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2252                ret = -EFAULT;
2253
2254        return ret;
2255}
2256
2257/*
2258 * Search INODE_REFs to identify path name of 'dirid' directory
2259 * in a 'tree_id' tree. and sets path name to 'name'.
2260 */
2261static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2262                                u64 tree_id, u64 dirid, char *name)
2263{
2264        struct btrfs_root *root;
2265        struct btrfs_key key;
2266        char *ptr;
2267        int ret = -1;
2268        int slot;
2269        int len;
2270        int total_len = 0;
2271        struct btrfs_inode_ref *iref;
2272        struct extent_buffer *l;
2273        struct btrfs_path *path;
2274
2275        if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2276                name[0]='\0';
2277                return 0;
2278        }
2279
2280        path = btrfs_alloc_path();
2281        if (!path)
2282                return -ENOMEM;
2283
2284        ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2285
2286        root = btrfs_get_fs_root(info, tree_id, true);
2287        if (IS_ERR(root)) {
2288                ret = PTR_ERR(root);
2289                root = NULL;
2290                goto out;
2291        }
2292
2293        key.objectid = dirid;
2294        key.type = BTRFS_INODE_REF_KEY;
2295        key.offset = (u64)-1;
2296
2297        while (1) {
2298                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2299                if (ret < 0)
2300                        goto out;
2301                else if (ret > 0) {
2302                        ret = btrfs_previous_item(root, path, dirid,
2303                                                  BTRFS_INODE_REF_KEY);
2304                        if (ret < 0)
2305                                goto out;
2306                        else if (ret > 0) {
2307                                ret = -ENOENT;
2308                                goto out;
2309                        }
2310                }
2311
2312                l = path->nodes[0];
2313                slot = path->slots[0];
2314                btrfs_item_key_to_cpu(l, &key, slot);
2315
2316                iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2317                len = btrfs_inode_ref_name_len(l, iref);
2318                ptr -= len + 1;
2319                total_len += len + 1;
2320                if (ptr < name) {
2321                        ret = -ENAMETOOLONG;
2322                        goto out;
2323                }
2324
2325                *(ptr + len) = '/';
2326                read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2327
2328                if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2329                        break;
2330
2331                btrfs_release_path(path);
2332                key.objectid = key.offset;
2333                key.offset = (u64)-1;
2334                dirid = key.objectid;
2335        }
2336        memmove(name, ptr, total_len);
2337        name[total_len] = '\0';
2338        ret = 0;
2339out:
2340        btrfs_put_root(root);
2341        btrfs_free_path(path);
2342        return ret;
2343}
2344
2345static int btrfs_search_path_in_tree_user(struct inode *inode,
2346                                struct btrfs_ioctl_ino_lookup_user_args *args)
2347{
2348        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2349        struct super_block *sb = inode->i_sb;
2350        struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2351        u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2352        u64 dirid = args->dirid;
2353        unsigned long item_off;
2354        unsigned long item_len;
2355        struct btrfs_inode_ref *iref;
2356        struct btrfs_root_ref *rref;
2357        struct btrfs_root *root = NULL;
2358        struct btrfs_path *path;
2359        struct btrfs_key key, key2;
2360        struct extent_buffer *leaf;
2361        struct inode *temp_inode;
2362        char *ptr;
2363        int slot;
2364        int len;
2365        int total_len = 0;
2366        int ret;
2367
2368        path = btrfs_alloc_path();
2369        if (!path)
2370                return -ENOMEM;
2371
2372        /*
2373         * If the bottom subvolume does not exist directly under upper_limit,
2374         * construct the path in from the bottom up.
2375         */
2376        if (dirid != upper_limit.objectid) {
2377                ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2378
2379                root = btrfs_get_fs_root(fs_info, treeid, true);
2380                if (IS_ERR(root)) {
2381                        ret = PTR_ERR(root);
2382                        goto out;
2383                }
2384
2385                key.objectid = dirid;
2386                key.type = BTRFS_INODE_REF_KEY;
2387                key.offset = (u64)-1;
2388                while (1) {
2389                        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2390                        if (ret < 0) {
2391                                goto out_put;
2392                        } else if (ret > 0) {
2393                                ret = btrfs_previous_item(root, path, dirid,
2394                                                          BTRFS_INODE_REF_KEY);
2395                                if (ret < 0) {
2396                                        goto out_put;
2397                                } else if (ret > 0) {
2398                                        ret = -ENOENT;
2399                                        goto out_put;
2400                                }
2401                        }
2402
2403                        leaf = path->nodes[0];
2404                        slot = path->slots[0];
2405                        btrfs_item_key_to_cpu(leaf, &key, slot);
2406
2407                        iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2408                        len = btrfs_inode_ref_name_len(leaf, iref);
2409                        ptr -= len + 1;
2410                        total_len += len + 1;
2411                        if (ptr < args->path) {
2412                                ret = -ENAMETOOLONG;
2413                                goto out_put;
2414                        }
2415
2416                        *(ptr + len) = '/';
2417                        read_extent_buffer(leaf, ptr,
2418                                        (unsigned long)(iref + 1), len);
2419
2420                        /* Check the read+exec permission of this directory */
2421                        ret = btrfs_previous_item(root, path, dirid,
2422                                                  BTRFS_INODE_ITEM_KEY);
2423                        if (ret < 0) {
2424                                goto out_put;
2425                        } else if (ret > 0) {
2426                                ret = -ENOENT;
2427                                goto out_put;
2428                        }
2429
2430                        leaf = path->nodes[0];
2431                        slot = path->slots[0];
2432                        btrfs_item_key_to_cpu(leaf, &key2, slot);
2433                        if (key2.objectid != dirid) {
2434                                ret = -ENOENT;
2435                                goto out_put;
2436                        }
2437
2438                        temp_inode = btrfs_iget(sb, key2.objectid, root);
2439                        if (IS_ERR(temp_inode)) {
2440                                ret = PTR_ERR(temp_inode);
2441                                goto out_put;
2442                        }
2443                        ret = inode_permission(&init_user_ns, temp_inode,
2444                                               MAY_READ | MAY_EXEC);
2445                        iput(temp_inode);
2446                        if (ret) {
2447                                ret = -EACCES;
2448                                goto out_put;
2449                        }
2450
2451                        if (key.offset == upper_limit.objectid)
2452                                break;
2453                        if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2454                                ret = -EACCES;
2455                                goto out_put;
2456                        }
2457
2458                        btrfs_release_path(path);
2459                        key.objectid = key.offset;
2460                        key.offset = (u64)-1;
2461                        dirid = key.objectid;
2462                }
2463
2464                memmove(args->path, ptr, total_len);
2465                args->path[total_len] = '\0';
2466                btrfs_put_root(root);
2467                root = NULL;
2468                btrfs_release_path(path);
2469        }
2470
2471        /* Get the bottom subvolume's name from ROOT_REF */
2472        key.objectid = treeid;
2473        key.type = BTRFS_ROOT_REF_KEY;
2474        key.offset = args->treeid;
2475        ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2476        if (ret < 0) {
2477                goto out;
2478        } else if (ret > 0) {
2479                ret = -ENOENT;
2480                goto out;
2481        }
2482
2483        leaf = path->nodes[0];
2484        slot = path->slots[0];
2485        btrfs_item_key_to_cpu(leaf, &key, slot);
2486
2487        item_off = btrfs_item_ptr_offset(leaf, slot);
2488        item_len = btrfs_item_size_nr(leaf, slot);
2489        /* Check if dirid in ROOT_REF corresponds to passed dirid */
2490        rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2491        if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2492                ret = -EINVAL;
2493                goto out;
2494        }
2495
2496        /* Copy subvolume's name */
2497        item_off += sizeof(struct btrfs_root_ref);
2498        item_len -= sizeof(struct btrfs_root_ref);
2499        read_extent_buffer(leaf, args->name, item_off, item_len);
2500        args->name[item_len] = 0;
2501
2502out_put:
2503        btrfs_put_root(root);
2504out:
2505        btrfs_free_path(path);
2506        return ret;
2507}
2508
2509static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2510                                           void __user *argp)
2511{
2512        struct btrfs_ioctl_ino_lookup_args *args;
2513        struct inode *inode;
2514        int ret = 0;
2515
2516        args = memdup_user(argp, sizeof(*args));
2517        if (IS_ERR(args))
2518                return PTR_ERR(args);
2519
2520        inode = file_inode(file);
2521
2522        /*
2523         * Unprivileged query to obtain the containing subvolume root id. The
2524         * path is reset so it's consistent with btrfs_search_path_in_tree.
2525         */
2526        if (args->treeid == 0)
2527                args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2528
2529        if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2530                args->name[0] = 0;
2531                goto out;
2532        }
2533
2534        if (!capable(CAP_SYS_ADMIN)) {
2535                ret = -EPERM;
2536                goto out;
2537        }
2538
2539        ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2540                                        args->treeid, args->objectid,
2541                                        args->name);
2542
2543out:
2544        if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2545                ret = -EFAULT;
2546
2547        kfree(args);
2548        return ret;
2549}
2550
2551/*
2552 * Version of ino_lookup ioctl (unprivileged)
2553 *
2554 * The main differences from ino_lookup ioctl are:
2555 *
2556 *   1. Read + Exec permission will be checked using inode_permission() during
2557 *      path construction. -EACCES will be returned in case of failure.
2558 *   2. Path construction will be stopped at the inode number which corresponds
2559 *      to the fd with which this ioctl is called. If constructed path does not
2560 *      exist under fd's inode, -EACCES will be returned.
2561 *   3. The name of bottom subvolume is also searched and filled.
2562 */
2563static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2564{
2565        struct btrfs_ioctl_ino_lookup_user_args *args;
2566        struct inode *inode;
2567        int ret;
2568
2569        args = memdup_user(argp, sizeof(*args));
2570        if (IS_ERR(args))
2571                return PTR_ERR(args);
2572
2573        inode = file_inode(file);
2574
2575        if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2576            BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2577                /*
2578                 * The subvolume does not exist under fd with which this is
2579                 * called
2580                 */
2581                kfree(args);
2582                return -EACCES;
2583        }
2584
2585        ret = btrfs_search_path_in_tree_user(inode, args);
2586
2587        if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2588                ret = -EFAULT;
2589
2590        kfree(args);
2591        return ret;
2592}
2593
2594/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2595static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2596{
2597        struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2598        struct btrfs_fs_info *fs_info;
2599        struct btrfs_root *root;
2600        struct btrfs_path *path;
2601        struct btrfs_key key;
2602        struct btrfs_root_item *root_item;
2603        struct btrfs_root_ref *rref;
2604        struct extent_buffer *leaf;
2605        unsigned long item_off;
2606        unsigned long item_len;
2607        struct inode *inode;
2608        int slot;
2609        int ret = 0;
2610
2611        path = btrfs_alloc_path();
2612        if (!path)
2613                return -ENOMEM;
2614
2615        subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2616        if (!subvol_info) {
2617                btrfs_free_path(path);
2618                return -ENOMEM;
2619        }
2620
2621        inode = file_inode(file);
2622        fs_info = BTRFS_I(inode)->root->fs_info;
2623
2624        /* Get root_item of inode's subvolume */
2625        key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2626        root = btrfs_get_fs_root(fs_info, key.objectid, true);
2627        if (IS_ERR(root)) {
2628                ret = PTR_ERR(root);
2629                goto out_free;
2630        }
2631        root_item = &root->root_item;
2632
2633        subvol_info->treeid = key.objectid;
2634
2635        subvol_info->generation = btrfs_root_generation(root_item);
2636        subvol_info->flags = btrfs_root_flags(root_item);
2637
2638        memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2639        memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2640                                                    BTRFS_UUID_SIZE);
2641        memcpy(subvol_info->received_uuid, root_item->received_uuid,
2642                                                    BTRFS_UUID_SIZE);
2643
2644        subvol_info->ctransid = btrfs_root_ctransid(root_item);
2645        subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2646        subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2647
2648        subvol_info->otransid = btrfs_root_otransid(root_item);
2649        subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2650        subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2651
2652        subvol_info->stransid = btrfs_root_stransid(root_item);
2653        subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2654        subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2655
2656        subvol_info->rtransid = btrfs_root_rtransid(root_item);
2657        subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2658        subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2659
2660        if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2661                /* Search root tree for ROOT_BACKREF of this subvolume */
2662                key.type = BTRFS_ROOT_BACKREF_KEY;
2663                key.offset = 0;
2664                ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2665                if (ret < 0) {
2666                        goto out;
2667                } else if (path->slots[0] >=
2668                           btrfs_header_nritems(path->nodes[0])) {
2669                        ret = btrfs_next_leaf(fs_info->tree_root, path);
2670                        if (ret < 0) {
2671                                goto out;
2672                        } else if (ret > 0) {
2673                                ret = -EUCLEAN;
2674                                goto out;
2675                        }
2676                }
2677
2678                leaf = path->nodes[0];
2679                slot = path->slots[0];
2680                btrfs_item_key_to_cpu(leaf, &key, slot);
2681                if (key.objectid == subvol_info->treeid &&
2682                    key.type == BTRFS_ROOT_BACKREF_KEY) {
2683                        subvol_info->parent_id = key.offset;
2684
2685                        rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2686                        subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2687
2688                        item_off = btrfs_item_ptr_offset(leaf, slot)
2689                                        + sizeof(struct btrfs_root_ref);
2690                        item_len = btrfs_item_size_nr(leaf, slot)
2691                                        - sizeof(struct btrfs_root_ref);
2692                        read_extent_buffer(leaf, subvol_info->name,
2693                                           item_off, item_len);
2694                } else {
2695                        ret = -ENOENT;
2696                        goto out;
2697                }
2698        }
2699
2700        if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2701                ret = -EFAULT;
2702
2703out:
2704        btrfs_put_root(root);
2705out_free:
2706        btrfs_free_path(path);
2707        kfree(subvol_info);
2708        return ret;
2709}
2710
2711/*
2712 * Return ROOT_REF information of the subvolume containing this inode
2713 * except the subvolume name.
2714 */
2715static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2716{
2717        struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2718        struct btrfs_root_ref *rref;
2719        struct btrfs_root *root;
2720        struct btrfs_path *path;
2721        struct btrfs_key key;
2722        struct extent_buffer *leaf;
2723        struct inode *inode;
2724        u64 objectid;
2725        int slot;
2726        int ret;
2727        u8 found;
2728
2729        path = btrfs_alloc_path();
2730        if (!path)
2731                return -ENOMEM;
2732
2733        rootrefs = memdup_user(argp, sizeof(*rootrefs));
2734        if (IS_ERR(rootrefs)) {
2735                btrfs_free_path(path);
2736                return PTR_ERR(rootrefs);
2737        }
2738
2739        inode = file_inode(file);
2740        root = BTRFS_I(inode)->root->fs_info->tree_root;
2741        objectid = BTRFS_I(inode)->root->root_key.objectid;
2742
2743        key.objectid = objectid;
2744        key.type = BTRFS_ROOT_REF_KEY;
2745        key.offset = rootrefs->min_treeid;
2746        found = 0;
2747
2748        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2749        if (ret < 0) {
2750                goto out;
2751        } else if (path->slots[0] >=
2752                   btrfs_header_nritems(path->nodes[0])) {
2753                ret = btrfs_next_leaf(root, path);
2754                if (ret < 0) {
2755                        goto out;
2756                } else if (ret > 0) {
2757                        ret = -EUCLEAN;
2758                        goto out;
2759                }
2760        }
2761        while (1) {
2762                leaf = path->nodes[0];
2763                slot = path->slots[0];
2764
2765                btrfs_item_key_to_cpu(leaf, &key, slot);
2766                if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2767                        ret = 0;
2768                        goto out;
2769                }
2770
2771                if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2772                        ret = -EOVERFLOW;
2773                        goto out;
2774                }
2775
2776                rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2777                rootrefs->rootref[found].treeid = key.offset;
2778                rootrefs->rootref[found].dirid =
2779                                  btrfs_root_ref_dirid(leaf, rref);
2780                found++;
2781
2782                ret = btrfs_next_item(root, path);
2783                if (ret < 0) {
2784                        goto out;
2785                } else if (ret > 0) {
2786                        ret = -EUCLEAN;
2787                        goto out;
2788                }
2789        }
2790
2791out:
2792        if (!ret || ret == -EOVERFLOW) {
2793                rootrefs->num_items = found;
2794                /* update min_treeid for next search */
2795                if (found)
2796                        rootrefs->min_treeid =
2797                                rootrefs->rootref[found - 1].treeid + 1;
2798                if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2799                        ret = -EFAULT;
2800        }
2801
2802        kfree(rootrefs);
2803        btrfs_free_path(path);
2804
2805        return ret;
2806}
2807
2808static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2809                                             void __user *arg,
2810                                             bool destroy_v2)
2811{
2812        struct dentry *parent = file->f_path.dentry;
2813        struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2814        struct dentry *dentry;
2815        struct inode *dir = d_inode(parent);
2816        struct inode *inode;
2817        struct btrfs_root *root = BTRFS_I(dir)->root;
2818        struct btrfs_root *dest = NULL;
2819        struct btrfs_ioctl_vol_args *vol_args = NULL;
2820        struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2821        char *subvol_name, *subvol_name_ptr = NULL;
2822        int subvol_namelen;
2823        int err = 0;
2824        bool destroy_parent = false;
2825
2826        if (destroy_v2) {
2827                vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2828                if (IS_ERR(vol_args2))
2829                        return PTR_ERR(vol_args2);
2830
2831                if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2832                        err = -EOPNOTSUPP;
2833                        goto out;
2834                }
2835
2836                /*
2837                 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2838                 * name, same as v1 currently does.
2839                 */
2840                if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2841                        vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2842                        subvol_name = vol_args2->name;
2843
2844                        err = mnt_want_write_file(file);
2845                        if (err)
2846                                goto out;
2847                } else {
2848                        if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2849                                err = -EINVAL;
2850                                goto out;
2851                        }
2852
2853                        err = mnt_want_write_file(file);
2854                        if (err)
2855                                goto out;
2856
2857                        dentry = btrfs_get_dentry(fs_info->sb,
2858                                        BTRFS_FIRST_FREE_OBJECTID,
2859                                        vol_args2->subvolid, 0, 0);
2860                        if (IS_ERR(dentry)) {
2861                                err = PTR_ERR(dentry);
2862                                goto out_drop_write;
2863                        }
2864
2865                        /*
2866                         * Change the default parent since the subvolume being
2867                         * deleted can be outside of the current mount point.
2868                         */
2869                        parent = btrfs_get_parent(dentry);
2870
2871                        /*
2872                         * At this point dentry->d_name can point to '/' if the
2873                         * subvolume we want to destroy is outsite of the
2874                         * current mount point, so we need to release the
2875                         * current dentry and execute the lookup to return a new
2876                         * one with ->d_name pointing to the
2877                         * <mount point>/subvol_name.
2878                         */
2879                        dput(dentry);
2880                        if (IS_ERR(parent)) {
2881                                err = PTR_ERR(parent);
2882                                goto out_drop_write;
2883                        }
2884                        dir = d_inode(parent);
2885
2886                        /*
2887                         * If v2 was used with SPEC_BY_ID, a new parent was
2888                         * allocated since the subvolume can be outside of the
2889                         * current mount point. Later on we need to release this
2890                         * new parent dentry.
2891                         */
2892                        destroy_parent = true;
2893
2894                        subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2895                                                fs_info, vol_args2->subvolid);
2896                        if (IS_ERR(subvol_name_ptr)) {
2897                                err = PTR_ERR(subvol_name_ptr);
2898                                goto free_parent;
2899                        }
2900                        /* subvol_name_ptr is already NULL termined */
2901                        subvol_name = (char *)kbasename(subvol_name_ptr);
2902                }
2903        } else {
2904                vol_args = memdup_user(arg, sizeof(*vol_args));
2905                if (IS_ERR(vol_args))
2906                        return PTR_ERR(vol_args);
2907
2908                vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2909                subvol_name = vol_args->name;
2910
2911                err = mnt_want_write_file(file);
2912                if (err)
2913                        goto out;
2914        }
2915
2916        subvol_namelen = strlen(subvol_name);
2917
2918        if (strchr(subvol_name, '/') ||
2919            strncmp(subvol_name, "..", subvol_namelen) == 0) {
2920                err = -EINVAL;
2921                goto free_subvol_name;
2922        }
2923
2924        if (!S_ISDIR(dir->i_mode)) {
2925                err = -ENOTDIR;
2926                goto free_subvol_name;
2927        }
2928
2929        err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2930        if (err == -EINTR)
2931                goto free_subvol_name;
2932        dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
2933        if (IS_ERR(dentry)) {
2934                err = PTR_ERR(dentry);
2935                goto out_unlock_dir;
2936        }
2937
2938        if (d_really_is_negative(dentry)) {
2939                err = -ENOENT;
2940                goto out_dput;
2941        }
2942
2943        inode = d_inode(dentry);
2944        dest = BTRFS_I(inode)->root;
2945        if (!capable(CAP_SYS_ADMIN)) {
2946                /*
2947                 * Regular user.  Only allow this with a special mount
2948                 * option, when the user has write+exec access to the
2949                 * subvol root, and when rmdir(2) would have been
2950                 * allowed.
2951                 *
2952                 * Note that this is _not_ check that the subvol is
2953                 * empty or doesn't contain data that we wouldn't
2954                 * otherwise be able to delete.
2955                 *
2956                 * Users who want to delete empty subvols should try
2957                 * rmdir(2).
2958                 */
2959                err = -EPERM;
2960                if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2961                        goto out_dput;
2962
2963                /*
2964                 * Do not allow deletion if the parent dir is the same
2965                 * as the dir to be deleted.  That means the ioctl
2966                 * must be called on the dentry referencing the root
2967                 * of the subvol, not a random directory contained
2968                 * within it.
2969                 */
2970                err = -EINVAL;
2971                if (root == dest)
2972                        goto out_dput;
2973
2974                err = inode_permission(&init_user_ns, inode,
2975                                       MAY_WRITE | MAY_EXEC);
2976                if (err)
2977                        goto out_dput;
2978        }
2979
2980        /* check if subvolume may be deleted by a user */
2981        err = btrfs_may_delete(dir, dentry, 1);
2982        if (err)
2983                goto out_dput;
2984
2985        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2986                err = -EINVAL;
2987                goto out_dput;
2988        }
2989
2990        btrfs_inode_lock(inode, 0);
2991        err = btrfs_delete_subvolume(dir, dentry);
2992        btrfs_inode_unlock(inode, 0);
2993        if (!err) {
2994                fsnotify_rmdir(dir, dentry);
2995                d_delete(dentry);
2996        }
2997
2998out_dput:
2999        dput(dentry);
3000out_unlock_dir:
3001        btrfs_inode_unlock(dir, 0);
3002free_subvol_name:
3003        kfree(subvol_name_ptr);
3004free_parent:
3005        if (destroy_parent)
3006                dput(parent);
3007out_drop_write:
3008        mnt_drop_write_file(file);
3009out:
3010        kfree(vol_args2);
3011        kfree(vol_args);
3012        return err;
3013}
3014
3015static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3016{
3017        struct inode *inode = file_inode(file);
3018        struct btrfs_root *root = BTRFS_I(inode)->root;
3019        struct btrfs_ioctl_defrag_range_args *range;
3020        int ret;
3021
3022        ret = mnt_want_write_file(file);
3023        if (ret)
3024                return ret;
3025
3026        if (btrfs_root_readonly(root)) {
3027                ret = -EROFS;
3028                goto out;
3029        }
3030
3031        switch (inode->i_mode & S_IFMT) {
3032        case S_IFDIR:
3033                if (!capable(CAP_SYS_ADMIN)) {
3034                        ret = -EPERM;
3035                        goto out;
3036                }
3037                ret = btrfs_defrag_root(root);
3038                break;
3039        case S_IFREG:
3040                /*
3041                 * Note that this does not check the file descriptor for write
3042                 * access. This prevents defragmenting executables that are
3043                 * running and allows defrag on files open in read-only mode.
3044                 */
3045                if (!capable(CAP_SYS_ADMIN) &&
3046                    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3047                        ret = -EPERM;
3048                        goto out;
3049                }
3050
3051                range = kzalloc(sizeof(*range), GFP_KERNEL);
3052                if (!range) {
3053                        ret = -ENOMEM;
3054                        goto out;
3055                }
3056
3057                if (argp) {
3058                        if (copy_from_user(range, argp,
3059                                           sizeof(*range))) {
3060                                ret = -EFAULT;
3061                                kfree(range);
3062                                goto out;
3063                        }
3064                        /* compression requires us to start the IO */
3065                        if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3066                                range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3067                                range->extent_thresh = (u32)-1;
3068                        }
3069                } else {
3070                        /* the rest are all set to zero by kzalloc */
3071                        range->len = (u64)-1;
3072                }
3073                ret = btrfs_defrag_file(file_inode(file), file,
3074                                        range, BTRFS_OLDEST_GENERATION, 0);
3075                if (ret > 0)
3076                        ret = 0;
3077                kfree(range);
3078                break;
3079        default:
3080                ret = -EINVAL;
3081        }
3082out:
3083        mnt_drop_write_file(file);
3084        return ret;
3085}
3086
3087static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3088{
3089        struct btrfs_ioctl_vol_args *vol_args;
3090        int ret;
3091
3092        if (!capable(CAP_SYS_ADMIN))
3093                return -EPERM;
3094
3095        if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3096                return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3097
3098        vol_args = memdup_user(arg, sizeof(*vol_args));
3099        if (IS_ERR(vol_args)) {
3100                ret = PTR_ERR(vol_args);
3101                goto out;
3102        }
3103
3104        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3105        ret = btrfs_init_new_device(fs_info, vol_args->name);
3106
3107        if (!ret)
3108                btrfs_info(fs_info, "disk added %s", vol_args->name);
3109
3110        kfree(vol_args);
3111out:
3112        btrfs_exclop_finish(fs_info);
3113        return ret;
3114}
3115
3116static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3117{
3118        struct inode *inode = file_inode(file);
3119        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3120        struct btrfs_ioctl_vol_args_v2 *vol_args;
3121        int ret;
3122
3123        if (!capable(CAP_SYS_ADMIN))
3124                return -EPERM;
3125
3126        ret = mnt_want_write_file(file);
3127        if (ret)
3128                return ret;
3129
3130        vol_args = memdup_user(arg, sizeof(*vol_args));
3131        if (IS_ERR(vol_args)) {
3132                ret = PTR_ERR(vol_args);
3133                goto err_drop;
3134        }
3135
3136        if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3137                ret = -EOPNOTSUPP;
3138                goto out;
3139        }
3140
3141        if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3142                ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3143                goto out;
3144        }
3145
3146        if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3147                ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3148        } else {
3149                vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3150                ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3151        }
3152        btrfs_exclop_finish(fs_info);
3153
3154        if (!ret) {
3155                if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3156                        btrfs_info(fs_info, "device deleted: id %llu",
3157                                        vol_args->devid);
3158                else
3159                        btrfs_info(fs_info, "device deleted: %s",
3160                                        vol_args->name);
3161        }
3162out:
3163        kfree(vol_args);
3164err_drop:
3165        mnt_drop_write_file(file);
3166        return ret;
3167}
3168
3169static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3170{
3171        struct inode *inode = file_inode(file);
3172        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3173        struct btrfs_ioctl_vol_args *vol_args;
3174        int ret;
3175
3176        if (!capable(CAP_SYS_ADMIN))
3177                return -EPERM;
3178
3179        ret = mnt_want_write_file(file);
3180        if (ret)
3181                return ret;
3182
3183        if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3184                ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3185                goto out_drop_write;
3186        }
3187
3188        vol_args = memdup_user(arg, sizeof(*vol_args));
3189        if (IS_ERR(vol_args)) {
3190                ret = PTR_ERR(vol_args);
3191                goto out;
3192        }
3193
3194        vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3195        ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3196
3197        if (!ret)
3198                btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3199        kfree(vol_args);
3200out:
3201        btrfs_exclop_finish(fs_info);
3202out_drop_write:
3203        mnt_drop_write_file(file);
3204
3205        return ret;
3206}
3207
3208static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3209                                void __user *arg)
3210{
3211        struct btrfs_ioctl_fs_info_args *fi_args;
3212        struct btrfs_device *device;
3213        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3214        u64 flags_in;
3215        int ret = 0;
3216
3217        fi_args = memdup_user(arg, sizeof(*fi_args));
3218        if (IS_ERR(fi_args))
3219                return PTR_ERR(fi_args);
3220
3221        flags_in = fi_args->flags;
3222        memset(fi_args, 0, sizeof(*fi_args));
3223
3224        rcu_read_lock();
3225        fi_args->num_devices = fs_devices->num_devices;
3226
3227        list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3228                if (device->devid > fi_args->max_id)
3229                        fi_args->max_id = device->devid;
3230        }
3231        rcu_read_unlock();
3232
3233        memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3234        fi_args->nodesize = fs_info->nodesize;
3235        fi_args->sectorsize = fs_info->sectorsize;
3236        fi_args->clone_alignment = fs_info->sectorsize;
3237
3238        if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3239                fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3240                fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3241                fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3242        }
3243
3244        if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3245                fi_args->generation = fs_info->generation;
3246                fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3247        }
3248
3249        if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3250                memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3251                       sizeof(fi_args->metadata_uuid));
3252                fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3253        }
3254
3255        if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3256                ret = -EFAULT;
3257
3258        kfree(fi_args);
3259        return ret;
3260}
3261
3262static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3263                                 void __user *arg)
3264{
3265        struct btrfs_ioctl_dev_info_args *di_args;
3266        struct btrfs_device *dev;
3267        int ret = 0;
3268        char *s_uuid = NULL;
3269
3270        di_args = memdup_user(arg, sizeof(*di_args));
3271        if (IS_ERR(di_args))
3272                return PTR_ERR(di_args);
3273
3274        if (!btrfs_is_empty_uuid(di_args->uuid))
3275                s_uuid = di_args->uuid;
3276
3277        rcu_read_lock();
3278        dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3279                                NULL);
3280
3281        if (!dev) {
3282                ret = -ENODEV;
3283                goto out;
3284        }
3285
3286        di_args->devid = dev->devid;
3287        di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3288        di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3289        memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3290        if (dev->name) {
3291                strncpy(di_args->path, rcu_str_deref(dev->name),
3292                                sizeof(di_args->path) - 1);
3293                di_args->path[sizeof(di_args->path) - 1] = 0;
3294        } else {
3295                di_args->path[0] = '\0';
3296        }
3297
3298out:
3299        rcu_read_unlock();
3300        if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3301                ret = -EFAULT;
3302
3303        kfree(di_args);
3304        return ret;
3305}
3306
3307static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3308{
3309        struct inode *inode = file_inode(file);
3310        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3311        struct btrfs_root *root = BTRFS_I(inode)->root;
3312        struct btrfs_root *new_root;
3313        struct btrfs_dir_item *di;
3314        struct btrfs_trans_handle *trans;
3315        struct btrfs_path *path = NULL;
3316        struct btrfs_disk_key disk_key;
3317        u64 objectid = 0;
3318        u64 dir_id;
3319        int ret;
3320
3321        if (!capable(CAP_SYS_ADMIN))
3322                return -EPERM;
3323
3324        ret = mnt_want_write_file(file);
3325        if (ret)
3326                return ret;
3327
3328        if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3329                ret = -EFAULT;
3330                goto out;
3331        }
3332
3333        if (!objectid)
3334                objectid = BTRFS_FS_TREE_OBJECTID;
3335
3336        new_root = btrfs_get_fs_root(fs_info, objectid, true);
3337        if (IS_ERR(new_root)) {
3338                ret = PTR_ERR(new_root);
3339                goto out;
3340        }
3341        if (!is_fstree(new_root->root_key.objectid)) {
3342                ret = -ENOENT;
3343                goto out_free;
3344        }
3345
3346        path = btrfs_alloc_path();
3347        if (!path) {
3348                ret = -ENOMEM;
3349                goto out_free;
3350        }
3351
3352        trans = btrfs_start_transaction(root, 1);
3353        if (IS_ERR(trans)) {
3354                ret = PTR_ERR(trans);
3355                goto out_free;
3356        }
3357
3358        dir_id = btrfs_super_root_dir(fs_info->super_copy);
3359        di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3360                                   dir_id, "default", 7, 1);
3361        if (IS_ERR_OR_NULL(di)) {
3362                btrfs_release_path(path);
3363                btrfs_end_transaction(trans);
3364                btrfs_err(fs_info,
3365                          "Umm, you don't have the default diritem, this isn't going to work");
3366                ret = -ENOENT;
3367                goto out_free;
3368        }
3369
3370        btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3371        btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3372        btrfs_mark_buffer_dirty(path->nodes[0]);
3373        btrfs_release_path(path);
3374
3375        btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3376        btrfs_end_transaction(trans);
3377out_free:
3378        btrfs_put_root(new_root);
3379        btrfs_free_path(path);
3380out:
3381        mnt_drop_write_file(file);
3382        return ret;
3383}
3384
3385static void get_block_group_info(struct list_head *groups_list,
3386                                 struct btrfs_ioctl_space_info *space)
3387{
3388        struct btrfs_block_group *block_group;
3389
3390        space->total_bytes = 0;
3391        space->used_bytes = 0;
3392        space->flags = 0;
3393        list_for_each_entry(block_group, groups_list, list) {
3394                space->flags = block_group->flags;
3395                space->total_bytes += block_group->length;
3396                space->used_bytes += block_group->used;
3397        }
3398}
3399
3400static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3401                                   void __user *arg)
3402{
3403        struct btrfs_ioctl_space_args space_args;
3404        struct btrfs_ioctl_space_info space;
3405        struct btrfs_ioctl_space_info *dest;
3406        struct btrfs_ioctl_space_info *dest_orig;
3407        struct btrfs_ioctl_space_info __user *user_dest;
3408        struct btrfs_space_info *info;
3409        static const u64 types[] = {
3410                BTRFS_BLOCK_GROUP_DATA,
3411                BTRFS_BLOCK_GROUP_SYSTEM,
3412                BTRFS_BLOCK_GROUP_METADATA,
3413                BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3414        };
3415        int num_types = 4;
3416        int alloc_size;
3417        int ret = 0;
3418        u64 slot_count = 0;
3419        int i, c;
3420
3421        if (copy_from_user(&space_args,
3422                           (struct btrfs_ioctl_space_args __user *)arg,
3423                           sizeof(space_args)))
3424                return -EFAULT;
3425
3426        for (i = 0; i < num_types; i++) {
3427                struct btrfs_space_info *tmp;
3428
3429                info = NULL;
3430                list_for_each_entry(tmp, &fs_info->space_info, list) {
3431                        if (tmp->flags == types[i]) {
3432                                info = tmp;
3433                                break;
3434                        }
3435                }
3436
3437                if (!info)
3438                        continue;
3439
3440                down_read(&info->groups_sem);
3441                for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3442                        if (!list_empty(&info->block_groups[c]))
3443                                slot_count++;
3444                }
3445                up_read(&info->groups_sem);
3446        }
3447
3448        /*
3449         * Global block reserve, exported as a space_info
3450         */
3451        slot_count++;
3452
3453        /* space_slots == 0 means they are asking for a count */
3454        if (space_args.space_slots == 0) {
3455                space_args.total_spaces = slot_count;
3456                goto out;
3457        }
3458
3459        slot_count = min_t(u64, space_args.space_slots, slot_count);
3460
3461        alloc_size = sizeof(*dest) * slot_count;
3462
3463        /* we generally have at most 6 or so space infos, one for each raid
3464         * level.  So, a whole page should be more than enough for everyone
3465         */
3466        if (alloc_size > PAGE_SIZE)
3467                return -ENOMEM;
3468
3469        space_args.total_spaces = 0;
3470        dest = kmalloc(alloc_size, GFP_KERNEL);
3471        if (!dest)
3472                return -ENOMEM;
3473        dest_orig = dest;
3474
3475        /* now we have a buffer to copy into */
3476        for (i = 0; i < num_types; i++) {
3477                struct btrfs_space_info *tmp;
3478
3479                if (!slot_count)
3480                        break;
3481
3482                info = NULL;
3483                list_for_each_entry(tmp, &fs_info->space_info, list) {
3484                        if (tmp->flags == types[i]) {
3485                                info = tmp;
3486                                break;
3487                        }
3488                }
3489
3490                if (!info)
3491                        continue;
3492                down_read(&info->groups_sem);
3493                for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3494                        if (!list_empty(&info->block_groups[c])) {
3495                                get_block_group_info(&info->block_groups[c],
3496                                                     &space);
3497                                memcpy(dest, &space, sizeof(space));
3498                                dest++;
3499                                space_args.total_spaces++;
3500                                slot_count--;
3501                        }
3502                        if (!slot_count)
3503                                break;
3504                }
3505                up_read(&info->groups_sem);
3506        }
3507
3508        /*
3509         * Add global block reserve
3510         */
3511        if (slot_count) {
3512                struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3513
3514                spin_lock(&block_rsv->lock);
3515                space.total_bytes = block_rsv->size;
3516                space.used_bytes = block_rsv->size - block_rsv->reserved;
3517                spin_unlock(&block_rsv->lock);
3518                space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3519                memcpy(dest, &space, sizeof(space));
3520                space_args.total_spaces++;
3521        }
3522
3523        user_dest = (struct btrfs_ioctl_space_info __user *)
3524                (arg + sizeof(struct btrfs_ioctl_space_args));
3525
3526        if (copy_to_user(user_dest, dest_orig, alloc_size))
3527                ret = -EFAULT;
3528
3529        kfree(dest_orig);
3530out:
3531        if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3532                ret = -EFAULT;
3533
3534        return ret;
3535}
3536
3537static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3538                                            void __user *argp)
3539{
3540        struct btrfs_trans_handle *trans;
3541        u64 transid;
3542        int ret;
3543
3544        trans = btrfs_attach_transaction_barrier(root);
3545        if (IS_ERR(trans)) {
3546                if (PTR_ERR(trans) != -ENOENT)
3547                        return PTR_ERR(trans);
3548
3549                /* No running transaction, don't bother */
3550                transid = root->fs_info->last_trans_committed;
3551                goto out;
3552        }
3553        transid = trans->transid;
3554        ret = btrfs_commit_transaction_async(trans, 0);
3555        if (ret) {
3556                btrfs_end_transaction(trans);
3557                return ret;
3558        }
3559out:
3560        if (argp)
3561                if (copy_to_user(argp, &transid, sizeof(transid)))
3562                        return -EFAULT;
3563        return 0;
3564}
3565
3566static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3567                                           void __user *argp)
3568{
3569        u64 transid;
3570
3571        if (argp) {
3572                if (copy_from_user(&transid, argp, sizeof(transid)))
3573                        return -EFAULT;
3574        } else {
3575                transid = 0;  /* current trans */
3576        }
3577        return btrfs_wait_for_commit(fs_info, transid);
3578}
3579
3580static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3581{
3582        struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3583        struct btrfs_ioctl_scrub_args *sa;
3584        int ret;
3585
3586        if (!capable(CAP_SYS_ADMIN))
3587                return -EPERM;
3588
3589        sa = memdup_user(arg, sizeof(*sa));
3590        if (IS_ERR(sa))
3591                return PTR_ERR(sa);
3592
3593        if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3594                ret = mnt_want_write_file(file);
3595                if (ret)
3596                        goto out;
3597        }
3598
3599        ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3600                              &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3601                              0);
3602
3603        /*
3604         * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3605         * error. This is important as it allows user space to know how much
3606         * progress scrub has done. For example, if scrub is canceled we get
3607         * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3608         * space. Later user space can inspect the progress from the structure
3609         * btrfs_ioctl_scrub_args and resume scrub from where it left off
3610         * previously (btrfs-progs does this).
3611         * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3612         * then return -EFAULT to signal the structure was not copied or it may
3613         * be corrupt and unreliable due to a partial copy.
3614         */
3615        if (copy_to_user(arg, sa, sizeof(*sa)))
3616                ret = -EFAULT;
3617
3618        if (!(sa->flags & BTRFS_SCRUB_READONLY))
3619                mnt_drop_write_file(file);
3620out:
3621        kfree(sa);
3622        return ret;
3623}
3624
3625static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3626{
3627        if (!capable(CAP_SYS_ADMIN))
3628                return -EPERM;
3629
3630        return btrfs_scrub_cancel(fs_info);
3631}
3632
3633static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3634                                       void __user *arg)
3635{
3636        struct btrfs_ioctl_scrub_args *sa;
3637        int ret;
3638
3639        if (!capable(CAP_SYS_ADMIN))
3640                return -EPERM;
3641
3642        sa = memdup_user(arg, sizeof(*sa));
3643        if (IS_ERR(sa))
3644                return PTR_ERR(sa);
3645
3646        ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3647
3648        if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3649                ret = -EFAULT;
3650
3651        kfree(sa);
3652        return ret;
3653}
3654
3655static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3656                                      void __user *arg)
3657{
3658        struct btrfs_ioctl_get_dev_stats *sa;
3659        int ret;
3660
3661        sa = memdup_user(arg, sizeof(*sa));
3662        if (IS_ERR(sa))
3663                return PTR_ERR(sa);
3664
3665        if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3666                kfree(sa);
3667                return -EPERM;
3668        }
3669
3670        ret = btrfs_get_dev_stats(fs_info, sa);
3671
3672        if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3673                ret = -EFAULT;
3674
3675        kfree(sa);
3676        return ret;
3677}
3678
3679static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3680                                    void __user *arg)
3681{
3682        struct btrfs_ioctl_dev_replace_args *p;
3683        int ret;
3684
3685        if (!capable(CAP_SYS_ADMIN))
3686                return -EPERM;
3687
3688        p = memdup_user(arg, sizeof(*p));
3689        if (IS_ERR(p))
3690                return PTR_ERR(p);
3691
3692        switch (p->cmd) {
3693        case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3694                if (sb_rdonly(fs_info->sb)) {
3695                        ret = -EROFS;
3696                        goto out;
3697                }
3698                if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3699                        ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3700                } else {
3701                        ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3702                        btrfs_exclop_finish(fs_info);
3703                }
3704                break;
3705        case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3706                btrfs_dev_replace_status(fs_info, p);
3707                ret = 0;
3708                break;
3709        case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3710                p->result = btrfs_dev_replace_cancel(fs_info);
3711                ret = 0;
3712                break;
3713        default:
3714                ret = -EINVAL;
3715                break;
3716        }
3717
3718        if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3719                ret = -EFAULT;
3720out:
3721        kfree(p);
3722        return ret;
3723}
3724
3725static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3726{
3727        int ret = 0;
3728        int i;
3729        u64 rel_ptr;
3730        int size;
3731        struct btrfs_ioctl_ino_path_args *ipa = NULL;
3732        struct inode_fs_paths *ipath = NULL;
3733        struct btrfs_path *path;
3734
3735        if (!capable(CAP_DAC_READ_SEARCH))
3736                return -EPERM;
3737
3738        path = btrfs_alloc_path();
3739        if (!path) {
3740                ret = -ENOMEM;
3741                goto out;
3742        }
3743
3744        ipa = memdup_user(arg, sizeof(*ipa));
3745        if (IS_ERR(ipa)) {
3746                ret = PTR_ERR(ipa);
3747                ipa = NULL;
3748                goto out;
3749        }
3750
3751        size = min_t(u32, ipa->size, 4096);
3752        ipath = init_ipath(size, root, path);
3753        if (IS_ERR(ipath)) {
3754                ret = PTR_ERR(ipath);
3755                ipath = NULL;
3756                goto out;
3757        }
3758
3759        ret = paths_from_inode(ipa->inum, ipath);
3760        if (ret < 0)
3761                goto out;
3762
3763        for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3764                rel_ptr = ipath->fspath->val[i] -
3765                          (u64)(unsigned long)ipath->fspath->val;
3766                ipath->fspath->val[i] = rel_ptr;
3767        }
3768
3769        ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3770                           ipath->fspath, size);
3771        if (ret) {
3772                ret = -EFAULT;
3773                goto out;
3774        }
3775
3776out:
3777        btrfs_free_path(path);
3778        free_ipath(ipath);
3779        kfree(ipa);
3780
3781        return ret;
3782}
3783
3784static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3785{
3786        struct btrfs_data_container *inodes = ctx;
3787        const size_t c = 3 * sizeof(u64);
3788
3789        if (inodes->bytes_left >= c) {
3790                inodes->bytes_left -= c;
3791                inodes->val[inodes->elem_cnt] = inum;
3792                inodes->val[inodes->elem_cnt + 1] = offset;
3793                inodes->val[inodes->elem_cnt + 2] = root;
3794                inodes->elem_cnt += 3;
3795        } else {
3796                inodes->bytes_missing += c - inodes->bytes_left;
3797                inodes->bytes_left = 0;
3798                inodes->elem_missed += 3;
3799        }
3800
3801        return 0;
3802}
3803
3804static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3805                                        void __user *arg, int version)
3806{
3807        int ret = 0;
3808        int size;
3809        struct btrfs_ioctl_logical_ino_args *loi;
3810        struct btrfs_data_container *inodes = NULL;
3811        struct btrfs_path *path = NULL;
3812        bool ignore_offset;
3813
3814        if (!capable(CAP_SYS_ADMIN))
3815                return -EPERM;
3816
3817        loi = memdup_user(arg, sizeof(*loi));
3818        if (IS_ERR(loi))
3819                return PTR_ERR(loi);
3820
3821        if (version == 1) {
3822                ignore_offset = false;
3823                size = min_t(u32, loi->size, SZ_64K);
3824        } else {
3825                /* All reserved bits must be 0 for now */
3826                if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3827                        ret = -EINVAL;
3828                        goto out_loi;
3829                }
3830                /* Only accept flags we have defined so far */
3831                if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3832                        ret = -EINVAL;
3833                        goto out_loi;
3834                }
3835                ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3836                size = min_t(u32, loi->size, SZ_16M);
3837        }
3838
3839        path = btrfs_alloc_path();
3840        if (!path) {
3841                ret = -ENOMEM;
3842                goto out;
3843        }
3844
3845        inodes = init_data_container(size);
3846        if (IS_ERR(inodes)) {
3847                ret = PTR_ERR(inodes);
3848                inodes = NULL;
3849                goto out;
3850        }
3851
3852        ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3853                                          build_ino_list, inodes, ignore_offset);
3854        if (ret == -EINVAL)
3855                ret = -ENOENT;
3856        if (ret < 0)
3857                goto out;
3858
3859        ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3860                           size);
3861        if (ret)
3862                ret = -EFAULT;
3863
3864out:
3865        btrfs_free_path(path);
3866        kvfree(inodes);
3867out_loi:
3868        kfree(loi);
3869
3870        return ret;
3871}
3872
3873void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3874                               struct btrfs_ioctl_balance_args *bargs)
3875{
3876        struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3877
3878        bargs->flags = bctl->flags;
3879
3880        if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3881                bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3882        if (atomic_read(&fs_info->balance_pause_req))
3883                bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3884        if (atomic_read(&fs_info->balance_cancel_req))
3885                bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3886
3887        memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3888        memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3889        memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3890
3891        spin_lock(&fs_info->balance_lock);
3892        memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3893        spin_unlock(&fs_info->balance_lock);
3894}
3895
3896static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3897{
3898        struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3899        struct btrfs_fs_info *fs_info = root->fs_info;
3900        struct btrfs_ioctl_balance_args *bargs;
3901        struct btrfs_balance_control *bctl;
3902        bool need_unlock; /* for mut. excl. ops lock */
3903        int ret;
3904
3905        if (!capable(CAP_SYS_ADMIN))
3906                return -EPERM;
3907
3908        ret = mnt_want_write_file(file);
3909        if (ret)
3910                return ret;
3911
3912again:
3913        if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3914                mutex_lock(&fs_info->balance_mutex);
3915                need_unlock = true;
3916                goto locked;
3917        }
3918
3919        /*
3920         * mut. excl. ops lock is locked.  Three possibilities:
3921         *   (1) some other op is running
3922         *   (2) balance is running
3923         *   (3) balance is paused -- special case (think resume)
3924         */
3925        mutex_lock(&fs_info->balance_mutex);
3926        if (fs_info->balance_ctl) {
3927                /* this is either (2) or (3) */
3928                if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3929                        mutex_unlock(&fs_info->balance_mutex);
3930                        /*
3931                         * Lock released to allow other waiters to continue,
3932                         * we'll reexamine the status again.
3933                         */
3934                        mutex_lock(&fs_info->balance_mutex);
3935
3936                        if (fs_info->balance_ctl &&
3937                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3938                                /* this is (3) */
3939                                need_unlock = false;
3940                                goto locked;
3941                        }
3942
3943                        mutex_unlock(&fs_info->balance_mutex);
3944                        goto again;
3945                } else {
3946                        /* this is (2) */
3947                        mutex_unlock(&fs_info->balance_mutex);
3948                        ret = -EINPROGRESS;
3949                        goto out;
3950                }
3951        } else {
3952                /* this is (1) */
3953                mutex_unlock(&fs_info->balance_mutex);
3954                ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3955                goto out;
3956        }
3957
3958locked:
3959
3960        if (arg) {
3961                bargs = memdup_user(arg, sizeof(*bargs));
3962                if (IS_ERR(bargs)) {
3963                        ret = PTR_ERR(bargs);
3964                        goto out_unlock;
3965                }
3966
3967                if (bargs->flags & BTRFS_BALANCE_RESUME) {
3968                        if (!fs_info->balance_ctl) {
3969                                ret = -ENOTCONN;
3970                                goto out_bargs;
3971                        }
3972
3973                        bctl = fs_info->balance_ctl;
3974                        spin_lock(&fs_info->balance_lock);
3975                        bctl->flags |= BTRFS_BALANCE_RESUME;
3976                        spin_unlock(&fs_info->balance_lock);
3977
3978                        goto do_balance;
3979                }
3980        } else {
3981                bargs = NULL;
3982        }
3983
3984        if (fs_info->balance_ctl) {
3985                ret = -EINPROGRESS;
3986                goto out_bargs;
3987        }
3988
3989        bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3990        if (!bctl) {
3991                ret = -ENOMEM;
3992                goto out_bargs;
3993        }
3994
3995        if (arg) {
3996                memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3997                memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3998                memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3999
4000                bctl->flags = bargs->flags;
4001        } else {
4002                /* balance everything - no filters */
4003                bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4004        }
4005
4006        if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4007                ret = -EINVAL;
4008                goto out_bctl;
4009        }
4010
4011do_balance:
4012        /*
4013         * Ownership of bctl and exclusive operation goes to btrfs_balance.
4014         * bctl is freed in reset_balance_state, or, if restriper was paused
4015         * all the way until unmount, in free_fs_info.  The flag should be
4016         * cleared after reset_balance_state.
4017         */
4018        need_unlock = false;
4019
4020        ret = btrfs_balance(fs_info, bctl, bargs);
4021        bctl = NULL;
4022
4023        if ((ret == 0 || ret == -ECANCELED) && arg) {
4024                if (copy_to_user(arg, bargs, sizeof(*bargs)))
4025                        ret = -EFAULT;
4026        }
4027
4028out_bctl:
4029        kfree(bctl);
4030out_bargs:
4031        kfree(bargs);
4032out_unlock:
4033        mutex_unlock(&fs_info->balance_mutex);
4034        if (need_unlock)
4035                btrfs_exclop_finish(fs_info);
4036out:
4037        mnt_drop_write_file(file);
4038        return ret;
4039}
4040
4041static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4042{
4043        if (!capable(CAP_SYS_ADMIN))
4044                return -EPERM;
4045
4046        switch (cmd) {
4047        case BTRFS_BALANCE_CTL_PAUSE:
4048                return btrfs_pause_balance(fs_info);
4049        case BTRFS_BALANCE_CTL_CANCEL:
4050                return btrfs_cancel_balance(fs_info);
4051        }
4052
4053        return -EINVAL;
4054}
4055
4056static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4057                                         void __user *arg)
4058{
4059        struct btrfs_ioctl_balance_args *bargs;
4060        int ret = 0;
4061
4062        if (!capable(CAP_SYS_ADMIN))
4063                return -EPERM;
4064
4065        mutex_lock(&fs_info->balance_mutex);
4066        if (!fs_info->balance_ctl) {
4067                ret = -ENOTCONN;
4068                goto out;
4069        }
4070
4071        bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4072        if (!bargs) {
4073                ret = -ENOMEM;
4074                goto out;
4075        }
4076
4077        btrfs_update_ioctl_balance_args(fs_info, bargs);
4078
4079        if (copy_to_user(arg, bargs, sizeof(*bargs)))
4080                ret = -EFAULT;
4081
4082        kfree(bargs);
4083out:
4084        mutex_unlock(&fs_info->balance_mutex);
4085        return ret;
4086}
4087
4088static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4089{
4090        struct inode *inode = file_inode(file);
4091        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4092        struct btrfs_ioctl_quota_ctl_args *sa;
4093        int ret;
4094
4095        if (!capable(CAP_SYS_ADMIN))
4096                return -EPERM;
4097
4098        ret = mnt_want_write_file(file);
4099        if (ret)
4100                return ret;
4101
4102        sa = memdup_user(arg, sizeof(*sa));
4103        if (IS_ERR(sa)) {
4104                ret = PTR_ERR(sa);
4105                goto drop_write;
4106        }
4107
4108        down_write(&fs_info->subvol_sem);
4109
4110        switch (sa->cmd) {
4111        case BTRFS_QUOTA_CTL_ENABLE:
4112                ret = btrfs_quota_enable(fs_info);
4113                break;
4114        case BTRFS_QUOTA_CTL_DISABLE:
4115                ret = btrfs_quota_disable(fs_info);
4116                break;
4117        default:
4118                ret = -EINVAL;
4119                break;
4120        }
4121
4122        kfree(sa);
4123        up_write(&fs_info->subvol_sem);
4124drop_write:
4125        mnt_drop_write_file(file);
4126        return ret;
4127}
4128
4129static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4130{
4131        struct inode *inode = file_inode(file);
4132        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4133        struct btrfs_root *root = BTRFS_I(inode)->root;
4134        struct btrfs_ioctl_qgroup_assign_args *sa;
4135        struct btrfs_trans_handle *trans;
4136        int ret;
4137        int err;
4138
4139        if (!capable(CAP_SYS_ADMIN))
4140                return -EPERM;
4141
4142        ret = mnt_want_write_file(file);
4143        if (ret)
4144                return ret;
4145
4146        sa = memdup_user(arg, sizeof(*sa));
4147        if (IS_ERR(sa)) {
4148                ret = PTR_ERR(sa);
4149                goto drop_write;
4150        }
4151
4152        trans = btrfs_join_transaction(root);
4153        if (IS_ERR(trans)) {
4154                ret = PTR_ERR(trans);
4155                goto out;
4156        }
4157
4158        if (sa->assign) {
4159                ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4160        } else {
4161                ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4162        }
4163
4164        /* update qgroup status and info */
4165        err = btrfs_run_qgroups(trans);
4166        if (err < 0)
4167                btrfs_handle_fs_error(fs_info, err,
4168                                      "failed to update qgroup status and info");
4169        err = btrfs_end_transaction(trans);
4170        if (err && !ret)
4171                ret = err;
4172
4173out:
4174        kfree(sa);
4175drop_write:
4176        mnt_drop_write_file(file);
4177        return ret;
4178}
4179
4180static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4181{
4182        struct inode *inode = file_inode(file);
4183        struct btrfs_root *root = BTRFS_I(inode)->root;
4184        struct btrfs_ioctl_qgroup_create_args *sa;
4185        struct btrfs_trans_handle *trans;
4186        int ret;
4187        int err;
4188
4189        if (!capable(CAP_SYS_ADMIN))
4190                return -EPERM;
4191
4192        ret = mnt_want_write_file(file);
4193        if (ret)
4194                return ret;
4195
4196        sa = memdup_user(arg, sizeof(*sa));
4197        if (IS_ERR(sa)) {
4198                ret = PTR_ERR(sa);
4199                goto drop_write;
4200        }
4201
4202        if (!sa->qgroupid) {
4203                ret = -EINVAL;
4204                goto out;
4205        }
4206
4207        trans = btrfs_join_transaction(root);
4208        if (IS_ERR(trans)) {
4209                ret = PTR_ERR(trans);
4210                goto out;
4211        }
4212
4213        if (sa->create) {
4214                ret = btrfs_create_qgroup(trans, sa->qgroupid);
4215        } else {
4216                ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4217        }
4218
4219        err = btrfs_end_transaction(trans);
4220        if (err && !ret)
4221                ret = err;
4222
4223out:
4224        kfree(sa);
4225drop_write:
4226        mnt_drop_write_file(file);
4227        return ret;
4228}
4229
4230static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4231{
4232        struct inode *inode = file_inode(file);
4233        struct btrfs_root *root = BTRFS_I(inode)->root;
4234        struct btrfs_ioctl_qgroup_limit_args *sa;
4235        struct btrfs_trans_handle *trans;
4236        int ret;
4237        int err;
4238        u64 qgroupid;
4239
4240        if (!capable(CAP_SYS_ADMIN))
4241                return -EPERM;
4242
4243        ret = mnt_want_write_file(file);
4244        if (ret)
4245                return ret;
4246
4247        sa = memdup_user(arg, sizeof(*sa));
4248        if (IS_ERR(sa)) {
4249                ret = PTR_ERR(sa);
4250                goto drop_write;
4251        }
4252
4253        trans = btrfs_join_transaction(root);
4254        if (IS_ERR(trans)) {
4255                ret = PTR_ERR(trans);
4256                goto out;
4257        }
4258
4259        qgroupid = sa->qgroupid;
4260        if (!qgroupid) {
4261                /* take the current subvol as qgroup */
4262                qgroupid = root->root_key.objectid;
4263        }
4264
4265        ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4266
4267        err = btrfs_end_transaction(trans);
4268        if (err && !ret)
4269                ret = err;
4270
4271out:
4272        kfree(sa);
4273drop_write:
4274        mnt_drop_write_file(file);
4275        return ret;
4276}
4277
4278static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4279{
4280        struct inode *inode = file_inode(file);
4281        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4282        struct btrfs_ioctl_quota_rescan_args *qsa;
4283        int ret;
4284
4285        if (!capable(CAP_SYS_ADMIN))
4286                return -EPERM;
4287
4288        ret = mnt_want_write_file(file);
4289        if (ret)
4290                return ret;
4291
4292        qsa = memdup_user(arg, sizeof(*qsa));
4293        if (IS_ERR(qsa)) {
4294                ret = PTR_ERR(qsa);
4295                goto drop_write;
4296        }
4297
4298        if (qsa->flags) {
4299                ret = -EINVAL;
4300                goto out;
4301        }
4302
4303        ret = btrfs_qgroup_rescan(fs_info);
4304
4305out:
4306        kfree(qsa);
4307drop_write:
4308        mnt_drop_write_file(file);
4309        return ret;
4310}
4311
4312static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4313                                                void __user *arg)
4314{
4315        struct btrfs_ioctl_quota_rescan_args *qsa;
4316        int ret = 0;
4317
4318        if (!capable(CAP_SYS_ADMIN))
4319                return -EPERM;
4320
4321        qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4322        if (!qsa)
4323                return -ENOMEM;
4324
4325        if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4326                qsa->flags = 1;
4327                qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4328        }
4329
4330        if (copy_to_user(arg, qsa, sizeof(*qsa)))
4331                ret = -EFAULT;
4332
4333        kfree(qsa);
4334        return ret;
4335}
4336
4337static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4338                                                void __user *arg)
4339{
4340        if (!capable(CAP_SYS_ADMIN))
4341                return -EPERM;
4342
4343        return btrfs_qgroup_wait_for_completion(fs_info, true);
4344}
4345
4346static long _btrfs_ioctl_set_received_subvol(struct file *file,
4347                                            struct btrfs_ioctl_received_subvol_args *sa)
4348{
4349        struct inode *inode = file_inode(file);
4350        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4351        struct btrfs_root *root = BTRFS_I(inode)->root;
4352        struct btrfs_root_item *root_item = &root->root_item;
4353        struct btrfs_trans_handle *trans;
4354        struct timespec64 ct = current_time(inode);
4355        int ret = 0;
4356        int received_uuid_changed;
4357
4358        if (!inode_owner_or_capable(&init_user_ns, inode))
4359                return -EPERM;
4360
4361        ret = mnt_want_write_file(file);
4362        if (ret < 0)
4363                return ret;
4364
4365        down_write(&fs_info->subvol_sem);
4366
4367        if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4368                ret = -EINVAL;
4369                goto out;
4370        }
4371
4372        if (btrfs_root_readonly(root)) {
4373                ret = -EROFS;
4374                goto out;
4375        }
4376
4377        /*
4378         * 1 - root item
4379         * 2 - uuid items (received uuid + subvol uuid)
4380         */
4381        trans = btrfs_start_transaction(root, 3);
4382        if (IS_ERR(trans)) {
4383                ret = PTR_ERR(trans);
4384                trans = NULL;
4385                goto out;
4386        }
4387
4388        sa->rtransid = trans->transid;
4389        sa->rtime.sec = ct.tv_sec;
4390        sa->rtime.nsec = ct.tv_nsec;
4391
4392        received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4393                                       BTRFS_UUID_SIZE);
4394        if (received_uuid_changed &&
4395            !btrfs_is_empty_uuid(root_item->received_uuid)) {
4396                ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4397                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4398                                          root->root_key.objectid);
4399                if (ret && ret != -ENOENT) {
4400                        btrfs_abort_transaction(trans, ret);
4401                        btrfs_end_transaction(trans);
4402                        goto out;
4403                }
4404        }
4405        memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4406        btrfs_set_root_stransid(root_item, sa->stransid);
4407        btrfs_set_root_rtransid(root_item, sa->rtransid);
4408        btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4409        btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4410        btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4411        btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4412
4413        ret = btrfs_update_root(trans, fs_info->tree_root,
4414                                &root->root_key, &root->root_item);
4415        if (ret < 0) {
4416                btrfs_end_transaction(trans);
4417                goto out;
4418        }
4419        if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4420                ret = btrfs_uuid_tree_add(trans, sa->uuid,
4421                                          BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4422                                          root->root_key.objectid);
4423                if (ret < 0 && ret != -EEXIST) {
4424                        btrfs_abort_transaction(trans, ret);
4425                        btrfs_end_transaction(trans);
4426                        goto out;
4427                }
4428        }
4429        ret = btrfs_commit_transaction(trans);
4430out:
4431        up_write(&fs_info->subvol_sem);
4432        mnt_drop_write_file(file);
4433        return ret;
4434}
4435
4436#ifdef CONFIG_64BIT
4437static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4438                                                void __user *arg)
4439{
4440        struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4441        struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4442        int ret = 0;
4443
4444        args32 = memdup_user(arg, sizeof(*args32));
4445        if (IS_ERR(args32))
4446                return PTR_ERR(args32);
4447
4448        args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4449        if (!args64) {
4450                ret = -ENOMEM;
4451                goto out;
4452        }
4453
4454        memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4455        args64->stransid = args32->stransid;
4456        args64->rtransid = args32->rtransid;
4457        args64->stime.sec = args32->stime.sec;
4458        args64->stime.nsec = args32->stime.nsec;
4459        args64->rtime.sec = args32->rtime.sec;
4460        args64->rtime.nsec = args32->rtime.nsec;
4461        args64->flags = args32->flags;
4462
4463        ret = _btrfs_ioctl_set_received_subvol(file, args64);
4464        if (ret)
4465                goto out;
4466
4467        memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4468        args32->stransid = args64->stransid;
4469        args32->rtransid = args64->rtransid;
4470        args32->stime.sec = args64->stime.sec;
4471        args32->stime.nsec = args64->stime.nsec;
4472        args32->rtime.sec = args64->rtime.sec;
4473        args32->rtime.nsec = args64->rtime.nsec;
4474        args32->flags = args64->flags;
4475
4476        ret = copy_to_user(arg, args32, sizeof(*args32));
4477        if (ret)
4478                ret = -EFAULT;
4479
4480out:
4481        kfree(args32);
4482        kfree(args64);
4483        return ret;
4484}
4485#endif
4486
4487static long btrfs_ioctl_set_received_subvol(struct file *file,
4488                                            void __user *arg)
4489{
4490        struct btrfs_ioctl_received_subvol_args *sa = NULL;
4491        int ret = 0;
4492
4493        sa = memdup_user(arg, sizeof(*sa));
4494        if (IS_ERR(sa))
4495                return PTR_ERR(sa);
4496
4497        ret = _btrfs_ioctl_set_received_subvol(file, sa);
4498
4499        if (ret)
4500                goto out;
4501
4502        ret = copy_to_user(arg, sa, sizeof(*sa));
4503        if (ret)
4504                ret = -EFAULT;
4505
4506out:
4507        kfree(sa);
4508        return ret;
4509}
4510
4511static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4512                                        void __user *arg)
4513{
4514        size_t len;
4515        int ret;
4516        char label[BTRFS_LABEL_SIZE];
4517
4518        spin_lock(&fs_info->super_lock);
4519        memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4520        spin_unlock(&fs_info->super_lock);
4521
4522        len = strnlen(label, BTRFS_LABEL_SIZE);
4523
4524        if (len == BTRFS_LABEL_SIZE) {
4525                btrfs_warn(fs_info,
4526                           "label is too long, return the first %zu bytes",
4527                           --len);
4528        }
4529
4530        ret = copy_to_user(arg, label, len);
4531
4532        return ret ? -EFAULT : 0;
4533}
4534
4535static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4536{
4537        struct inode *inode = file_inode(file);
4538        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4539        struct btrfs_root *root = BTRFS_I(inode)->root;
4540        struct btrfs_super_block *super_block = fs_info->super_copy;
4541        struct btrfs_trans_handle *trans;
4542        char label[BTRFS_LABEL_SIZE];
4543        int ret;
4544
4545        if (!capable(CAP_SYS_ADMIN))
4546                return -EPERM;
4547
4548        if (copy_from_user(label, arg, sizeof(label)))
4549                return -EFAULT;
4550
4551        if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4552                btrfs_err(fs_info,
4553                          "unable to set label with more than %d bytes",
4554                          BTRFS_LABEL_SIZE - 1);
4555                return -EINVAL;
4556        }
4557
4558        ret = mnt_want_write_file(file);
4559        if (ret)
4560                return ret;
4561
4562        trans = btrfs_start_transaction(root, 0);
4563        if (IS_ERR(trans)) {
4564                ret = PTR_ERR(trans);
4565                goto out_unlock;
4566        }
4567
4568        spin_lock(&fs_info->super_lock);
4569        strcpy(super_block->label, label);
4570        spin_unlock(&fs_info->super_lock);
4571        ret = btrfs_commit_transaction(trans);
4572
4573out_unlock:
4574        mnt_drop_write_file(file);
4575        return ret;
4576}
4577
4578#define INIT_FEATURE_FLAGS(suffix) \
4579        { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4580          .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4581          .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4582
4583int btrfs_ioctl_get_supported_features(void __user *arg)
4584{
4585        static const struct btrfs_ioctl_feature_flags features[3] = {
4586                INIT_FEATURE_FLAGS(SUPP),
4587                INIT_FEATURE_FLAGS(SAFE_SET),
4588                INIT_FEATURE_FLAGS(SAFE_CLEAR)
4589        };
4590
4591        if (copy_to_user(arg, &features, sizeof(features)))
4592                return -EFAULT;
4593
4594        return 0;
4595}
4596
4597static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4598                                        void __user *arg)
4599{
4600        struct btrfs_super_block *super_block = fs_info->super_copy;
4601        struct btrfs_ioctl_feature_flags features;
4602
4603        features.compat_flags = btrfs_super_compat_flags(super_block);
4604        features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4605        features.incompat_flags = btrfs_super_incompat_flags(super_block);
4606
4607        if (copy_to_user(arg, &features, sizeof(features)))
4608                return -EFAULT;
4609
4610        return 0;
4611}
4612
4613static int check_feature_bits(struct btrfs_fs_info *fs_info,
4614                              enum btrfs_feature_set set,
4615                              u64 change_mask, u64 flags, u64 supported_flags,
4616                              u64 safe_set, u64 safe_clear)
4617{
4618        const char *type = btrfs_feature_set_name(set);
4619        char *names;
4620        u64 disallowed, unsupported;
4621        u64 set_mask = flags & change_mask;
4622        u64 clear_mask = ~flags & change_mask;
4623
4624        unsupported = set_mask & ~supported_flags;
4625        if (unsupported) {
4626                names = btrfs_printable_features(set, unsupported);
4627                if (names) {
4628                        btrfs_warn(fs_info,
4629                                   "this kernel does not support the %s feature bit%s",
4630                                   names, strchr(names, ',') ? "s" : "");
4631                        kfree(names);
4632                } else
4633                        btrfs_warn(fs_info,
4634                                   "this kernel does not support %s bits 0x%llx",
4635                                   type, unsupported);
4636                return -EOPNOTSUPP;
4637        }
4638
4639        disallowed = set_mask & ~safe_set;
4640        if (disallowed) {
4641                names = btrfs_printable_features(set, disallowed);
4642                if (names) {
4643                        btrfs_warn(fs_info,
4644                                   "can't set the %s feature bit%s while mounted",
4645                                   names, strchr(names, ',') ? "s" : "");
4646                        kfree(names);
4647                } else
4648                        btrfs_warn(fs_info,
4649                                   "can't set %s bits 0x%llx while mounted",
4650                                   type, disallowed);
4651                return -EPERM;
4652        }
4653
4654        disallowed = clear_mask & ~safe_clear;
4655        if (disallowed) {
4656                names = btrfs_printable_features(set, disallowed);
4657                if (names) {
4658                        btrfs_warn(fs_info,
4659                                   "can't clear the %s feature bit%s while mounted",
4660                                   names, strchr(names, ',') ? "s" : "");
4661                        kfree(names);
4662                } else
4663                        btrfs_warn(fs_info,
4664                                   "can't clear %s bits 0x%llx while mounted",
4665                                   type, disallowed);
4666                return -EPERM;
4667        }
4668
4669        return 0;
4670}
4671
4672#define check_feature(fs_info, change_mask, flags, mask_base)   \
4673check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,       \
4674                   BTRFS_FEATURE_ ## mask_base ## _SUPP,        \
4675                   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,    \
4676                   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4677
4678static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4679{
4680        struct inode *inode = file_inode(file);
4681        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4682        struct btrfs_root *root = BTRFS_I(inode)->root;
4683        struct btrfs_super_block *super_block = fs_info->super_copy;
4684        struct btrfs_ioctl_feature_flags flags[2];
4685        struct btrfs_trans_handle *trans;
4686        u64 newflags;
4687        int ret;
4688
4689        if (!capable(CAP_SYS_ADMIN))
4690                return -EPERM;
4691
4692        if (copy_from_user(flags, arg, sizeof(flags)))
4693                return -EFAULT;
4694
4695        /* Nothing to do */
4696        if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4697            !flags[0].incompat_flags)
4698                return 0;
4699
4700        ret = check_feature(fs_info, flags[0].compat_flags,
4701                            flags[1].compat_flags, COMPAT);
4702        if (ret)
4703                return ret;
4704
4705        ret = check_feature(fs_info, flags[0].compat_ro_flags,
4706                            flags[1].compat_ro_flags, COMPAT_RO);
4707        if (ret)
4708                return ret;
4709
4710        ret = check_feature(fs_info, flags[0].incompat_flags,
4711                            flags[1].incompat_flags, INCOMPAT);
4712        if (ret)
4713                return ret;
4714
4715        ret = mnt_want_write_file(file);
4716        if (ret)
4717                return ret;
4718
4719        trans = btrfs_start_transaction(root, 0);
4720        if (IS_ERR(trans)) {
4721                ret = PTR_ERR(trans);
4722                goto out_drop_write;
4723        }
4724
4725        spin_lock(&fs_info->super_lock);
4726        newflags = btrfs_super_compat_flags(super_block);
4727        newflags |= flags[0].compat_flags & flags[1].compat_flags;
4728        newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4729        btrfs_set_super_compat_flags(super_block, newflags);
4730
4731        newflags = btrfs_super_compat_ro_flags(super_block);
4732        newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4733        newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4734        btrfs_set_super_compat_ro_flags(super_block, newflags);
4735
4736        newflags = btrfs_super_incompat_flags(super_block);
4737        newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4738        newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4739        btrfs_set_super_incompat_flags(super_block, newflags);
4740        spin_unlock(&fs_info->super_lock);
4741
4742        ret = btrfs_commit_transaction(trans);
4743out_drop_write:
4744        mnt_drop_write_file(file);
4745
4746        return ret;
4747}
4748
4749static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4750{
4751        struct btrfs_ioctl_send_args *arg;
4752        int ret;
4753
4754        if (compat) {
4755#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4756                struct btrfs_ioctl_send_args_32 args32;
4757
4758                ret = copy_from_user(&args32, argp, sizeof(args32));
4759                if (ret)
4760                        return -EFAULT;
4761                arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4762                if (!arg)
4763                        return -ENOMEM;
4764                arg->send_fd = args32.send_fd;
4765                arg->clone_sources_count = args32.clone_sources_count;
4766                arg->clone_sources = compat_ptr(args32.clone_sources);
4767                arg->parent_root = args32.parent_root;
4768                arg->flags = args32.flags;
4769                memcpy(arg->reserved, args32.reserved,
4770                       sizeof(args32.reserved));
4771#else
4772                return -ENOTTY;
4773#endif
4774        } else {
4775                arg = memdup_user(argp, sizeof(*arg));
4776                if (IS_ERR(arg))
4777                        return PTR_ERR(arg);
4778        }
4779        ret = btrfs_ioctl_send(file, arg);
4780        kfree(arg);
4781        return ret;
4782}
4783
4784long btrfs_ioctl(struct file *file, unsigned int
4785                cmd, unsigned long arg)
4786{
4787        struct inode *inode = file_inode(file);
4788        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4789        struct btrfs_root *root = BTRFS_I(inode)->root;
4790        void __user *argp = (void __user *)arg;
4791
4792        switch (cmd) {
4793        case FS_IOC_GETVERSION:
4794                return btrfs_ioctl_getversion(file, argp);
4795        case FS_IOC_GETFSLABEL:
4796                return btrfs_ioctl_get_fslabel(fs_info, argp);
4797        case FS_IOC_SETFSLABEL:
4798                return btrfs_ioctl_set_fslabel(file, argp);
4799        case FITRIM:
4800                return btrfs_ioctl_fitrim(fs_info, argp);
4801        case BTRFS_IOC_SNAP_CREATE:
4802                return btrfs_ioctl_snap_create(file, argp, 0);
4803        case BTRFS_IOC_SNAP_CREATE_V2:
4804                return btrfs_ioctl_snap_create_v2(file, argp, 0);
4805        case BTRFS_IOC_SUBVOL_CREATE:
4806                return btrfs_ioctl_snap_create(file, argp, 1);
4807        case BTRFS_IOC_SUBVOL_CREATE_V2:
4808                return btrfs_ioctl_snap_create_v2(file, argp, 1);
4809        case BTRFS_IOC_SNAP_DESTROY:
4810                return btrfs_ioctl_snap_destroy(file, argp, false);
4811        case BTRFS_IOC_SNAP_DESTROY_V2:
4812                return btrfs_ioctl_snap_destroy(file, argp, true);
4813        case BTRFS_IOC_SUBVOL_GETFLAGS:
4814                return btrfs_ioctl_subvol_getflags(file, argp);
4815        case BTRFS_IOC_SUBVOL_SETFLAGS:
4816                return btrfs_ioctl_subvol_setflags(file, argp);
4817        case BTRFS_IOC_DEFAULT_SUBVOL:
4818                return btrfs_ioctl_default_subvol(file, argp);
4819        case BTRFS_IOC_DEFRAG:
4820                return btrfs_ioctl_defrag(file, NULL);
4821        case BTRFS_IOC_DEFRAG_RANGE:
4822                return btrfs_ioctl_defrag(file, argp);
4823        case BTRFS_IOC_RESIZE:
4824                return btrfs_ioctl_resize(file, argp);
4825        case BTRFS_IOC_ADD_DEV:
4826                return btrfs_ioctl_add_dev(fs_info, argp);
4827        case BTRFS_IOC_RM_DEV:
4828                return btrfs_ioctl_rm_dev(file, argp);
4829        case BTRFS_IOC_RM_DEV_V2:
4830                return btrfs_ioctl_rm_dev_v2(file, argp);
4831        case BTRFS_IOC_FS_INFO:
4832                return btrfs_ioctl_fs_info(fs_info, argp);
4833        case BTRFS_IOC_DEV_INFO:
4834                return btrfs_ioctl_dev_info(fs_info, argp);
4835        case BTRFS_IOC_BALANCE:
4836                return btrfs_ioctl_balance(file, NULL);
4837        case BTRFS_IOC_TREE_SEARCH:
4838                return btrfs_ioctl_tree_search(file, argp);
4839        case BTRFS_IOC_TREE_SEARCH_V2:
4840                return btrfs_ioctl_tree_search_v2(file, argp);
4841        case BTRFS_IOC_INO_LOOKUP:
4842                return btrfs_ioctl_ino_lookup(file, argp);
4843        case BTRFS_IOC_INO_PATHS:
4844                return btrfs_ioctl_ino_to_path(root, argp);
4845        case BTRFS_IOC_LOGICAL_INO:
4846                return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4847        case BTRFS_IOC_LOGICAL_INO_V2:
4848                return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4849        case BTRFS_IOC_SPACE_INFO:
4850                return btrfs_ioctl_space_info(fs_info, argp);
4851        case BTRFS_IOC_SYNC: {
4852                int ret;
4853
4854                ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4855                if (ret)
4856                        return ret;
4857                ret = btrfs_sync_fs(inode->i_sb, 1);
4858                /*
4859                 * The transaction thread may want to do more work,
4860                 * namely it pokes the cleaner kthread that will start
4861                 * processing uncleaned subvols.
4862                 */
4863                wake_up_process(fs_info->transaction_kthread);
4864                return ret;
4865        }
4866        case BTRFS_IOC_START_SYNC:
4867                return btrfs_ioctl_start_sync(root, argp);
4868        case BTRFS_IOC_WAIT_SYNC:
4869                return btrfs_ioctl_wait_sync(fs_info, argp);
4870        case BTRFS_IOC_SCRUB:
4871                return btrfs_ioctl_scrub(file, argp);
4872        case BTRFS_IOC_SCRUB_CANCEL:
4873                return btrfs_ioctl_scrub_cancel(fs_info);
4874        case BTRFS_IOC_SCRUB_PROGRESS:
4875                return btrfs_ioctl_scrub_progress(fs_info, argp);
4876        case BTRFS_IOC_BALANCE_V2:
4877                return btrfs_ioctl_balance(file, argp);
4878        case BTRFS_IOC_BALANCE_CTL:
4879                return btrfs_ioctl_balance_ctl(fs_info, arg);
4880        case BTRFS_IOC_BALANCE_PROGRESS:
4881                return btrfs_ioctl_balance_progress(fs_info, argp);
4882        case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4883                return btrfs_ioctl_set_received_subvol(file, argp);
4884#ifdef CONFIG_64BIT
4885        case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4886                return btrfs_ioctl_set_received_subvol_32(file, argp);
4887#endif
4888        case BTRFS_IOC_SEND:
4889                return _btrfs_ioctl_send(file, argp, false);
4890#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4891        case BTRFS_IOC_SEND_32:
4892                return _btrfs_ioctl_send(file, argp, true);
4893#endif
4894        case BTRFS_IOC_GET_DEV_STATS:
4895                return btrfs_ioctl_get_dev_stats(fs_info, argp);
4896        case BTRFS_IOC_QUOTA_CTL:
4897                return btrfs_ioctl_quota_ctl(file, argp);
4898        case BTRFS_IOC_QGROUP_ASSIGN:
4899                return btrfs_ioctl_qgroup_assign(file, argp);
4900        case BTRFS_IOC_QGROUP_CREATE:
4901                return btrfs_ioctl_qgroup_create(file, argp);
4902        case BTRFS_IOC_QGROUP_LIMIT:
4903                return btrfs_ioctl_qgroup_limit(file, argp);
4904        case BTRFS_IOC_QUOTA_RESCAN:
4905                return btrfs_ioctl_quota_rescan(file, argp);
4906        case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4907                return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4908        case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4909                return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4910        case BTRFS_IOC_DEV_REPLACE:
4911                return btrfs_ioctl_dev_replace(fs_info, argp);
4912        case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4913                return btrfs_ioctl_get_supported_features(argp);
4914        case BTRFS_IOC_GET_FEATURES:
4915                return btrfs_ioctl_get_features(fs_info, argp);
4916        case BTRFS_IOC_SET_FEATURES:
4917                return btrfs_ioctl_set_features(file, argp);
4918        case BTRFS_IOC_GET_SUBVOL_INFO:
4919                return btrfs_ioctl_get_subvol_info(file, argp);
4920        case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4921                return btrfs_ioctl_get_subvol_rootref(file, argp);
4922        case BTRFS_IOC_INO_LOOKUP_USER:
4923                return btrfs_ioctl_ino_lookup_user(file, argp);
4924        }
4925
4926        return -ENOTTY;
4927}
4928
4929#ifdef CONFIG_COMPAT
4930long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4931{
4932        /*
4933         * These all access 32-bit values anyway so no further
4934         * handling is necessary.
4935         */
4936        switch (cmd) {
4937        case FS_IOC32_GETVERSION:
4938                cmd = FS_IOC_GETVERSION;
4939                break;
4940        }
4941
4942        return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4943}
4944#endif
4945