linux/fs/f2fs/segment.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/segment.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
  12#include <linux/prefetch.h>
  13#include <linux/kthread.h>
  14#include <linux/swap.h>
  15#include <linux/timer.h>
  16#include <linux/freezer.h>
  17#include <linux/sched/signal.h>
  18
  19#include "f2fs.h"
  20#include "segment.h"
  21#include "node.h"
  22#include "gc.h"
  23#include <trace/events/f2fs.h>
  24
  25#define __reverse_ffz(x) __reverse_ffs(~(x))
  26
  27static struct kmem_cache *discard_entry_slab;
  28static struct kmem_cache *discard_cmd_slab;
  29static struct kmem_cache *sit_entry_set_slab;
  30static struct kmem_cache *inmem_entry_slab;
  31
  32static unsigned long __reverse_ulong(unsigned char *str)
  33{
  34        unsigned long tmp = 0;
  35        int shift = 24, idx = 0;
  36
  37#if BITS_PER_LONG == 64
  38        shift = 56;
  39#endif
  40        while (shift >= 0) {
  41                tmp |= (unsigned long)str[idx++] << shift;
  42                shift -= BITS_PER_BYTE;
  43        }
  44        return tmp;
  45}
  46
  47/*
  48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  50 */
  51static inline unsigned long __reverse_ffs(unsigned long word)
  52{
  53        int num = 0;
  54
  55#if BITS_PER_LONG == 64
  56        if ((word & 0xffffffff00000000UL) == 0)
  57                num += 32;
  58        else
  59                word >>= 32;
  60#endif
  61        if ((word & 0xffff0000) == 0)
  62                num += 16;
  63        else
  64                word >>= 16;
  65
  66        if ((word & 0xff00) == 0)
  67                num += 8;
  68        else
  69                word >>= 8;
  70
  71        if ((word & 0xf0) == 0)
  72                num += 4;
  73        else
  74                word >>= 4;
  75
  76        if ((word & 0xc) == 0)
  77                num += 2;
  78        else
  79                word >>= 2;
  80
  81        if ((word & 0x2) == 0)
  82                num += 1;
  83        return num;
  84}
  85
  86/*
  87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  89 * @size must be integral times of unsigned long.
  90 * Example:
  91 *                             MSB <--> LSB
  92 *   f2fs_set_bit(0, bitmap) => 1000 0000
  93 *   f2fs_set_bit(7, bitmap) => 0000 0001
  94 */
  95static unsigned long __find_rev_next_bit(const unsigned long *addr,
  96                        unsigned long size, unsigned long offset)
  97{
  98        const unsigned long *p = addr + BIT_WORD(offset);
  99        unsigned long result = size;
 100        unsigned long tmp;
 101
 102        if (offset >= size)
 103                return size;
 104
 105        size -= (offset & ~(BITS_PER_LONG - 1));
 106        offset %= BITS_PER_LONG;
 107
 108        while (1) {
 109                if (*p == 0)
 110                        goto pass;
 111
 112                tmp = __reverse_ulong((unsigned char *)p);
 113
 114                tmp &= ~0UL >> offset;
 115                if (size < BITS_PER_LONG)
 116                        tmp &= (~0UL << (BITS_PER_LONG - size));
 117                if (tmp)
 118                        goto found;
 119pass:
 120                if (size <= BITS_PER_LONG)
 121                        break;
 122                size -= BITS_PER_LONG;
 123                offset = 0;
 124                p++;
 125        }
 126        return result;
 127found:
 128        return result - size + __reverse_ffs(tmp);
 129}
 130
 131static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 132                        unsigned long size, unsigned long offset)
 133{
 134        const unsigned long *p = addr + BIT_WORD(offset);
 135        unsigned long result = size;
 136        unsigned long tmp;
 137
 138        if (offset >= size)
 139                return size;
 140
 141        size -= (offset & ~(BITS_PER_LONG - 1));
 142        offset %= BITS_PER_LONG;
 143
 144        while (1) {
 145                if (*p == ~0UL)
 146                        goto pass;
 147
 148                tmp = __reverse_ulong((unsigned char *)p);
 149
 150                if (offset)
 151                        tmp |= ~0UL << (BITS_PER_LONG - offset);
 152                if (size < BITS_PER_LONG)
 153                        tmp |= ~0UL >> size;
 154                if (tmp != ~0UL)
 155                        goto found;
 156pass:
 157                if (size <= BITS_PER_LONG)
 158                        break;
 159                size -= BITS_PER_LONG;
 160                offset = 0;
 161                p++;
 162        }
 163        return result;
 164found:
 165        return result - size + __reverse_ffz(tmp);
 166}
 167
 168bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
 169{
 170        int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 171        int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 172        int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 173
 174        if (f2fs_lfs_mode(sbi))
 175                return false;
 176        if (sbi->gc_mode == GC_URGENT_HIGH)
 177                return true;
 178        if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 179                return true;
 180
 181        return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
 182                        SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
 183}
 184
 185void f2fs_register_inmem_page(struct inode *inode, struct page *page)
 186{
 187        struct inmem_pages *new;
 188
 189        if (PagePrivate(page))
 190                set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
 191        else
 192                f2fs_set_page_private(page, ATOMIC_WRITTEN_PAGE);
 193
 194        new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
 195
 196        /* add atomic page indices to the list */
 197        new->page = page;
 198        INIT_LIST_HEAD(&new->list);
 199
 200        /* increase reference count with clean state */
 201        get_page(page);
 202        mutex_lock(&F2FS_I(inode)->inmem_lock);
 203        list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
 204        inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 205        mutex_unlock(&F2FS_I(inode)->inmem_lock);
 206
 207        trace_f2fs_register_inmem_page(page, INMEM);
 208}
 209
 210static int __revoke_inmem_pages(struct inode *inode,
 211                                struct list_head *head, bool drop, bool recover,
 212                                bool trylock)
 213{
 214        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 215        struct inmem_pages *cur, *tmp;
 216        int err = 0;
 217
 218        list_for_each_entry_safe(cur, tmp, head, list) {
 219                struct page *page = cur->page;
 220
 221                if (drop)
 222                        trace_f2fs_commit_inmem_page(page, INMEM_DROP);
 223
 224                if (trylock) {
 225                        /*
 226                         * to avoid deadlock in between page lock and
 227                         * inmem_lock.
 228                         */
 229                        if (!trylock_page(page))
 230                                continue;
 231                } else {
 232                        lock_page(page);
 233                }
 234
 235                f2fs_wait_on_page_writeback(page, DATA, true, true);
 236
 237                if (recover) {
 238                        struct dnode_of_data dn;
 239                        struct node_info ni;
 240
 241                        trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
 242retry:
 243                        set_new_dnode(&dn, inode, NULL, NULL, 0);
 244                        err = f2fs_get_dnode_of_data(&dn, page->index,
 245                                                                LOOKUP_NODE);
 246                        if (err) {
 247                                if (err == -ENOMEM) {
 248                                        congestion_wait(BLK_RW_ASYNC,
 249                                                        DEFAULT_IO_TIMEOUT);
 250                                        cond_resched();
 251                                        goto retry;
 252                                }
 253                                err = -EAGAIN;
 254                                goto next;
 255                        }
 256
 257                        err = f2fs_get_node_info(sbi, dn.nid, &ni);
 258                        if (err) {
 259                                f2fs_put_dnode(&dn);
 260                                return err;
 261                        }
 262
 263                        if (cur->old_addr == NEW_ADDR) {
 264                                f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
 265                                f2fs_update_data_blkaddr(&dn, NEW_ADDR);
 266                        } else
 267                                f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 268                                        cur->old_addr, ni.version, true, true);
 269                        f2fs_put_dnode(&dn);
 270                }
 271next:
 272                /* we don't need to invalidate this in the sccessful status */
 273                if (drop || recover) {
 274                        ClearPageUptodate(page);
 275                        clear_cold_data(page);
 276                }
 277                f2fs_clear_page_private(page);
 278                f2fs_put_page(page, 1);
 279
 280                list_del(&cur->list);
 281                kmem_cache_free(inmem_entry_slab, cur);
 282                dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 283        }
 284        return err;
 285}
 286
 287void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
 288{
 289        struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
 290        struct inode *inode;
 291        struct f2fs_inode_info *fi;
 292        unsigned int count = sbi->atomic_files;
 293        unsigned int looped = 0;
 294next:
 295        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 296        if (list_empty(head)) {
 297                spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 298                return;
 299        }
 300        fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
 301        inode = igrab(&fi->vfs_inode);
 302        if (inode)
 303                list_move_tail(&fi->inmem_ilist, head);
 304        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 305
 306        if (inode) {
 307                if (gc_failure) {
 308                        if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
 309                                goto skip;
 310                }
 311                set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
 312                f2fs_drop_inmem_pages(inode);
 313skip:
 314                iput(inode);
 315        }
 316        congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
 317        cond_resched();
 318        if (gc_failure) {
 319                if (++looped >= count)
 320                        return;
 321        }
 322        goto next;
 323}
 324
 325void f2fs_drop_inmem_pages(struct inode *inode)
 326{
 327        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 328        struct f2fs_inode_info *fi = F2FS_I(inode);
 329
 330        do {
 331                mutex_lock(&fi->inmem_lock);
 332                if (list_empty(&fi->inmem_pages)) {
 333                        fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
 334
 335                        spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 336                        if (!list_empty(&fi->inmem_ilist))
 337                                list_del_init(&fi->inmem_ilist);
 338                        if (f2fs_is_atomic_file(inode)) {
 339                                clear_inode_flag(inode, FI_ATOMIC_FILE);
 340                                sbi->atomic_files--;
 341                        }
 342                        spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 343
 344                        mutex_unlock(&fi->inmem_lock);
 345                        break;
 346                }
 347                __revoke_inmem_pages(inode, &fi->inmem_pages,
 348                                                true, false, true);
 349                mutex_unlock(&fi->inmem_lock);
 350        } while (1);
 351}
 352
 353void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
 354{
 355        struct f2fs_inode_info *fi = F2FS_I(inode);
 356        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 357        struct list_head *head = &fi->inmem_pages;
 358        struct inmem_pages *cur = NULL;
 359
 360        f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
 361
 362        mutex_lock(&fi->inmem_lock);
 363        list_for_each_entry(cur, head, list) {
 364                if (cur->page == page)
 365                        break;
 366        }
 367
 368        f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
 369        list_del(&cur->list);
 370        mutex_unlock(&fi->inmem_lock);
 371
 372        dec_page_count(sbi, F2FS_INMEM_PAGES);
 373        kmem_cache_free(inmem_entry_slab, cur);
 374
 375        ClearPageUptodate(page);
 376        f2fs_clear_page_private(page);
 377        f2fs_put_page(page, 0);
 378
 379        trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
 380}
 381
 382static int __f2fs_commit_inmem_pages(struct inode *inode)
 383{
 384        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 385        struct f2fs_inode_info *fi = F2FS_I(inode);
 386        struct inmem_pages *cur, *tmp;
 387        struct f2fs_io_info fio = {
 388                .sbi = sbi,
 389                .ino = inode->i_ino,
 390                .type = DATA,
 391                .op = REQ_OP_WRITE,
 392                .op_flags = REQ_SYNC | REQ_PRIO,
 393                .io_type = FS_DATA_IO,
 394        };
 395        struct list_head revoke_list;
 396        bool submit_bio = false;
 397        int err = 0;
 398
 399        INIT_LIST_HEAD(&revoke_list);
 400
 401        list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 402                struct page *page = cur->page;
 403
 404                lock_page(page);
 405                if (page->mapping == inode->i_mapping) {
 406                        trace_f2fs_commit_inmem_page(page, INMEM);
 407
 408                        f2fs_wait_on_page_writeback(page, DATA, true, true);
 409
 410                        set_page_dirty(page);
 411                        if (clear_page_dirty_for_io(page)) {
 412                                inode_dec_dirty_pages(inode);
 413                                f2fs_remove_dirty_inode(inode);
 414                        }
 415retry:
 416                        fio.page = page;
 417                        fio.old_blkaddr = NULL_ADDR;
 418                        fio.encrypted_page = NULL;
 419                        fio.need_lock = LOCK_DONE;
 420                        err = f2fs_do_write_data_page(&fio);
 421                        if (err) {
 422                                if (err == -ENOMEM) {
 423                                        congestion_wait(BLK_RW_ASYNC,
 424                                                        DEFAULT_IO_TIMEOUT);
 425                                        cond_resched();
 426                                        goto retry;
 427                                }
 428                                unlock_page(page);
 429                                break;
 430                        }
 431                        /* record old blkaddr for revoking */
 432                        cur->old_addr = fio.old_blkaddr;
 433                        submit_bio = true;
 434                }
 435                unlock_page(page);
 436                list_move_tail(&cur->list, &revoke_list);
 437        }
 438
 439        if (submit_bio)
 440                f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
 441
 442        if (err) {
 443                /*
 444                 * try to revoke all committed pages, but still we could fail
 445                 * due to no memory or other reason, if that happened, EAGAIN
 446                 * will be returned, which means in such case, transaction is
 447                 * already not integrity, caller should use journal to do the
 448                 * recovery or rewrite & commit last transaction. For other
 449                 * error number, revoking was done by filesystem itself.
 450                 */
 451                err = __revoke_inmem_pages(inode, &revoke_list,
 452                                                false, true, false);
 453
 454                /* drop all uncommitted pages */
 455                __revoke_inmem_pages(inode, &fi->inmem_pages,
 456                                                true, false, false);
 457        } else {
 458                __revoke_inmem_pages(inode, &revoke_list,
 459                                                false, false, false);
 460        }
 461
 462        return err;
 463}
 464
 465int f2fs_commit_inmem_pages(struct inode *inode)
 466{
 467        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 468        struct f2fs_inode_info *fi = F2FS_I(inode);
 469        int err;
 470
 471        f2fs_balance_fs(sbi, true);
 472
 473        down_write(&fi->i_gc_rwsem[WRITE]);
 474
 475        f2fs_lock_op(sbi);
 476        set_inode_flag(inode, FI_ATOMIC_COMMIT);
 477
 478        mutex_lock(&fi->inmem_lock);
 479        err = __f2fs_commit_inmem_pages(inode);
 480        mutex_unlock(&fi->inmem_lock);
 481
 482        clear_inode_flag(inode, FI_ATOMIC_COMMIT);
 483
 484        f2fs_unlock_op(sbi);
 485        up_write(&fi->i_gc_rwsem[WRITE]);
 486
 487        return err;
 488}
 489
 490/*
 491 * This function balances dirty node and dentry pages.
 492 * In addition, it controls garbage collection.
 493 */
 494void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 495{
 496        if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
 497                f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
 498                f2fs_stop_checkpoint(sbi, false);
 499        }
 500
 501        /* balance_fs_bg is able to be pending */
 502        if (need && excess_cached_nats(sbi))
 503                f2fs_balance_fs_bg(sbi, false);
 504
 505        if (!f2fs_is_checkpoint_ready(sbi))
 506                return;
 507
 508        /*
 509         * We should do GC or end up with checkpoint, if there are so many dirty
 510         * dir/node pages without enough free segments.
 511         */
 512        if (has_not_enough_free_secs(sbi, 0, 0)) {
 513                if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
 514                                        sbi->gc_thread->f2fs_gc_task) {
 515                        DEFINE_WAIT(wait);
 516
 517                        prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
 518                                                TASK_UNINTERRUPTIBLE);
 519                        wake_up(&sbi->gc_thread->gc_wait_queue_head);
 520                        io_schedule();
 521                        finish_wait(&sbi->gc_thread->fggc_wq, &wait);
 522                } else {
 523                        down_write(&sbi->gc_lock);
 524                        f2fs_gc(sbi, false, false, false, NULL_SEGNO);
 525                }
 526        }
 527}
 528
 529void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
 530{
 531        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 532                return;
 533
 534        /* try to shrink extent cache when there is no enough memory */
 535        if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
 536                f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
 537
 538        /* check the # of cached NAT entries */
 539        if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
 540                f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 541
 542        if (!f2fs_available_free_memory(sbi, FREE_NIDS))
 543                f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
 544        else
 545                f2fs_build_free_nids(sbi, false, false);
 546
 547        if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) ||
 548                excess_prefree_segs(sbi))
 549                goto do_sync;
 550
 551        /* there is background inflight IO or foreground operation recently */
 552        if (is_inflight_io(sbi, REQ_TIME) ||
 553                (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
 554                return;
 555
 556        /* exceed periodical checkpoint timeout threshold */
 557        if (f2fs_time_over(sbi, CP_TIME))
 558                goto do_sync;
 559
 560        /* checkpoint is the only way to shrink partial cached entries */
 561        if (f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
 562                f2fs_available_free_memory(sbi, INO_ENTRIES))
 563                return;
 564
 565do_sync:
 566        if (test_opt(sbi, DATA_FLUSH) && from_bg) {
 567                struct blk_plug plug;
 568
 569                mutex_lock(&sbi->flush_lock);
 570
 571                blk_start_plug(&plug);
 572                f2fs_sync_dirty_inodes(sbi, FILE_INODE);
 573                blk_finish_plug(&plug);
 574
 575                mutex_unlock(&sbi->flush_lock);
 576        }
 577        f2fs_sync_fs(sbi->sb, true);
 578        stat_inc_bg_cp_count(sbi->stat_info);
 579}
 580
 581static int __submit_flush_wait(struct f2fs_sb_info *sbi,
 582                                struct block_device *bdev)
 583{
 584        int ret = blkdev_issue_flush(bdev);
 585
 586        trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
 587                                test_opt(sbi, FLUSH_MERGE), ret);
 588        return ret;
 589}
 590
 591static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
 592{
 593        int ret = 0;
 594        int i;
 595
 596        if (!f2fs_is_multi_device(sbi))
 597                return __submit_flush_wait(sbi, sbi->sb->s_bdev);
 598
 599        for (i = 0; i < sbi->s_ndevs; i++) {
 600                if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
 601                        continue;
 602                ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 603                if (ret)
 604                        break;
 605        }
 606        return ret;
 607}
 608
 609static int issue_flush_thread(void *data)
 610{
 611        struct f2fs_sb_info *sbi = data;
 612        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 613        wait_queue_head_t *q = &fcc->flush_wait_queue;
 614repeat:
 615        if (kthread_should_stop())
 616                return 0;
 617
 618        if (!llist_empty(&fcc->issue_list)) {
 619                struct flush_cmd *cmd, *next;
 620                int ret;
 621
 622                fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 623                fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 624
 625                cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
 626
 627                ret = submit_flush_wait(sbi, cmd->ino);
 628                atomic_inc(&fcc->issued_flush);
 629
 630                llist_for_each_entry_safe(cmd, next,
 631                                          fcc->dispatch_list, llnode) {
 632                        cmd->ret = ret;
 633                        complete(&cmd->wait);
 634                }
 635                fcc->dispatch_list = NULL;
 636        }
 637
 638        wait_event_interruptible(*q,
 639                kthread_should_stop() || !llist_empty(&fcc->issue_list));
 640        goto repeat;
 641}
 642
 643int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
 644{
 645        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 646        struct flush_cmd cmd;
 647        int ret;
 648
 649        if (test_opt(sbi, NOBARRIER))
 650                return 0;
 651
 652        if (!test_opt(sbi, FLUSH_MERGE)) {
 653                atomic_inc(&fcc->queued_flush);
 654                ret = submit_flush_wait(sbi, ino);
 655                atomic_dec(&fcc->queued_flush);
 656                atomic_inc(&fcc->issued_flush);
 657                return ret;
 658        }
 659
 660        if (atomic_inc_return(&fcc->queued_flush) == 1 ||
 661            f2fs_is_multi_device(sbi)) {
 662                ret = submit_flush_wait(sbi, ino);
 663                atomic_dec(&fcc->queued_flush);
 664
 665                atomic_inc(&fcc->issued_flush);
 666                return ret;
 667        }
 668
 669        cmd.ino = ino;
 670        init_completion(&cmd.wait);
 671
 672        llist_add(&cmd.llnode, &fcc->issue_list);
 673
 674        /*
 675         * update issue_list before we wake up issue_flush thread, this
 676         * smp_mb() pairs with another barrier in ___wait_event(), see
 677         * more details in comments of waitqueue_active().
 678         */
 679        smp_mb();
 680
 681        if (waitqueue_active(&fcc->flush_wait_queue))
 682                wake_up(&fcc->flush_wait_queue);
 683
 684        if (fcc->f2fs_issue_flush) {
 685                wait_for_completion(&cmd.wait);
 686                atomic_dec(&fcc->queued_flush);
 687        } else {
 688                struct llist_node *list;
 689
 690                list = llist_del_all(&fcc->issue_list);
 691                if (!list) {
 692                        wait_for_completion(&cmd.wait);
 693                        atomic_dec(&fcc->queued_flush);
 694                } else {
 695                        struct flush_cmd *tmp, *next;
 696
 697                        ret = submit_flush_wait(sbi, ino);
 698
 699                        llist_for_each_entry_safe(tmp, next, list, llnode) {
 700                                if (tmp == &cmd) {
 701                                        cmd.ret = ret;
 702                                        atomic_dec(&fcc->queued_flush);
 703                                        continue;
 704                                }
 705                                tmp->ret = ret;
 706                                complete(&tmp->wait);
 707                        }
 708                }
 709        }
 710
 711        return cmd.ret;
 712}
 713
 714int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
 715{
 716        dev_t dev = sbi->sb->s_bdev->bd_dev;
 717        struct flush_cmd_control *fcc;
 718        int err = 0;
 719
 720        if (SM_I(sbi)->fcc_info) {
 721                fcc = SM_I(sbi)->fcc_info;
 722                if (fcc->f2fs_issue_flush)
 723                        return err;
 724                goto init_thread;
 725        }
 726
 727        fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
 728        if (!fcc)
 729                return -ENOMEM;
 730        atomic_set(&fcc->issued_flush, 0);
 731        atomic_set(&fcc->queued_flush, 0);
 732        init_waitqueue_head(&fcc->flush_wait_queue);
 733        init_llist_head(&fcc->issue_list);
 734        SM_I(sbi)->fcc_info = fcc;
 735        if (!test_opt(sbi, FLUSH_MERGE))
 736                return err;
 737
 738init_thread:
 739        fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 740                                "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 741        if (IS_ERR(fcc->f2fs_issue_flush)) {
 742                err = PTR_ERR(fcc->f2fs_issue_flush);
 743                kfree(fcc);
 744                SM_I(sbi)->fcc_info = NULL;
 745                return err;
 746        }
 747
 748        return err;
 749}
 750
 751void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
 752{
 753        struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 754
 755        if (fcc && fcc->f2fs_issue_flush) {
 756                struct task_struct *flush_thread = fcc->f2fs_issue_flush;
 757
 758                fcc->f2fs_issue_flush = NULL;
 759                kthread_stop(flush_thread);
 760        }
 761        if (free) {
 762                kfree(fcc);
 763                SM_I(sbi)->fcc_info = NULL;
 764        }
 765}
 766
 767int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
 768{
 769        int ret = 0, i;
 770
 771        if (!f2fs_is_multi_device(sbi))
 772                return 0;
 773
 774        if (test_opt(sbi, NOBARRIER))
 775                return 0;
 776
 777        for (i = 1; i < sbi->s_ndevs; i++) {
 778                if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
 779                        continue;
 780                ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 781                if (ret)
 782                        break;
 783
 784                spin_lock(&sbi->dev_lock);
 785                f2fs_clear_bit(i, (char *)&sbi->dirty_device);
 786                spin_unlock(&sbi->dev_lock);
 787        }
 788
 789        return ret;
 790}
 791
 792static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 793                enum dirty_type dirty_type)
 794{
 795        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 796
 797        /* need not be added */
 798        if (IS_CURSEG(sbi, segno))
 799                return;
 800
 801        if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 802                dirty_i->nr_dirty[dirty_type]++;
 803
 804        if (dirty_type == DIRTY) {
 805                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 806                enum dirty_type t = sentry->type;
 807
 808                if (unlikely(t >= DIRTY)) {
 809                        f2fs_bug_on(sbi, 1);
 810                        return;
 811                }
 812                if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 813                        dirty_i->nr_dirty[t]++;
 814
 815                if (__is_large_section(sbi)) {
 816                        unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 817                        block_t valid_blocks =
 818                                get_valid_blocks(sbi, segno, true);
 819
 820                        f2fs_bug_on(sbi, unlikely(!valid_blocks ||
 821                                        valid_blocks == BLKS_PER_SEC(sbi)));
 822
 823                        if (!IS_CURSEC(sbi, secno))
 824                                set_bit(secno, dirty_i->dirty_secmap);
 825                }
 826        }
 827}
 828
 829static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 830                enum dirty_type dirty_type)
 831{
 832        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 833        block_t valid_blocks;
 834
 835        if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 836                dirty_i->nr_dirty[dirty_type]--;
 837
 838        if (dirty_type == DIRTY) {
 839                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 840                enum dirty_type t = sentry->type;
 841
 842                if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 843                        dirty_i->nr_dirty[t]--;
 844
 845                valid_blocks = get_valid_blocks(sbi, segno, true);
 846                if (valid_blocks == 0) {
 847                        clear_bit(GET_SEC_FROM_SEG(sbi, segno),
 848                                                dirty_i->victim_secmap);
 849#ifdef CONFIG_F2FS_CHECK_FS
 850                        clear_bit(segno, SIT_I(sbi)->invalid_segmap);
 851#endif
 852                }
 853                if (__is_large_section(sbi)) {
 854                        unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 855
 856                        if (!valid_blocks ||
 857                                        valid_blocks == BLKS_PER_SEC(sbi)) {
 858                                clear_bit(secno, dirty_i->dirty_secmap);
 859                                return;
 860                        }
 861
 862                        if (!IS_CURSEC(sbi, secno))
 863                                set_bit(secno, dirty_i->dirty_secmap);
 864                }
 865        }
 866}
 867
 868/*
 869 * Should not occur error such as -ENOMEM.
 870 * Adding dirty entry into seglist is not critical operation.
 871 * If a given segment is one of current working segments, it won't be added.
 872 */
 873static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 874{
 875        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 876        unsigned short valid_blocks, ckpt_valid_blocks;
 877        unsigned int usable_blocks;
 878
 879        if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 880                return;
 881
 882        usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
 883        mutex_lock(&dirty_i->seglist_lock);
 884
 885        valid_blocks = get_valid_blocks(sbi, segno, false);
 886        ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
 887
 888        if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
 889                ckpt_valid_blocks == usable_blocks)) {
 890                __locate_dirty_segment(sbi, segno, PRE);
 891                __remove_dirty_segment(sbi, segno, DIRTY);
 892        } else if (valid_blocks < usable_blocks) {
 893                __locate_dirty_segment(sbi, segno, DIRTY);
 894        } else {
 895                /* Recovery routine with SSR needs this */
 896                __remove_dirty_segment(sbi, segno, DIRTY);
 897        }
 898
 899        mutex_unlock(&dirty_i->seglist_lock);
 900}
 901
 902/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
 903void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
 904{
 905        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 906        unsigned int segno;
 907
 908        mutex_lock(&dirty_i->seglist_lock);
 909        for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 910                if (get_valid_blocks(sbi, segno, false))
 911                        continue;
 912                if (IS_CURSEG(sbi, segno))
 913                        continue;
 914                __locate_dirty_segment(sbi, segno, PRE);
 915                __remove_dirty_segment(sbi, segno, DIRTY);
 916        }
 917        mutex_unlock(&dirty_i->seglist_lock);
 918}
 919
 920block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
 921{
 922        int ovp_hole_segs =
 923                (overprovision_segments(sbi) - reserved_segments(sbi));
 924        block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
 925        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 926        block_t holes[2] = {0, 0};      /* DATA and NODE */
 927        block_t unusable;
 928        struct seg_entry *se;
 929        unsigned int segno;
 930
 931        mutex_lock(&dirty_i->seglist_lock);
 932        for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 933                se = get_seg_entry(sbi, segno);
 934                if (IS_NODESEG(se->type))
 935                        holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
 936                                                        se->valid_blocks;
 937                else
 938                        holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
 939                                                        se->valid_blocks;
 940        }
 941        mutex_unlock(&dirty_i->seglist_lock);
 942
 943        unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
 944        if (unusable > ovp_holes)
 945                return unusable - ovp_holes;
 946        return 0;
 947}
 948
 949int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
 950{
 951        int ovp_hole_segs =
 952                (overprovision_segments(sbi) - reserved_segments(sbi));
 953        if (unusable > F2FS_OPTION(sbi).unusable_cap)
 954                return -EAGAIN;
 955        if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
 956                dirty_segments(sbi) > ovp_hole_segs)
 957                return -EAGAIN;
 958        return 0;
 959}
 960
 961/* This is only used by SBI_CP_DISABLED */
 962static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
 963{
 964        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 965        unsigned int segno = 0;
 966
 967        mutex_lock(&dirty_i->seglist_lock);
 968        for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 969                if (get_valid_blocks(sbi, segno, false))
 970                        continue;
 971                if (get_ckpt_valid_blocks(sbi, segno, false))
 972                        continue;
 973                mutex_unlock(&dirty_i->seglist_lock);
 974                return segno;
 975        }
 976        mutex_unlock(&dirty_i->seglist_lock);
 977        return NULL_SEGNO;
 978}
 979
 980static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
 981                struct block_device *bdev, block_t lstart,
 982                block_t start, block_t len)
 983{
 984        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 985        struct list_head *pend_list;
 986        struct discard_cmd *dc;
 987
 988        f2fs_bug_on(sbi, !len);
 989
 990        pend_list = &dcc->pend_list[plist_idx(len)];
 991
 992        dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
 993        INIT_LIST_HEAD(&dc->list);
 994        dc->bdev = bdev;
 995        dc->lstart = lstart;
 996        dc->start = start;
 997        dc->len = len;
 998        dc->ref = 0;
 999        dc->state = D_PREP;
1000        dc->queued = 0;
1001        dc->error = 0;
1002        init_completion(&dc->wait);
1003        list_add_tail(&dc->list, pend_list);
1004        spin_lock_init(&dc->lock);
1005        dc->bio_ref = 0;
1006        atomic_inc(&dcc->discard_cmd_cnt);
1007        dcc->undiscard_blks += len;
1008
1009        return dc;
1010}
1011
1012static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1013                                struct block_device *bdev, block_t lstart,
1014                                block_t start, block_t len,
1015                                struct rb_node *parent, struct rb_node **p,
1016                                bool leftmost)
1017{
1018        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1019        struct discard_cmd *dc;
1020
1021        dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1022
1023        rb_link_node(&dc->rb_node, parent, p);
1024        rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1025
1026        return dc;
1027}
1028
1029static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1030                                                        struct discard_cmd *dc)
1031{
1032        if (dc->state == D_DONE)
1033                atomic_sub(dc->queued, &dcc->queued_discard);
1034
1035        list_del(&dc->list);
1036        rb_erase_cached(&dc->rb_node, &dcc->root);
1037        dcc->undiscard_blks -= dc->len;
1038
1039        kmem_cache_free(discard_cmd_slab, dc);
1040
1041        atomic_dec(&dcc->discard_cmd_cnt);
1042}
1043
1044static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1045                                                        struct discard_cmd *dc)
1046{
1047        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1048        unsigned long flags;
1049
1050        trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1051
1052        spin_lock_irqsave(&dc->lock, flags);
1053        if (dc->bio_ref) {
1054                spin_unlock_irqrestore(&dc->lock, flags);
1055                return;
1056        }
1057        spin_unlock_irqrestore(&dc->lock, flags);
1058
1059        f2fs_bug_on(sbi, dc->ref);
1060
1061        if (dc->error == -EOPNOTSUPP)
1062                dc->error = 0;
1063
1064        if (dc->error)
1065                printk_ratelimited(
1066                        "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1067                        KERN_INFO, sbi->sb->s_id,
1068                        dc->lstart, dc->start, dc->len, dc->error);
1069        __detach_discard_cmd(dcc, dc);
1070}
1071
1072static void f2fs_submit_discard_endio(struct bio *bio)
1073{
1074        struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1075        unsigned long flags;
1076
1077        spin_lock_irqsave(&dc->lock, flags);
1078        if (!dc->error)
1079                dc->error = blk_status_to_errno(bio->bi_status);
1080        dc->bio_ref--;
1081        if (!dc->bio_ref && dc->state == D_SUBMIT) {
1082                dc->state = D_DONE;
1083                complete_all(&dc->wait);
1084        }
1085        spin_unlock_irqrestore(&dc->lock, flags);
1086        bio_put(bio);
1087}
1088
1089static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1090                                block_t start, block_t end)
1091{
1092#ifdef CONFIG_F2FS_CHECK_FS
1093        struct seg_entry *sentry;
1094        unsigned int segno;
1095        block_t blk = start;
1096        unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1097        unsigned long *map;
1098
1099        while (blk < end) {
1100                segno = GET_SEGNO(sbi, blk);
1101                sentry = get_seg_entry(sbi, segno);
1102                offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1103
1104                if (end < START_BLOCK(sbi, segno + 1))
1105                        size = GET_BLKOFF_FROM_SEG0(sbi, end);
1106                else
1107                        size = max_blocks;
1108                map = (unsigned long *)(sentry->cur_valid_map);
1109                offset = __find_rev_next_bit(map, size, offset);
1110                f2fs_bug_on(sbi, offset != size);
1111                blk = START_BLOCK(sbi, segno + 1);
1112        }
1113#endif
1114}
1115
1116static void __init_discard_policy(struct f2fs_sb_info *sbi,
1117                                struct discard_policy *dpolicy,
1118                                int discard_type, unsigned int granularity)
1119{
1120        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1121
1122        /* common policy */
1123        dpolicy->type = discard_type;
1124        dpolicy->sync = true;
1125        dpolicy->ordered = false;
1126        dpolicy->granularity = granularity;
1127
1128        dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1129        dpolicy->io_aware_gran = MAX_PLIST_NUM;
1130        dpolicy->timeout = false;
1131
1132        if (discard_type == DPOLICY_BG) {
1133                dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1134                dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1135                dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1136                dpolicy->io_aware = true;
1137                dpolicy->sync = false;
1138                dpolicy->ordered = true;
1139                if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1140                        dpolicy->granularity = 1;
1141                        if (atomic_read(&dcc->discard_cmd_cnt))
1142                                dpolicy->max_interval =
1143                                        DEF_MIN_DISCARD_ISSUE_TIME;
1144                }
1145        } else if (discard_type == DPOLICY_FORCE) {
1146                dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1147                dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1148                dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1149                dpolicy->io_aware = false;
1150        } else if (discard_type == DPOLICY_FSTRIM) {
1151                dpolicy->io_aware = false;
1152        } else if (discard_type == DPOLICY_UMOUNT) {
1153                dpolicy->io_aware = false;
1154                /* we need to issue all to keep CP_TRIMMED_FLAG */
1155                dpolicy->granularity = 1;
1156                dpolicy->timeout = true;
1157        }
1158}
1159
1160static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1161                                struct block_device *bdev, block_t lstart,
1162                                block_t start, block_t len);
1163/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1164static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1165                                                struct discard_policy *dpolicy,
1166                                                struct discard_cmd *dc,
1167                                                unsigned int *issued)
1168{
1169        struct block_device *bdev = dc->bdev;
1170        struct request_queue *q = bdev_get_queue(bdev);
1171        unsigned int max_discard_blocks =
1172                        SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1173        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1174        struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1175                                        &(dcc->fstrim_list) : &(dcc->wait_list);
1176        int flag = dpolicy->sync ? REQ_SYNC : 0;
1177        block_t lstart, start, len, total_len;
1178        int err = 0;
1179
1180        if (dc->state != D_PREP)
1181                return 0;
1182
1183        if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1184                return 0;
1185
1186        trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1187
1188        lstart = dc->lstart;
1189        start = dc->start;
1190        len = dc->len;
1191        total_len = len;
1192
1193        dc->len = 0;
1194
1195        while (total_len && *issued < dpolicy->max_requests && !err) {
1196                struct bio *bio = NULL;
1197                unsigned long flags;
1198                bool last = true;
1199
1200                if (len > max_discard_blocks) {
1201                        len = max_discard_blocks;
1202                        last = false;
1203                }
1204
1205                (*issued)++;
1206                if (*issued == dpolicy->max_requests)
1207                        last = true;
1208
1209                dc->len += len;
1210
1211                if (time_to_inject(sbi, FAULT_DISCARD)) {
1212                        f2fs_show_injection_info(sbi, FAULT_DISCARD);
1213                        err = -EIO;
1214                        goto submit;
1215                }
1216                err = __blkdev_issue_discard(bdev,
1217                                        SECTOR_FROM_BLOCK(start),
1218                                        SECTOR_FROM_BLOCK(len),
1219                                        GFP_NOFS, 0, &bio);
1220submit:
1221                if (err) {
1222                        spin_lock_irqsave(&dc->lock, flags);
1223                        if (dc->state == D_PARTIAL)
1224                                dc->state = D_SUBMIT;
1225                        spin_unlock_irqrestore(&dc->lock, flags);
1226
1227                        break;
1228                }
1229
1230                f2fs_bug_on(sbi, !bio);
1231
1232                /*
1233                 * should keep before submission to avoid D_DONE
1234                 * right away
1235                 */
1236                spin_lock_irqsave(&dc->lock, flags);
1237                if (last)
1238                        dc->state = D_SUBMIT;
1239                else
1240                        dc->state = D_PARTIAL;
1241                dc->bio_ref++;
1242                spin_unlock_irqrestore(&dc->lock, flags);
1243
1244                atomic_inc(&dcc->queued_discard);
1245                dc->queued++;
1246                list_move_tail(&dc->list, wait_list);
1247
1248                /* sanity check on discard range */
1249                __check_sit_bitmap(sbi, lstart, lstart + len);
1250
1251                bio->bi_private = dc;
1252                bio->bi_end_io = f2fs_submit_discard_endio;
1253                bio->bi_opf |= flag;
1254                submit_bio(bio);
1255
1256                atomic_inc(&dcc->issued_discard);
1257
1258                f2fs_update_iostat(sbi, FS_DISCARD, 1);
1259
1260                lstart += len;
1261                start += len;
1262                total_len -= len;
1263                len = total_len;
1264        }
1265
1266        if (!err && len) {
1267                dcc->undiscard_blks -= len;
1268                __update_discard_tree_range(sbi, bdev, lstart, start, len);
1269        }
1270        return err;
1271}
1272
1273static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1274                                struct block_device *bdev, block_t lstart,
1275                                block_t start, block_t len,
1276                                struct rb_node **insert_p,
1277                                struct rb_node *insert_parent)
1278{
1279        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1280        struct rb_node **p;
1281        struct rb_node *parent = NULL;
1282        bool leftmost = true;
1283
1284        if (insert_p && insert_parent) {
1285                parent = insert_parent;
1286                p = insert_p;
1287                goto do_insert;
1288        }
1289
1290        p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1291                                                        lstart, &leftmost);
1292do_insert:
1293        __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1294                                                                p, leftmost);
1295}
1296
1297static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1298                                                struct discard_cmd *dc)
1299{
1300        list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1301}
1302
1303static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1304                                struct discard_cmd *dc, block_t blkaddr)
1305{
1306        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1307        struct discard_info di = dc->di;
1308        bool modified = false;
1309
1310        if (dc->state == D_DONE || dc->len == 1) {
1311                __remove_discard_cmd(sbi, dc);
1312                return;
1313        }
1314
1315        dcc->undiscard_blks -= di.len;
1316
1317        if (blkaddr > di.lstart) {
1318                dc->len = blkaddr - dc->lstart;
1319                dcc->undiscard_blks += dc->len;
1320                __relocate_discard_cmd(dcc, dc);
1321                modified = true;
1322        }
1323
1324        if (blkaddr < di.lstart + di.len - 1) {
1325                if (modified) {
1326                        __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1327                                        di.start + blkaddr + 1 - di.lstart,
1328                                        di.lstart + di.len - 1 - blkaddr,
1329                                        NULL, NULL);
1330                } else {
1331                        dc->lstart++;
1332                        dc->len--;
1333                        dc->start++;
1334                        dcc->undiscard_blks += dc->len;
1335                        __relocate_discard_cmd(dcc, dc);
1336                }
1337        }
1338}
1339
1340static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1341                                struct block_device *bdev, block_t lstart,
1342                                block_t start, block_t len)
1343{
1344        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1345        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1346        struct discard_cmd *dc;
1347        struct discard_info di = {0};
1348        struct rb_node **insert_p = NULL, *insert_parent = NULL;
1349        struct request_queue *q = bdev_get_queue(bdev);
1350        unsigned int max_discard_blocks =
1351                        SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1352        block_t end = lstart + len;
1353
1354        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1355                                        NULL, lstart,
1356                                        (struct rb_entry **)&prev_dc,
1357                                        (struct rb_entry **)&next_dc,
1358                                        &insert_p, &insert_parent, true, NULL);
1359        if (dc)
1360                prev_dc = dc;
1361
1362        if (!prev_dc) {
1363                di.lstart = lstart;
1364                di.len = next_dc ? next_dc->lstart - lstart : len;
1365                di.len = min(di.len, len);
1366                di.start = start;
1367        }
1368
1369        while (1) {
1370                struct rb_node *node;
1371                bool merged = false;
1372                struct discard_cmd *tdc = NULL;
1373
1374                if (prev_dc) {
1375                        di.lstart = prev_dc->lstart + prev_dc->len;
1376                        if (di.lstart < lstart)
1377                                di.lstart = lstart;
1378                        if (di.lstart >= end)
1379                                break;
1380
1381                        if (!next_dc || next_dc->lstart > end)
1382                                di.len = end - di.lstart;
1383                        else
1384                                di.len = next_dc->lstart - di.lstart;
1385                        di.start = start + di.lstart - lstart;
1386                }
1387
1388                if (!di.len)
1389                        goto next;
1390
1391                if (prev_dc && prev_dc->state == D_PREP &&
1392                        prev_dc->bdev == bdev &&
1393                        __is_discard_back_mergeable(&di, &prev_dc->di,
1394                                                        max_discard_blocks)) {
1395                        prev_dc->di.len += di.len;
1396                        dcc->undiscard_blks += di.len;
1397                        __relocate_discard_cmd(dcc, prev_dc);
1398                        di = prev_dc->di;
1399                        tdc = prev_dc;
1400                        merged = true;
1401                }
1402
1403                if (next_dc && next_dc->state == D_PREP &&
1404                        next_dc->bdev == bdev &&
1405                        __is_discard_front_mergeable(&di, &next_dc->di,
1406                                                        max_discard_blocks)) {
1407                        next_dc->di.lstart = di.lstart;
1408                        next_dc->di.len += di.len;
1409                        next_dc->di.start = di.start;
1410                        dcc->undiscard_blks += di.len;
1411                        __relocate_discard_cmd(dcc, next_dc);
1412                        if (tdc)
1413                                __remove_discard_cmd(sbi, tdc);
1414                        merged = true;
1415                }
1416
1417                if (!merged) {
1418                        __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1419                                                        di.len, NULL, NULL);
1420                }
1421 next:
1422                prev_dc = next_dc;
1423                if (!prev_dc)
1424                        break;
1425
1426                node = rb_next(&prev_dc->rb_node);
1427                next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1428        }
1429}
1430
1431static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1432                struct block_device *bdev, block_t blkstart, block_t blklen)
1433{
1434        block_t lblkstart = blkstart;
1435
1436        if (!f2fs_bdev_support_discard(bdev))
1437                return 0;
1438
1439        trace_f2fs_queue_discard(bdev, blkstart, blklen);
1440
1441        if (f2fs_is_multi_device(sbi)) {
1442                int devi = f2fs_target_device_index(sbi, blkstart);
1443
1444                blkstart -= FDEV(devi).start_blk;
1445        }
1446        mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1447        __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1448        mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1449        return 0;
1450}
1451
1452static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1453                                        struct discard_policy *dpolicy)
1454{
1455        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1456        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1457        struct rb_node **insert_p = NULL, *insert_parent = NULL;
1458        struct discard_cmd *dc;
1459        struct blk_plug plug;
1460        unsigned int pos = dcc->next_pos;
1461        unsigned int issued = 0;
1462        bool io_interrupted = false;
1463
1464        mutex_lock(&dcc->cmd_lock);
1465        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1466                                        NULL, pos,
1467                                        (struct rb_entry **)&prev_dc,
1468                                        (struct rb_entry **)&next_dc,
1469                                        &insert_p, &insert_parent, true, NULL);
1470        if (!dc)
1471                dc = next_dc;
1472
1473        blk_start_plug(&plug);
1474
1475        while (dc) {
1476                struct rb_node *node;
1477                int err = 0;
1478
1479                if (dc->state != D_PREP)
1480                        goto next;
1481
1482                if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1483                        io_interrupted = true;
1484                        break;
1485                }
1486
1487                dcc->next_pos = dc->lstart + dc->len;
1488                err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1489
1490                if (issued >= dpolicy->max_requests)
1491                        break;
1492next:
1493                node = rb_next(&dc->rb_node);
1494                if (err)
1495                        __remove_discard_cmd(sbi, dc);
1496                dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1497        }
1498
1499        blk_finish_plug(&plug);
1500
1501        if (!dc)
1502                dcc->next_pos = 0;
1503
1504        mutex_unlock(&dcc->cmd_lock);
1505
1506        if (!issued && io_interrupted)
1507                issued = -1;
1508
1509        return issued;
1510}
1511static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1512                                        struct discard_policy *dpolicy);
1513
1514static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1515                                        struct discard_policy *dpolicy)
1516{
1517        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1518        struct list_head *pend_list;
1519        struct discard_cmd *dc, *tmp;
1520        struct blk_plug plug;
1521        int i, issued;
1522        bool io_interrupted = false;
1523
1524        if (dpolicy->timeout)
1525                f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1526
1527retry:
1528        issued = 0;
1529        for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1530                if (dpolicy->timeout &&
1531                                f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1532                        break;
1533
1534                if (i + 1 < dpolicy->granularity)
1535                        break;
1536
1537                if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1538                        return __issue_discard_cmd_orderly(sbi, dpolicy);
1539
1540                pend_list = &dcc->pend_list[i];
1541
1542                mutex_lock(&dcc->cmd_lock);
1543                if (list_empty(pend_list))
1544                        goto next;
1545                if (unlikely(dcc->rbtree_check))
1546                        f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1547                                                        &dcc->root, false));
1548                blk_start_plug(&plug);
1549                list_for_each_entry_safe(dc, tmp, pend_list, list) {
1550                        f2fs_bug_on(sbi, dc->state != D_PREP);
1551
1552                        if (dpolicy->timeout &&
1553                                f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1554                                break;
1555
1556                        if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1557                                                !is_idle(sbi, DISCARD_TIME)) {
1558                                io_interrupted = true;
1559                                break;
1560                        }
1561
1562                        __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1563
1564                        if (issued >= dpolicy->max_requests)
1565                                break;
1566                }
1567                blk_finish_plug(&plug);
1568next:
1569                mutex_unlock(&dcc->cmd_lock);
1570
1571                if (issued >= dpolicy->max_requests || io_interrupted)
1572                        break;
1573        }
1574
1575        if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1576                __wait_all_discard_cmd(sbi, dpolicy);
1577                goto retry;
1578        }
1579
1580        if (!issued && io_interrupted)
1581                issued = -1;
1582
1583        return issued;
1584}
1585
1586static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1587{
1588        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1589        struct list_head *pend_list;
1590        struct discard_cmd *dc, *tmp;
1591        int i;
1592        bool dropped = false;
1593
1594        mutex_lock(&dcc->cmd_lock);
1595        for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1596                pend_list = &dcc->pend_list[i];
1597                list_for_each_entry_safe(dc, tmp, pend_list, list) {
1598                        f2fs_bug_on(sbi, dc->state != D_PREP);
1599                        __remove_discard_cmd(sbi, dc);
1600                        dropped = true;
1601                }
1602        }
1603        mutex_unlock(&dcc->cmd_lock);
1604
1605        return dropped;
1606}
1607
1608void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1609{
1610        __drop_discard_cmd(sbi);
1611}
1612
1613static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1614                                                        struct discard_cmd *dc)
1615{
1616        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1617        unsigned int len = 0;
1618
1619        wait_for_completion_io(&dc->wait);
1620        mutex_lock(&dcc->cmd_lock);
1621        f2fs_bug_on(sbi, dc->state != D_DONE);
1622        dc->ref--;
1623        if (!dc->ref) {
1624                if (!dc->error)
1625                        len = dc->len;
1626                __remove_discard_cmd(sbi, dc);
1627        }
1628        mutex_unlock(&dcc->cmd_lock);
1629
1630        return len;
1631}
1632
1633static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1634                                                struct discard_policy *dpolicy,
1635                                                block_t start, block_t end)
1636{
1637        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1638        struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1639                                        &(dcc->fstrim_list) : &(dcc->wait_list);
1640        struct discard_cmd *dc, *tmp;
1641        bool need_wait;
1642        unsigned int trimmed = 0;
1643
1644next:
1645        need_wait = false;
1646
1647        mutex_lock(&dcc->cmd_lock);
1648        list_for_each_entry_safe(dc, tmp, wait_list, list) {
1649                if (dc->lstart + dc->len <= start || end <= dc->lstart)
1650                        continue;
1651                if (dc->len < dpolicy->granularity)
1652                        continue;
1653                if (dc->state == D_DONE && !dc->ref) {
1654                        wait_for_completion_io(&dc->wait);
1655                        if (!dc->error)
1656                                trimmed += dc->len;
1657                        __remove_discard_cmd(sbi, dc);
1658                } else {
1659                        dc->ref++;
1660                        need_wait = true;
1661                        break;
1662                }
1663        }
1664        mutex_unlock(&dcc->cmd_lock);
1665
1666        if (need_wait) {
1667                trimmed += __wait_one_discard_bio(sbi, dc);
1668                goto next;
1669        }
1670
1671        return trimmed;
1672}
1673
1674static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1675                                                struct discard_policy *dpolicy)
1676{
1677        struct discard_policy dp;
1678        unsigned int discard_blks;
1679
1680        if (dpolicy)
1681                return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1682
1683        /* wait all */
1684        __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1685        discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1686        __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1687        discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1688
1689        return discard_blks;
1690}
1691
1692/* This should be covered by global mutex, &sit_i->sentry_lock */
1693static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1694{
1695        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1696        struct discard_cmd *dc;
1697        bool need_wait = false;
1698
1699        mutex_lock(&dcc->cmd_lock);
1700        dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1701                                                        NULL, blkaddr);
1702        if (dc) {
1703                if (dc->state == D_PREP) {
1704                        __punch_discard_cmd(sbi, dc, blkaddr);
1705                } else {
1706                        dc->ref++;
1707                        need_wait = true;
1708                }
1709        }
1710        mutex_unlock(&dcc->cmd_lock);
1711
1712        if (need_wait)
1713                __wait_one_discard_bio(sbi, dc);
1714}
1715
1716void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1717{
1718        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1719
1720        if (dcc && dcc->f2fs_issue_discard) {
1721                struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1722
1723                dcc->f2fs_issue_discard = NULL;
1724                kthread_stop(discard_thread);
1725        }
1726}
1727
1728/* This comes from f2fs_put_super */
1729bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1730{
1731        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1732        struct discard_policy dpolicy;
1733        bool dropped;
1734
1735        __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1736                                        dcc->discard_granularity);
1737        __issue_discard_cmd(sbi, &dpolicy);
1738        dropped = __drop_discard_cmd(sbi);
1739
1740        /* just to make sure there is no pending discard commands */
1741        __wait_all_discard_cmd(sbi, NULL);
1742
1743        f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1744        return dropped;
1745}
1746
1747static int issue_discard_thread(void *data)
1748{
1749        struct f2fs_sb_info *sbi = data;
1750        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1751        wait_queue_head_t *q = &dcc->discard_wait_queue;
1752        struct discard_policy dpolicy;
1753        unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1754        int issued;
1755
1756        set_freezable();
1757
1758        do {
1759                if (sbi->gc_mode == GC_URGENT_HIGH ||
1760                        !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1761                        __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1762                else
1763                        __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1764                                                dcc->discard_granularity);
1765
1766                if (!atomic_read(&dcc->discard_cmd_cnt))
1767                       wait_ms = dpolicy.max_interval;
1768
1769                wait_event_interruptible_timeout(*q,
1770                                kthread_should_stop() || freezing(current) ||
1771                                dcc->discard_wake,
1772                                msecs_to_jiffies(wait_ms));
1773
1774                if (dcc->discard_wake)
1775                        dcc->discard_wake = 0;
1776
1777                /* clean up pending candidates before going to sleep */
1778                if (atomic_read(&dcc->queued_discard))
1779                        __wait_all_discard_cmd(sbi, NULL);
1780
1781                if (try_to_freeze())
1782                        continue;
1783                if (f2fs_readonly(sbi->sb))
1784                        continue;
1785                if (kthread_should_stop())
1786                        return 0;
1787                if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1788                        wait_ms = dpolicy.max_interval;
1789                        continue;
1790                }
1791                if (!atomic_read(&dcc->discard_cmd_cnt))
1792                        continue;
1793
1794                sb_start_intwrite(sbi->sb);
1795
1796                issued = __issue_discard_cmd(sbi, &dpolicy);
1797                if (issued > 0) {
1798                        __wait_all_discard_cmd(sbi, &dpolicy);
1799                        wait_ms = dpolicy.min_interval;
1800                } else if (issued == -1) {
1801                        wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1802                        if (!wait_ms)
1803                                wait_ms = dpolicy.mid_interval;
1804                } else {
1805                        wait_ms = dpolicy.max_interval;
1806                }
1807
1808                sb_end_intwrite(sbi->sb);
1809
1810        } while (!kthread_should_stop());
1811        return 0;
1812}
1813
1814#ifdef CONFIG_BLK_DEV_ZONED
1815static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1816                struct block_device *bdev, block_t blkstart, block_t blklen)
1817{
1818        sector_t sector, nr_sects;
1819        block_t lblkstart = blkstart;
1820        int devi = 0;
1821
1822        if (f2fs_is_multi_device(sbi)) {
1823                devi = f2fs_target_device_index(sbi, blkstart);
1824                if (blkstart < FDEV(devi).start_blk ||
1825                    blkstart > FDEV(devi).end_blk) {
1826                        f2fs_err(sbi, "Invalid block %x", blkstart);
1827                        return -EIO;
1828                }
1829                blkstart -= FDEV(devi).start_blk;
1830        }
1831
1832        /* For sequential zones, reset the zone write pointer */
1833        if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1834                sector = SECTOR_FROM_BLOCK(blkstart);
1835                nr_sects = SECTOR_FROM_BLOCK(blklen);
1836
1837                if (sector & (bdev_zone_sectors(bdev) - 1) ||
1838                                nr_sects != bdev_zone_sectors(bdev)) {
1839                        f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1840                                 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1841                                 blkstart, blklen);
1842                        return -EIO;
1843                }
1844                trace_f2fs_issue_reset_zone(bdev, blkstart);
1845                return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1846                                        sector, nr_sects, GFP_NOFS);
1847        }
1848
1849        /* For conventional zones, use regular discard if supported */
1850        return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1851}
1852#endif
1853
1854static int __issue_discard_async(struct f2fs_sb_info *sbi,
1855                struct block_device *bdev, block_t blkstart, block_t blklen)
1856{
1857#ifdef CONFIG_BLK_DEV_ZONED
1858        if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1859                return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1860#endif
1861        return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1862}
1863
1864static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1865                                block_t blkstart, block_t blklen)
1866{
1867        sector_t start = blkstart, len = 0;
1868        struct block_device *bdev;
1869        struct seg_entry *se;
1870        unsigned int offset;
1871        block_t i;
1872        int err = 0;
1873
1874        bdev = f2fs_target_device(sbi, blkstart, NULL);
1875
1876        for (i = blkstart; i < blkstart + blklen; i++, len++) {
1877                if (i != start) {
1878                        struct block_device *bdev2 =
1879                                f2fs_target_device(sbi, i, NULL);
1880
1881                        if (bdev2 != bdev) {
1882                                err = __issue_discard_async(sbi, bdev,
1883                                                start, len);
1884                                if (err)
1885                                        return err;
1886                                bdev = bdev2;
1887                                start = i;
1888                                len = 0;
1889                        }
1890                }
1891
1892                se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1893                offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1894
1895                if (!f2fs_test_and_set_bit(offset, se->discard_map))
1896                        sbi->discard_blks--;
1897        }
1898
1899        if (len)
1900                err = __issue_discard_async(sbi, bdev, start, len);
1901        return err;
1902}
1903
1904static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1905                                                        bool check_only)
1906{
1907        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1908        int max_blocks = sbi->blocks_per_seg;
1909        struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1910        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1911        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1912        unsigned long *discard_map = (unsigned long *)se->discard_map;
1913        unsigned long *dmap = SIT_I(sbi)->tmp_map;
1914        unsigned int start = 0, end = -1;
1915        bool force = (cpc->reason & CP_DISCARD);
1916        struct discard_entry *de = NULL;
1917        struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1918        int i;
1919
1920        if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1921                return false;
1922
1923        if (!force) {
1924                if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1925                        SM_I(sbi)->dcc_info->nr_discards >=
1926                                SM_I(sbi)->dcc_info->max_discards)
1927                        return false;
1928        }
1929
1930        /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1931        for (i = 0; i < entries; i++)
1932                dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1933                                (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1934
1935        while (force || SM_I(sbi)->dcc_info->nr_discards <=
1936                                SM_I(sbi)->dcc_info->max_discards) {
1937                start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1938                if (start >= max_blocks)
1939                        break;
1940
1941                end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1942                if (force && start && end != max_blocks
1943                                        && (end - start) < cpc->trim_minlen)
1944                        continue;
1945
1946                if (check_only)
1947                        return true;
1948
1949                if (!de) {
1950                        de = f2fs_kmem_cache_alloc(discard_entry_slab,
1951                                                                GFP_F2FS_ZERO);
1952                        de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1953                        list_add_tail(&de->list, head);
1954                }
1955
1956                for (i = start; i < end; i++)
1957                        __set_bit_le(i, (void *)de->discard_map);
1958
1959                SM_I(sbi)->dcc_info->nr_discards += end - start;
1960        }
1961        return false;
1962}
1963
1964static void release_discard_addr(struct discard_entry *entry)
1965{
1966        list_del(&entry->list);
1967        kmem_cache_free(discard_entry_slab, entry);
1968}
1969
1970void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1971{
1972        struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1973        struct discard_entry *entry, *this;
1974
1975        /* drop caches */
1976        list_for_each_entry_safe(entry, this, head, list)
1977                release_discard_addr(entry);
1978}
1979
1980/*
1981 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1982 */
1983static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1984{
1985        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1986        unsigned int segno;
1987
1988        mutex_lock(&dirty_i->seglist_lock);
1989        for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1990                __set_test_and_free(sbi, segno, false);
1991        mutex_unlock(&dirty_i->seglist_lock);
1992}
1993
1994void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1995                                                struct cp_control *cpc)
1996{
1997        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1998        struct list_head *head = &dcc->entry_list;
1999        struct discard_entry *entry, *this;
2000        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2001        unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2002        unsigned int start = 0, end = -1;
2003        unsigned int secno, start_segno;
2004        bool force = (cpc->reason & CP_DISCARD);
2005        bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2006
2007        mutex_lock(&dirty_i->seglist_lock);
2008
2009        while (1) {
2010                int i;
2011
2012                if (need_align && end != -1)
2013                        end--;
2014                start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2015                if (start >= MAIN_SEGS(sbi))
2016                        break;
2017                end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2018                                                                start + 1);
2019
2020                if (need_align) {
2021                        start = rounddown(start, sbi->segs_per_sec);
2022                        end = roundup(end, sbi->segs_per_sec);
2023                }
2024
2025                for (i = start; i < end; i++) {
2026                        if (test_and_clear_bit(i, prefree_map))
2027                                dirty_i->nr_dirty[PRE]--;
2028                }
2029
2030                if (!f2fs_realtime_discard_enable(sbi))
2031                        continue;
2032
2033                if (force && start >= cpc->trim_start &&
2034                                        (end - 1) <= cpc->trim_end)
2035                                continue;
2036
2037                if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2038                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2039                                (end - start) << sbi->log_blocks_per_seg);
2040                        continue;
2041                }
2042next:
2043                secno = GET_SEC_FROM_SEG(sbi, start);
2044                start_segno = GET_SEG_FROM_SEC(sbi, secno);
2045                if (!IS_CURSEC(sbi, secno) &&
2046                        !get_valid_blocks(sbi, start, true))
2047                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2048                                sbi->segs_per_sec << sbi->log_blocks_per_seg);
2049
2050                start = start_segno + sbi->segs_per_sec;
2051                if (start < end)
2052                        goto next;
2053                else
2054                        end = start - 1;
2055        }
2056        mutex_unlock(&dirty_i->seglist_lock);
2057
2058        /* send small discards */
2059        list_for_each_entry_safe(entry, this, head, list) {
2060                unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2061                bool is_valid = test_bit_le(0, entry->discard_map);
2062
2063find_next:
2064                if (is_valid) {
2065                        next_pos = find_next_zero_bit_le(entry->discard_map,
2066                                        sbi->blocks_per_seg, cur_pos);
2067                        len = next_pos - cur_pos;
2068
2069                        if (f2fs_sb_has_blkzoned(sbi) ||
2070                            (force && len < cpc->trim_minlen))
2071                                goto skip;
2072
2073                        f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2074                                                                        len);
2075                        total_len += len;
2076                } else {
2077                        next_pos = find_next_bit_le(entry->discard_map,
2078                                        sbi->blocks_per_seg, cur_pos);
2079                }
2080skip:
2081                cur_pos = next_pos;
2082                is_valid = !is_valid;
2083
2084                if (cur_pos < sbi->blocks_per_seg)
2085                        goto find_next;
2086
2087                release_discard_addr(entry);
2088                dcc->nr_discards -= total_len;
2089        }
2090
2091        wake_up_discard_thread(sbi, false);
2092}
2093
2094static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2095{
2096        dev_t dev = sbi->sb->s_bdev->bd_dev;
2097        struct discard_cmd_control *dcc;
2098        int err = 0, i;
2099
2100        if (SM_I(sbi)->dcc_info) {
2101                dcc = SM_I(sbi)->dcc_info;
2102                goto init_thread;
2103        }
2104
2105        dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2106        if (!dcc)
2107                return -ENOMEM;
2108
2109        dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2110        INIT_LIST_HEAD(&dcc->entry_list);
2111        for (i = 0; i < MAX_PLIST_NUM; i++)
2112                INIT_LIST_HEAD(&dcc->pend_list[i]);
2113        INIT_LIST_HEAD(&dcc->wait_list);
2114        INIT_LIST_HEAD(&dcc->fstrim_list);
2115        mutex_init(&dcc->cmd_lock);
2116        atomic_set(&dcc->issued_discard, 0);
2117        atomic_set(&dcc->queued_discard, 0);
2118        atomic_set(&dcc->discard_cmd_cnt, 0);
2119        dcc->nr_discards = 0;
2120        dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2121        dcc->undiscard_blks = 0;
2122        dcc->next_pos = 0;
2123        dcc->root = RB_ROOT_CACHED;
2124        dcc->rbtree_check = false;
2125
2126        init_waitqueue_head(&dcc->discard_wait_queue);
2127        SM_I(sbi)->dcc_info = dcc;
2128init_thread:
2129        dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2130                                "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2131        if (IS_ERR(dcc->f2fs_issue_discard)) {
2132                err = PTR_ERR(dcc->f2fs_issue_discard);
2133                kfree(dcc);
2134                SM_I(sbi)->dcc_info = NULL;
2135                return err;
2136        }
2137
2138        return err;
2139}
2140
2141static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2142{
2143        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2144
2145        if (!dcc)
2146                return;
2147
2148        f2fs_stop_discard_thread(sbi);
2149
2150        /*
2151         * Recovery can cache discard commands, so in error path of
2152         * fill_super(), it needs to give a chance to handle them.
2153         */
2154        if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2155                f2fs_issue_discard_timeout(sbi);
2156
2157        kfree(dcc);
2158        SM_I(sbi)->dcc_info = NULL;
2159}
2160
2161static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2162{
2163        struct sit_info *sit_i = SIT_I(sbi);
2164
2165        if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2166                sit_i->dirty_sentries++;
2167                return false;
2168        }
2169
2170        return true;
2171}
2172
2173static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2174                                        unsigned int segno, int modified)
2175{
2176        struct seg_entry *se = get_seg_entry(sbi, segno);
2177
2178        se->type = type;
2179        if (modified)
2180                __mark_sit_entry_dirty(sbi, segno);
2181}
2182
2183static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2184                                                                block_t blkaddr)
2185{
2186        unsigned int segno = GET_SEGNO(sbi, blkaddr);
2187
2188        if (segno == NULL_SEGNO)
2189                return 0;
2190        return get_seg_entry(sbi, segno)->mtime;
2191}
2192
2193static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2194                                                unsigned long long old_mtime)
2195{
2196        struct seg_entry *se;
2197        unsigned int segno = GET_SEGNO(sbi, blkaddr);
2198        unsigned long long ctime = get_mtime(sbi, false);
2199        unsigned long long mtime = old_mtime ? old_mtime : ctime;
2200
2201        if (segno == NULL_SEGNO)
2202                return;
2203
2204        se = get_seg_entry(sbi, segno);
2205
2206        if (!se->mtime)
2207                se->mtime = mtime;
2208        else
2209                se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2210                                                se->valid_blocks + 1);
2211
2212        if (ctime > SIT_I(sbi)->max_mtime)
2213                SIT_I(sbi)->max_mtime = ctime;
2214}
2215
2216static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2217{
2218        struct seg_entry *se;
2219        unsigned int segno, offset;
2220        long int new_vblocks;
2221        bool exist;
2222#ifdef CONFIG_F2FS_CHECK_FS
2223        bool mir_exist;
2224#endif
2225
2226        segno = GET_SEGNO(sbi, blkaddr);
2227
2228        se = get_seg_entry(sbi, segno);
2229        new_vblocks = se->valid_blocks + del;
2230        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2231
2232        f2fs_bug_on(sbi, (new_vblocks < 0 ||
2233                        (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2234
2235        se->valid_blocks = new_vblocks;
2236
2237        /* Update valid block bitmap */
2238        if (del > 0) {
2239                exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2240#ifdef CONFIG_F2FS_CHECK_FS
2241                mir_exist = f2fs_test_and_set_bit(offset,
2242                                                se->cur_valid_map_mir);
2243                if (unlikely(exist != mir_exist)) {
2244                        f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2245                                 blkaddr, exist);
2246                        f2fs_bug_on(sbi, 1);
2247                }
2248#endif
2249                if (unlikely(exist)) {
2250                        f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2251                                 blkaddr);
2252                        f2fs_bug_on(sbi, 1);
2253                        se->valid_blocks--;
2254                        del = 0;
2255                }
2256
2257                if (!f2fs_test_and_set_bit(offset, se->discard_map))
2258                        sbi->discard_blks--;
2259
2260                /*
2261                 * SSR should never reuse block which is checkpointed
2262                 * or newly invalidated.
2263                 */
2264                if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2265                        if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2266                                se->ckpt_valid_blocks++;
2267                }
2268        } else {
2269                exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2270#ifdef CONFIG_F2FS_CHECK_FS
2271                mir_exist = f2fs_test_and_clear_bit(offset,
2272                                                se->cur_valid_map_mir);
2273                if (unlikely(exist != mir_exist)) {
2274                        f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2275                                 blkaddr, exist);
2276                        f2fs_bug_on(sbi, 1);
2277                }
2278#endif
2279                if (unlikely(!exist)) {
2280                        f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2281                                 blkaddr);
2282                        f2fs_bug_on(sbi, 1);
2283                        se->valid_blocks++;
2284                        del = 0;
2285                } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2286                        /*
2287                         * If checkpoints are off, we must not reuse data that
2288                         * was used in the previous checkpoint. If it was used
2289                         * before, we must track that to know how much space we
2290                         * really have.
2291                         */
2292                        if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2293                                spin_lock(&sbi->stat_lock);
2294                                sbi->unusable_block_count++;
2295                                spin_unlock(&sbi->stat_lock);
2296                        }
2297                }
2298
2299                if (f2fs_test_and_clear_bit(offset, se->discard_map))
2300                        sbi->discard_blks++;
2301        }
2302        if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2303                se->ckpt_valid_blocks += del;
2304
2305        __mark_sit_entry_dirty(sbi, segno);
2306
2307        /* update total number of valid blocks to be written in ckpt area */
2308        SIT_I(sbi)->written_valid_blocks += del;
2309
2310        if (__is_large_section(sbi))
2311                get_sec_entry(sbi, segno)->valid_blocks += del;
2312}
2313
2314void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2315{
2316        unsigned int segno = GET_SEGNO(sbi, addr);
2317        struct sit_info *sit_i = SIT_I(sbi);
2318
2319        f2fs_bug_on(sbi, addr == NULL_ADDR);
2320        if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2321                return;
2322
2323        invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2324
2325        /* add it into sit main buffer */
2326        down_write(&sit_i->sentry_lock);
2327
2328        update_segment_mtime(sbi, addr, 0);
2329        update_sit_entry(sbi, addr, -1);
2330
2331        /* add it into dirty seglist */
2332        locate_dirty_segment(sbi, segno);
2333
2334        up_write(&sit_i->sentry_lock);
2335}
2336
2337bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2338{
2339        struct sit_info *sit_i = SIT_I(sbi);
2340        unsigned int segno, offset;
2341        struct seg_entry *se;
2342        bool is_cp = false;
2343
2344        if (!__is_valid_data_blkaddr(blkaddr))
2345                return true;
2346
2347        down_read(&sit_i->sentry_lock);
2348
2349        segno = GET_SEGNO(sbi, blkaddr);
2350        se = get_seg_entry(sbi, segno);
2351        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2352
2353        if (f2fs_test_bit(offset, se->ckpt_valid_map))
2354                is_cp = true;
2355
2356        up_read(&sit_i->sentry_lock);
2357
2358        return is_cp;
2359}
2360
2361/*
2362 * This function should be resided under the curseg_mutex lock
2363 */
2364static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2365                                        struct f2fs_summary *sum)
2366{
2367        struct curseg_info *curseg = CURSEG_I(sbi, type);
2368        void *addr = curseg->sum_blk;
2369
2370        addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2371        memcpy(addr, sum, sizeof(struct f2fs_summary));
2372}
2373
2374/*
2375 * Calculate the number of current summary pages for writing
2376 */
2377int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2378{
2379        int valid_sum_count = 0;
2380        int i, sum_in_page;
2381
2382        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2383                if (sbi->ckpt->alloc_type[i] == SSR)
2384                        valid_sum_count += sbi->blocks_per_seg;
2385                else {
2386                        if (for_ra)
2387                                valid_sum_count += le16_to_cpu(
2388                                        F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2389                        else
2390                                valid_sum_count += curseg_blkoff(sbi, i);
2391                }
2392        }
2393
2394        sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2395                        SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2396        if (valid_sum_count <= sum_in_page)
2397                return 1;
2398        else if ((valid_sum_count - sum_in_page) <=
2399                (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2400                return 2;
2401        return 3;
2402}
2403
2404/*
2405 * Caller should put this summary page
2406 */
2407struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2408{
2409        if (unlikely(f2fs_cp_error(sbi)))
2410                return ERR_PTR(-EIO);
2411        return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2412}
2413
2414void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2415                                        void *src, block_t blk_addr)
2416{
2417        struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2418
2419        memcpy(page_address(page), src, PAGE_SIZE);
2420        set_page_dirty(page);
2421        f2fs_put_page(page, 1);
2422}
2423
2424static void write_sum_page(struct f2fs_sb_info *sbi,
2425                        struct f2fs_summary_block *sum_blk, block_t blk_addr)
2426{
2427        f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2428}
2429
2430static void write_current_sum_page(struct f2fs_sb_info *sbi,
2431                                                int type, block_t blk_addr)
2432{
2433        struct curseg_info *curseg = CURSEG_I(sbi, type);
2434        struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2435        struct f2fs_summary_block *src = curseg->sum_blk;
2436        struct f2fs_summary_block *dst;
2437
2438        dst = (struct f2fs_summary_block *)page_address(page);
2439        memset(dst, 0, PAGE_SIZE);
2440
2441        mutex_lock(&curseg->curseg_mutex);
2442
2443        down_read(&curseg->journal_rwsem);
2444        memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2445        up_read(&curseg->journal_rwsem);
2446
2447        memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2448        memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2449
2450        mutex_unlock(&curseg->curseg_mutex);
2451
2452        set_page_dirty(page);
2453        f2fs_put_page(page, 1);
2454}
2455
2456static int is_next_segment_free(struct f2fs_sb_info *sbi,
2457                                struct curseg_info *curseg, int type)
2458{
2459        unsigned int segno = curseg->segno + 1;
2460        struct free_segmap_info *free_i = FREE_I(sbi);
2461
2462        if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2463                return !test_bit(segno, free_i->free_segmap);
2464        return 0;
2465}
2466
2467/*
2468 * Find a new segment from the free segments bitmap to right order
2469 * This function should be returned with success, otherwise BUG
2470 */
2471static void get_new_segment(struct f2fs_sb_info *sbi,
2472                        unsigned int *newseg, bool new_sec, int dir)
2473{
2474        struct free_segmap_info *free_i = FREE_I(sbi);
2475        unsigned int segno, secno, zoneno;
2476        unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2477        unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2478        unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2479        unsigned int left_start = hint;
2480        bool init = true;
2481        int go_left = 0;
2482        int i;
2483
2484        spin_lock(&free_i->segmap_lock);
2485
2486        if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2487                segno = find_next_zero_bit(free_i->free_segmap,
2488                        GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2489                if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2490                        goto got_it;
2491        }
2492find_other_zone:
2493        secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2494        if (secno >= MAIN_SECS(sbi)) {
2495                if (dir == ALLOC_RIGHT) {
2496                        secno = find_next_zero_bit(free_i->free_secmap,
2497                                                        MAIN_SECS(sbi), 0);
2498                        f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2499                } else {
2500                        go_left = 1;
2501                        left_start = hint - 1;
2502                }
2503        }
2504        if (go_left == 0)
2505                goto skip_left;
2506
2507        while (test_bit(left_start, free_i->free_secmap)) {
2508                if (left_start > 0) {
2509                        left_start--;
2510                        continue;
2511                }
2512                left_start = find_next_zero_bit(free_i->free_secmap,
2513                                                        MAIN_SECS(sbi), 0);
2514                f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2515                break;
2516        }
2517        secno = left_start;
2518skip_left:
2519        segno = GET_SEG_FROM_SEC(sbi, secno);
2520        zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2521
2522        /* give up on finding another zone */
2523        if (!init)
2524                goto got_it;
2525        if (sbi->secs_per_zone == 1)
2526                goto got_it;
2527        if (zoneno == old_zoneno)
2528                goto got_it;
2529        if (dir == ALLOC_LEFT) {
2530                if (!go_left && zoneno + 1 >= total_zones)
2531                        goto got_it;
2532                if (go_left && zoneno == 0)
2533                        goto got_it;
2534        }
2535        for (i = 0; i < NR_CURSEG_TYPE; i++)
2536                if (CURSEG_I(sbi, i)->zone == zoneno)
2537                        break;
2538
2539        if (i < NR_CURSEG_TYPE) {
2540                /* zone is in user, try another */
2541                if (go_left)
2542                        hint = zoneno * sbi->secs_per_zone - 1;
2543                else if (zoneno + 1 >= total_zones)
2544                        hint = 0;
2545                else
2546                        hint = (zoneno + 1) * sbi->secs_per_zone;
2547                init = false;
2548                goto find_other_zone;
2549        }
2550got_it:
2551        /* set it as dirty segment in free segmap */
2552        f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2553        __set_inuse(sbi, segno);
2554        *newseg = segno;
2555        spin_unlock(&free_i->segmap_lock);
2556}
2557
2558static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2559{
2560        struct curseg_info *curseg = CURSEG_I(sbi, type);
2561        struct summary_footer *sum_footer;
2562        unsigned short seg_type = curseg->seg_type;
2563
2564        curseg->inited = true;
2565        curseg->segno = curseg->next_segno;
2566        curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2567        curseg->next_blkoff = 0;
2568        curseg->next_segno = NULL_SEGNO;
2569
2570        sum_footer = &(curseg->sum_blk->footer);
2571        memset(sum_footer, 0, sizeof(struct summary_footer));
2572
2573        sanity_check_seg_type(sbi, seg_type);
2574
2575        if (IS_DATASEG(seg_type))
2576                SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2577        if (IS_NODESEG(seg_type))
2578                SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2579        __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2580}
2581
2582static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2583{
2584        struct curseg_info *curseg = CURSEG_I(sbi, type);
2585        unsigned short seg_type = curseg->seg_type;
2586
2587        sanity_check_seg_type(sbi, seg_type);
2588
2589        /* if segs_per_sec is large than 1, we need to keep original policy. */
2590        if (__is_large_section(sbi))
2591                return curseg->segno;
2592
2593        /* inmem log may not locate on any segment after mount */
2594        if (!curseg->inited)
2595                return 0;
2596
2597        if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2598                return 0;
2599
2600        if (test_opt(sbi, NOHEAP) &&
2601                (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2602                return 0;
2603
2604        if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2605                return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2606
2607        /* find segments from 0 to reuse freed segments */
2608        if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2609                return 0;
2610
2611        return curseg->segno;
2612}
2613
2614/*
2615 * Allocate a current working segment.
2616 * This function always allocates a free segment in LFS manner.
2617 */
2618static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2619{
2620        struct curseg_info *curseg = CURSEG_I(sbi, type);
2621        unsigned short seg_type = curseg->seg_type;
2622        unsigned int segno = curseg->segno;
2623        int dir = ALLOC_LEFT;
2624
2625        if (curseg->inited)
2626                write_sum_page(sbi, curseg->sum_blk,
2627                                GET_SUM_BLOCK(sbi, segno));
2628        if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2629                dir = ALLOC_RIGHT;
2630
2631        if (test_opt(sbi, NOHEAP))
2632                dir = ALLOC_RIGHT;
2633
2634        segno = __get_next_segno(sbi, type);
2635        get_new_segment(sbi, &segno, new_sec, dir);
2636        curseg->next_segno = segno;
2637        reset_curseg(sbi, type, 1);
2638        curseg->alloc_type = LFS;
2639}
2640
2641static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2642                                        int segno, block_t start)
2643{
2644        struct seg_entry *se = get_seg_entry(sbi, segno);
2645        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2646        unsigned long *target_map = SIT_I(sbi)->tmp_map;
2647        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2648        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2649        int i;
2650
2651        for (i = 0; i < entries; i++)
2652                target_map[i] = ckpt_map[i] | cur_map[i];
2653
2654        return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2655}
2656
2657/*
2658 * If a segment is written by LFS manner, next block offset is just obtained
2659 * by increasing the current block offset. However, if a segment is written by
2660 * SSR manner, next block offset obtained by calling __next_free_blkoff
2661 */
2662static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2663                                struct curseg_info *seg)
2664{
2665        if (seg->alloc_type == SSR)
2666                seg->next_blkoff =
2667                        __next_free_blkoff(sbi, seg->segno,
2668                                                seg->next_blkoff + 1);
2669        else
2670                seg->next_blkoff++;
2671}
2672
2673bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2674{
2675        return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2676}
2677
2678/*
2679 * This function always allocates a used segment(from dirty seglist) by SSR
2680 * manner, so it should recover the existing segment information of valid blocks
2681 */
2682static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2683{
2684        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2685        struct curseg_info *curseg = CURSEG_I(sbi, type);
2686        unsigned int new_segno = curseg->next_segno;
2687        struct f2fs_summary_block *sum_node;
2688        struct page *sum_page;
2689
2690        if (flush)
2691                write_sum_page(sbi, curseg->sum_blk,
2692                                        GET_SUM_BLOCK(sbi, curseg->segno));
2693
2694        __set_test_and_inuse(sbi, new_segno);
2695
2696        mutex_lock(&dirty_i->seglist_lock);
2697        __remove_dirty_segment(sbi, new_segno, PRE);
2698        __remove_dirty_segment(sbi, new_segno, DIRTY);
2699        mutex_unlock(&dirty_i->seglist_lock);
2700
2701        reset_curseg(sbi, type, 1);
2702        curseg->alloc_type = SSR;
2703        curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2704
2705        sum_page = f2fs_get_sum_page(sbi, new_segno);
2706        if (IS_ERR(sum_page)) {
2707                /* GC won't be able to use stale summary pages by cp_error */
2708                memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2709                return;
2710        }
2711        sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2712        memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2713        f2fs_put_page(sum_page, 1);
2714}
2715
2716static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2717                                int alloc_mode, unsigned long long age);
2718
2719static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2720                                        int target_type, int alloc_mode,
2721                                        unsigned long long age)
2722{
2723        struct curseg_info *curseg = CURSEG_I(sbi, type);
2724
2725        curseg->seg_type = target_type;
2726
2727        if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2728                struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2729
2730                curseg->seg_type = se->type;
2731                change_curseg(sbi, type, true);
2732        } else {
2733                /* allocate cold segment by default */
2734                curseg->seg_type = CURSEG_COLD_DATA;
2735                new_curseg(sbi, type, true);
2736        }
2737        stat_inc_seg_type(sbi, curseg);
2738}
2739
2740static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2741{
2742        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2743
2744        if (!sbi->am.atgc_enabled)
2745                return;
2746
2747        down_read(&SM_I(sbi)->curseg_lock);
2748
2749        mutex_lock(&curseg->curseg_mutex);
2750        down_write(&SIT_I(sbi)->sentry_lock);
2751
2752        get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2753
2754        up_write(&SIT_I(sbi)->sentry_lock);
2755        mutex_unlock(&curseg->curseg_mutex);
2756
2757        up_read(&SM_I(sbi)->curseg_lock);
2758
2759}
2760void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2761{
2762        __f2fs_init_atgc_curseg(sbi);
2763}
2764
2765static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2766{
2767        struct curseg_info *curseg = CURSEG_I(sbi, type);
2768
2769        mutex_lock(&curseg->curseg_mutex);
2770        if (!curseg->inited)
2771                goto out;
2772
2773        if (get_valid_blocks(sbi, curseg->segno, false)) {
2774                write_sum_page(sbi, curseg->sum_blk,
2775                                GET_SUM_BLOCK(sbi, curseg->segno));
2776        } else {
2777                mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2778                __set_test_and_free(sbi, curseg->segno, true);
2779                mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2780        }
2781out:
2782        mutex_unlock(&curseg->curseg_mutex);
2783}
2784
2785void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2786{
2787        __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2788
2789        if (sbi->am.atgc_enabled)
2790                __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2791}
2792
2793static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2794{
2795        struct curseg_info *curseg = CURSEG_I(sbi, type);
2796
2797        mutex_lock(&curseg->curseg_mutex);
2798        if (!curseg->inited)
2799                goto out;
2800        if (get_valid_blocks(sbi, curseg->segno, false))
2801                goto out;
2802
2803        mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2804        __set_test_and_inuse(sbi, curseg->segno);
2805        mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2806out:
2807        mutex_unlock(&curseg->curseg_mutex);
2808}
2809
2810void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2811{
2812        __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2813
2814        if (sbi->am.atgc_enabled)
2815                __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2816}
2817
2818static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2819                                int alloc_mode, unsigned long long age)
2820{
2821        struct curseg_info *curseg = CURSEG_I(sbi, type);
2822        const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2823        unsigned segno = NULL_SEGNO;
2824        unsigned short seg_type = curseg->seg_type;
2825        int i, cnt;
2826        bool reversed = false;
2827
2828        sanity_check_seg_type(sbi, seg_type);
2829
2830        /* f2fs_need_SSR() already forces to do this */
2831        if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2832                curseg->next_segno = segno;
2833                return 1;
2834        }
2835
2836        /* For node segments, let's do SSR more intensively */
2837        if (IS_NODESEG(seg_type)) {
2838                if (seg_type >= CURSEG_WARM_NODE) {
2839                        reversed = true;
2840                        i = CURSEG_COLD_NODE;
2841                } else {
2842                        i = CURSEG_HOT_NODE;
2843                }
2844                cnt = NR_CURSEG_NODE_TYPE;
2845        } else {
2846                if (seg_type >= CURSEG_WARM_DATA) {
2847                        reversed = true;
2848                        i = CURSEG_COLD_DATA;
2849                } else {
2850                        i = CURSEG_HOT_DATA;
2851                }
2852                cnt = NR_CURSEG_DATA_TYPE;
2853        }
2854
2855        for (; cnt-- > 0; reversed ? i-- : i++) {
2856                if (i == seg_type)
2857                        continue;
2858                if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2859                        curseg->next_segno = segno;
2860                        return 1;
2861                }
2862        }
2863
2864        /* find valid_blocks=0 in dirty list */
2865        if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2866                segno = get_free_segment(sbi);
2867                if (segno != NULL_SEGNO) {
2868                        curseg->next_segno = segno;
2869                        return 1;
2870                }
2871        }
2872        return 0;
2873}
2874
2875/*
2876 * flush out current segment and replace it with new segment
2877 * This function should be returned with success, otherwise BUG
2878 */
2879static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2880                                                int type, bool force)
2881{
2882        struct curseg_info *curseg = CURSEG_I(sbi, type);
2883
2884        if (force)
2885                new_curseg(sbi, type, true);
2886        else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2887                                        curseg->seg_type == CURSEG_WARM_NODE)
2888                new_curseg(sbi, type, false);
2889        else if (curseg->alloc_type == LFS &&
2890                        is_next_segment_free(sbi, curseg, type) &&
2891                        likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2892                new_curseg(sbi, type, false);
2893        else if (f2fs_need_SSR(sbi) &&
2894                        get_ssr_segment(sbi, type, SSR, 0))
2895                change_curseg(sbi, type, true);
2896        else
2897                new_curseg(sbi, type, false);
2898
2899        stat_inc_seg_type(sbi, curseg);
2900}
2901
2902void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2903                                        unsigned int start, unsigned int end)
2904{
2905        struct curseg_info *curseg = CURSEG_I(sbi, type);
2906        unsigned int segno;
2907
2908        down_read(&SM_I(sbi)->curseg_lock);
2909        mutex_lock(&curseg->curseg_mutex);
2910        down_write(&SIT_I(sbi)->sentry_lock);
2911
2912        segno = CURSEG_I(sbi, type)->segno;
2913        if (segno < start || segno > end)
2914                goto unlock;
2915
2916        if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2917                change_curseg(sbi, type, true);
2918        else
2919                new_curseg(sbi, type, true);
2920
2921        stat_inc_seg_type(sbi, curseg);
2922
2923        locate_dirty_segment(sbi, segno);
2924unlock:
2925        up_write(&SIT_I(sbi)->sentry_lock);
2926
2927        if (segno != curseg->segno)
2928                f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2929                            type, segno, curseg->segno);
2930
2931        mutex_unlock(&curseg->curseg_mutex);
2932        up_read(&SM_I(sbi)->curseg_lock);
2933}
2934
2935static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2936                                                bool new_sec, bool force)
2937{
2938        struct curseg_info *curseg = CURSEG_I(sbi, type);
2939        unsigned int old_segno;
2940
2941        if (!curseg->inited)
2942                goto alloc;
2943
2944        if (force || curseg->next_blkoff ||
2945                get_valid_blocks(sbi, curseg->segno, new_sec))
2946                goto alloc;
2947
2948        if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2949                return;
2950alloc:
2951        old_segno = curseg->segno;
2952        SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2953        locate_dirty_segment(sbi, old_segno);
2954}
2955
2956static void __allocate_new_section(struct f2fs_sb_info *sbi,
2957                                                int type, bool force)
2958{
2959        __allocate_new_segment(sbi, type, true, force);
2960}
2961
2962void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2963{
2964        down_read(&SM_I(sbi)->curseg_lock);
2965        down_write(&SIT_I(sbi)->sentry_lock);
2966        __allocate_new_section(sbi, type, force);
2967        up_write(&SIT_I(sbi)->sentry_lock);
2968        up_read(&SM_I(sbi)->curseg_lock);
2969}
2970
2971void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2972{
2973        int i;
2974
2975        down_read(&SM_I(sbi)->curseg_lock);
2976        down_write(&SIT_I(sbi)->sentry_lock);
2977        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2978                __allocate_new_segment(sbi, i, false, false);
2979        up_write(&SIT_I(sbi)->sentry_lock);
2980        up_read(&SM_I(sbi)->curseg_lock);
2981}
2982
2983static const struct segment_allocation default_salloc_ops = {
2984        .allocate_segment = allocate_segment_by_default,
2985};
2986
2987bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2988                                                struct cp_control *cpc)
2989{
2990        __u64 trim_start = cpc->trim_start;
2991        bool has_candidate = false;
2992
2993        down_write(&SIT_I(sbi)->sentry_lock);
2994        for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2995                if (add_discard_addrs(sbi, cpc, true)) {
2996                        has_candidate = true;
2997                        break;
2998                }
2999        }
3000        up_write(&SIT_I(sbi)->sentry_lock);
3001
3002        cpc->trim_start = trim_start;
3003        return has_candidate;
3004}
3005
3006static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3007                                        struct discard_policy *dpolicy,
3008                                        unsigned int start, unsigned int end)
3009{
3010        struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3011        struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3012        struct rb_node **insert_p = NULL, *insert_parent = NULL;
3013        struct discard_cmd *dc;
3014        struct blk_plug plug;
3015        int issued;
3016        unsigned int trimmed = 0;
3017
3018next:
3019        issued = 0;
3020
3021        mutex_lock(&dcc->cmd_lock);
3022        if (unlikely(dcc->rbtree_check))
3023                f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3024                                                        &dcc->root, false));
3025
3026        dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3027                                        NULL, start,
3028                                        (struct rb_entry **)&prev_dc,
3029                                        (struct rb_entry **)&next_dc,
3030                                        &insert_p, &insert_parent, true, NULL);
3031        if (!dc)
3032                dc = next_dc;
3033
3034        blk_start_plug(&plug);
3035
3036        while (dc && dc->lstart <= end) {
3037                struct rb_node *node;
3038                int err = 0;
3039
3040                if (dc->len < dpolicy->granularity)
3041                        goto skip;
3042
3043                if (dc->state != D_PREP) {
3044                        list_move_tail(&dc->list, &dcc->fstrim_list);
3045                        goto skip;
3046                }
3047
3048                err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3049
3050                if (issued >= dpolicy->max_requests) {
3051                        start = dc->lstart + dc->len;
3052
3053                        if (err)
3054                                __remove_discard_cmd(sbi, dc);
3055
3056                        blk_finish_plug(&plug);
3057                        mutex_unlock(&dcc->cmd_lock);
3058                        trimmed += __wait_all_discard_cmd(sbi, NULL);
3059                        congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3060                        goto next;
3061                }
3062skip:
3063                node = rb_next(&dc->rb_node);
3064                if (err)
3065                        __remove_discard_cmd(sbi, dc);
3066                dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3067
3068                if (fatal_signal_pending(current))
3069                        break;
3070        }
3071
3072        blk_finish_plug(&plug);
3073        mutex_unlock(&dcc->cmd_lock);
3074
3075        return trimmed;
3076}
3077
3078int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3079{
3080        __u64 start = F2FS_BYTES_TO_BLK(range->start);
3081        __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3082        unsigned int start_segno, end_segno;
3083        block_t start_block, end_block;
3084        struct cp_control cpc;
3085        struct discard_policy dpolicy;
3086        unsigned long long trimmed = 0;
3087        int err = 0;
3088        bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3089
3090        if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3091                return -EINVAL;
3092
3093        if (end < MAIN_BLKADDR(sbi))
3094                goto out;
3095
3096        if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3097                f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3098                return -EFSCORRUPTED;
3099        }
3100
3101        /* start/end segment number in main_area */
3102        start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3103        end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3104                                                GET_SEGNO(sbi, end);
3105        if (need_align) {
3106                start_segno = rounddown(start_segno, sbi->segs_per_sec);
3107                end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3108        }
3109
3110        cpc.reason = CP_DISCARD;
3111        cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3112        cpc.trim_start = start_segno;
3113        cpc.trim_end = end_segno;
3114
3115        if (sbi->discard_blks == 0)
3116                goto out;
3117
3118        down_write(&sbi->gc_lock);
3119        err = f2fs_write_checkpoint(sbi, &cpc);
3120        up_write(&sbi->gc_lock);
3121        if (err)
3122                goto out;
3123
3124        /*
3125         * We filed discard candidates, but actually we don't need to wait for
3126         * all of them, since they'll be issued in idle time along with runtime
3127         * discard option. User configuration looks like using runtime discard
3128         * or periodic fstrim instead of it.
3129         */
3130        if (f2fs_realtime_discard_enable(sbi))
3131                goto out;
3132
3133        start_block = START_BLOCK(sbi, start_segno);
3134        end_block = START_BLOCK(sbi, end_segno + 1);
3135
3136        __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3137        trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3138                                        start_block, end_block);
3139
3140        trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3141                                        start_block, end_block);
3142out:
3143        if (!err)
3144                range->len = F2FS_BLK_TO_BYTES(trimmed);
3145        return err;
3146}
3147
3148static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3149                                        struct curseg_info *curseg)
3150{
3151        return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3152                                                        curseg->segno);
3153}
3154
3155int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3156{
3157        switch (hint) {
3158        case WRITE_LIFE_SHORT:
3159                return CURSEG_HOT_DATA;
3160        case WRITE_LIFE_EXTREME:
3161                return CURSEG_COLD_DATA;
3162        default:
3163                return CURSEG_WARM_DATA;
3164        }
3165}
3166
3167/* This returns write hints for each segment type. This hints will be
3168 * passed down to block layer. There are mapping tables which depend on
3169 * the mount option 'whint_mode'.
3170 *
3171 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3172 *
3173 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3174 *
3175 * User                  F2FS                     Block
3176 * ----                  ----                     -----
3177 *                       META                     WRITE_LIFE_NOT_SET
3178 *                       HOT_NODE                 "
3179 *                       WARM_NODE                "
3180 *                       COLD_NODE                "
3181 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3182 * extension list        "                        "
3183 *
3184 * -- buffered io
3185 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3186 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3187 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3188 * WRITE_LIFE_NONE       "                        "
3189 * WRITE_LIFE_MEDIUM     "                        "
3190 * WRITE_LIFE_LONG       "                        "
3191 *
3192 * -- direct io
3193 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3194 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3195 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3196 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3197 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3198 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3199 *
3200 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3201 *
3202 * User                  F2FS                     Block
3203 * ----                  ----                     -----
3204 *                       META                     WRITE_LIFE_MEDIUM;
3205 *                       HOT_NODE                 WRITE_LIFE_NOT_SET
3206 *                       WARM_NODE                "
3207 *                       COLD_NODE                WRITE_LIFE_NONE
3208 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3209 * extension list        "                        "
3210 *
3211 * -- buffered io
3212 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3213 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3214 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3215 * WRITE_LIFE_NONE       "                        "
3216 * WRITE_LIFE_MEDIUM     "                        "
3217 * WRITE_LIFE_LONG       "                        "
3218 *
3219 * -- direct io
3220 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3221 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3222 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3223 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3224 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3225 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3226 */
3227
3228enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3229                                enum page_type type, enum temp_type temp)
3230{
3231        if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3232                if (type == DATA) {
3233                        if (temp == WARM)
3234                                return WRITE_LIFE_NOT_SET;
3235                        else if (temp == HOT)
3236                                return WRITE_LIFE_SHORT;
3237                        else if (temp == COLD)
3238                                return WRITE_LIFE_EXTREME;
3239                } else {
3240                        return WRITE_LIFE_NOT_SET;
3241                }
3242        } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3243                if (type == DATA) {
3244                        if (temp == WARM)
3245                                return WRITE_LIFE_LONG;
3246                        else if (temp == HOT)
3247                                return WRITE_LIFE_SHORT;
3248                        else if (temp == COLD)
3249                                return WRITE_LIFE_EXTREME;
3250                } else if (type == NODE) {
3251                        if (temp == WARM || temp == HOT)
3252                                return WRITE_LIFE_NOT_SET;
3253                        else if (temp == COLD)
3254                                return WRITE_LIFE_NONE;
3255                } else if (type == META) {
3256                        return WRITE_LIFE_MEDIUM;
3257                }
3258        }
3259        return WRITE_LIFE_NOT_SET;
3260}
3261
3262static int __get_segment_type_2(struct f2fs_io_info *fio)
3263{
3264        if (fio->type == DATA)
3265                return CURSEG_HOT_DATA;
3266        else
3267                return CURSEG_HOT_NODE;
3268}
3269
3270static int __get_segment_type_4(struct f2fs_io_info *fio)
3271{
3272        if (fio->type == DATA) {
3273                struct inode *inode = fio->page->mapping->host;
3274
3275                if (S_ISDIR(inode->i_mode))
3276                        return CURSEG_HOT_DATA;
3277                else
3278                        return CURSEG_COLD_DATA;
3279        } else {
3280                if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3281                        return CURSEG_WARM_NODE;
3282                else
3283                        return CURSEG_COLD_NODE;
3284        }
3285}
3286
3287static int __get_segment_type_6(struct f2fs_io_info *fio)
3288{
3289        if (fio->type == DATA) {
3290                struct inode *inode = fio->page->mapping->host;
3291
3292                if (is_cold_data(fio->page)) {
3293                        if (fio->sbi->am.atgc_enabled &&
3294                                (fio->io_type == FS_DATA_IO) &&
3295                                (fio->sbi->gc_mode != GC_URGENT_HIGH))
3296                                return CURSEG_ALL_DATA_ATGC;
3297                        else
3298                                return CURSEG_COLD_DATA;
3299                }
3300                if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3301                        return CURSEG_COLD_DATA;
3302                if (file_is_hot(inode) ||
3303                                is_inode_flag_set(inode, FI_HOT_DATA) ||
3304                                f2fs_is_atomic_file(inode) ||
3305                                f2fs_is_volatile_file(inode))
3306                        return CURSEG_HOT_DATA;
3307                return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3308        } else {
3309                if (IS_DNODE(fio->page))
3310                        return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3311                                                CURSEG_HOT_NODE;
3312                return CURSEG_COLD_NODE;
3313        }
3314}
3315
3316static int __get_segment_type(struct f2fs_io_info *fio)
3317{
3318        int type = 0;
3319
3320        switch (F2FS_OPTION(fio->sbi).active_logs) {
3321        case 2:
3322                type = __get_segment_type_2(fio);
3323                break;
3324        case 4:
3325                type = __get_segment_type_4(fio);
3326                break;
3327        case 6:
3328                type = __get_segment_type_6(fio);
3329                break;
3330        default:
3331                f2fs_bug_on(fio->sbi, true);
3332        }
3333
3334        if (IS_HOT(type))
3335                fio->temp = HOT;
3336        else if (IS_WARM(type))
3337                fio->temp = WARM;
3338        else
3339                fio->temp = COLD;
3340        return type;
3341}
3342
3343void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3344                block_t old_blkaddr, block_t *new_blkaddr,
3345                struct f2fs_summary *sum, int type,
3346                struct f2fs_io_info *fio)
3347{
3348        struct sit_info *sit_i = SIT_I(sbi);
3349        struct curseg_info *curseg = CURSEG_I(sbi, type);
3350        unsigned long long old_mtime;
3351        bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3352        struct seg_entry *se = NULL;
3353
3354        down_read(&SM_I(sbi)->curseg_lock);
3355
3356        mutex_lock(&curseg->curseg_mutex);
3357        down_write(&sit_i->sentry_lock);
3358
3359        if (from_gc) {
3360                f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3361                se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3362                sanity_check_seg_type(sbi, se->type);
3363                f2fs_bug_on(sbi, IS_NODESEG(se->type));
3364        }
3365        *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3366
3367        f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3368
3369        f2fs_wait_discard_bio(sbi, *new_blkaddr);
3370
3371        /*
3372         * __add_sum_entry should be resided under the curseg_mutex
3373         * because, this function updates a summary entry in the
3374         * current summary block.
3375         */
3376        __add_sum_entry(sbi, type, sum);
3377
3378        __refresh_next_blkoff(sbi, curseg);
3379
3380        stat_inc_block_count(sbi, curseg);
3381
3382        if (from_gc) {
3383                old_mtime = get_segment_mtime(sbi, old_blkaddr);
3384        } else {
3385                update_segment_mtime(sbi, old_blkaddr, 0);
3386                old_mtime = 0;
3387        }
3388        update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3389
3390        /*
3391         * SIT information should be updated before segment allocation,
3392         * since SSR needs latest valid block information.
3393         */
3394        update_sit_entry(sbi, *new_blkaddr, 1);
3395        if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3396                update_sit_entry(sbi, old_blkaddr, -1);
3397
3398        if (!__has_curseg_space(sbi, curseg)) {
3399                if (from_gc)
3400                        get_atssr_segment(sbi, type, se->type,
3401                                                AT_SSR, se->mtime);
3402                else
3403                        sit_i->s_ops->allocate_segment(sbi, type, false);
3404        }
3405        /*
3406         * segment dirty status should be updated after segment allocation,
3407         * so we just need to update status only one time after previous
3408         * segment being closed.
3409         */
3410        locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3411        locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3412
3413        up_write(&sit_i->sentry_lock);
3414
3415        if (page && IS_NODESEG(type)) {
3416                fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3417
3418                f2fs_inode_chksum_set(sbi, page);
3419        }
3420
3421        if (fio) {
3422                struct f2fs_bio_info *io;
3423
3424                if (F2FS_IO_ALIGNED(sbi))
3425                        fio->retry = false;
3426
3427                INIT_LIST_HEAD(&fio->list);
3428                fio->in_list = true;
3429                io = sbi->write_io[fio->type] + fio->temp;
3430                spin_lock(&io->io_lock);
3431                list_add_tail(&fio->list, &io->io_list);
3432                spin_unlock(&io->io_lock);
3433        }
3434
3435        mutex_unlock(&curseg->curseg_mutex);
3436
3437        up_read(&SM_I(sbi)->curseg_lock);
3438}
3439
3440static void update_device_state(struct f2fs_io_info *fio)
3441{
3442        struct f2fs_sb_info *sbi = fio->sbi;
3443        unsigned int devidx;
3444
3445        if (!f2fs_is_multi_device(sbi))
3446                return;
3447
3448        devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3449
3450        /* update device state for fsync */
3451        f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3452
3453        /* update device state for checkpoint */
3454        if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3455                spin_lock(&sbi->dev_lock);
3456                f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3457                spin_unlock(&sbi->dev_lock);
3458        }
3459}
3460
3461static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3462{
3463        int type = __get_segment_type(fio);
3464        bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3465
3466        if (keep_order)
3467                down_read(&fio->sbi->io_order_lock);
3468reallocate:
3469        f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3470                        &fio->new_blkaddr, sum, type, fio);
3471        if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3472                invalidate_mapping_pages(META_MAPPING(fio->sbi),
3473                                        fio->old_blkaddr, fio->old_blkaddr);
3474
3475        /* writeout dirty page into bdev */
3476        f2fs_submit_page_write(fio);
3477        if (fio->retry) {
3478                fio->old_blkaddr = fio->new_blkaddr;
3479                goto reallocate;
3480        }
3481
3482        update_device_state(fio);
3483
3484        if (keep_order)
3485                up_read(&fio->sbi->io_order_lock);
3486}
3487
3488void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3489                                        enum iostat_type io_type)
3490{
3491        struct f2fs_io_info fio = {
3492                .sbi = sbi,
3493                .type = META,
3494                .temp = HOT,
3495                .op = REQ_OP_WRITE,
3496                .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3497                .old_blkaddr = page->index,
3498                .new_blkaddr = page->index,
3499                .page = page,
3500                .encrypted_page = NULL,
3501                .in_list = false,
3502        };
3503
3504        if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3505                fio.op_flags &= ~REQ_META;
3506
3507        set_page_writeback(page);
3508        ClearPageError(page);
3509        f2fs_submit_page_write(&fio);
3510
3511        stat_inc_meta_count(sbi, page->index);
3512        f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3513}
3514
3515void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3516{
3517        struct f2fs_summary sum;
3518
3519        set_summary(&sum, nid, 0, 0);
3520        do_write_page(&sum, fio);
3521
3522        f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3523}
3524
3525void f2fs_outplace_write_data(struct dnode_of_data *dn,
3526                                        struct f2fs_io_info *fio)
3527{
3528        struct f2fs_sb_info *sbi = fio->sbi;
3529        struct f2fs_summary sum;
3530
3531        f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3532        set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3533        do_write_page(&sum, fio);
3534        f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3535
3536        f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3537}
3538
3539int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3540{
3541        int err;
3542        struct f2fs_sb_info *sbi = fio->sbi;
3543        unsigned int segno;
3544
3545        fio->new_blkaddr = fio->old_blkaddr;
3546        /* i/o temperature is needed for passing down write hints */
3547        __get_segment_type(fio);
3548
3549        segno = GET_SEGNO(sbi, fio->new_blkaddr);
3550
3551        if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3552                set_sbi_flag(sbi, SBI_NEED_FSCK);
3553                f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3554                          __func__, segno);
3555                err = -EFSCORRUPTED;
3556                goto drop_bio;
3557        }
3558
3559        if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || f2fs_cp_error(sbi)) {
3560                err = -EIO;
3561                goto drop_bio;
3562        }
3563
3564        stat_inc_inplace_blocks(fio->sbi);
3565
3566        if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3567                err = f2fs_merge_page_bio(fio);
3568        else
3569                err = f2fs_submit_page_bio(fio);
3570        if (!err) {
3571                update_device_state(fio);
3572                f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3573        }
3574
3575        return err;
3576drop_bio:
3577        if (fio->bio && *(fio->bio)) {
3578                struct bio *bio = *(fio->bio);
3579
3580                bio->bi_status = BLK_STS_IOERR;
3581                bio_endio(bio);
3582                *(fio->bio) = NULL;
3583        }
3584        return err;
3585}
3586
3587static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3588                                                unsigned int segno)
3589{
3590        int i;
3591
3592        for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3593                if (CURSEG_I(sbi, i)->segno == segno)
3594                        break;
3595        }
3596        return i;
3597}
3598
3599void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3600                                block_t old_blkaddr, block_t new_blkaddr,
3601                                bool recover_curseg, bool recover_newaddr,
3602                                bool from_gc)
3603{
3604        struct sit_info *sit_i = SIT_I(sbi);
3605        struct curseg_info *curseg;
3606        unsigned int segno, old_cursegno;
3607        struct seg_entry *se;
3608        int type;
3609        unsigned short old_blkoff;
3610        unsigned char old_alloc_type;
3611
3612        segno = GET_SEGNO(sbi, new_blkaddr);
3613        se = get_seg_entry(sbi, segno);
3614        type = se->type;
3615
3616        down_write(&SM_I(sbi)->curseg_lock);
3617
3618        if (!recover_curseg) {
3619                /* for recovery flow */
3620                if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3621                        if (old_blkaddr == NULL_ADDR)
3622                                type = CURSEG_COLD_DATA;
3623                        else
3624                                type = CURSEG_WARM_DATA;
3625                }
3626        } else {
3627                if (IS_CURSEG(sbi, segno)) {
3628                        /* se->type is volatile as SSR allocation */
3629                        type = __f2fs_get_curseg(sbi, segno);
3630                        f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3631                } else {
3632                        type = CURSEG_WARM_DATA;
3633                }
3634        }
3635
3636        f2fs_bug_on(sbi, !IS_DATASEG(type));
3637        curseg = CURSEG_I(sbi, type);
3638
3639        mutex_lock(&curseg->curseg_mutex);
3640        down_write(&sit_i->sentry_lock);
3641
3642        old_cursegno = curseg->segno;
3643        old_blkoff = curseg->next_blkoff;
3644        old_alloc_type = curseg->alloc_type;
3645
3646        /* change the current segment */
3647        if (segno != curseg->segno) {
3648                curseg->next_segno = segno;
3649                change_curseg(sbi, type, true);
3650        }
3651
3652        curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3653        __add_sum_entry(sbi, type, sum);
3654
3655        if (!recover_curseg || recover_newaddr) {
3656                if (!from_gc)
3657                        update_segment_mtime(sbi, new_blkaddr, 0);
3658                update_sit_entry(sbi, new_blkaddr, 1);
3659        }
3660        if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3661                invalidate_mapping_pages(META_MAPPING(sbi),
3662                                        old_blkaddr, old_blkaddr);
3663                if (!from_gc)
3664                        update_segment_mtime(sbi, old_blkaddr, 0);
3665                update_sit_entry(sbi, old_blkaddr, -1);
3666        }
3667
3668        locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3669        locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3670
3671        locate_dirty_segment(sbi, old_cursegno);
3672
3673        if (recover_curseg) {
3674                if (old_cursegno != curseg->segno) {
3675                        curseg->next_segno = old_cursegno;
3676                        change_curseg(sbi, type, true);
3677                }
3678                curseg->next_blkoff = old_blkoff;
3679                curseg->alloc_type = old_alloc_type;
3680        }
3681
3682        up_write(&sit_i->sentry_lock);
3683        mutex_unlock(&curseg->curseg_mutex);
3684        up_write(&SM_I(sbi)->curseg_lock);
3685}
3686
3687void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3688                                block_t old_addr, block_t new_addr,
3689                                unsigned char version, bool recover_curseg,
3690                                bool recover_newaddr)
3691{
3692        struct f2fs_summary sum;
3693
3694        set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3695
3696        f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3697                                        recover_curseg, recover_newaddr, false);
3698
3699        f2fs_update_data_blkaddr(dn, new_addr);
3700}
3701
3702void f2fs_wait_on_page_writeback(struct page *page,
3703                                enum page_type type, bool ordered, bool locked)
3704{
3705        if (PageWriteback(page)) {
3706                struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3707
3708                /* submit cached LFS IO */
3709                f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3710                /* sbumit cached IPU IO */
3711                f2fs_submit_merged_ipu_write(sbi, NULL, page);
3712                if (ordered) {
3713                        wait_on_page_writeback(page);
3714                        f2fs_bug_on(sbi, locked && PageWriteback(page));
3715                } else {
3716                        wait_for_stable_page(page);
3717                }
3718        }
3719}
3720
3721void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3722{
3723        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3724        struct page *cpage;
3725
3726        if (!f2fs_post_read_required(inode))
3727                return;
3728
3729        if (!__is_valid_data_blkaddr(blkaddr))
3730                return;
3731
3732        cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3733        if (cpage) {
3734                f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3735                f2fs_put_page(cpage, 1);
3736        }
3737}
3738
3739void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3740                                                                block_t len)
3741{
3742        block_t i;
3743
3744        for (i = 0; i < len; i++)
3745                f2fs_wait_on_block_writeback(inode, blkaddr + i);
3746}
3747
3748static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3749{
3750        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3751        struct curseg_info *seg_i;
3752        unsigned char *kaddr;
3753        struct page *page;
3754        block_t start;
3755        int i, j, offset;
3756
3757        start = start_sum_block(sbi);
3758
3759        page = f2fs_get_meta_page(sbi, start++);
3760        if (IS_ERR(page))
3761                return PTR_ERR(page);
3762        kaddr = (unsigned char *)page_address(page);
3763
3764        /* Step 1: restore nat cache */
3765        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3766        memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3767
3768        /* Step 2: restore sit cache */
3769        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3770        memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3771        offset = 2 * SUM_JOURNAL_SIZE;
3772
3773        /* Step 3: restore summary entries */
3774        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3775                unsigned short blk_off;
3776                unsigned int segno;
3777
3778                seg_i = CURSEG_I(sbi, i);
3779                segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3780                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3781                seg_i->next_segno = segno;
3782                reset_curseg(sbi, i, 0);
3783                seg_i->alloc_type = ckpt->alloc_type[i];
3784                seg_i->next_blkoff = blk_off;
3785
3786                if (seg_i->alloc_type == SSR)
3787                        blk_off = sbi->blocks_per_seg;
3788
3789                for (j = 0; j < blk_off; j++) {
3790                        struct f2fs_summary *s;
3791
3792                        s = (struct f2fs_summary *)(kaddr + offset);
3793                        seg_i->sum_blk->entries[j] = *s;
3794                        offset += SUMMARY_SIZE;
3795                        if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3796                                                SUM_FOOTER_SIZE)
3797                                continue;
3798
3799                        f2fs_put_page(page, 1);
3800                        page = NULL;
3801
3802                        page = f2fs_get_meta_page(sbi, start++);
3803                        if (IS_ERR(page))
3804                                return PTR_ERR(page);
3805                        kaddr = (unsigned char *)page_address(page);
3806                        offset = 0;
3807                }
3808        }
3809        f2fs_put_page(page, 1);
3810        return 0;
3811}
3812
3813static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3814{
3815        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3816        struct f2fs_summary_block *sum;
3817        struct curseg_info *curseg;
3818        struct page *new;
3819        unsigned short blk_off;
3820        unsigned int segno = 0;
3821        block_t blk_addr = 0;
3822        int err = 0;
3823
3824        /* get segment number and block addr */
3825        if (IS_DATASEG(type)) {
3826                segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3827                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3828                                                        CURSEG_HOT_DATA]);
3829                if (__exist_node_summaries(sbi))
3830                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3831                else
3832                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3833        } else {
3834                segno = le32_to_cpu(ckpt->cur_node_segno[type -
3835                                                        CURSEG_HOT_NODE]);
3836                blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3837                                                        CURSEG_HOT_NODE]);
3838                if (__exist_node_summaries(sbi))
3839                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3840                                                        type - CURSEG_HOT_NODE);
3841                else
3842                        blk_addr = GET_SUM_BLOCK(sbi, segno);
3843        }
3844
3845        new = f2fs_get_meta_page(sbi, blk_addr);
3846        if (IS_ERR(new))
3847                return PTR_ERR(new);
3848        sum = (struct f2fs_summary_block *)page_address(new);
3849
3850        if (IS_NODESEG(type)) {
3851                if (__exist_node_summaries(sbi)) {
3852                        struct f2fs_summary *ns = &sum->entries[0];
3853                        int i;
3854
3855                        for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3856                                ns->version = 0;
3857                                ns->ofs_in_node = 0;
3858                        }
3859                } else {
3860                        err = f2fs_restore_node_summary(sbi, segno, sum);
3861                        if (err)
3862                                goto out;
3863                }
3864        }
3865
3866        /* set uncompleted segment to curseg */
3867        curseg = CURSEG_I(sbi, type);
3868        mutex_lock(&curseg->curseg_mutex);
3869
3870        /* update journal info */
3871        down_write(&curseg->journal_rwsem);
3872        memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3873        up_write(&curseg->journal_rwsem);
3874
3875        memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3876        memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3877        curseg->next_segno = segno;
3878        reset_curseg(sbi, type, 0);
3879        curseg->alloc_type = ckpt->alloc_type[type];
3880        curseg->next_blkoff = blk_off;
3881        mutex_unlock(&curseg->curseg_mutex);
3882out:
3883        f2fs_put_page(new, 1);
3884        return err;
3885}
3886
3887static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3888{
3889        struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3890        struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3891        int type = CURSEG_HOT_DATA;
3892        int err;
3893
3894        if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3895                int npages = f2fs_npages_for_summary_flush(sbi, true);
3896
3897                if (npages >= 2)
3898                        f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3899                                                        META_CP, true);
3900
3901                /* restore for compacted data summary */
3902                err = read_compacted_summaries(sbi);
3903                if (err)
3904                        return err;
3905                type = CURSEG_HOT_NODE;
3906        }
3907
3908        if (__exist_node_summaries(sbi))
3909                f2fs_ra_meta_pages(sbi,
3910                                sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3911                                NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3912
3913        for (; type <= CURSEG_COLD_NODE; type++) {
3914                err = read_normal_summaries(sbi, type);
3915                if (err)
3916                        return err;
3917        }
3918
3919        /* sanity check for summary blocks */
3920        if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3921                        sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3922                f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3923                         nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3924                return -EINVAL;
3925        }
3926
3927        return 0;
3928}
3929
3930static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3931{
3932        struct page *page;
3933        unsigned char *kaddr;
3934        struct f2fs_summary *summary;
3935        struct curseg_info *seg_i;
3936        int written_size = 0;
3937        int i, j;
3938
3939        page = f2fs_grab_meta_page(sbi, blkaddr++);
3940        kaddr = (unsigned char *)page_address(page);
3941        memset(kaddr, 0, PAGE_SIZE);
3942
3943        /* Step 1: write nat cache */
3944        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3945        memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3946        written_size += SUM_JOURNAL_SIZE;
3947
3948        /* Step 2: write sit cache */
3949        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3950        memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3951        written_size += SUM_JOURNAL_SIZE;
3952
3953        /* Step 3: write summary entries */
3954        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3955                unsigned short blkoff;
3956
3957                seg_i = CURSEG_I(sbi, i);
3958                if (sbi->ckpt->alloc_type[i] == SSR)
3959                        blkoff = sbi->blocks_per_seg;
3960                else
3961                        blkoff = curseg_blkoff(sbi, i);
3962
3963                for (j = 0; j < blkoff; j++) {
3964                        if (!page) {
3965                                page = f2fs_grab_meta_page(sbi, blkaddr++);
3966                                kaddr = (unsigned char *)page_address(page);
3967                                memset(kaddr, 0, PAGE_SIZE);
3968                                written_size = 0;
3969                        }
3970                        summary = (struct f2fs_summary *)(kaddr + written_size);
3971                        *summary = seg_i->sum_blk->entries[j];
3972                        written_size += SUMMARY_SIZE;
3973
3974                        if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3975                                                        SUM_FOOTER_SIZE)
3976                                continue;
3977
3978                        set_page_dirty(page);
3979                        f2fs_put_page(page, 1);
3980                        page = NULL;
3981                }
3982        }
3983        if (page) {
3984                set_page_dirty(page);
3985                f2fs_put_page(page, 1);
3986        }
3987}
3988
3989static void write_normal_summaries(struct f2fs_sb_info *sbi,
3990                                        block_t blkaddr, int type)
3991{
3992        int i, end;
3993
3994        if (IS_DATASEG(type))
3995                end = type + NR_CURSEG_DATA_TYPE;
3996        else
3997                end = type + NR_CURSEG_NODE_TYPE;
3998
3999        for (i = type; i < end; i++)
4000                write_current_sum_page(sbi, i, blkaddr + (i - type));
4001}
4002
4003void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4004{
4005        if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4006                write_compacted_summaries(sbi, start_blk);
4007        else
4008                write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4009}
4010
4011void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4012{
4013        write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4014}
4015
4016int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4017                                        unsigned int val, int alloc)
4018{
4019        int i;
4020
4021        if (type == NAT_JOURNAL) {
4022                for (i = 0; i < nats_in_cursum(journal); i++) {
4023                        if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4024                                return i;
4025                }
4026                if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4027                        return update_nats_in_cursum(journal, 1);
4028        } else if (type == SIT_JOURNAL) {
4029                for (i = 0; i < sits_in_cursum(journal); i++)
4030                        if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4031                                return i;
4032                if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4033                        return update_sits_in_cursum(journal, 1);
4034        }
4035        return -1;
4036}
4037
4038static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4039                                        unsigned int segno)
4040{
4041        return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4042}
4043
4044static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4045                                        unsigned int start)
4046{
4047        struct sit_info *sit_i = SIT_I(sbi);
4048        struct page *page;
4049        pgoff_t src_off, dst_off;
4050
4051        src_off = current_sit_addr(sbi, start);
4052        dst_off = next_sit_addr(sbi, src_off);
4053
4054        page = f2fs_grab_meta_page(sbi, dst_off);
4055        seg_info_to_sit_page(sbi, page, start);
4056
4057        set_page_dirty(page);
4058        set_to_next_sit(sit_i, start);
4059
4060        return page;
4061}
4062
4063static struct sit_entry_set *grab_sit_entry_set(void)
4064{
4065        struct sit_entry_set *ses =
4066                        f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
4067
4068        ses->entry_cnt = 0;
4069        INIT_LIST_HEAD(&ses->set_list);
4070        return ses;
4071}
4072
4073static void release_sit_entry_set(struct sit_entry_set *ses)
4074{
4075        list_del(&ses->set_list);
4076        kmem_cache_free(sit_entry_set_slab, ses);
4077}
4078
4079static void adjust_sit_entry_set(struct sit_entry_set *ses,
4080                                                struct list_head *head)
4081{
4082        struct sit_entry_set *next = ses;
4083
4084        if (list_is_last(&ses->set_list, head))
4085                return;
4086
4087        list_for_each_entry_continue(next, head, set_list)
4088                if (ses->entry_cnt <= next->entry_cnt)
4089                        break;
4090
4091        list_move_tail(&ses->set_list, &next->set_list);
4092}
4093
4094static void add_sit_entry(unsigned int segno, struct list_head *head)
4095{
4096        struct sit_entry_set *ses;
4097        unsigned int start_segno = START_SEGNO(segno);
4098
4099        list_for_each_entry(ses, head, set_list) {
4100                if (ses->start_segno == start_segno) {
4101                        ses->entry_cnt++;
4102                        adjust_sit_entry_set(ses, head);
4103                        return;
4104                }
4105        }
4106
4107        ses = grab_sit_entry_set();
4108
4109        ses->start_segno = start_segno;
4110        ses->entry_cnt++;
4111        list_add(&ses->set_list, head);
4112}
4113
4114static void add_sits_in_set(struct f2fs_sb_info *sbi)
4115{
4116        struct f2fs_sm_info *sm_info = SM_I(sbi);
4117        struct list_head *set_list = &sm_info->sit_entry_set;
4118        unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4119        unsigned int segno;
4120
4121        for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4122                add_sit_entry(segno, set_list);
4123}
4124
4125static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4126{
4127        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4128        struct f2fs_journal *journal = curseg->journal;
4129        int i;
4130
4131        down_write(&curseg->journal_rwsem);
4132        for (i = 0; i < sits_in_cursum(journal); i++) {
4133                unsigned int segno;
4134                bool dirtied;
4135
4136                segno = le32_to_cpu(segno_in_journal(journal, i));
4137                dirtied = __mark_sit_entry_dirty(sbi, segno);
4138
4139                if (!dirtied)
4140                        add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4141        }
4142        update_sits_in_cursum(journal, -i);
4143        up_write(&curseg->journal_rwsem);
4144}
4145
4146/*
4147 * CP calls this function, which flushes SIT entries including sit_journal,
4148 * and moves prefree segs to free segs.
4149 */
4150void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4151{
4152        struct sit_info *sit_i = SIT_I(sbi);
4153        unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4154        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4155        struct f2fs_journal *journal = curseg->journal;
4156        struct sit_entry_set *ses, *tmp;
4157        struct list_head *head = &SM_I(sbi)->sit_entry_set;
4158        bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4159        struct seg_entry *se;
4160
4161        down_write(&sit_i->sentry_lock);
4162
4163        if (!sit_i->dirty_sentries)
4164                goto out;
4165
4166        /*
4167         * add and account sit entries of dirty bitmap in sit entry
4168         * set temporarily
4169         */
4170        add_sits_in_set(sbi);
4171
4172        /*
4173         * if there are no enough space in journal to store dirty sit
4174         * entries, remove all entries from journal and add and account
4175         * them in sit entry set.
4176         */
4177        if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4178                                                                !to_journal)
4179                remove_sits_in_journal(sbi);
4180
4181        /*
4182         * there are two steps to flush sit entries:
4183         * #1, flush sit entries to journal in current cold data summary block.
4184         * #2, flush sit entries to sit page.
4185         */
4186        list_for_each_entry_safe(ses, tmp, head, set_list) {
4187                struct page *page = NULL;
4188                struct f2fs_sit_block *raw_sit = NULL;
4189                unsigned int start_segno = ses->start_segno;
4190                unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4191                                                (unsigned long)MAIN_SEGS(sbi));
4192                unsigned int segno = start_segno;
4193
4194                if (to_journal &&
4195                        !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4196                        to_journal = false;
4197
4198                if (to_journal) {
4199                        down_write(&curseg->journal_rwsem);
4200                } else {
4201                        page = get_next_sit_page(sbi, start_segno);
4202                        raw_sit = page_address(page);
4203                }
4204
4205                /* flush dirty sit entries in region of current sit set */
4206                for_each_set_bit_from(segno, bitmap, end) {
4207                        int offset, sit_offset;
4208
4209                        se = get_seg_entry(sbi, segno);
4210#ifdef CONFIG_F2FS_CHECK_FS
4211                        if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4212                                                SIT_VBLOCK_MAP_SIZE))
4213                                f2fs_bug_on(sbi, 1);
4214#endif
4215
4216                        /* add discard candidates */
4217                        if (!(cpc->reason & CP_DISCARD)) {
4218                                cpc->trim_start = segno;
4219                                add_discard_addrs(sbi, cpc, false);
4220                        }
4221
4222                        if (to_journal) {
4223                                offset = f2fs_lookup_journal_in_cursum(journal,
4224                                                        SIT_JOURNAL, segno, 1);
4225                                f2fs_bug_on(sbi, offset < 0);
4226                                segno_in_journal(journal, offset) =
4227                                                        cpu_to_le32(segno);
4228                                seg_info_to_raw_sit(se,
4229                                        &sit_in_journal(journal, offset));
4230                                check_block_count(sbi, segno,
4231                                        &sit_in_journal(journal, offset));
4232                        } else {
4233                                sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4234                                seg_info_to_raw_sit(se,
4235                                                &raw_sit->entries[sit_offset]);
4236                                check_block_count(sbi, segno,
4237                                                &raw_sit->entries[sit_offset]);
4238                        }
4239
4240                        __clear_bit(segno, bitmap);
4241                        sit_i->dirty_sentries--;
4242                        ses->entry_cnt--;
4243                }
4244
4245                if (to_journal)
4246                        up_write(&curseg->journal_rwsem);
4247                else
4248                        f2fs_put_page(page, 1);
4249
4250                f2fs_bug_on(sbi, ses->entry_cnt);
4251                release_sit_entry_set(ses);
4252        }
4253
4254        f2fs_bug_on(sbi, !list_empty(head));
4255        f2fs_bug_on(sbi, sit_i->dirty_sentries);
4256out:
4257        if (cpc->reason & CP_DISCARD) {
4258                __u64 trim_start = cpc->trim_start;
4259
4260                for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4261                        add_discard_addrs(sbi, cpc, false);
4262
4263                cpc->trim_start = trim_start;
4264        }
4265        up_write(&sit_i->sentry_lock);
4266
4267        set_prefree_as_free_segments(sbi);
4268}
4269
4270static int build_sit_info(struct f2fs_sb_info *sbi)
4271{
4272        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4273        struct sit_info *sit_i;
4274        unsigned int sit_segs, start;
4275        char *src_bitmap, *bitmap;
4276        unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4277
4278        /* allocate memory for SIT information */
4279        sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4280        if (!sit_i)
4281                return -ENOMEM;
4282
4283        SM_I(sbi)->sit_info = sit_i;
4284
4285        sit_i->sentries =
4286                f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4287                                              MAIN_SEGS(sbi)),
4288                              GFP_KERNEL);
4289        if (!sit_i->sentries)
4290                return -ENOMEM;
4291
4292        main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4293        sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4294                                                                GFP_KERNEL);
4295        if (!sit_i->dirty_sentries_bitmap)
4296                return -ENOMEM;
4297
4298#ifdef CONFIG_F2FS_CHECK_FS
4299        bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4300#else
4301        bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4302#endif
4303        sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4304        if (!sit_i->bitmap)
4305                return -ENOMEM;
4306
4307        bitmap = sit_i->bitmap;
4308
4309        for (start = 0; start < MAIN_SEGS(sbi); start++) {
4310                sit_i->sentries[start].cur_valid_map = bitmap;
4311                bitmap += SIT_VBLOCK_MAP_SIZE;
4312
4313                sit_i->sentries[start].ckpt_valid_map = bitmap;
4314                bitmap += SIT_VBLOCK_MAP_SIZE;
4315
4316#ifdef CONFIG_F2FS_CHECK_FS
4317                sit_i->sentries[start].cur_valid_map_mir = bitmap;
4318                bitmap += SIT_VBLOCK_MAP_SIZE;
4319#endif
4320
4321                sit_i->sentries[start].discard_map = bitmap;
4322                bitmap += SIT_VBLOCK_MAP_SIZE;
4323        }
4324
4325        sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4326        if (!sit_i->tmp_map)
4327                return -ENOMEM;
4328
4329        if (__is_large_section(sbi)) {
4330                sit_i->sec_entries =
4331                        f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4332                                                      MAIN_SECS(sbi)),
4333                                      GFP_KERNEL);
4334                if (!sit_i->sec_entries)
4335                        return -ENOMEM;
4336        }
4337
4338        /* get information related with SIT */
4339        sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4340
4341        /* setup SIT bitmap from ckeckpoint pack */
4342        sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4343        src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4344
4345        sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4346        if (!sit_i->sit_bitmap)
4347                return -ENOMEM;
4348
4349#ifdef CONFIG_F2FS_CHECK_FS
4350        sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4351                                        sit_bitmap_size, GFP_KERNEL);
4352        if (!sit_i->sit_bitmap_mir)
4353                return -ENOMEM;
4354
4355        sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4356                                        main_bitmap_size, GFP_KERNEL);
4357        if (!sit_i->invalid_segmap)
4358                return -ENOMEM;
4359#endif
4360
4361        /* init SIT information */
4362        sit_i->s_ops = &default_salloc_ops;
4363
4364        sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4365        sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4366        sit_i->written_valid_blocks = 0;
4367        sit_i->bitmap_size = sit_bitmap_size;
4368        sit_i->dirty_sentries = 0;
4369        sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4370        sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4371        sit_i->mounted_time = ktime_get_boottime_seconds();
4372        init_rwsem(&sit_i->sentry_lock);
4373        return 0;
4374}
4375
4376static int build_free_segmap(struct f2fs_sb_info *sbi)
4377{
4378        struct free_segmap_info *free_i;
4379        unsigned int bitmap_size, sec_bitmap_size;
4380
4381        /* allocate memory for free segmap information */
4382        free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4383        if (!free_i)
4384                return -ENOMEM;
4385
4386        SM_I(sbi)->free_info = free_i;
4387
4388        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4389        free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4390        if (!free_i->free_segmap)
4391                return -ENOMEM;
4392
4393        sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4394        free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4395        if (!free_i->free_secmap)
4396                return -ENOMEM;
4397
4398        /* set all segments as dirty temporarily */
4399        memset(free_i->free_segmap, 0xff, bitmap_size);
4400        memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4401
4402        /* init free segmap information */
4403        free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4404        free_i->free_segments = 0;
4405        free_i->free_sections = 0;
4406        spin_lock_init(&free_i->segmap_lock);
4407        return 0;
4408}
4409
4410static int build_curseg(struct f2fs_sb_info *sbi)
4411{
4412        struct curseg_info *array;
4413        int i;
4414
4415        array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4416                                        sizeof(*array)), GFP_KERNEL);
4417        if (!array)
4418                return -ENOMEM;
4419
4420        SM_I(sbi)->curseg_array = array;
4421
4422        for (i = 0; i < NO_CHECK_TYPE; i++) {
4423                mutex_init(&array[i].curseg_mutex);
4424                array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4425                if (!array[i].sum_blk)
4426                        return -ENOMEM;
4427                init_rwsem(&array[i].journal_rwsem);
4428                array[i].journal = f2fs_kzalloc(sbi,
4429                                sizeof(struct f2fs_journal), GFP_KERNEL);
4430                if (!array[i].journal)
4431                        return -ENOMEM;
4432                if (i < NR_PERSISTENT_LOG)
4433                        array[i].seg_type = CURSEG_HOT_DATA + i;
4434                else if (i == CURSEG_COLD_DATA_PINNED)
4435                        array[i].seg_type = CURSEG_COLD_DATA;
4436                else if (i == CURSEG_ALL_DATA_ATGC)
4437                        array[i].seg_type = CURSEG_COLD_DATA;
4438                array[i].segno = NULL_SEGNO;
4439                array[i].next_blkoff = 0;
4440                array[i].inited = false;
4441        }
4442        return restore_curseg_summaries(sbi);
4443}
4444
4445static int build_sit_entries(struct f2fs_sb_info *sbi)
4446{
4447        struct sit_info *sit_i = SIT_I(sbi);
4448        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4449        struct f2fs_journal *journal = curseg->journal;
4450        struct seg_entry *se;
4451        struct f2fs_sit_entry sit;
4452        int sit_blk_cnt = SIT_BLK_CNT(sbi);
4453        unsigned int i, start, end;
4454        unsigned int readed, start_blk = 0;
4455        int err = 0;
4456        block_t total_node_blocks = 0;
4457
4458        do {
4459                readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4460                                                        META_SIT, true);
4461
4462                start = start_blk * sit_i->sents_per_block;
4463                end = (start_blk + readed) * sit_i->sents_per_block;
4464
4465                for (; start < end && start < MAIN_SEGS(sbi); start++) {
4466                        struct f2fs_sit_block *sit_blk;
4467                        struct page *page;
4468
4469                        se = &sit_i->sentries[start];
4470                        page = get_current_sit_page(sbi, start);
4471                        if (IS_ERR(page))
4472                                return PTR_ERR(page);
4473                        sit_blk = (struct f2fs_sit_block *)page_address(page);
4474                        sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4475                        f2fs_put_page(page, 1);
4476
4477                        err = check_block_count(sbi, start, &sit);
4478                        if (err)
4479                                return err;
4480                        seg_info_from_raw_sit(se, &sit);
4481                        if (IS_NODESEG(se->type))
4482                                total_node_blocks += se->valid_blocks;
4483
4484                        /* build discard map only one time */
4485                        if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4486                                memset(se->discard_map, 0xff,
4487                                        SIT_VBLOCK_MAP_SIZE);
4488                        } else {
4489                                memcpy(se->discard_map,
4490                                        se->cur_valid_map,
4491                                        SIT_VBLOCK_MAP_SIZE);
4492                                sbi->discard_blks +=
4493                                        sbi->blocks_per_seg -
4494                                        se->valid_blocks;
4495                        }
4496
4497                        if (__is_large_section(sbi))
4498                                get_sec_entry(sbi, start)->valid_blocks +=
4499                                                        se->valid_blocks;
4500                }
4501                start_blk += readed;
4502        } while (start_blk < sit_blk_cnt);
4503
4504        down_read(&curseg->journal_rwsem);
4505        for (i = 0; i < sits_in_cursum(journal); i++) {
4506                unsigned int old_valid_blocks;
4507
4508                start = le32_to_cpu(segno_in_journal(journal, i));
4509                if (start >= MAIN_SEGS(sbi)) {
4510                        f2fs_err(sbi, "Wrong journal entry on segno %u",
4511                                 start);
4512                        err = -EFSCORRUPTED;
4513                        break;
4514                }
4515
4516                se = &sit_i->sentries[start];
4517                sit = sit_in_journal(journal, i);
4518
4519                old_valid_blocks = se->valid_blocks;
4520                if (IS_NODESEG(se->type))
4521                        total_node_blocks -= old_valid_blocks;
4522
4523                err = check_block_count(sbi, start, &sit);
4524                if (err)
4525                        break;
4526                seg_info_from_raw_sit(se, &sit);
4527                if (IS_NODESEG(se->type))
4528                        total_node_blocks += se->valid_blocks;
4529
4530                if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4531                        memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4532                } else {
4533                        memcpy(se->discard_map, se->cur_valid_map,
4534                                                SIT_VBLOCK_MAP_SIZE);
4535                        sbi->discard_blks += old_valid_blocks;
4536                        sbi->discard_blks -= se->valid_blocks;
4537                }
4538
4539                if (__is_large_section(sbi)) {
4540                        get_sec_entry(sbi, start)->valid_blocks +=
4541                                                        se->valid_blocks;
4542                        get_sec_entry(sbi, start)->valid_blocks -=
4543                                                        old_valid_blocks;
4544                }
4545        }
4546        up_read(&curseg->journal_rwsem);
4547
4548        if (!err && total_node_blocks != valid_node_count(sbi)) {
4549                f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4550                         total_node_blocks, valid_node_count(sbi));
4551                err = -EFSCORRUPTED;
4552        }
4553
4554        return err;
4555}
4556
4557static void init_free_segmap(struct f2fs_sb_info *sbi)
4558{
4559        unsigned int start;
4560        int type;
4561        struct seg_entry *sentry;
4562
4563        for (start = 0; start < MAIN_SEGS(sbi); start++) {
4564                if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4565                        continue;
4566                sentry = get_seg_entry(sbi, start);
4567                if (!sentry->valid_blocks)
4568                        __set_free(sbi, start);
4569                else
4570                        SIT_I(sbi)->written_valid_blocks +=
4571                                                sentry->valid_blocks;
4572        }
4573
4574        /* set use the current segments */
4575        for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4576                struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4577
4578                __set_test_and_inuse(sbi, curseg_t->segno);
4579        }
4580}
4581
4582static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4583{
4584        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4585        struct free_segmap_info *free_i = FREE_I(sbi);
4586        unsigned int segno = 0, offset = 0, secno;
4587        block_t valid_blocks, usable_blks_in_seg;
4588        block_t blks_per_sec = BLKS_PER_SEC(sbi);
4589
4590        while (1) {
4591                /* find dirty segment based on free segmap */
4592                segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4593                if (segno >= MAIN_SEGS(sbi))
4594                        break;
4595                offset = segno + 1;
4596                valid_blocks = get_valid_blocks(sbi, segno, false);
4597                usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4598                if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4599                        continue;
4600                if (valid_blocks > usable_blks_in_seg) {
4601                        f2fs_bug_on(sbi, 1);
4602                        continue;
4603                }
4604                mutex_lock(&dirty_i->seglist_lock);
4605                __locate_dirty_segment(sbi, segno, DIRTY);
4606                mutex_unlock(&dirty_i->seglist_lock);
4607        }
4608
4609        if (!__is_large_section(sbi))
4610                return;
4611
4612        mutex_lock(&dirty_i->seglist_lock);
4613        for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4614                valid_blocks = get_valid_blocks(sbi, segno, true);
4615                secno = GET_SEC_FROM_SEG(sbi, segno);
4616
4617                if (!valid_blocks || valid_blocks == blks_per_sec)
4618                        continue;
4619                if (IS_CURSEC(sbi, secno))
4620                        continue;
4621                set_bit(secno, dirty_i->dirty_secmap);
4622        }
4623        mutex_unlock(&dirty_i->seglist_lock);
4624}
4625
4626static int init_victim_secmap(struct f2fs_sb_info *sbi)
4627{
4628        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4629        unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4630
4631        dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4632        if (!dirty_i->victim_secmap)
4633                return -ENOMEM;
4634        return 0;
4635}
4636
4637static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4638{
4639        struct dirty_seglist_info *dirty_i;
4640        unsigned int bitmap_size, i;
4641
4642        /* allocate memory for dirty segments list information */
4643        dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4644                                                                GFP_KERNEL);
4645        if (!dirty_i)
4646                return -ENOMEM;
4647
4648        SM_I(sbi)->dirty_info = dirty_i;
4649        mutex_init(&dirty_i->seglist_lock);
4650
4651        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4652
4653        for (i = 0; i < NR_DIRTY_TYPE; i++) {
4654                dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4655                                                                GFP_KERNEL);
4656                if (!dirty_i->dirty_segmap[i])
4657                        return -ENOMEM;
4658        }
4659
4660        if (__is_large_section(sbi)) {
4661                bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4662                dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4663                                                bitmap_size, GFP_KERNEL);
4664                if (!dirty_i->dirty_secmap)
4665                        return -ENOMEM;
4666        }
4667
4668        init_dirty_segmap(sbi);
4669        return init_victim_secmap(sbi);
4670}
4671
4672static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4673{
4674        int i;
4675
4676        /*
4677         * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4678         * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4679         */
4680        for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4681                struct curseg_info *curseg = CURSEG_I(sbi, i);
4682                struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4683                unsigned int blkofs = curseg->next_blkoff;
4684
4685                sanity_check_seg_type(sbi, curseg->seg_type);
4686
4687                if (f2fs_test_bit(blkofs, se->cur_valid_map))
4688                        goto out;
4689
4690                if (curseg->alloc_type == SSR)
4691                        continue;
4692
4693                for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4694                        if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4695                                continue;
4696out:
4697                        f2fs_err(sbi,
4698                                 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4699                                 i, curseg->segno, curseg->alloc_type,
4700                                 curseg->next_blkoff, blkofs);
4701                        return -EFSCORRUPTED;
4702                }
4703        }
4704        return 0;
4705}
4706
4707#ifdef CONFIG_BLK_DEV_ZONED
4708
4709static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4710                                    struct f2fs_dev_info *fdev,
4711                                    struct blk_zone *zone)
4712{
4713        unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4714        block_t zone_block, wp_block, last_valid_block;
4715        unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4716        int i, s, b, ret;
4717        struct seg_entry *se;
4718
4719        if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4720                return 0;
4721
4722        wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4723        wp_segno = GET_SEGNO(sbi, wp_block);
4724        wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4725        zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4726        zone_segno = GET_SEGNO(sbi, zone_block);
4727        zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4728
4729        if (zone_segno >= MAIN_SEGS(sbi))
4730                return 0;
4731
4732        /*
4733         * Skip check of zones cursegs point to, since
4734         * fix_curseg_write_pointer() checks them.
4735         */
4736        for (i = 0; i < NO_CHECK_TYPE; i++)
4737                if (zone_secno == GET_SEC_FROM_SEG(sbi,
4738                                                   CURSEG_I(sbi, i)->segno))
4739                        return 0;
4740
4741        /*
4742         * Get last valid block of the zone.
4743         */
4744        last_valid_block = zone_block - 1;
4745        for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4746                segno = zone_segno + s;
4747                se = get_seg_entry(sbi, segno);
4748                for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4749                        if (f2fs_test_bit(b, se->cur_valid_map)) {
4750                                last_valid_block = START_BLOCK(sbi, segno) + b;
4751                                break;
4752                        }
4753                if (last_valid_block >= zone_block)
4754                        break;
4755        }
4756
4757        /*
4758         * If last valid block is beyond the write pointer, report the
4759         * inconsistency. This inconsistency does not cause write error
4760         * because the zone will not be selected for write operation until
4761         * it get discarded. Just report it.
4762         */
4763        if (last_valid_block >= wp_block) {
4764                f2fs_notice(sbi, "Valid block beyond write pointer: "
4765                            "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4766                            GET_SEGNO(sbi, last_valid_block),
4767                            GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4768                            wp_segno, wp_blkoff);
4769                return 0;
4770        }
4771
4772        /*
4773         * If there is no valid block in the zone and if write pointer is
4774         * not at zone start, reset the write pointer.
4775         */
4776        if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4777                f2fs_notice(sbi,
4778                            "Zone without valid block has non-zero write "
4779                            "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4780                            wp_segno, wp_blkoff);
4781                ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4782                                        zone->len >> log_sectors_per_block);
4783                if (ret) {
4784                        f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4785                                 fdev->path, ret);
4786                        return ret;
4787                }
4788        }
4789
4790        return 0;
4791}
4792
4793static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4794                                                  block_t zone_blkaddr)
4795{
4796        int i;
4797
4798        for (i = 0; i < sbi->s_ndevs; i++) {
4799                if (!bdev_is_zoned(FDEV(i).bdev))
4800                        continue;
4801                if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4802                                zone_blkaddr <= FDEV(i).end_blk))
4803                        return &FDEV(i);
4804        }
4805
4806        return NULL;
4807}
4808
4809static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4810                              void *data)
4811{
4812        memcpy(data, zone, sizeof(struct blk_zone));
4813        return 0;
4814}
4815
4816static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4817{
4818        struct curseg_info *cs = CURSEG_I(sbi, type);
4819        struct f2fs_dev_info *zbd;
4820        struct blk_zone zone;
4821        unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4822        block_t cs_zone_block, wp_block;
4823        unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4824        sector_t zone_sector;
4825        int err;
4826
4827        cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4828        cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4829
4830        zbd = get_target_zoned_dev(sbi, cs_zone_block);
4831        if (!zbd)
4832                return 0;
4833
4834        /* report zone for the sector the curseg points to */
4835        zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4836                << log_sectors_per_block;
4837        err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4838                                  report_one_zone_cb, &zone);
4839        if (err != 1) {
4840                f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4841                         zbd->path, err);
4842                return err;
4843        }
4844
4845        if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4846                return 0;
4847
4848        wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4849        wp_segno = GET_SEGNO(sbi, wp_block);
4850        wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4851        wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4852
4853        if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4854                wp_sector_off == 0)
4855                return 0;
4856
4857        f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4858                    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4859                    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4860
4861        f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4862                    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4863
4864        f2fs_allocate_new_section(sbi, type, true);
4865
4866        /* check consistency of the zone curseg pointed to */
4867        if (check_zone_write_pointer(sbi, zbd, &zone))
4868                return -EIO;
4869
4870        /* check newly assigned zone */
4871        cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4872        cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4873
4874        zbd = get_target_zoned_dev(sbi, cs_zone_block);
4875        if (!zbd)
4876                return 0;
4877
4878        zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4879                << log_sectors_per_block;
4880        err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4881                                  report_one_zone_cb, &zone);
4882        if (err != 1) {
4883                f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4884                         zbd->path, err);
4885                return err;
4886        }
4887
4888        if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4889                return 0;
4890
4891        if (zone.wp != zone.start) {
4892                f2fs_notice(sbi,
4893                            "New zone for curseg[%d] is not yet discarded. "
4894                            "Reset the zone: curseg[0x%x,0x%x]",
4895                            type, cs->segno, cs->next_blkoff);
4896                err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4897                                zone_sector >> log_sectors_per_block,
4898                                zone.len >> log_sectors_per_block);
4899                if (err) {
4900                        f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4901                                 zbd->path, err);
4902                        return err;
4903                }
4904        }
4905
4906        return 0;
4907}
4908
4909int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4910{
4911        int i, ret;
4912
4913        for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4914                ret = fix_curseg_write_pointer(sbi, i);
4915                if (ret)
4916                        return ret;
4917        }
4918
4919        return 0;
4920}
4921
4922struct check_zone_write_pointer_args {
4923        struct f2fs_sb_info *sbi;
4924        struct f2fs_dev_info *fdev;
4925};
4926
4927static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4928                                      void *data)
4929{
4930        struct check_zone_write_pointer_args *args;
4931
4932        args = (struct check_zone_write_pointer_args *)data;
4933
4934        return check_zone_write_pointer(args->sbi, args->fdev, zone);
4935}
4936
4937int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4938{
4939        int i, ret;
4940        struct check_zone_write_pointer_args args;
4941
4942        for (i = 0; i < sbi->s_ndevs; i++) {
4943                if (!bdev_is_zoned(FDEV(i).bdev))
4944                        continue;
4945
4946                args.sbi = sbi;
4947                args.fdev = &FDEV(i);
4948                ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4949                                          check_zone_write_pointer_cb, &args);
4950                if (ret < 0)
4951                        return ret;
4952        }
4953
4954        return 0;
4955}
4956
4957static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4958                                                unsigned int dev_idx)
4959{
4960        if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4961                return true;
4962        return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4963}
4964
4965/* Return the zone index in the given device */
4966static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4967                                        int dev_idx)
4968{
4969        block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4970
4971        return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4972                                                sbi->log_blocks_per_blkz;
4973}
4974
4975/*
4976 * Return the usable segments in a section based on the zone's
4977 * corresponding zone capacity. Zone is equal to a section.
4978 */
4979static inline unsigned int f2fs_usable_zone_segs_in_sec(
4980                struct f2fs_sb_info *sbi, unsigned int segno)
4981{
4982        unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
4983
4984        dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4985        zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4986
4987        /* Conventional zone's capacity is always equal to zone size */
4988        if (is_conv_zone(sbi, zone_idx, dev_idx))
4989                return sbi->segs_per_sec;
4990
4991        /*
4992         * If the zone_capacity_blocks array is NULL, then zone capacity
4993         * is equal to the zone size for all zones
4994         */
4995        if (!FDEV(dev_idx).zone_capacity_blocks)
4996                return sbi->segs_per_sec;
4997
4998        /* Get the segment count beyond zone capacity block */
4999        unusable_segs_in_sec = (sbi->blocks_per_blkz -
5000                                FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5001                                sbi->log_blocks_per_seg;
5002        return sbi->segs_per_sec - unusable_segs_in_sec;
5003}
5004
5005/*
5006 * Return the number of usable blocks in a segment. The number of blocks
5007 * returned is always equal to the number of blocks in a segment for
5008 * segments fully contained within a sequential zone capacity or a
5009 * conventional zone. For segments partially contained in a sequential
5010 * zone capacity, the number of usable blocks up to the zone capacity
5011 * is returned. 0 is returned in all other cases.
5012 */
5013static inline unsigned int f2fs_usable_zone_blks_in_seg(
5014                        struct f2fs_sb_info *sbi, unsigned int segno)
5015{
5016        block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5017        unsigned int zone_idx, dev_idx, secno;
5018
5019        secno = GET_SEC_FROM_SEG(sbi, segno);
5020        seg_start = START_BLOCK(sbi, segno);
5021        dev_idx = f2fs_target_device_index(sbi, seg_start);
5022        zone_idx = get_zone_idx(sbi, secno, dev_idx);
5023
5024        /*
5025         * Conventional zone's capacity is always equal to zone size,
5026         * so, blocks per segment is unchanged.
5027         */
5028        if (is_conv_zone(sbi, zone_idx, dev_idx))
5029                return sbi->blocks_per_seg;
5030
5031        if (!FDEV(dev_idx).zone_capacity_blocks)
5032                return sbi->blocks_per_seg;
5033
5034        sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5035        sec_cap_blkaddr = sec_start_blkaddr +
5036                                FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5037
5038        /*
5039         * If segment starts before zone capacity and spans beyond
5040         * zone capacity, then usable blocks are from seg start to
5041         * zone capacity. If the segment starts after the zone capacity,
5042         * then there are no usable blocks.
5043         */
5044        if (seg_start >= sec_cap_blkaddr)
5045                return 0;
5046        if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5047                return sec_cap_blkaddr - seg_start;
5048
5049        return sbi->blocks_per_seg;
5050}
5051#else
5052int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5053{
5054        return 0;
5055}
5056
5057int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5058{
5059        return 0;
5060}
5061
5062static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5063                                                        unsigned int segno)
5064{
5065        return 0;
5066}
5067
5068static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5069                                                        unsigned int segno)
5070{
5071        return 0;
5072}
5073#endif
5074unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5075                                        unsigned int segno)
5076{
5077        if (f2fs_sb_has_blkzoned(sbi))
5078                return f2fs_usable_zone_blks_in_seg(sbi, segno);
5079
5080        return sbi->blocks_per_seg;
5081}
5082
5083unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5084                                        unsigned int segno)
5085{
5086        if (f2fs_sb_has_blkzoned(sbi))
5087                return f2fs_usable_zone_segs_in_sec(sbi, segno);
5088
5089        return sbi->segs_per_sec;
5090}
5091
5092/*
5093 * Update min, max modified time for cost-benefit GC algorithm
5094 */
5095static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5096{
5097        struct sit_info *sit_i = SIT_I(sbi);
5098        unsigned int segno;
5099
5100        down_write(&sit_i->sentry_lock);
5101
5102        sit_i->min_mtime = ULLONG_MAX;
5103
5104        for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5105                unsigned int i;
5106                unsigned long long mtime = 0;
5107
5108                for (i = 0; i < sbi->segs_per_sec; i++)
5109                        mtime += get_seg_entry(sbi, segno + i)->mtime;
5110
5111                mtime = div_u64(mtime, sbi->segs_per_sec);
5112
5113                if (sit_i->min_mtime > mtime)
5114                        sit_i->min_mtime = mtime;
5115        }
5116        sit_i->max_mtime = get_mtime(sbi, false);
5117        sit_i->dirty_max_mtime = 0;
5118        up_write(&sit_i->sentry_lock);
5119}
5120
5121int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5122{
5123        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5124        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5125        struct f2fs_sm_info *sm_info;
5126        int err;
5127
5128        sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5129        if (!sm_info)
5130                return -ENOMEM;
5131
5132        /* init sm info */
5133        sbi->sm_info = sm_info;
5134        sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5135        sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5136        sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5137        sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5138        sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5139        sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5140        sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5141        sm_info->rec_prefree_segments = sm_info->main_segments *
5142                                        DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5143        if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5144                sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5145
5146        if (!f2fs_lfs_mode(sbi))
5147                sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5148        sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5149        sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5150        sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
5151        sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5152        sm_info->min_ssr_sections = reserved_sections(sbi);
5153
5154        INIT_LIST_HEAD(&sm_info->sit_entry_set);
5155
5156        init_rwsem(&sm_info->curseg_lock);
5157
5158        if (!f2fs_readonly(sbi->sb)) {
5159                err = f2fs_create_flush_cmd_control(sbi);
5160                if (err)
5161                        return err;
5162        }
5163
5164        err = create_discard_cmd_control(sbi);
5165        if (err)
5166                return err;
5167
5168        err = build_sit_info(sbi);
5169        if (err)
5170                return err;
5171        err = build_free_segmap(sbi);
5172        if (err)
5173                return err;
5174        err = build_curseg(sbi);
5175        if (err)
5176                return err;
5177
5178        /* reinit free segmap based on SIT */
5179        err = build_sit_entries(sbi);
5180        if (err)
5181                return err;
5182
5183        init_free_segmap(sbi);
5184        err = build_dirty_segmap(sbi);
5185        if (err)
5186                return err;
5187
5188        err = sanity_check_curseg(sbi);
5189        if (err)
5190                return err;
5191
5192        init_min_max_mtime(sbi);
5193        return 0;
5194}
5195
5196static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5197                enum dirty_type dirty_type)
5198{
5199        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5200
5201        mutex_lock(&dirty_i->seglist_lock);
5202        kvfree(dirty_i->dirty_segmap[dirty_type]);
5203        dirty_i->nr_dirty[dirty_type] = 0;
5204        mutex_unlock(&dirty_i->seglist_lock);
5205}
5206
5207static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5208{
5209        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5210
5211        kvfree(dirty_i->victim_secmap);
5212}
5213
5214static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5215{
5216        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5217        int i;
5218
5219        if (!dirty_i)
5220                return;
5221
5222        /* discard pre-free/dirty segments list */
5223        for (i = 0; i < NR_DIRTY_TYPE; i++)
5224                discard_dirty_segmap(sbi, i);
5225
5226        if (__is_large_section(sbi)) {
5227                mutex_lock(&dirty_i->seglist_lock);
5228                kvfree(dirty_i->dirty_secmap);
5229                mutex_unlock(&dirty_i->seglist_lock);
5230        }
5231
5232        destroy_victim_secmap(sbi);
5233        SM_I(sbi)->dirty_info = NULL;
5234        kfree(dirty_i);
5235}
5236
5237static void destroy_curseg(struct f2fs_sb_info *sbi)
5238{
5239        struct curseg_info *array = SM_I(sbi)->curseg_array;
5240        int i;
5241
5242        if (!array)
5243                return;
5244        SM_I(sbi)->curseg_array = NULL;
5245        for (i = 0; i < NR_CURSEG_TYPE; i++) {
5246                kfree(array[i].sum_blk);
5247                kfree(array[i].journal);
5248        }
5249        kfree(array);
5250}
5251
5252static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5253{
5254        struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5255
5256        if (!free_i)
5257                return;
5258        SM_I(sbi)->free_info = NULL;
5259        kvfree(free_i->free_segmap);
5260        kvfree(free_i->free_secmap);
5261        kfree(free_i);
5262}
5263
5264static void destroy_sit_info(struct f2fs_sb_info *sbi)
5265{
5266        struct sit_info *sit_i = SIT_I(sbi);
5267
5268        if (!sit_i)
5269                return;
5270
5271        if (sit_i->sentries)
5272                kvfree(sit_i->bitmap);
5273        kfree(sit_i->tmp_map);
5274
5275        kvfree(sit_i->sentries);
5276        kvfree(sit_i->sec_entries);
5277        kvfree(sit_i->dirty_sentries_bitmap);
5278
5279        SM_I(sbi)->sit_info = NULL;
5280        kvfree(sit_i->sit_bitmap);
5281#ifdef CONFIG_F2FS_CHECK_FS
5282        kvfree(sit_i->sit_bitmap_mir);
5283        kvfree(sit_i->invalid_segmap);
5284#endif
5285        kfree(sit_i);
5286}
5287
5288void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5289{
5290        struct f2fs_sm_info *sm_info = SM_I(sbi);
5291
5292        if (!sm_info)
5293                return;
5294        f2fs_destroy_flush_cmd_control(sbi, true);
5295        destroy_discard_cmd_control(sbi);
5296        destroy_dirty_segmap(sbi);
5297        destroy_curseg(sbi);
5298        destroy_free_segmap(sbi);
5299        destroy_sit_info(sbi);
5300        sbi->sm_info = NULL;
5301        kfree(sm_info);
5302}
5303
5304int __init f2fs_create_segment_manager_caches(void)
5305{
5306        discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5307                        sizeof(struct discard_entry));
5308        if (!discard_entry_slab)
5309                goto fail;
5310
5311        discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5312                        sizeof(struct discard_cmd));
5313        if (!discard_cmd_slab)
5314                goto destroy_discard_entry;
5315
5316        sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5317                        sizeof(struct sit_entry_set));
5318        if (!sit_entry_set_slab)
5319                goto destroy_discard_cmd;
5320
5321        inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5322                        sizeof(struct inmem_pages));
5323        if (!inmem_entry_slab)
5324                goto destroy_sit_entry_set;
5325        return 0;
5326
5327destroy_sit_entry_set:
5328        kmem_cache_destroy(sit_entry_set_slab);
5329destroy_discard_cmd:
5330        kmem_cache_destroy(discard_cmd_slab);
5331destroy_discard_entry:
5332        kmem_cache_destroy(discard_entry_slab);
5333fail:
5334        return -ENOMEM;
5335}
5336
5337void f2fs_destroy_segment_manager_caches(void)
5338{
5339        kmem_cache_destroy(sit_entry_set_slab);
5340        kmem_cache_destroy(discard_cmd_slab);
5341        kmem_cache_destroy(discard_entry_slab);
5342        kmem_cache_destroy(inmem_entry_slab);
5343}
5344